blob: d5453c7ebd033fc3dd99d2eaf8b9e2c2c867552c [file] [log] [blame]
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package androidx.fragment.app;
import static androidx.annotation.RestrictTo.Scope.LIBRARY_GROUP_PREFIX;
import android.animation.Animator;
import android.annotation.SuppressLint;
import android.app.Activity;
import android.content.ComponentCallbacks;
import android.content.Context;
import android.content.Intent;
import android.content.IntentSender;
import android.content.res.Configuration;
import android.content.res.Resources;
import android.os.Build;
import android.os.Bundle;
import android.os.Handler;
import android.os.Looper;
import android.os.Parcel;
import android.os.Parcelable;
import android.util.AttributeSet;
import android.util.SparseArray;
import android.view.ContextMenu;
import android.view.ContextMenu.ContextMenuInfo;
import android.view.LayoutInflater;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.view.View.OnCreateContextMenuListener;
import android.view.ViewGroup;
import android.view.animation.Animation;
import android.widget.AdapterView;
import androidx.annotation.CallSuper;
import androidx.annotation.ContentView;
import androidx.annotation.LayoutRes;
import androidx.annotation.MainThread;
import androidx.annotation.NonNull;
import androidx.annotation.Nullable;
import androidx.annotation.RestrictTo;
import androidx.annotation.StringRes;
import androidx.annotation.UiThread;
import androidx.core.app.SharedElementCallback;
import androidx.core.util.DebugUtils;
import androidx.core.view.LayoutInflaterCompat;
import androidx.lifecycle.HasDefaultViewModelProviderFactory;
import androidx.lifecycle.Lifecycle;
import androidx.lifecycle.LifecycleEventObserver;
import androidx.lifecycle.LifecycleOwner;
import androidx.lifecycle.LifecycleRegistry;
import androidx.lifecycle.LiveData;
import androidx.lifecycle.MutableLiveData;
import androidx.lifecycle.ViewModelProvider;
import androidx.lifecycle.ViewModelStore;
import androidx.lifecycle.ViewModelStoreOwner;
import androidx.loader.app.LoaderManager;
import androidx.savedstate.SavedStateRegistry;
import androidx.savedstate.SavedStateRegistryController;
import androidx.savedstate.SavedStateRegistryOwner;
import java.io.FileDescriptor;
import java.io.PrintWriter;
import java.lang.reflect.InvocationTargetException;
import java.util.UUID;
import java.util.concurrent.TimeUnit;
/**
* Static library support version of the framework's {@link android.app.Fragment}.
* Used to write apps that run on platforms prior to Android 3.0. When running
* on Android 3.0 or above, this implementation is still used; it does not try
* to switch to the framework's implementation. See the framework {@link android.app.Fragment}
* documentation for a class overview.
*
* <p>The main differences when using this support version instead of the framework version are:
* <ul>
* <li>Your activity must extend {@link FragmentActivity}
* <li>You must call {@link FragmentActivity#getSupportFragmentManager} to get the
* {@link FragmentManager}
* </ul>
*
*/
public class Fragment implements ComponentCallbacks, OnCreateContextMenuListener, LifecycleOwner,
ViewModelStoreOwner, HasDefaultViewModelProviderFactory, SavedStateRegistryOwner {
static final Object USE_DEFAULT_TRANSITION = new Object();
static final int INITIALIZING = 0; // Not yet created.
static final int CREATED = 1; // Created.
static final int ACTIVITY_CREATED = 2; // Fully created, not started.
static final int STARTED = 3; // Created and started, not resumed.
static final int RESUMED = 4; // Created started and resumed.
int mState = INITIALIZING;
// When instantiated from saved state, this is the saved state.
Bundle mSavedFragmentState;
SparseArray<Parcelable> mSavedViewState;
// If the userVisibleHint is changed before the state is set,
// it is stored here
@Nullable Boolean mSavedUserVisibleHint;
// Internal unique name for this fragment;
@NonNull
String mWho = UUID.randomUUID().toString();
// Construction arguments;
Bundle mArguments;
// Target fragment.
Fragment mTarget;
// For use when retaining a fragment: this is the who of the last mTarget.
String mTargetWho = null;
// Target request code.
int mTargetRequestCode;
// Boolean indicating whether this Fragment is the primary navigation fragment
private Boolean mIsPrimaryNavigationFragment = null;
// True if the fragment is in the list of added fragments.
boolean mAdded;
// If set this fragment is being removed from its activity.
boolean mRemoving;
// Set to true if this fragment was instantiated from a layout file.
boolean mFromLayout;
// Set to true when the view has actually been inflated in its layout.
boolean mInLayout;
// True if this fragment has been restored from previously saved state.
boolean mRestored;
// True if performCreateView has been called and a matching call to performDestroyView
// has not yet happened.
boolean mPerformedCreateView;
// Number of active back stack entries this fragment is in.
int mBackStackNesting;
// The fragment manager we are associated with. Set as soon as the
// fragment is used in a transaction; cleared after it has been removed
// from all transactions.
FragmentManager mFragmentManager;
// Host this fragment is attached to.
FragmentHostCallback<?> mHost;
// Private fragment manager for child fragments inside of this one.
@NonNull
FragmentManager mChildFragmentManager = new FragmentManagerImpl();
// If this Fragment is contained in another Fragment, this is that container.
Fragment mParentFragment;
// The optional identifier for this fragment -- either the container ID if it
// was dynamically added to the view hierarchy, or the ID supplied in
// layout.
int mFragmentId;
// When a fragment is being dynamically added to the view hierarchy, this
// is the identifier of the parent container it is being added to.
int mContainerId;
// The optional named tag for this fragment -- usually used to find
// fragments that are not part of the layout.
String mTag;
// Set to true when the app has requested that this fragment be hidden
// from the user.
boolean mHidden;
// Set to true when the app has requested that this fragment be deactivated.
boolean mDetached;
// If set this fragment would like its instance retained across
// configuration changes.
boolean mRetainInstance;
// If set this fragment changed its mRetainInstance while it was detached
boolean mRetainInstanceChangedWhileDetached;
// If set this fragment has menu items to contribute.
boolean mHasMenu;
// Set to true to allow the fragment's menu to be shown.
boolean mMenuVisible = true;
// Used to verify that subclasses call through to super class.
private boolean mCalled;
// The parent container of the fragment after dynamically added to UI.
ViewGroup mContainer;
// The View generated for this fragment.
View mView;
// The real inner view that will save/restore state.
View mInnerView;
// Whether this fragment should defer starting until after other fragments
// have been started and their loaders are finished.
boolean mDeferStart;
// Hint provided by the app that this fragment is currently visible to the user.
boolean mUserVisibleHint = true;
// The animation and transition information for the fragment. This will be null
// unless the elements are explicitly accessed and should remain null for Fragments
// without Views.
AnimationInfo mAnimationInfo;
// Runnable that is used to indicate if the Fragment has a postponed transition that is on a
// timeout.
Runnable mPostponedDurationRunnable = new Runnable() {
@Override
public void run() {
startPostponedEnterTransition();
}
};
// True if the View was added, and its animation has yet to be run. This could
// also indicate that the fragment view hasn't been made visible, even if there is no
// animation for this fragment.
boolean mIsNewlyAdded;
// True if mHidden has been changed and the animation should be scheduled.
boolean mHiddenChanged;
// The alpha of the view when the view was added and then postponed. If the value is less
// than zero, this means that the view's add was canceled and should not participate in
// removal animations.
float mPostponedAlpha;
// The cached value from onGetLayoutInflater(Bundle) that will be returned from
// getLayoutInflater()
LayoutInflater mLayoutInflater;
// Keep track of whether or not this Fragment has run performCreate(). Retained instance
// fragments can have mRetaining set to true without going through creation, so we must
// track it separately.
boolean mIsCreated;
// Max Lifecycle state this Fragment can achieve.
Lifecycle.State mMaxState = Lifecycle.State.RESUMED;
LifecycleRegistry mLifecycleRegistry;
// This is initialized in performCreateView and unavailable outside of the
// onCreateView/onDestroyView lifecycle
@Nullable FragmentViewLifecycleOwner mViewLifecycleOwner;
MutableLiveData<LifecycleOwner> mViewLifecycleOwnerLiveData = new MutableLiveData<>();
SavedStateRegistryController mSavedStateRegistryController;
@LayoutRes
private int mContentLayoutId;
/**
* {@inheritDoc}
* <p>
* Overriding this method is no longer supported and this method will be made
* <code>final</code> in a future version of Fragment.
*/
@Override
@NonNull
public Lifecycle getLifecycle() {
return mLifecycleRegistry;
}
/**
* Get a {@link LifecycleOwner} that represents the {@link #getView() Fragment's View}
* lifecycle. In most cases, this mirrors the lifecycle of the Fragment itself, but in cases
* of {@link FragmentTransaction#detach(Fragment) detached} Fragments, the lifecycle of the
* Fragment can be considerably longer than the lifecycle of the View itself.
* <p>
* Namely, the lifecycle of the Fragment's View is:
* <ol>
* <li>{@link Lifecycle.Event#ON_CREATE created} after {@link #onViewStateRestored(Bundle)}</li>
* <li>{@link Lifecycle.Event#ON_START started} after {@link #onStart()}</li>
* <li>{@link Lifecycle.Event#ON_RESUME resumed} after {@link #onResume()}</li>
* <li>{@link Lifecycle.Event#ON_PAUSE paused} before {@link #onPause()}</li>
* <li>{@link Lifecycle.Event#ON_STOP stopped} before {@link #onStop()}</li>
* <li>{@link Lifecycle.Event#ON_DESTROY destroyed} before {@link #onDestroyView()}</li>
* </ol>
*
* The first method where it is safe to access the view lifecycle is
* {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)} under the condition that you must
* return a non-null view (an IllegalStateException will be thrown if you access the view
* lifecycle but don't return a non-null view).
* <p>The view lifecycle remains valid through the call to {@link #onDestroyView()}, after which
* {@link #getView()} will return null, the view lifecycle will be destroyed, and this method
* will throw an IllegalStateException. Consider using
* {@link #getViewLifecycleOwnerLiveData()} or {@link FragmentTransaction#runOnCommit(Runnable)}
* to receive a callback for when the Fragment's view lifecycle is available.
* <p>
* This should only be called on the main thread.
* <p>
* Overriding this method is no longer supported and this method will be made
* <code>final</code> in a future version of Fragment.
*
* @return A {@link LifecycleOwner} that represents the {@link #getView() Fragment's View}
* lifecycle.
* @throws IllegalStateException if the {@link #getView() Fragment's View is null}.
*/
@MainThread
@NonNull
public LifecycleOwner getViewLifecycleOwner() {
if (mViewLifecycleOwner == null) {
throw new IllegalStateException("Can't access the Fragment View's LifecycleOwner when "
+ "getView() is null i.e., before onCreateView() or after onDestroyView()");
}
return mViewLifecycleOwner;
}
/**
* Retrieve a {@link LiveData} which allows you to observe the
* {@link #getViewLifecycleOwner() lifecycle of the Fragment's View}.
* <p>
* This will be set to the new {@link LifecycleOwner} after {@link #onCreateView} returns a
* non-null View and will set to null after {@link #onDestroyView()}.
* <p>
* Overriding this method is no longer supported and this method will be made
* <code>final</code> in a future version of Fragment.
*
* @return A LiveData that changes in sync with {@link #getViewLifecycleOwner()}.
*/
@NonNull
public LiveData<LifecycleOwner> getViewLifecycleOwnerLiveData() {
return mViewLifecycleOwnerLiveData;
}
/**
* Returns the {@link ViewModelStore} associated with this Fragment
* <p>
* Overriding this method is no longer supported and this method will be made
* <code>final</code> in a future version of Fragment.
*
* @return a {@code ViewModelStore}
* @throws IllegalStateException if called before the Fragment is attached i.e., before
* onAttach().
*/
@NonNull
@Override
public ViewModelStore getViewModelStore() {
if (mFragmentManager == null) {
throw new IllegalStateException("Can't access ViewModels from detached fragment");
}
return mFragmentManager.getViewModelStore(this);
}
@NonNull
@Override
public ViewModelProvider.Factory getDefaultViewModelProviderFactory() {
if (mFragmentManager == null) {
throw new IllegalStateException("Can't access ViewModels from detached fragment");
}
return ViewModelProvider.AndroidViewModelFactory.getInstance(
requireActivity().getApplication());
}
@NonNull
@Override
public final SavedStateRegistry getSavedStateRegistry() {
return mSavedStateRegistryController.getSavedStateRegistry();
}
/**
* State information that has been retrieved from a fragment instance
* through {@link FragmentManager#saveFragmentInstanceState(Fragment)
* FragmentManager.saveFragmentInstanceState}.
