blob: f166c57e3f6ef1ebcde8b2ead958629bc7310fb8 [file] [log] [blame]
 /* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "rsMatrix2x2.h" #include "rsMatrix3x3.h" #include "rsMatrix4x4.h" #include "stdlib.h" #include "string.h" #include "math.h" using namespace android; using namespace android::renderscript; ////////////////////////////////////////////////////////////////////////////// // Heavy math functions ////////////////////////////////////////////////////////////////////////////// // Returns true if the matrix was successfully inversed bool Matrix4x4::inverse() { rs_matrix4x4 result; int i, j; for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) { // computeCofactor for int i, int j int c0 = (i+1) % 4; int c1 = (i+2) % 4; int c2 = (i+3) % 4; int r0 = (j+1) % 4; int r1 = (j+2) % 4; int r2 = (j+3) % 4; float minor = (m[c0 + 4*r0] * (m[c1 + 4*r1] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r1])) - (m[c0 + 4*r1] * (m[c1 + 4*r0] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r0])) + (m[c0 + 4*r2] * (m[c1 + 4*r0] * m[c2 + 4*r1] - m[c1 + 4*r1] * m[c2 + 4*r0])); float cofactor = (i+j) & 1 ? -minor : minor; result.m[4*i + j] = cofactor; } } // Dot product of 0th column of source and 0th row of result float det = m[0]*result.m[0] + m[4]*result.m[1] + m[8]*result.m[2] + m[12]*result.m[3]; if (fabs(det) < 1e-6) { return false; } det = 1.0f / det; for (i = 0; i < 16; ++i) { m[i] = result.m[i] * det; } return true; } // Returns true if the matrix was successfully inversed bool Matrix4x4::inverseTranspose() { rs_matrix4x4 result; int i, j; for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) { // computeCofactor for int i, int j int c0 = (i+1) % 4; int c1 = (i+2) % 4; int c2 = (i+3) % 4; int r0 = (j+1) % 4; int r1 = (j+2) % 4; int r2 = (j+3) % 4; float minor = (m[c0 + 4*r0] * (m[c1 + 4*r1] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r1])) - (m[c0 + 4*r1] * (m[c1 + 4*r0] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r0])) + (m[c0 + 4*r2] * (m[c1 + 4*r0] * m[c2 + 4*r1] - m[c1 + 4*r1] * m[c2 + 4*r0])); float cofactor = (i+j) & 1 ? -minor : minor; result.m[4*j + i] = cofactor; } } // Dot product of 0th column of source and 0th column of result float det = m[0]*result.m[0] + m[4]*result.m[4] + m[8]*result.m[8] + m[12]*result.m[12]; if (fabs(det) < 1e-6) { return false; } det = 1.0f / det; for (i = 0; i < 16; ++i) { m[i] = result.m[i] * det; } return true; } void Matrix4x4::transpose() { int i, j; float temp; for (i = 0; i < 3; ++i) { for (j = i + 1; j < 4; ++j) { temp = m[i*4 + j]; m[i*4 + j] = m[j*4 + i]; m[j*4 + i] = temp; } } } /////////////////////////////////////////////////////////////////////////////////// void Matrix4x4::loadIdentity() { m[0] = 1.f; m[1] = 0.f; m[2] = 0.f; m[3] = 0.f; m[4] = 0.f; m[5] = 1.f; m[6] = 0.f; m[7] = 0.f; m[8] = 0.f; m[9] = 0.f; m[10] = 1.f; m[11] = 0.f; m[12] = 0.f; m[13] = 0.f; m[14] = 0.f; m[15] = 1.f; } void Matrix4x4::load(const float *v) { memcpy(m, v, sizeof(m)); } void Matrix4x4::load(const rs_matrix4x4 *v) { memcpy(m, v->m, sizeof(m)); } void Matrix4x4::load(const rs_matrix3x3 *v) { m[0] = v->m[0]; m[1] = v->m[1]; m[2] = v->m[2]; m[3] = 0.f; m[4] = v->m[3]; m[5] = v->m[4]; m[6] = v->m[5]; m[7] = 0.f; m[8] = v->m[6]; m[9] = v->m[7]; m[10] = v->m[8]; m[11] = 0.f; m[12] = 0.f; m[13] = 0.f; m[14] = 0.f; m[15] = 1.f; } void Matrix4x4::load(const rs_matrix2x2 *v) { m[0] = v->m[0]; m[1] = v->m[1]; m[2] = 0.f; m[3] = 0.f; m[4] = v->m[2]; m[5] = v->m[3]; m[6] = 0.f; m[7] = 0.f; m[8] = 0.f; m[9] = 0.f; m[10] = 1.f; m[11] = 0.f; m[12] = 0.f; m[13] = 0.f; m[14] = 0.f; m[15] = 1.f; } void Matrix4x4::loadRotate(float rot, float x, float y, float z) { float c, s; m[3] = 0; m[7] = 0; m[11]= 0; m[12]= 0; m[13]= 0; m[14]= 0; m[15]= 1; rot *= float(M_PI / 180.0f); c = cosf(rot); s = sinf(rot); const float len = x*x + y*y + z*z; if (len != 1) { const float recipLen = 1.f / sqrtf(len); x *= recipLen; y *= recipLen; z *= recipLen; } const float nc = 1.0f - c; const float xy = x * y; const float yz = y * z; const float zx = z * x; const float xs = x * s; const float ys = y * s; const float zs = z * s; m[ 0] = x*x*nc + c; m[ 4] = xy*nc - zs; m[ 8] = zx*nc + ys; m[ 1] = xy*nc + zs; m[ 5] = y*y*nc + c; m[ 9] = yz*nc - xs; m[ 2] = zx*nc - ys; m[ 6] = yz*nc + xs; m[10] = z*z*nc + c; } void Matrix4x4::loadScale(float x, float y, float z) { loadIdentity(); set(0, 0, x); set(1, 1, y); set(2, 2, z); } void Matrix4x4::loadTranslate(float x, float y, float z) { loadIdentity(); m[12] = x; m[13] = y; m[14] = z; } void Matrix4x4::loadMultiply(const rs_matrix4x4 *lhs, const rs_matrix4x4 *rhs) { // Use a temporary variable to support the case where one of the inputs // is also the destination, e.g. left.loadMultiply(left, right); Matrix4x4 temp; for (int i=0 ; i<4 ; i++) { float ri0 = 0; float ri1 = 0; float ri2 = 0; float ri3 = 0; for (int j=0 ; j<4 ; j++) { const float rhs_ij = ((const Matrix4x4 *)rhs)->get(i,j); ri0 += ((const Matrix4x4 *)lhs)->get(j,0) * rhs_ij; ri1 += ((const Matrix4x4 *)lhs)->get(j,1) * rhs_ij; ri2 += ((const Matrix4x4 *)lhs)->get(j,2) * rhs_ij; ri3 += ((const Matrix4x4 *)lhs)->get(j,3) * rhs_ij; } temp.set(i,0, ri0); temp.set(i,1, ri1); temp.set(i,2, ri2); temp.set(i,3, ri3); } load(&temp); } void Matrix4x4::loadOrtho(float left, float right, float bottom, float top, float near, float far) { loadIdentity(); m[0] = 2.f / (right - left); m[5] = 2.f / (top - bottom); m[10]= -2.f / (far - near); m[12]= -(right + left) / (right - left); m[13]= -(top + bottom) / (top - bottom); m[14]= -(far + near) / (far - near); } void Matrix4x4::loadFrustum(float left, float right, float bottom, float top, float near, float far) { loadIdentity(); m[0] = 2.f * near / (right - left); m[5] = 2.f * near / (top - bottom); m[8] = (right + left) / (right - left); m[9] = (top + bottom) / (top - bottom); m[10]= -(far + near) / (far - near); m[11]= -1.f; m[14]= -2.f * far * near / (far - near); m[15]= 0.f; } void Matrix4x4::loadPerspective(float fovy, float aspect, float near, float far) { float top = near * tan((float) (fovy * M_PI / 360.0f)); float bottom = -top; float left = bottom * aspect; float right = top * aspect; loadFrustum(left, right, bottom, top, near, far); } // Note: This assumes that the input vector (in) is of length 3. void Matrix4x4::vectorMultiply(float *out, const float *in) const { out[0] = (m[0] * in[0]) + (m[4] * in[1]) + (m[8] * in[2]) + m[12]; out[1] = (m[1] * in[0]) + (m[5] * in[1]) + (m[9] * in[2]) + m[13]; out[2] = (m[2] * in[0]) + (m[6] * in[1]) + (m[10] * in[2]) + m[14]; out[3] = (m[3] * in[0]) + (m[7] * in[1]) + (m[11] * in[2]) + m[15]; } void Matrix4x4::logv(const char *s) const { ALOGV("%s {%f, %f, %f, %f", s, m[0], m[4], m[8], m[12]); ALOGV("%s %f, %f, %f, %f", s, m[1], m[5], m[9], m[13]); ALOGV("%s %f, %f, %f, %f", s, m[2], m[6], m[10], m[14]); ALOGV("%s %f, %f, %f, %f}", s, m[3], m[7], m[11], m[15]); }