*/
@SuppressLint("BanParcelableUsage")
public static class SavedState implements Parcelable {
final Bundle mState;
SavedState(Bundle state) {
mState = state;
}
SavedState(@NonNull Parcel in, @Nullable ClassLoader loader) {
mState = in.readBundle();
if (loader != null && mState != null) {
mState.setClassLoader(loader);
}
}
@Override
public int describeContents() {
return 0;
}
@Override
public void writeToParcel(@NonNull Parcel dest, int flags) {
dest.writeBundle(mState);
}
@NonNull
public static final Parcelable.Creator<SavedState> CREATOR =
new Parcelable.ClassLoaderCreator<SavedState>() {
@Override
public SavedState createFromParcel(Parcel in) {
return new SavedState(in, null);
}
@Override
public SavedState createFromParcel(Parcel in, ClassLoader loader) {
return new SavedState(in, loader);
}
@Override
public SavedState[] newArray(int size) {
return new SavedState[size];
}
};
}
/**
* Thrown by {@link FragmentFactory#instantiate(ClassLoader, String)} when
* there is an instantiation failure.
*/
@SuppressWarnings("JavaLangClash")
public static class InstantiationException extends RuntimeException {
public InstantiationException(@NonNull String msg, @Nullable Exception cause) {
super(msg, cause);
}
}
/**
* Constructor used by the default {@link FragmentFactory}. You must
* {@link FragmentManager#setFragmentFactory(FragmentFactory) set a custom FragmentFactory}
* if you want to use a non-default constructor to ensure that your constructor
* is called when the fragment is re-instantiated.
*
* <p>It is strongly recommended to supply arguments with {@link #setArguments}
* and later retrieved by the Fragment with {@link #getArguments}. These arguments
* are automatically saved and restored alongside the Fragment.
*
* <p>Applications should generally not implement a constructor. Prefer
* {@link #onAttach(Context)} instead. It is the first place application code can run where
* the fragment is ready to be used - the point where the fragment is actually associated with
* its context. Some applications may also want to implement {@link #onInflate} to retrieve
* attributes from a layout resource, although note this happens when the fragment is attached.
*/
public Fragment() {
initLifecycle();
}
/**
* Alternate constructor that can be used to provide a default layout
* that will be inflated by {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)}.
*
* @see #Fragment()
* @see #onCreateView(LayoutInflater, ViewGroup, Bundle)
*/
@ContentView
public Fragment(@LayoutRes int contentLayoutId) {
this();
mContentLayoutId = contentLayoutId;
}
private void initLifecycle() {
mLifecycleRegistry = new LifecycleRegistry(this);
mSavedStateRegistryController = SavedStateRegistryController.create(this);
if (Build.VERSION.SDK_INT >= 19) {
mLifecycleRegistry.addObserver(new LifecycleEventObserver() {
@Override
public void onStateChanged(@NonNull LifecycleOwner source,
@NonNull Lifecycle.Event event) {
if (event == Lifecycle.Event.ON_STOP) {
if (mView != null) {
mView.cancelPendingInputEvents();
}
}
}
});
}
}
/**
* Like {@link #instantiate(Context, String, Bundle)} but with a null
* argument Bundle.
* @deprecated Use {@link FragmentManager#getFragmentFactory()} and
* {@link FragmentFactory#instantiate(ClassLoader, String)}
*/
@SuppressWarnings("deprecation")
@Deprecated
@NonNull
public static Fragment instantiate(@NonNull Context context, @NonNull String fname) {
return instantiate(context, fname, null);
}
/**
* Create a new instance of a Fragment with the given class name. This is
* the same as calling its empty constructor, setting the {@link ClassLoader} on the
* supplied arguments, then calling {@link #setArguments(Bundle)}.
*
* @param context The calling context being used to instantiate the fragment.
* This is currently just used to get its ClassLoader.
* @param fname The class name of the fragment to instantiate.
* @param args Bundle of arguments to supply to the fragment, which it
* can retrieve with {@link #getArguments()}. May be null.
* @return Returns a new fragment instance.
* @throws InstantiationException If there is a failure in instantiating
* the given fragment class. This is a runtime exception; it is not
* normally expected to happen.
* @deprecated Use {@link FragmentManager#getFragmentFactory()} and
* {@link FragmentFactory#instantiate(ClassLoader, String)}, manually calling
* {@link #setArguments(Bundle)} on the returned Fragment.
*/
@Deprecated
@NonNull
public static Fragment instantiate(@NonNull Context context, @NonNull String fname,
@Nullable Bundle args) {
try {
Class<? extends Fragment> clazz = FragmentFactory.loadFragmentClass(
context.getClassLoader(), fname);
Fragment f = clazz.getConstructor().newInstance();
if (args != null) {
args.setClassLoader(f.getClass().getClassLoader());
f.setArguments(args);
}
return f;
} catch (java.lang.InstantiationException e) {
throw new InstantiationException("Unable to instantiate fragment " + fname
+ ": make sure class name exists, is public, and has an"
+ " empty constructor that is public", e);
} catch (IllegalAccessException e) {
throw new InstantiationException("Unable to instantiate fragment " + fname
+ ": make sure class name exists, is public, and has an"
+ " empty constructor that is public", e);
} catch (NoSuchMethodException e) {
throw new InstantiationException("Unable to instantiate fragment " + fname
+ ": could not find Fragment constructor", e);
} catch (InvocationTargetException e) {
throw new InstantiationException("Unable to instantiate fragment " + fname
+ ": calling Fragment constructor caused an exception", e);
}
}
final void restoreViewState(Bundle savedInstanceState) {
if (mSavedViewState != null) {
mInnerView.restoreHierarchyState(mSavedViewState);
mSavedViewState = null;
}
mCalled = false;
onViewStateRestored(savedInstanceState);
if (!mCalled) {
throw new SuperNotCalledException("Fragment " + this
+ " did not call through to super.onViewStateRestored()");
}
if (mView != null) {
mViewLifecycleOwner.handleLifecycleEvent(Lifecycle.Event.ON_CREATE);
}
}
final boolean isInBackStack() {
return mBackStackNesting > 0;
}
/**
* Subclasses can not override equals().
*/
@Override public final boolean equals(@Nullable Object o) {
return super.equals(o);
}
/**
* Subclasses can not override hashCode().
*/
@Override public final int hashCode() {
return super.hashCode();
}
@NonNull
@Override
public String toString() {
StringBuilder sb = new StringBuilder(128);
DebugUtils.buildShortClassTag(this, sb);
sb.append(" (");
sb.append(mWho);
sb.append(")");
if (mFragmentId != 0) {
sb.append(" id=0x");
sb.append(Integer.toHexString(mFragmentId));
}
if (mTag != null) {
sb.append(" ");
sb.append(mTag);
}
sb.append('}');
return sb.toString();
}
/**
* Return the identifier this fragment is known by. This is either
* the android:id value supplied in a layout or the container view ID
* supplied when adding the fragment.
*/
final public int getId() {
return mFragmentId;
}
/**
* Get the tag name of the fragment, if specified.
*/
@Nullable
final public String getTag() {
return mTag;
}
/**
* Supply the construction arguments for this fragment.
* The arguments supplied here will be retained across fragment destroy and
* creation.
* <p>This method cannot be called if the fragment is added to a FragmentManager and
* if {@link #isStateSaved()} would return true.</p>
*/
public void setArguments(@Nullable Bundle args) {
if (mFragmentManager != null && isStateSaved()) {
throw new IllegalStateException("Fragment already added and state has been saved");
}
mArguments = args;
}
/**
* Return the arguments supplied when the fragment was instantiated,
* if any.
*/
@Nullable
final public Bundle getArguments() {
return mArguments;
}
/**
* Return the arguments supplied when the fragment was instantiated.
*
* @throws IllegalStateException if no arguments were supplied to the Fragment.
* @see #getArguments()
*/
@NonNull
public final Bundle requireArguments() {
Bundle arguments = getArguments();
if (arguments == null) {
throw new IllegalStateException("Fragment " + this + " does not have any arguments.");
}
return arguments;
}
/**
* Returns true if this fragment is added and its state has already been saved
* by its host. Any operations that would change saved state should not be performed
* if this method returns true, and some operations such as {@link #setArguments(Bundle)}
* will fail.
*
* @return true if this fragment's state has already been saved by its host
*/
public final boolean isStateSaved() {
if (mFragmentManager == null) {
return false;
}
return mFragmentManager.isStateSaved();
}
/**
* Set the initial saved state that this Fragment should restore itself
* from when first being constructed, as returned by
* {@link FragmentManager#saveFragmentInstanceState(Fragment)
* FragmentManager.saveFragmentInstanceState}.
*
* @param state The state the fragment should be restored from.
*/
public void setInitialSavedState(@Nullable SavedState state) {
if (mFragmentManager != null) {
throw new IllegalStateException("Fragment already added");
}
mSavedFragmentState = state != null && state.mState != null
? state.mState : null;
}
/**
* Optional target for this fragment. This may be used, for example,
* if this fragment is being started by another, and when done wants to
* give a result back to the first. The target set here is retained
* across instances via {@link FragmentManager#putFragment
* FragmentManager.putFragment()}.
*
* @param fragment The fragment that is the target of this one.
* @param requestCode Optional request code, for convenience if you
* are going to call back with {@link #onActivityResult(int, int, Intent)}.
*/
@SuppressWarnings("ReferenceEquality")
public void setTargetFragment(@Nullable Fragment fragment, int requestCode) {
// Don't allow a caller to set a target fragment in another FragmentManager,
// but there's a snag: people do set target fragments before fragments get added.
// We'll have the FragmentManager check that for validity when we move
// the fragments to a valid state.
final FragmentManager mine = getFragmentManager();
final FragmentManager theirs = fragment != null ? fragment.getFragmentManager() : null;
if (mine != null && theirs != null && mine != theirs) {
throw new IllegalArgumentException("Fragment " + fragment
+ " must share the same FragmentManager to be set as a target fragment");
}
// Don't let someone create a cycle.
for (Fragment check = fragment; check != null; check = check.getTargetFragment()) {
if (check == this) {
throw new IllegalArgumentException("Setting " + fragment + " as the target of "
+ this + " would create a target cycle");
}
}
if (fragment == null) {
mTargetWho = null;
mTarget = null;
} else if (mFragmentManager != null && fragment.mFragmentManager != null) {
// Just save the reference to the Fragment
mTargetWho = fragment.mWho;
mTarget = null;
} else {
// Save the Fragment itself, waiting until we're attached
mTargetWho = null;
mTarget = fragment;
}
mTargetRequestCode = requestCode;
}
/**
* Return the target fragment set by {@link #setTargetFragment}.
*/
@Nullable
final public Fragment getTargetFragment() {
if (mTarget != null) {
// Ensure that any Fragment set with setTargetFragment is immediately
// available here
return mTarget;
} else if (mFragmentManager != null && mTargetWho != null) {
// Look up the target Fragment from the FragmentManager
return mFragmentManager.mActive.get(mTargetWho);
}
return null;
}
/**
* Return the target request code set by {@link #setTargetFragment}.
*/
final public int getTargetRequestCode() {
return mTargetRequestCode;
}
/**
* Return the {@link Context} this fragment is currently associated with.
*
* @see #requireContext()
*/
@Nullable
public Context getContext() {
return mHost == null ? null : mHost.getContext();
}
/**
* Return the {@link Context} this fragment is currently associated with.
*
* @throws IllegalStateException if not currently associated with a context.
* @see #getContext()
*/
@NonNull
public final Context requireContext() {
Context context = getContext();
if (context == null) {
throw new IllegalStateException("Fragment " + this + " not attached to a context.");
}
return context;
}
/**
* Return the {@link FragmentActivity} this fragment is currently associated with.
* May return {@code null} if the fragment is associated with a {@link Context}
* instead.
*
* @see #requireActivity()
*/
@Nullable
final public FragmentActivity getActivity() {
return mHost == null ? null : (FragmentActivity) mHost.getActivity();
}
/**
* Return the {@link FragmentActivity} this fragment is currently associated with.
*
* @throws IllegalStateException if not currently associated with an activity or if associated
* only with a context.
* @see #getActivity()
*/
@NonNull
public final FragmentActivity requireActivity() {
FragmentActivity activity = getActivity();
if (activity == null) {
throw new IllegalStateException("Fragment " + this + " not attached to an activity.");
}
return activity;
}
/**
* Return the host object of this fragment. May return {@code null} if the fragment
* isn't currently being hosted.
*
* @see #requireHost()
*/
@Nullable
final public Object getHost() {
return mHost == null ? null : mHost.onGetHost();
}
/**
* Return the host object of this fragment.
*
* @throws IllegalStateException if not currently associated with a host.
* @see #getHost()
*/
@NonNull
public final Object requireHost() {
Object host = getHost();
if (host == null) {
throw new IllegalStateException("Fragment " + this + " not attached to a host.");
}
return host;
}
/**
* Return <code>requireActivity().getResources()</code>.
*/
@NonNull
final public Resources getResources() {
return requireContext().getResources();
}
/**
* Return a localized, styled CharSequence from the application's package's
* default string table.
*
* @param resId Resource id for the CharSequence text
*/
@NonNull
public final CharSequence getText(@StringRes int resId) {
return getResources().getText(resId);
}
/**
* Return a localized string from the application's package's
* default string table.
*
* @param resId Resource id for the string
*/
@NonNull
public final String getString(@StringRes int resId) {
return getResources().getString(resId);
}
/**
* Return a localized formatted string from the application's package's
* default string table, substituting the format arguments as defined in
* {@link java.util.Formatter} and {@link java.lang.String#format}.
*
* @param resId Resource id for the format string
* @param formatArgs The format arguments that will be used for substitution.
*/
@NonNull
public final String getString(@StringRes int resId, @Nullable Object... formatArgs) {
return getResources().getString(resId, formatArgs);
}
/**
* Return the FragmentManager for interacting with fragments associated
* with this fragment's activity. Note that this will be non-null slightly
* before {@link #getActivity()}, during the time from when the fragment is
* placed in a {@link FragmentTransaction} until it is committed and
* attached to its activity.
*
* <p>If this Fragment is a child of another Fragment, the FragmentManager
* returned here will be the parent's {@link #getChildFragmentManager()}.
*
* @see #requireFragmentManager()
*/
@Nullable
final public FragmentManager getFragmentManager() {
return mFragmentManager;
}
/**
* Return the FragmentManager for interacting with fragments associated
* with this fragment's activity. Note that this will available slightly
* before {@link #getActivity()}, during the time from when the fragment is
* placed in a {@link FragmentTransaction} until it is committed and
* attached to its activity.
*
* <p>If this Fragment is a child of another Fragment, the FragmentManager
* returned here will be the parent's {@link #getChildFragmentManager()}.
*
* @throws IllegalStateException if not associated with a transaction or host.
* @see #getFragmentManager()
*/
@NonNull
public final FragmentManager requireFragmentManager() {
FragmentManager fragmentManager = getFragmentManager();
if (fragmentManager == null) {
throw new IllegalStateException(
"Fragment " + this + " not associated with a fragment manager.");
}
return fragmentManager;
}
/**
* Return a private FragmentManager for placing and managing Fragments
* inside of this Fragment.
*/
@NonNull
final public FragmentManager getChildFragmentManager() {
if (mHost == null) {
throw new IllegalStateException("Fragment " + this + " has not been attached yet.");
}
return mChildFragmentManager;
}
/**
* Returns the parent Fragment containing this Fragment. If this Fragment
* is attached directly to an Activity, returns null.
*/
@Nullable
final public Fragment getParentFragment() {
return mParentFragment;
}
/**
* Returns the parent Fragment containing this Fragment.
*
* @throws IllegalStateException if this Fragment is attached directly to an Activity or
* other Fragment host.
* @see #getParentFragment()
*/
@NonNull
public final Fragment requireParentFragment() {
Fragment parentFragment = getParentFragment();
if (parentFragment == null) {
Context context = getContext();
if (context == null) {
throw new IllegalStateException("Fragment " + this + " is not attached to"
+ " any Fragment or host");
} else {
throw new IllegalStateException("Fragment " + this + " is not a child Fragment, it"
+ " is directly attached to " + getContext());
}
}
return parentFragment;
}
/**
* Return true if the fragment is currently added to its activity.
*/
final public boolean isAdded() {
return mHost != null && mAdded;
}
/**
* Return true if the fragment has been explicitly detached from the UI.
* That is, {@link FragmentTransaction#detach(Fragment)
* FragmentTransaction.detach(Fragment)} has been used on it.
*/
final public boolean isDetached() {
return mDetached;
}
/**
* Return true if this fragment is currently being removed from its
* activity. This is <em>not</em> whether its activity is finishing, but
* rather whether it is in the process of being removed from its activity.
*/
final public boolean isRemoving() {
return mRemoving;
}
/**
* Return <code>true</code> if this fragment or any of its ancestors are currently being removed
* from its activity. This is <em>not</em> whether its activity is finishing, but rather
* whether it, or its ancestors are in the process of being removed from its activity.
*/
final boolean isRemovingParent() {
Fragment parent = getParentFragment();
return parent != null && (parent.isRemoving() || parent.isRemovingParent());
}
/**
* Return true if the layout is included as part of an activity view
* hierarchy via the &lt;fragment&gt; tag. This will always be true when
* fragments are created through the &lt;fragment&gt; tag, <em>except</em>
* in the case where an old fragment is restored from a previous state and
* it does not appear in the layout of the current state.
*/
final public boolean isInLayout() {
return mInLayout;
}
/**
* Return true if the fragment is in the resumed state. This is true
* for the duration of {@link #onResume()} and {@link #onPause()} as well.
*/
final public boolean isResumed() {
return mState >= RESUMED;
}
/**
* Return true if the fragment is currently visible to the user. This means
* it: (1) has been added, (2) has its view attached to the window, and
* (3) is not hidden.
*/
final public boolean isVisible() {
return isAdded() && !isHidden() && mView != null
&& mView.getWindowToken() != null && mView.getVisibility() == View.VISIBLE;
}
/**
* Return true if the fragment has been hidden. By default fragments
* are shown. You can find out about changes to this state with
* {@link #onHiddenChanged}. Note that the hidden state is orthogonal
* to other states -- that is, to be visible to the user, a fragment
* must be both started and not hidden.
*/
final public boolean isHidden() {
return mHidden;
}
/** @hide */
@RestrictTo(LIBRARY_GROUP_PREFIX)
final public boolean hasOptionsMenu() {
return mHasMenu;
}
/** @hide */
@RestrictTo(LIBRARY_GROUP_PREFIX)
final public boolean isMenuVisible() {
return mMenuVisible;
}
/**
* Called when the hidden state (as returned by {@link #isHidden()} of
* the fragment has changed. Fragments start out not hidden; this will
* be called whenever the fragment changes state from that.
* @param hidden True if the fragment is now hidden, false otherwise.
*/
@MainThread
public void onHiddenChanged(boolean hidden) {
}
/**
* Control whether a fragment instance is retained across Activity
* re-creation (such as from a configuration change). If set, the fragment
* lifecycle will be slightly different when an activity is recreated:
* <ul>
* <li> {@link #onDestroy()} will not be called (but {@link #onDetach()} still
* will be, because the fragment is being detached from its current activity).
* <li> {@link #onCreate(Bundle)} will not be called since the fragment
* is not being re-created.
* <li> {@link #onAttach(Activity)} and {@link #onActivityCreated(Bundle)} <b>will</b>
* still be called.
* </ul>
*/
public void setRetainInstance(boolean retain) {
mRetainInstance = retain;
if (mFragmentManager != null) {
if (retain) {
mFragmentManager.addRetainedFragment(this);
} else {
mFragmentManager.removeRetainedFragment(this);
}
} else {
mRetainInstanceChangedWhileDetached = true;
}
}
final public boolean getRetainInstance() {
return mRetainInstance;
}
/**
* Report that this fragment would like to participate in populating
* the options menu by receiving a call to {@link #onCreateOptionsMenu}
* and related methods.
*
* @param hasMenu If true, the fragment has menu items to contribute.
*/
public void setHasOptionsMenu(boolean hasMenu) {
if (mHasMenu != hasMenu) {
mHasMenu = hasMenu;
if (isAdded() && !isHidden()) {
mHost.onSupportInvalidateOptionsMenu();
}
}
}
/**
* Set a hint for whether this fragment's menu should be visible. This
* is useful if you know that a fragment has been placed in your view
* hierarchy so that the user can not currently seen it, so any menu items
* it has should also not be shown.
*
* @param menuVisible The default is true, meaning the fragment's menu will
* be shown as usual. If false, the user will not see the menu.
*/
public void setMenuVisibility(boolean menuVisible) {
if (mMenuVisible != menuVisible) {
mMenuVisible = menuVisible;
if (mHasMenu && isAdded() && !isHidden()) {
mHost.onSupportInvalidateOptionsMenu();
}
}
}
/**
* Set a hint to the system about whether this fragment's UI is currently visible
* to the user. This hint defaults to true and is persistent across fragment instance
* state save and restore.
*
* <p>An app may set this to false to indicate that the fragment's UI is
* scrolled out of visibility or is otherwise not directly visible to the user.
* This may be used by the system to prioritize operations such as fragment lifecycle updates
* or loader ordering behavior.</p>
*
* <p><strong>Note:</strong> This method may be called outside of the fragment lifecycle.
* and thus has no ordering guarantees with regard to fragment lifecycle method calls.</p>
*
* @param isVisibleToUser true if this fragment's UI is currently visible to the user (default),
* false if it is not.
*
* @deprecated Use {@link FragmentTransaction#setMaxLifecycle(Fragment, Lifecycle.State)}
* instead.
*/
@Deprecated
public void setUserVisibleHint(boolean isVisibleToUser) {
if (!mUserVisibleHint && isVisibleToUser && mState < STARTED
&& mFragmentManager != null && isAdded() && mIsCreated) {
mFragmentManager.performPendingDeferredStart(this);
}
mUserVisibleHint = isVisibleToUser;
mDeferStart = mState < STARTED && !isVisibleToUser;
if (mSavedFragmentState != null) {
// Ensure that if the user visible hint is set before the Fragment has
// restored its state that we don't lose the new value
mSavedUserVisibleHint = isVisibleToUser;
}
}
/**
* @return The current value of the user-visible hint on this fragment.
* @see #setUserVisibleHint(boolean)
*
* @deprecated Use {@link FragmentTransaction#setMaxLifecycle(Fragment, Lifecycle.State)}
* instead.
*/
@Deprecated
public boolean getUserVisibleHint() {
return mUserVisibleHint;
}
/**
* Return the LoaderManager for this fragment.
*
* @deprecated Use
* {@link LoaderManager#getInstance(LifecycleOwner) LoaderManager.getInstance(this)}.
*/
@Deprecated
@NonNull
public LoaderManager getLoaderManager() {
return LoaderManager.getInstance(this);
}
/**
* Call {@link Activity#startActivity(Intent)} from the fragment's
* containing Activity.
*/
public void startActivity(@SuppressLint("UnknownNullness") Intent intent) {
startActivity(intent, null);
}
/**
* Call {@link Activity#startActivity(Intent, Bundle)} from the fragment's
* containing Activity.
*/
public void startActivity(@SuppressLint("UnknownNullness") Intent intent,
@Nullable Bundle options) {
if (mHost == null) {
throw new IllegalStateException("Fragment " + this + " not attached to Activity");
}
mHost.onStartActivityFromFragment(this /*fragment*/, intent, -1, options);
}
/**
* Call {@link Activity#startActivityForResult(Intent, int)} from the fragment's
* containing Activity.
*/
public void startActivityForResult(@SuppressLint("UnknownNullness") Intent intent,
int requestCode) {
startActivityForResult(intent, requestCode, null);
}
/**
* Call {@link Activity#startActivityForResult(Intent, int, Bundle)} from the fragment's
* containing Activity.
*/
public void startActivityForResult(@SuppressLint("UnknownNullness") Intent intent,
int requestCode, @Nullable Bundle options) {
if (mHost == null) {
throw new IllegalStateException("Fragment " + this + " not attached to Activity");
}
mHost.onStartActivityFromFragment(this /*fragment*/, intent, requestCode, options);
}
/**
* Call {@link Activity#startIntentSenderForResult(IntentSender, int, Intent, int, int, int,
* Bundle)} from the fragment's containing Activity.
*/
public void startIntentSenderForResult(@SuppressLint("UnknownNullness") IntentSender intent,
int requestCode, @Nullable Intent fillInIntent, int flagsMask, int flagsValues,
int extraFlags, @Nullable Bundle options) throws IntentSender.SendIntentException {
if (mHost == null) {
throw new IllegalStateException("Fragment " + this + " not attached to Activity");
}
mHost.onStartIntentSenderFromFragment(this, intent, requestCode, fillInIntent, flagsMask,
flagsValues, extraFlags, options);
}
/**
* Receive the result from a previous call to
* {@link #startActivityForResult(Intent, int)}. This follows the
* related Activity API as described there in
* {@link Activity#onActivityResult(int, int, Intent)}.
*
* @param requestCode The integer request code originally supplied to
* startActivityForResult(), allowing you to identify who this
* result came from.
* @param resultCode The integer result code returned by the child activity
* through its setResult().
* @param data An Intent, which can return result data to the caller
* (various data can be attached to Intent "extras").
*/
public void onActivityResult(int requestCode, int resultCode, @Nullable Intent data) {
}
/**
* Requests permissions to be granted to this application. These permissions
* must be requested in your manifest, they should not be granted to your app,
* and they should have protection level {@link android.content.pm.PermissionInfo
* #PROTECTION_DANGEROUS dangerous}, regardless whether they are declared by
* the platform or a third-party app.
* <p>
* Normal permissions {@link android.content.pm.PermissionInfo#PROTECTION_NORMAL}
* are granted at install time if requested in the manifest. Signature permissions
* {@link android.content.pm.PermissionInfo#PROTECTION_SIGNATURE} are granted at
* install time if requested in the manifest and the signature of your app matches
* the signature of the app declaring the permissions.
* </p>
* <p>
* If your app does not have the requested permissions the user will be presented
* with UI for accepting them. After the user has accepted or rejected the
* requested permissions you will receive a callback on {@link
* #onRequestPermissionsResult(int, String[], int[])} reporting whether the
* permissions were granted or not.
* </p>
* <p>
* Note that requesting a permission does not guarantee it will be granted and
* your app should be able to run without having this permission.
* </p>
* <p>
* This method may start an activity allowing the user to choose which permissions
* to grant and which to reject. Hence, you should be prepared that your activity
* may be paused and resumed. Further, granting some permissions may require
* a restart of you application. In such a case, the system will recreate the
* activity stack before delivering the result to {@link
* #onRequestPermissionsResult(int, String[], int[])}.
* </p>
* <p>
* When checking whether you have a permission you should use {@link
* android.content.Context#checkSelfPermission(String)}.
* </p>
* <p>
* Calling this API for permissions already granted to your app would show UI
* to the user to decided whether the app can still hold these permissions. This
* can be useful if the way your app uses the data guarded by the permissions
* changes significantly.
* </p>
* <p>
* A sample permissions request looks like this:
* </p>
* <code><pre><p>
* private void showContacts() {
* if (getActivity().checkSelfPermission(Manifest.permission.READ_CONTACTS)
* != PackageManager.PERMISSION_GRANTED) {
* requestPermissions(new String[]{Manifest.permission.READ_CONTACTS},
* PERMISSIONS_REQUEST_READ_CONTACTS);
* } else {
* doShowContacts();
* }
* }
*
* {@literal @}Override
* public void onRequestPermissionsResult(int requestCode, String[] permissions,
* int[] grantResults) {
* if (requestCode == PERMISSIONS_REQUEST_READ_CONTACTS
* && grantResults[0] == PackageManager.PERMISSION_GRANTED) {
* doShowContacts();
* }
* }
* </code></pre></p>
*
* @param permissions The requested permissions.
* @param requestCode Application specific request code to match with a result
* reported to {@link #onRequestPermissionsResult(int, String[], int[])}.
*
* @see #onRequestPermissionsResult(int, String[], int[])
* @see android.content.Context#checkSelfPermission(String)
*/
public final void requestPermissions(@NonNull String[] permissions, int requestCode) {
if (mHost == null) {
throw new IllegalStateException("Fragment " + this + " not attached to Activity");
}
mHost.onRequestPermissionsFromFragment(this, permissions, requestCode);
}
/**
* Callback for the result from requesting permissions. This method
* is invoked for every call on {@link #requestPermissions(String[], int)}.
* <p>
* <strong>Note:</strong> It is possible that the permissions request interaction
* with the user is interrupted. In this case you will receive empty permissions
* and results arrays which should be treated as a cancellation.
* </p>
*
* @param requestCode The request code passed in {@link #requestPermissions(String[], int)}.
* @param permissions The requested permissions. Never null.
* @param grantResults The grant results for the corresponding permissions
* which is either {@link android.content.pm.PackageManager#PERMISSION_GRANTED}
* or {@link android.content.pm.PackageManager#PERMISSION_DENIED}. Never null.
*
* @see #requestPermissions(String[], int)
*/
public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions,
@NonNull int[] grantResults) {
/* callback - do nothing */
}
/**
* Gets whether you should show UI with rationale for requesting a permission.
* You should do this only if you do not have the permission and the context in
* which the permission is requested does not clearly communicate to the user
* what would be the benefit from granting this permission.
* <p>
* For example, if you write a camera app, requesting the camera permission
* would be expected by the user and no rationale for why it is requested is
* needed. If however, the app needs location for tagging photos then a non-tech
* savvy user may wonder how location is related to taking photos. In this case
* you may choose to show UI with rationale of requesting this permission.
* </p>
*
* @param permission A permission your app wants to request.
* @return Whether you can show permission rationale UI.
*
* @see Context#checkSelfPermission(String)
* @see #requestPermissions(String[], int)
* @see #onRequestPermissionsResult(int, String[], int[])
*/
public boolean shouldShowRequestPermissionRationale(@NonNull String permission) {
if (mHost != null) {
return mHost.onShouldShowRequestPermissionRationale(permission);
}
return false;
}
/**
* Returns the LayoutInflater used to inflate Views of this Fragment. The default
* implementation will throw an exception if the Fragment is not attached.
*
* @param savedInstanceState If the fragment is being re-created from
* a previous saved state, this is the state.
* @return The LayoutInflater used to inflate Views of this Fragment.
*/
@NonNull
public LayoutInflater onGetLayoutInflater(@Nullable Bundle savedInstanceState) {
// TODO: move the implementation in getLayoutInflater to here
return getLayoutInflater(savedInstanceState);
}
/**
* Returns the cached LayoutInflater used to inflate Views of this Fragment. If
* {@link #onGetLayoutInflater(Bundle)} has not been called {@link #onGetLayoutInflater(Bundle)}
* will be called with a {@code null} argument and that value will be cached.
* <p>
* The cached LayoutInflater will be replaced immediately prior to
* {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)} and cleared immediately after
* {@link #onDetach()}.
*
* @return The LayoutInflater used to inflate Views of this Fragment.
*/
@NonNull
public final LayoutInflater getLayoutInflater() {
if (mLayoutInflater == null) {
return performGetLayoutInflater(null);
}
return mLayoutInflater;
}
/**
* Calls {@link #onGetLayoutInflater(Bundle)} and caches the result for use by
* {@link #getLayoutInflater()}.
*
* @param savedInstanceState If the fragment is being re-created from
* a previous saved state, this is the state.
* @return The LayoutInflater used to inflate Views of this Fragment.
*/
@NonNull
LayoutInflater performGetLayoutInflater(@Nullable Bundle savedInstanceState) {
LayoutInflater layoutInflater = onGetLayoutInflater(savedInstanceState);
mLayoutInflater = layoutInflater;
return mLayoutInflater;
}
/**
* Override {@link #onGetLayoutInflater(Bundle)} when you need to change the
* LayoutInflater or call {@link #getLayoutInflater()} when you want to
* retrieve the current LayoutInflater.
*
* @hide
* @deprecated Override {@link #onGetLayoutInflater(Bundle)} or call
* {@link #getLayoutInflater()} instead of this method.
*/
@Deprecated
@NonNull
@RestrictTo(LIBRARY_GROUP_PREFIX)
public LayoutInflater getLayoutInflater(@Nullable Bundle savedFragmentState) {
if (mHost == null) {
throw new IllegalStateException("onGetLayoutInflater() cannot be executed until the "
+ "Fragment is attached to the FragmentManager.");
}
LayoutInflater result = mHost.onGetLayoutInflater();
LayoutInflaterCompat.setFactory2(result, mChildFragmentManager.getLayoutInflaterFactory());
return result;
}
/**
* Called when a fragment is being created as part of a view layout
* inflation, typically from setting the content view of an activity. This
* may be called immediately after the fragment is created from a <fragment>
* tag in a layout file. Note this is <em>before</em> the fragment's
* {@link #onAttach(Activity)} has been called; all you should do here is
* parse the attributes and save them away.
*
* <p>This is called every time the fragment is inflated, even if it is
* being inflated into a new instance with saved state. It typically makes
* sense to re-parse the parameters each time, to allow them to change with
* different configurations.</p>
*
* <p>Here is a typical implementation of a fragment that can take parameters
* both through attributes supplied here as well from {@link #getArguments()}:</p>
*
* {@sample frameworks/support/samples/Support4Demos/src/main/java/com/example/android/supportv4/app/FragmentArgumentsSupport.java
* fragment}
*
* <p>Note that parsing the XML attributes uses a "styleable" resource. The
* declaration for the styleable used here is:</p>
*
* {@sample frameworks/support/samples/Support4Demos/src/main/res/values/attrs.xml fragment_arguments}
*
* <p>The fragment can then be declared within its activity's content layout
* through a tag like this:</p>
*
* {@sample frameworks/support/samples/Support4Demos/src/main/res/layout/fragment_arguments_support.xml from_attributes}
*
* <p>This fragment can also be created dynamically from arguments given
* at runtime in the arguments Bundle; here is an example of doing so at
* creation of the containing activity:</p>
*
* {@sample frameworks/support/samples/Support4Demos/src/main/java/com/example/android/supportv4/app/FragmentArgumentsSupport.java
* create}
*
* @param context The Activity that is inflating this fragment.
* @param attrs The attributes at the tag where the fragment is
* being created.
* @param savedInstanceState If the fragment is being re-created from
* a previous saved state, this is the state.
*/
@UiThread
@CallSuper
public void onInflate(@NonNull Context context, @NonNull AttributeSet attrs,
@Nullable Bundle savedInstanceState) {
mCalled = true;
final Activity hostActivity = mHost == null ? null : mHost.getActivity();
if (hostActivity != null) {
mCalled = false;
onInflate(hostActivity, attrs, savedInstanceState);
}
}
/**
* Called when a fragment is being created as part of a view layout
* inflation, typically from setting the content view of an activity.
*
* @deprecated See {@link #onInflate(Context, AttributeSet, Bundle)}.
*/
@Deprecated
@UiThread
@CallSuper
public void onInflate(@NonNull Activity activity, @NonNull AttributeSet attrs,
@Nullable Bundle savedInstanceState) {
mCalled = true;
}
/**
* Called when a fragment is attached as a child of this fragment.
*
* <p>This is called after the attached fragment's <code>onAttach</code> and before
* the attached fragment's <code>onCreate</code> if the fragment has not yet had a previous
* call to <code>onCreate</code>.</p>
*
* @param childFragment child fragment being attached
*/
@MainThread
public void onAttachFragment(@NonNull Fragment childFragment) {
}
/**
* Called when a fragment is first attached to its context.
* {@link #onCreate(Bundle)} will be called after this.
*/
@MainThread
@CallSuper
public void onAttach(@NonNull Context context) {
mCalled = true;
final Activity hostActivity = mHost == null ? null : mHost.getActivity();
if (hostActivity != null) {
mCalled = false;
onAttach(hostActivity);
}
}
/**
* Called when a fragment is first attached to its activity.
* {@link #onCreate(Bundle)} will be called after this.
*
* @deprecated See {@link #onAttach(Context)}.
*/
@Deprecated
@MainThread
@CallSuper
public void onAttach(@NonNull Activity activity) {
mCalled = true;
}
/**
* Called when a fragment loads an animation. Note that if
* {@link FragmentTransaction#setCustomAnimations(int, int)} was called with
* {@link Animator} resources instead of {@link Animation} resources, {@code nextAnim}
* will be an animator resource.
*
* @param transit The value set in {@link FragmentTransaction#setTransition(int)} or 0 if not
* set.
* @param enter {@code true} when the fragment is added/attached/shown or {@code false} when
* the fragment is removed/detached/hidden.
* @param nextAnim The resource set in
* {@link FragmentTransaction#setCustomAnimations(int, int)},
* {@link FragmentTransaction#setCustomAnimations(int, int, int, int)}, or
* 0 if neither was called. The value will depend on the current operation.
*/
@MainThread
@Nullable
public Animation onCreateAnimation(int transit, boolean enter, int nextAnim) {
return null;
}
/**
* Called when a fragment loads an animator. This will be called when
* {@link #onCreateAnimation(int, boolean, int)} returns null. Note that if
* {@link FragmentTransaction#setCustomAnimations(int, int)} was called with
* {@link Animation} resources instead of {@link Animator} resources, {@code nextAnim}
* will be an animation resource.
*
* @param transit The value set in {@link FragmentTransaction#setTransition(int)} or 0 if not
* set.
* @param enter {@code true} when the fragment is added/attached/shown or {@code false} when
* the fragment is removed/detached/hidden.
* @param nextAnim The resource set in
* {@link FragmentTransaction#setCustomAnimations(int, int)},
* {@link FragmentTransaction#setCustomAnimations(int, int, int, int)}, or
* 0 if neither was called. The value will depend on the current operation.
*/
@MainThread
@Nullable
public Animator onCreateAnimator(int transit, boolean enter, int nextAnim) {
return null;
}
/**
* Called to do initial creation of a fragment. This is called after
* {@link #onAttach(Activity)} and before
* {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)}.
*
* <p>Note that this can be called while the fragment's activity is
* still in the process of being created. As such, you can not rely
* on things like the activity's content view hierarchy being initialized
* at this point. If you want to do work once the activity itself is
* created, see {@link #onActivityCreated(Bundle)}.
*
* <p>Any restored child fragments will be created before the base
* <code>Fragment.onCreate</code> method returns.</p>
*
* @param savedInstanceState If the fragment is being re-created from
* a previous saved state, this is the state.
*/
@MainThread
@CallSuper
public void onCreate(@Nullable Bundle savedInstanceState) {
mCalled = true;
restoreChildFragmentState(savedInstanceState);
if (!mChildFragmentManager.isStateAtLeast(Fragment.CREATED)) {
mChildFragmentManager.dispatchCreate();
}
}
/**
* Restore the state of the child FragmentManager. Called by either
* {@link #onCreate(Bundle)} for non-retained instance fragments or by
* {@link FragmentManager#moveToState(Fragment, int, int, int, boolean)}
* for retained instance fragments.
*
* <p><strong>Postcondition:</strong> if there were child fragments to restore,
* the child FragmentManager will be instantiated and brought to the {@link #CREATED} state.
* </p>
*
* @param savedInstanceState the savedInstanceState potentially containing fragment info
*/
void restoreChildFragmentState(@Nullable Bundle savedInstanceState) {
if (savedInstanceState != null) {
Parcelable p = savedInstanceState.getParcelable(
FragmentActivity.FRAGMENTS_TAG);
if (p != null) {
mChildFragmentManager.restoreSaveState(p);
mChildFragmentManager.dispatchCreate();
}
}
}
/**
* Called to have the fragment instantiate its user interface view.
* This is optional, and non-graphical fragments can return null. This will be called between
* {@link #onCreate(Bundle)} and {@link #onActivityCreated(Bundle)}.
* <p>A default View can be returned by calling {@link #Fragment(int)} in your
* constructor. Otherwise, this method returns null.
*
* <p>It is recommended to <strong>only</strong> inflate the layout in this method and move
* logic that operates on the returned View to {@link #onViewCreated(View, Bundle)}.
*
* <p>If you return a View from here, you will later be called in
* {@link #onDestroyView} when the view is being released.
*
* @param inflater The LayoutInflater object that can be used to inflate
* any views in the fragment,
* @param container If non-null, this is the parent view that the fragment's
* UI should be attached to. The fragment should not add the view itself,
* but this can be used to generate the LayoutParams of the view.
* @param savedInstanceState If non-null, this fragment is being re-constructed
* from a previous saved state as given here.
*
* @return Return the View for the fragment's UI, or null.
*/
@MainThread
@Nullable
public View onCreateView(@NonNull LayoutInflater inflater, @Nullable ViewGroup container,
@Nullable Bundle savedInstanceState) {
if (mContentLayoutId != 0) {
return inflater.inflate(mContentLayoutId, container, false);
}
return null;
}
/**
* Called immediately after {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)}
* has returned, but before any saved state has been restored in to the view.
* This gives subclasses a chance to initialize themselves once
* they know their view hierarchy has been completely created. The fragment's
* view hierarchy is not however attached to its parent at this point.
* @param view The View returned by {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)}.
* @param savedInstanceState If non-null, this fragment is being re-constructed
* from a previous saved state as given here.
*/
@MainThread
public void onViewCreated(@NonNull View view, @Nullable Bundle savedInstanceState) {
}
/**
* Get the root view for the fragment's layout (the one returned by {@link #onCreateView}),
* if provided.
*
* @return The fragment's root view, or null if it has no layout.
*/
@Nullable
public View getView() {
return mView;
}
/**
* Get the root view for the fragment's layout (the one returned by {@link #onCreateView}).
*
* @throws IllegalStateException if no view was returned by {@link #onCreateView}.
* @see #getView()
*/
@NonNull
public final View requireView() {
View view = getView();
if (view == null) {
throw new IllegalStateException("Fragment " + this + " did not return a View from"
+ " onCreateView() or this was called before onCreateView().");
}
return view;
}
/**
* Called when the fragment's activity has been created and this
* fragment's view hierarchy instantiated. It can be used to do final
* initialization once these pieces are in place, such as retrieving
* views or restoring state. It is also useful for fragments that use
* {@link #setRetainInstance(boolean)} to retain their instance,
* as this callback tells the fragment when it is fully associated with
* the new activity instance. This is called after {@link #onCreateView}
* and before {@link #onViewStateRestored(Bundle)}.
*
* @param savedInstanceState If the fragment is being re-created from
* a previous saved state, this is the state.
*/
@MainThread
@CallSuper
public void onActivityCreated(@Nullable Bundle savedInstanceState) {
mCalled = true;
}
/**
* Called when all saved state has been restored into the view hierarchy
* of the fragment. This can be used to do initialization based on saved
* state that you are letting the view hierarchy track itself, such as
* whether check box widgets are currently checked. This is called
* after {@link #onActivityCreated(Bundle)} and before
* {@link #onStart()}.
*
* @param savedInstanceState If the fragment is being re-created from
* a previous saved state, this is the state.
*/
@MainThread
@CallSuper
public void onViewStateRestored(@Nullable Bundle savedInstanceState) {
mCalled = true;
}
/**
* Called when the Fragment is visible to the user. This is generally
* tied to {@link Activity#onStart() Activity.onStart} of the containing
* Activity's lifecycle.
*/
@MainThread
@CallSuper
public void onStart() {
mCalled = true;
}
/**
* Called when the fragment is visible to the user and actively running.
* This is generally
* tied to {@link Activity#onResume() Activity.onResume} of the containing
* Activity's lifecycle.
*/
@MainThread
@CallSuper
public void onResume() {
mCalled = true;
}
/**
* Called to ask the fragment to save its current dynamic state, so it
* can later be reconstructed in a new instance of its process is
* restarted. If a new instance of the fragment later needs to be
* created, the data you place in the Bundle here will be available
* in the Bundle given to {@link #onCreate(Bundle)},
* {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)}, and
* {@link #onActivityCreated(Bundle)}.
*
* <p>This corresponds to {@link Activity#onSaveInstanceState(Bundle)
* Activity.onSaveInstanceState(Bundle)} and most of the discussion there
* applies here as well. Note however: <em>this method may be called
* at any time before {@link #onDestroy()}</em>. There are many situations
* where a fragment may be mostly torn down (such as when placed on the
* back stack with no UI showing), but its state will not be saved until
* its owning activity actually needs to save its state.
*
* @param outState Bundle in which to place your saved state.
*/
@MainThread
public void onSaveInstanceState(@NonNull Bundle outState) {
}
/**
* Called when the Fragment's activity changes from fullscreen mode to multi-window mode and
* visa-versa. This is generally tied to {@link Activity#onMultiWindowModeChanged} of the
* containing Activity.
*
* @param isInMultiWindowMode True if the activity is in multi-window mode.
*/
public void onMultiWindowModeChanged(boolean isInMultiWindowMode) {
}
/**
* Called by the system when the activity changes to and from picture-in-picture mode. This is
* generally tied to {@link Activity#onPictureInPictureModeChanged} of the containing Activity.
*
* @param isInPictureInPictureMode True if the activity is in picture-in-picture mode.
*/
public void onPictureInPictureModeChanged(boolean isInPictureInPictureMode) {
}
@Override
@CallSuper
public void onConfigurationChanged(@NonNull Configuration newConfig) {
mCalled = true;
}
/**
* Callback for when the primary navigation state of this Fragment has changed. This can be
* the result of the {@link #getFragmentManager() containing FragmentManager} having its
* primary navigation fragment changed via
* {@link androidx.fragment.app.FragmentTransaction#setPrimaryNavigationFragment} or due to
* the primary navigation fragment changing in a parent FragmentManager.
*
* @param isPrimaryNavigationFragment True if and only if this Fragment and any
* {@link #getParentFragment() parent fragment} is set as the primary navigation fragment
* via {@link androidx.fragment.app.FragmentTransaction#setPrimaryNavigationFragment}.
*/
@MainThread
public void onPrimaryNavigationFragmentChanged(boolean isPrimaryNavigationFragment) {
}
/**
* Called when the Fragment is no longer resumed. This is generally
* tied to {@link Activity#onPause() Activity.onPause} of the containing
* Activity's lifecycle.
*/
@MainThread
@CallSuper
public void onPause() {
mCalled = true;
}
/**
* Called when the Fragment is no longer started. This is generally
* tied to {@link Activity#onStop() Activity.onStop} of the containing
* Activity's lifecycle.
*/
@MainThread
@CallSuper
public void onStop() {
mCalled = true;
}
@MainThread
@Override
@CallSuper
public void onLowMemory() {
mCalled = true;
}
/**
* Called when the view previously created by {@link #onCreateView} has
* been detached from the fragment. The next time the fragment needs
* to be displayed, a new view will be created. This is called
* after {@link #onStop()} and before {@link #onDestroy()}. It is called
* <em>regardless</em> of whether {@link #onCreateView} returned a
* non-null view. Internally it is called after the view's state has
* been saved but before it has been removed from its parent.
*/
@MainThread
@CallSuper
public void onDestroyView() {
mCalled = true;
}
/**
* Called when the fragment is no longer in use. This is called
* after {@link #onStop()} and before {@link #onDetach()}.
*/
@MainThread
@CallSuper
public void onDestroy() {
mCalled = true;
}
/**
* Called by the fragment manager once this fragment has been removed,
* so that we don't have any left-over state if the application decides
* to re-use the instance. This only clears state that the framework
* internally manages, not things the application sets.
*/
void initState() {
initLifecycle();
mWho = UUID.randomUUID().toString();
mAdded = false;
mRemoving = false;
mFromLayout = false;
mInLayout = false;
mRestored = false;
mBackStackNesting = 0;
mFragmentManager = null;
mChildFragmentManager = new FragmentManagerImpl();
mHost = null;
mFragmentId = 0;
mContainerId = 0;
mTag = null;
mHidden = false;
mDetached = false;
}
/**
* Called when the fragment is no longer attached to its activity. This
* is called after {@link #onDestroy()}.
*/
@MainThread
@CallSuper
public void onDetach() {
mCalled = true;
}
/**
* Initialize the contents of the Fragment host's standard options menu. You
* should place your menu items in to <var>menu</var>. For this method
* to be called, you must have first called {@link #setHasOptionsMenu}. See
* {@link Activity#onCreateOptionsMenu(Menu) Activity.onCreateOptionsMenu}
* for more information.
*
* @param menu The options menu in which you place your items.
*
* @see #setHasOptionsMenu
* @see #onPrepareOptionsMenu
* @see #onOptionsItemSelected
*/
@MainThread
public void onCreateOptionsMenu(@NonNull Menu menu, @NonNull MenuInflater inflater) {
}
/**
* Prepare the Fragment host's standard options menu to be displayed. This is
* called right before the menu is shown, every time it is shown. You can
* use this method to efficiently enable/disable items or otherwise
* dynamically modify the contents. See
* {@link Activity#onPrepareOptionsMenu(Menu) Activity.onPrepareOptionsMenu}
* for more information.
*
* @param menu The options menu as last shown or first initialized by
* onCreateOptionsMenu().
*
* @see #setHasOptionsMenu
* @see #onCreateOptionsMenu
*/
@MainThread
public void onPrepareOptionsMenu(@NonNull Menu menu) {
}
/**
* Called when this fragment's option menu items are no longer being
* included in the overall options menu. Receiving this call means that
* the menu needed to be rebuilt, but this fragment's items were not
* included in the newly built menu (its {@link #onCreateOptionsMenu(Menu, MenuInflater)}
* was not called).
*/
@MainThread
public void onDestroyOptionsMenu() {
}
/**
* This hook is called whenever an item in your options menu is selected.
* The default implementation simply returns false to have the normal
* processing happen (calling the item's Runnable or sending a message to
* its Handler as appropriate). You can use this method for any items
* for which you would like to do processing without those other
* facilities.
*
* <p>Derived classes should call through to the base class for it to
* perform the default menu handling.
*
* @param item The menu item that was selected.
*
* @return boolean Return false to allow normal menu processing to
* proceed, true to consume it here.
*
* @see #onCreateOptionsMenu
*/
@MainThread
public boolean onOptionsItemSelected(@NonNull MenuItem item) {
return false;
}
/**
* This hook is called whenever the options menu is being closed (either by the user canceling
* the menu with the back/menu button, or when an item is selected).
*
* @param menu The options menu as last shown or first initialized by
* onCreateOptionsMenu().
*/
@MainThread
public void onOptionsMenuClosed(@NonNull Menu menu) {
}
/**
* Called when a context menu for the {@code view} is about to be shown.
* Unlike {@link #onCreateOptionsMenu}, this will be called every
* time the context menu is about to be shown and should be populated for
* the view (or item inside the view for {@link AdapterView} subclasses,
* this can be found in the {@code menuInfo})).
* <p>
* Use {@link #onContextItemSelected(android.view.MenuItem)} to know when an
* item has been selected.
* <p>
* The default implementation calls up to
* {@link Activity#onCreateContextMenu Activity.onCreateContextMenu}, though
* you can not call this implementation if you don't want that behavior.
* <p>
* It is not safe to hold onto the context menu after this method returns.
* {@inheritDoc}
*/
@MainThread
@Override
public void onCreateContextMenu(@NonNull ContextMenu menu, @NonNull View v,
@Nullable ContextMenuInfo menuInfo) {
requireActivity().onCreateContextMenu(menu, v, menuInfo);
}
/**
* Registers a context menu to be shown for the given view (multiple views
* can show the context menu). This method will set the
* {@link OnCreateContextMenuListener} on the view to this fragment, so
* {@link #onCreateContextMenu(ContextMenu, View, ContextMenuInfo)} will be
* called when it is time to show the context menu.
*
* @see #unregisterForContextMenu(View)
* @param view The view that should show a context menu.
*/
public void registerForContextMenu(@NonNull View view) {
view.setOnCreateContextMenuListener(this);
}
/**
* Prevents a context menu to be shown for the given view. This method will
* remove the {@link OnCreateContextMenuListener} on the view.
*
* @see #registerForContextMenu(View)
* @param view The view that should stop showing a context menu.
*/
public void unregisterForContextMenu(@NonNull View view) {
view.setOnCreateContextMenuListener(null);
}
/**
* This hook is called whenever an item in a context menu is selected. The
* default implementation simply returns false to have the normal processing
* happen (calling the item's Runnable or sending a message to its Handler
* as appropriate). You can use this method for any items for which you
* would like to do processing without those other facilities.
* <p>
* Use {@link MenuItem#getMenuInfo()} to get extra information set by the
* View that added this menu item.
* <p>
* Derived classes should call through to the base class for it to perform
* the default menu handling.
*
* @param item The context menu item that was selected.
* @return boolean Return false to allow normal context menu processing to
* proceed, true to consume it here.
*/
@MainThread
public boolean onContextItemSelected(@NonNull MenuItem item) {
return false;
}
/**
* When custom transitions are used with Fragments, the enter transition callback
* is called when this Fragment is attached or detached when not popping the back stack.
*
* @param callback Used to manipulate the shared element transitions on this Fragment
* when added not as a pop from the back stack.
*/
public void setEnterSharedElementCallback(@Nullable SharedElementCallback callback) {
ensureAnimationInfo().mEnterTransitionCallback = callback;
}
/**
* When custom transitions are used with Fragments, the exit transition callback
* is called when this Fragment is attached or detached when popping the back stack.
*
* @param callback Used to manipulate the shared element transitions on this Fragment
* when added as a pop from the back stack.
*/
public void setExitSharedElementCallback(@Nullable SharedElementCallback callback) {
ensureAnimationInfo().mExitTransitionCallback = callback;
}
/**
* Sets the Transition that will be used to move Views into the initial scene. The entering
* Views will be those that are regular Views or ViewGroups that have
* {@link ViewGroup#isTransitionGroup} return true. Typical Transitions will extend
* {@link android.transition.Visibility} as entering is governed by changing visibility from
* {@link View#INVISIBLE} to {@link View#VISIBLE}. If <code>transition</code> is null,
* entering Views will remain unaffected.
*
* @param transition The Transition to use to move Views into the initial Scene.
* <code>transition</code> must be an
* {@link android.transition.Transition} or
* {@link androidx.transition.Transition}.
*/
public void setEnterTransition(@Nullable Object transition) {
ensureAnimationInfo().mEnterTransition = transition;
}
/**
* Returns the Transition that will be used to move Views into the initial scene. The entering
* Views will be those that are regular Views or ViewGroups that have
* {@link ViewGroup#isTransitionGroup} return true. Typical Transitions will extend
* {@link android.transition.Visibility} as entering is governed by changing visibility from
* {@link View#INVISIBLE} to {@link View#VISIBLE}.
*
* @return the Transition to use to move Views into the initial Scene.
*/
@Nullable
public Object getEnterTransition() {
if (mAnimationInfo == null) {
return null;
}
return mAnimationInfo.mEnterTransition;
}
/**
* Sets the Transition that will be used to move Views out of the scene when the Fragment is
* preparing to be removed, hidden, or detached because of popping the back stack. The exiting
* Views will be those that are regular Views or ViewGroups that have
* {@link ViewGroup#isTransitionGroup} return true. Typical Transitions will extend
* {@link android.transition.Visibility} as entering is governed by changing visibility from
* {@link View#VISIBLE} to {@link View#INVISIBLE}. If <code>transition</code> is null,
* entering Views will remain unaffected. If nothing is set, the default will be to
* use the same value as set in {@link #setEnterTransition(Object)}.
*
* @param transition The Transition to use to move Views out of the Scene when the Fragment
* is preparing to close due to popping the back stack. <code>transition</code> must be
* an {@link android.transition.Transition} or
* {@link androidx.transition.Transition}.
*/
public void setReturnTransition(@Nullable Object transition) {
ensureAnimationInfo().mReturnTransition = transition;
}
/**
* Returns the Transition that will be used to move Views out of the scene when the Fragment is
* preparing to be removed, hidden, or detached because of popping the back stack. The exiting
* Views will be those that are regular Views or ViewGroups that have
* {@link ViewGroup#isTransitionGroup} return true. Typical Transitions will extend
* {@link android.transition.Visibility} as entering is governed by changing visibility from
* {@link View#VISIBLE} to {@link View#INVISIBLE}. If nothing is set, the default will be to use
* the same transition as {@link #getEnterTransition()}.
*
* @return the Transition to use to move Views out of the Scene when the Fragment
* is preparing to close due to popping the back stack.
*/
@Nullable
public Object getReturnTransition() {
if (mAnimationInfo == null) {
return null;
}
return mAnimationInfo.mReturnTransition == USE_DEFAULT_TRANSITION ? getEnterTransition()
: mAnimationInfo.mReturnTransition;
}
/**
* Sets the Transition that will be used to move Views out of the scene when the
* fragment is removed, hidden, or detached when not popping the back stack.
* The exiting Views will be those that are regular Views or ViewGroups that
* have {@link ViewGroup#isTransitionGroup} return true. Typical Transitions will extend
* {@link android.transition.Visibility} as exiting is governed by changing visibility
* from {@link View#VISIBLE} to {@link View#INVISIBLE}. If transition is null, the views will
* remain unaffected.
*
* @param transition The Transition to use to move Views out of the Scene when the Fragment
* is being closed not due to popping the back stack. <code>transition</code>
* must be an
* {@link android.transition.Transition} or
* {@link androidx.transition.Transition}.
*/
public void setExitTransition(@Nullable Object transition) {
ensureAnimationInfo().mExitTransition = transition;
}
/**
* Returns the Transition that will be used to move Views out of the scene when the
* fragment is removed, hidden, or detached when not popping the back stack.
* The exiting Views will be those that are regular Views or ViewGroups that
* have {@link ViewGroup#isTransitionGroup} return true. Typical Transitions will extend
* {@link android.transition.Visibility} as exiting is governed by changing visibility
* from {@link View#VISIBLE} to {@link View#INVISIBLE}. If transition is null, the views will
* remain unaffected.
*
* @return the Transition to use to move Views out of the Scene when the Fragment
* is being closed not due to popping the back stack.
*/
@Nullable
public Object getExitTransition() {
if (mAnimationInfo == null) {
return null;
}
return mAnimationInfo.mExitTransition;
}
/**
* Sets the Transition that will be used to move Views in to the scene when returning due
* to popping a back stack. The entering Views will be those that are regular Views
* or ViewGroups that have {@link ViewGroup#isTransitionGroup} return true. Typical Transitions
* will extend {@link android.transition.Visibility} as exiting is governed by changing
* visibility from {@link View#VISIBLE} to {@link View#INVISIBLE}. If transition is null,
* the views will remain unaffected. If nothing is set, the default will be to use the same
* transition as {@link #getExitTransition()}.
*
* @param transition The Transition to use to move Views into the scene when reentering from a
* previously-started Activity due to popping the back stack. <code>transition</code>
* must be an
* {@link android.transition.Transition} or
* {@link androidx.transition.Transition}.
*/
public void setReenterTransition(@Nullable Object transition) {
ensureAnimationInfo().mReenterTransition = transition;
}
/**
* Returns the Transition that will be used to move Views in to the scene when returning due
* to popping a back stack. The entering Views will be those that are regular Views
* or ViewGroups that have {@link ViewGroup#isTransitionGroup} return true. Typical Transitions
* will extend {@link android.transition.Visibility} as exiting is governed by changing
* visibility from {@link View#VISIBLE} to {@link View#INVISIBLE}. If nothing is set, the
* default will be to use the same transition as {@link #getExitTransition()}.
*
* @return the Transition to use to move Views into the scene when reentering from a
* previously-started Activity due to popping the back stack.
*/
@Nullable
public Object getReenterTransition() {
if (mAnimationInfo == null) {
return null;
}
return mAnimationInfo.mReenterTransition == USE_DEFAULT_TRANSITION ? getExitTransition()
: mAnimationInfo.mReenterTransition;
}
/**
* Sets the Transition that will be used for shared elements transferred into the content
* Scene. Typical Transitions will affect size and location, such as
* {@link android.transition.ChangeBounds}. A null
* value will cause transferred shared elements to blink to the final position.
*
* @param transition The Transition to use for shared elements transferred into the content
* Scene. <code>transition</code> must be an
* {@link android.transition.Transition android.transition.Transition} or
* {@link androidx.transition.Transition androidx.transition.Transition}.
*/
public void setSharedElementEnterTransition(@Nullable Object transition) {
ensureAnimationInfo().mSharedElementEnterTransition = transition;
}
/**
* Returns the Transition that will be used for shared elements transferred into the content
* Scene. Typical Transitions will affect size and location, such as
* {@link android.transition.ChangeBounds}. A null
* value will cause transferred shared elements to blink to the final position.
*
* @return The Transition to use for shared elements transferred into the content
* Scene.
*/
@Nullable
public Object getSharedElementEnterTransition() {
if (mAnimationInfo == null) {
return null;
}
return mAnimationInfo.mSharedElementEnterTransition;
}
/**
* Sets the Transition that will be used for shared elements transferred back during a
* pop of the back stack. This Transition acts in the leaving Fragment.
* Typical Transitions will affect size and location, such as
* {@link android.transition.ChangeBounds}. A null
* value will cause transferred shared elements to blink to the final position.
* If no value is set, the default will be to use the same value as
* {@link #setSharedElementEnterTransition(Object)}.
*
* @param transition The Transition to use for shared elements transferred out of the content
* Scene. <code>transition</code> must be an
* {@link android.transition.Transition android.transition.Transition} or
* {@link androidx.transition.Transition androidx.transition.Transition}.
*/
public void setSharedElementReturnTransition(@Nullable Object transition) {
ensureAnimationInfo().mSharedElementReturnTransition = transition;
}
/**
* Return the Transition that will be used for shared elements transferred back during a
* pop of the back stack. This Transition acts in the leaving Fragment.
* Typical Transitions will affect size and location, such as
* {@link android.transition.ChangeBounds}. A null
* value will cause transferred shared elements to blink to the final position.
* If no value is set, the default will be to use the same value as
* {@link #setSharedElementEnterTransition(Object)}.
*
* @return The Transition to use for shared elements transferred out of the content
* Scene.
*/
@Nullable
public Object getSharedElementReturnTransition() {
if (mAnimationInfo == null) {
return null;
}
return mAnimationInfo.mSharedElementReturnTransition == USE_DEFAULT_TRANSITION
? getSharedElementEnterTransition()
: mAnimationInfo.mSharedElementReturnTransition;
}
/**
* Sets whether the the exit transition and enter transition overlap or not.
* When true, the enter transition will start as soon as possible. When false, the
* enter transition will wait until the exit transition completes before starting.
*
* @param allow true to start the enter transition when possible or false to
* wait until the exiting transition completes.
*/
public void setAllowEnterTransitionOverlap(boolean allow) {
ensureAnimationInfo().mAllowEnterTransitionOverlap = allow;
}
/**
* Returns whether the the exit transition and enter transition overlap or not.
* When true, the enter transition will start as soon as possible. When false, the
* enter transition will wait until the exit transition completes before starting.
*
* @return true when the enter transition should start as soon as possible or false to
* when it should wait until the exiting transition completes.
*/
public boolean getAllowEnterTransitionOverlap() {
return (mAnimationInfo == null || mAnimationInfo.mAllowEnterTransitionOverlap == null)
? true : mAnimationInfo.mAllowEnterTransitionOverlap;
}
/**
* Sets whether the the return transition and reenter transition overlap or not.
* When true, the reenter transition will start as soon as possible. When false, the
* reenter transition will wait until the return transition completes before starting.
*
* @param allow true to start the reenter transition when possible or false to wait until the
* return transition completes.
*/
public void setAllowReturnTransitionOverlap(boolean allow) {
ensureAnimationInfo().mAllowReturnTransitionOverlap = allow;
}
/**
* Returns whether the the return transition and reenter transition overlap or not.
* When true, the reenter transition will start as soon as possible. When false, the
* reenter transition will wait until the return transition completes before starting.
*
* @return true to start the reenter transition when possible or false to wait until the
* return transition completes.
*/
public boolean getAllowReturnTransitionOverlap() {
return (mAnimationInfo == null || mAnimationInfo.mAllowReturnTransitionOverlap == null)
? true : mAnimationInfo.mAllowReturnTransitionOverlap;
}
/**
* Postpone the entering Fragment transition until {@link #startPostponedEnterTransition()}
* or {@link FragmentManager#executePendingTransactions()} has been called.
* <p>
* This method gives the Fragment the ability to delay Fragment animations
* until all data is loaded. Until then, the added, shown, and
* attached Fragments will be INVISIBLE and removed, hidden, and detached Fragments won't
* be have their Views removed. The transaction runs when all postponed added Fragments in the
* transaction have called {@link #startPostponedEnterTransition()}.
* <p>
* This method should be called before being added to the FragmentTransaction or
* in {@link #onCreate(Bundle)}, {@link #onAttach(Context)}, or
* {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)}}.
* {@link #startPostponedEnterTransition()} must be called to allow the Fragment to
* start the transitions.
* <p>
* When a FragmentTransaction is started that may affect a postponed FragmentTransaction,
* based on which containers are in their operations, the postponed FragmentTransaction
* will have its start triggered. The early triggering may result in faulty or nonexistent
* animations in the postponed transaction. FragmentTransactions that operate only on
* independent containers will not interfere with each other's postponement.
* <p>
* Calling postponeEnterTransition on Fragments with a null View will not postpone the
* transition. Likewise, postponement only works if
* {@link FragmentTransaction#setReorderingAllowed(boolean) FragmentTransaction reordering} is
* enabled.
*
* @see Activity#postponeEnterTransition()
* @see FragmentTransaction#setReorderingAllowed(boolean)
*/
public void postponeEnterTransition() {
ensureAnimationInfo().mEnterTransitionPostponed = true;
}
/**
* Postpone the entering Fragment transition for a given amount of time and then call
* {@link #startPostponedEnterTransition()}.
* <p>
* This method gives the Fragment the ability to delay Fragment animations for a given amount
* of time. Until then, the added, shown, and attached Fragments will be INVISIBLE and removed,
* hidden, and detached Fragments won't be have their Views removed. The transaction runs when
* all postponed added Fragments in the transaction have called
* {@link #startPostponedEnterTransition()}.
* <p>
* This method should be called before being added to the FragmentTransaction or
* in {@link #onCreate(Bundle)}, {@link #onAttach(Context)}, or
* {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)}}.
* <p>
* When a FragmentTransaction is started that may affect a postponed FragmentTransaction,
* based on which containers are in their operations, the postponed FragmentTransaction
* will have its start triggered. The early triggering may result in faulty or nonexistent
* animations in the postponed transaction. FragmentTransactions that operate only on
* independent containers will not interfere with each other's postponement.
* <p>
* Calling postponeEnterTransition on Fragments with a null View will not postpone the
* transition. Likewise, postponement only works if
* {@link FragmentTransaction#setReorderingAllowed(boolean) FragmentTransaction reordering} is
* enabled.
*
* @param duration The length of the delay in {@code timeUnit} units
* @param timeUnit The units of time for {@code duration}
* @see Activity#postponeEnterTransition()
* @see FragmentTransaction#setReorderingAllowed(boolean)
*/
public final void postponeEnterTransition(long duration, @NonNull TimeUnit timeUnit) {
ensureAnimationInfo().mEnterTransitionPostponed = true;
Handler handler;
if (mFragmentManager != null) {
handler = mFragmentManager.mHost.getHandler();
} else {
handler = new Handler(Looper.getMainLooper());
}
handler.removeCallbacks(mPostponedDurationRunnable);
handler.postDelayed(mPostponedDurationRunnable, timeUnit.toMillis(duration));
}
/**
* Begin postponed transitions after {@link #postponeEnterTransition()} was called.
* If postponeEnterTransition() was called, you must call startPostponedEnterTransition()
* or {@link FragmentManager#executePendingTransactions()} to complete the FragmentTransaction.
* If postponement was interrupted with {@link FragmentManager#executePendingTransactions()},
* before {@code startPostponedEnterTransition()}, animations may not run or may execute
* improperly.
*
* @see Activity#startPostponedEnterTransition()
*/
public void startPostponedEnterTransition() {
if (mFragmentManager == null || mFragmentManager.mHost == null) {
ensureAnimationInfo().mEnterTransitionPostponed = false;
} else if (Looper.myLooper() != mFragmentManager.mHost.getHandler().getLooper()) {
mFragmentManager.mHost.getHandler().postAtFrontOfQueue(new Runnable() {
@Override
public void run() {
callStartTransitionListener();
}
});
} else {
callStartTransitionListener();
}
}
/**
* Calls the start transition listener. This must be called on the UI thread.
*/
@SuppressWarnings("WeakerAccess") /* synthetic access */
void callStartTransitionListener() {
final OnStartEnterTransitionListener listener;
if (mAnimationInfo == null) {
listener = null;
} else {
mAnimationInfo.mEnterTransitionPostponed = false;
listener = mAnimationInfo.mStartEnterTransitionListener;
mAnimationInfo.mStartEnterTransitionListener = null;
}
if (listener != null) {
listener.onStartEnterTransition();
}
}
/**
* Print the Fragments's state into the given stream.
*
* @param prefix Text to print at the front of each line.
* @param fd The raw file descriptor that the dump is being sent to.
* @param writer The PrintWriter to which you should dump your state. This will be
* closed for you after you return.
* @param args additional arguments to the dump request.
*/
public void dump(@NonNull String prefix, @Nullable FileDescriptor fd,
@NonNull PrintWriter writer, @Nullable String[] args) {
writer.print(prefix); writer.print("mFragmentId=#");
writer.print(Integer.toHexString(mFragmentId));
writer.print(" mContainerId=#");
writer.print(Integer.toHexString(mContainerId));
writer.print(" mTag="); writer.println(mTag);
writer.print(prefix); writer.print("mState="); writer.print(mState);
writer.print(" mWho="); writer.print(mWho);
writer.print(" mBackStackNesting="); writer.println(mBackStackNesting);
writer.print(prefix); writer.print("mAdded="); writer.print(mAdded);
writer.print(" mRemoving="); writer.print(mRemoving);
writer.print(" mFromLayout="); writer.print(mFromLayout);
writer.print(" mInLayout="); writer.println(mInLayout);
writer.print(prefix); writer.print("mHidden="); writer.print(mHidden);
writer.print(" mDetached="); writer.print(mDetached);
writer.print(" mMenuVisible="); writer.print(mMenuVisible);
writer.print(" mHasMenu="); writer.println(mHasMenu);
writer.print(prefix); writer.print("mRetainInstance="); writer.print(mRetainInstance);
writer.print(" mUserVisibleHint="); writer.println(mUserVisibleHint);
if (mFragmentManager != null) {
writer.print(prefix); writer.print("mFragmentManager=");
writer.println(mFragmentManager);
}
if (mHost != null) {
writer.print(prefix); writer.print("mHost=");
writer.println(mHost);
}
if (mParentFragment != null) {
writer.print(prefix); writer.print("mParentFragment=");
writer.println(mParentFragment);
}
if (mArguments != null) {
writer.print(prefix); writer.print("mArguments="); writer.println(mArguments);
}
if (mSavedFragmentState != null) {
writer.print(prefix); writer.print("mSavedFragmentState=");
writer.println(mSavedFragmentState);
}
if (mSavedViewState != null) {
writer.print(prefix); writer.print("mSavedViewState=");
writer.println(mSavedViewState);
}
Fragment target = getTargetFragment();
if (target != null) {
writer.print(prefix); writer.print("mTarget="); writer.print(target);
writer.print(" mTargetRequestCode=");
writer.println(mTargetRequestCode);
}
if (getNextAnim() != 0) {
writer.print(prefix); writer.print("mNextAnim="); writer.println(getNextAnim());
}
if (mContainer != null) {
writer.print(prefix); writer.print("mContainer="); writer.println(mContainer);
}
if (mView != null) {
writer.print(prefix); writer.print("mView="); writer.println(mView);
}
if (mInnerView != null) {
writer.print(prefix); writer.print("mInnerView="); writer.println(mView);
}
if (getAnimatingAway() != null) {
writer.print(prefix);
writer.print("mAnimatingAway=");
writer.println(getAnimatingAway());
writer.print(prefix);
writer.print("mStateAfterAnimating=");
writer.println(getStateAfterAnimating());
}
if (getContext() != null) {
LoaderManager.getInstance(this).dump(prefix, fd, writer, args);
}
writer.print(prefix);
writer.println("Child " + mChildFragmentManager + ":");
mChildFragmentManager.dump(prefix + " ", fd, writer, args);
}
@Nullable
Fragment findFragmentByWho(@NonNull String who) {
if (who.equals(mWho)) {
return this;
}
return mChildFragmentManager.findFragmentByWho(who);
}
void performAttach() {
mChildFragmentManager.attachController(mHost, new FragmentContainer() {
@Override
@Nullable
public View onFindViewById(int id) {
if (mView == null) {
throw new IllegalStateException("Fragment " + this + " does not have a view");
}
return mView.findViewById(id);
}
@Override
public boolean onHasView() {
return (mView != null);
}
}, this);
mCalled = false;
onAttach(mHost.getContext());
if (!mCalled) {
throw new SuperNotCalledException("Fragment " + this
+ " did not call through to super.onAttach()");
}
}
void performCreate(Bundle savedInstanceState) {
mChildFragmentManager.noteStateNotSaved();
mState = CREATED;
mCalled = false;
mSavedStateRegistryController.performRestore(savedInstanceState);
onCreate(savedInstanceState);
mIsCreated = true;
if (!mCalled) {
throw new SuperNotCalledException("Fragment " + this
+ " did not call through to super.onCreate()");
}
mLifecycleRegistry.handleLifecycleEvent(Lifecycle.Event.ON_CREATE);
}
void performCreateView(@NonNull LayoutInflater inflater, @Nullable ViewGroup container,
@Nullable Bundle savedInstanceState) {
mChildFragmentManager.noteStateNotSaved();
mPerformedCreateView = true;
mViewLifecycleOwner = new FragmentViewLifecycleOwner();
mView = onCreateView(inflater, container, savedInstanceState);
if (mView != null) {
// Initialize the view lifecycle
mViewLifecycleOwner.initialize();
// Then inform any Observers of the new LifecycleOwner
mViewLifecycleOwnerLiveData.setValue(mViewLifecycleOwner);
} else {
if (mViewLifecycleOwner.isInitialized()) {
throw new IllegalStateException("Called getViewLifecycleOwner() but "
+ "onCreateView() returned null");
}
mViewLifecycleOwner = null;
}
}
void performActivityCreated(Bundle savedInstanceState) {
mChildFragmentManager.noteStateNotSaved();
mState = ACTIVITY_CREATED;
mCalled = false;
onActivityCreated(savedInstanceState);
if (!mCalled) {
throw new SuperNotCalledException("Fragment " + this
+ " did not call through to super.onActivityCreated()");
}
mChildFragmentManager.dispatchActivityCreated();
}
void performStart() {
mChildFragmentManager.noteStateNotSaved();
mChildFragmentManager.execPendingActions();
mState = STARTED;
mCalled = false;
onStart();
if (!mCalled) {
throw new SuperNotCalledException("Fragment " + this
+ " did not call through to super.onStart()");
}
mLifecycleRegistry.handleLifecycleEvent(Lifecycle.Event.ON_START);
if (mView != null) {
mViewLifecycleOwner.handleLifecycleEvent(Lifecycle.Event.ON_START);
}
mChildFragmentManager.dispatchStart();
}
void performResume() {
mChildFragmentManager.noteStateNotSaved();
mChildFragmentManager.execPendingActions();
mState = RESUMED;
mCalled = false;
onResume();
if (!mCalled) {
throw new SuperNotCalledException("Fragment " + this
+ " did not call through to super.onResume()");
}
mLifecycleRegistry.handleLifecycleEvent(Lifecycle.Event.ON_RESUME);
if (mView != null) {
mViewLifecycleOwner.handleLifecycleEvent(Lifecycle.Event.ON_RESUME);
}
mChildFragmentManager.dispatchResume();
mChildFragmentManager.execPendingActions();
}
void noteStateNotSaved() {
mChildFragmentManager.noteStateNotSaved();
}
void performPrimaryNavigationFragmentChanged() {
boolean isPrimaryNavigationFragment = mFragmentManager.isPrimaryNavigation(this);
// Only send out the callback / dispatch if the state has changed
if (mIsPrimaryNavigationFragment == null
|| mIsPrimaryNavigationFragment != isPrimaryNavigationFragment) {
mIsPrimaryNavigationFragment = isPrimaryNavigationFragment;
onPrimaryNavigationFragmentChanged(isPrimaryNavigationFragment);
mChildFragmentManager.dispatchPrimaryNavigationFragmentChanged();
}
}
void performMultiWindowModeChanged(boolean isInMultiWindowMode) {
onMultiWindowModeChanged(isInMultiWindowMode);
mChildFragmentManager.dispatchMultiWindowModeChanged(isInMultiWindowMode);
}
void performPictureInPictureModeChanged(boolean isInPictureInPictureMode) {
onPictureInPictureModeChanged(isInPictureInPictureMode);
mChildFragmentManager.dispatchPictureInPictureModeChanged(isInPictureInPictureMode);
}
void performConfigurationChanged(@NonNull Configuration newConfig) {
onConfigurationChanged(newConfig);
mChildFragmentManager.dispatchConfigurationChanged(newConfig);
}
void performLowMemory() {
onLowMemory();
mChildFragmentManager.dispatchLowMemory();
}
/*
void performTrimMemory(int level) {
onTrimMemory(level);
if (mChildFragmentManager != null) {
mChildFragmentManager.dispatchTrimMemory(level);
}
}
*/
boolean performCreateOptionsMenu(@NonNull Menu menu, @NonNull MenuInflater inflater) {
boolean show = false;
if (!mHidden) {
if (mHasMenu && mMenuVisible) {
show = true;
onCreateOptionsMenu(menu, inflater);
}
show |= mChildFragmentManager.dispatchCreateOptionsMenu(menu, inflater);
}
return show;
}
boolean performPrepareOptionsMenu(@NonNull Menu menu) {
boolean show = false;
if (!mHidden) {
if (mHasMenu && mMenuVisible) {
show = true;
onPrepareOptionsMenu(menu);
}
show |= mChildFragmentManager.dispatchPrepareOptionsMenu(menu);
}
return show;
}
boolean performOptionsItemSelected(@NonNull MenuItem item) {
if (!mHidden) {
if (mHasMenu && mMenuVisible) {
if (onOptionsItemSelected(item)) {
return true;
}
}
if (mChildFragmentManager.dispatchOptionsItemSelected(item)) {
return true;
}
}
return false;
}
boolean performContextItemSelected(@NonNull MenuItem item) {
if (!mHidden) {
if (onContextItemSelected(item)) {
return true;
}
if (mChildFragmentManager.dispatchContextItemSelected(item)) {
return true;
}
}
return false;
}
void performOptionsMenuClosed(@NonNull Menu menu) {
if (!mHidden) {
if (mHasMenu && mMenuVisible) {
onOptionsMenuClosed(menu);
}
mChildFragmentManager.dispatchOptionsMenuClosed(menu);
}
}
void performSaveInstanceState(Bundle outState) {
onSaveInstanceState(outState);
mSavedStateRegistryController.performSave(outState);
Parcelable p = mChildFragmentManager.saveAllState();
if (p != null) {
outState.putParcelable(FragmentActivity.FRAGMENTS_TAG, p);
}
}
void performPause() {
mChildFragmentManager.dispatchPause();
if (mView != null) {
mViewLifecycleOwner.handleLifecycleEvent(Lifecycle.Event.ON_PAUSE);
}
mLifecycleRegistry.handleLifecycleEvent(Lifecycle.Event.ON_PAUSE);
mState = STARTED;
mCalled = false;
onPause();
if (!mCalled) {
throw new SuperNotCalledException("Fragment " + this
+ " did not call through to super.onPause()");
}
}
void performStop() {
mChildFragmentManager.dispatchStop();
if (mView != null) {
mViewLifecycleOwner.handleLifecycleEvent(Lifecycle.Event.ON_STOP);
}
mLifecycleRegistry.handleLifecycleEvent(Lifecycle.Event.ON_STOP);
mState = ACTIVITY_CREATED;
mCalled = false;
onStop();
if (!mCalled) {
throw new SuperNotCalledException("Fragment " + this
+ " did not call through to super.onStop()");
}
}
void performDestroyView() {
mChildFragmentManager.dispatchDestroyView();
if (mView != null) {
mViewLifecycleOwner.handleLifecycleEvent(Lifecycle.Event.ON_DESTROY);
}
mState = CREATED;
mCalled = false;
onDestroyView();
if (!mCalled) {
throw new SuperNotCalledException("Fragment " + this
+ " did not call through to super.onDestroyView()");
}
// Handles the detach/reattach case where the view hierarchy
// is destroyed and recreated and an additional call to
// onLoadFinished may be needed to ensure the new view
// hierarchy is populated from data from the Loaders
LoaderManager.getInstance(this).markForRedelivery();
mPerformedCreateView = false;
}
void performDestroy() {
mChildFragmentManager.dispatchDestroy();
mLifecycleRegistry.handleLifecycleEvent(Lifecycle.Event.ON_DESTROY);
mState = INITIALIZING;
mCalled = false;
mIsCreated = false;
onDestroy();
if (!mCalled) {
throw new SuperNotCalledException("Fragment " + this
+ " did not call through to super.onDestroy()");
}
}
void performDetach() {
mCalled = false;
onDetach();
mLayoutInflater = null;
if (!mCalled) {
throw new SuperNotCalledException("Fragment " + this
+ " did not call through to super.onDetach()");
}
// Destroy the child FragmentManager if we still have it here.
// This is normally done in performDestroy(), but is done here
// specifically if the Fragment is retained.
if (!mChildFragmentManager.isDestroyed()) {
mChildFragmentManager.dispatchDestroy();
mChildFragmentManager = new FragmentManagerImpl();
}
}
void setOnStartEnterTransitionListener(OnStartEnterTransitionListener listener) {
ensureAnimationInfo();
if (listener == mAnimationInfo.mStartEnterTransitionListener) {
return;
}
if (listener != null && mAnimationInfo.mStartEnterTransitionListener != null) {
throw new IllegalStateException("Trying to set a replacement "
+ "startPostponedEnterTransition on " + this);
}
if (mAnimationInfo.mEnterTransitionPostponed) {
mAnimationInfo.mStartEnterTransitionListener = listener;
}
if (listener != null) {
listener.startListening();
}
}
private AnimationInfo ensureAnimationInfo() {
if (mAnimationInfo == null) {
mAnimationInfo = new AnimationInfo();
}
return mAnimationInfo;
}
int getNextAnim() {
if (mAnimationInfo == null) {
return 0;
}
return mAnimationInfo.mNextAnim;
}
void setNextAnim(int animResourceId) {
if (mAnimationInfo == null && animResourceId == 0) {
return; // no change!
}
ensureAnimationInfo().mNextAnim = animResourceId;
}
int getNextTransition() {
if (mAnimationInfo == null) {
return 0;
}
return mAnimationInfo.mNextTransition;
}
void setNextTransition(int nextTransition) {
if (mAnimationInfo == null && nextTransition == 0) {
return; // no change!
}
ensureAnimationInfo();
mAnimationInfo.mNextTransition = nextTransition;
}
SharedElementCallback getEnterTransitionCallback() {
if (mAnimationInfo == null) {
return null;
}
return mAnimationInfo.mEnterTransitionCallback;
}
SharedElementCallback getExitTransitionCallback() {
if (mAnimationInfo == null) {
return null;
}
return mAnimationInfo.mExitTransitionCallback;
}
View getAnimatingAway() {
if (mAnimationInfo == null) {
return null;
}
return mAnimationInfo.mAnimatingAway;
}
void setAnimatingAway(View view) {
ensureAnimationInfo().mAnimatingAway = view;
}
void setAnimator(Animator animator) {
ensureAnimationInfo().mAnimator = animator;
}
Animator getAnimator() {
if (mAnimationInfo == null) {
return null;
}
return mAnimationInfo.mAnimator;
}
int getStateAfterAnimating() {
if (mAnimationInfo == null) {
return 0;
}
return mAnimationInfo.mStateAfterAnimating;
}
void setStateAfterAnimating(int state) {
ensureAnimationInfo().mStateAfterAnimating = state;
}
boolean isPostponed() {
if (mAnimationInfo == null) {
return false;
}
return mAnimationInfo.mEnterTransitionPostponed;
}
boolean isHideReplaced() {
if (mAnimationInfo == null) {
return false;
}
return mAnimationInfo.mIsHideReplaced;
}
void setHideReplaced(boolean replaced) {
ensureAnimationInfo().mIsHideReplaced = replaced;
}
/**
* Used internally to be notified when {@link #startPostponedEnterTransition()} has
* been called. This listener will only be called once and then be removed from the
* listeners.
*/
interface OnStartEnterTransitionListener {
void onStartEnterTransition();
void startListening();
}
/**
* Contains all the animation and transition information for a fragment. This will only
* be instantiated for Fragments that have Views.
*/
static class AnimationInfo {
// Non-null if the fragment's view hierarchy is currently animating away,
// meaning we need to wait a bit on completely destroying it. This is the
// view that is animating.
View mAnimatingAway;
// Non-null if the fragment's view hierarchy is currently animating away with an
// animator instead of an animation.
Animator mAnimator;
// If mAnimatingAway != null, this is the state we should move to once the
// animation is done.
int mStateAfterAnimating;
// If app has requested a specific animation, this is the one to use.
int mNextAnim;
// If app has requested a specific transition, this is the one to use.
int mNextTransition;
Object mEnterTransition = null;
Object mReturnTransition = USE_DEFAULT_TRANSITION;
Object mExitTransition = null;
Object mReenterTransition = USE_DEFAULT_TRANSITION;
Object mSharedElementEnterTransition = null;
Object mSharedElementReturnTransition = USE_DEFAULT_TRANSITION;
Boolean mAllowReturnTransitionOverlap;
Boolean mAllowEnterTransitionOverlap;
SharedElementCallback mEnterTransitionCallback = null;
SharedElementCallback mExitTransitionCallback = null;
// True when postponeEnterTransition has been called and startPostponeEnterTransition
// hasn't been called yet.
boolean mEnterTransitionPostponed;
// Listener to wait for startPostponeEnterTransition. After being called, it will
// be set to null
OnStartEnterTransitionListener mStartEnterTransitionListener;
// True if the View was hidden, but the transition is handling the hide
boolean mIsHideReplaced;
}
}