blob: ef738d72d83113a1bbc0613573911e24d6b6650a [file] [log] [blame]
/*
* Copyright (C) 2011-2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "rsCpuCore.h"
#include "rsCpuScript.h"
#include "rsCpuExecutable.h"
#ifdef RS_COMPATIBILITY_LIB
#include <stdio.h>
#include <sys/stat.h>
#include <unistd.h>
#else
#include "rsCppUtils.h"
#include <bcc/Config/Config.h>
#include <bcinfo/MetadataExtractor.h>
#include <cutils/properties.h>
#include <zlib.h>
#include <sys/file.h>
#include <sys/types.h>
#include <unistd.h>
#include <string>
#include <vector>
#endif
#include <set>
#include <string>
#include <dlfcn.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <sstream>
namespace {
static const bool kDebugGlobalVariables = false;
static bool allocationLODIsNull(const android::renderscript::Allocation *alloc) {
// Even if alloc != nullptr, mallocPtr could be null if
// IO_OUTPUT/IO_INPUT with no bound surface.
return alloc && alloc->mHal.drvState.lod[0].mallocPtr == nullptr;
}
#ifndef RS_COMPATIBILITY_LIB
static bool is_force_recompile() {
#ifdef RS_SERVER
return false;
#else
char buf[PROPERTY_VALUE_MAX];
// Re-compile if floating point precision has been overridden.
property_get("debug.rs.precision", buf, "");
if (buf[0] != '\0') {
return true;
}
// Re-compile if debug.rs.forcerecompile is set.
property_get("debug.rs.forcerecompile", buf, "0");
if ((::strcmp(buf, "1") == 0) || (::strcmp(buf, "true") == 0)) {
return true;
} else {
return false;
}
#endif // RS_SERVER
}
static void setCompileArguments(std::vector<const char*>* args,
const std::string& bcFileName,
const char* cacheDir, const char* resName,
const char* core_lib, bool useRSDebugContext,
const char* bccPluginName, bool emitGlobalInfo,
int optLevel, bool emitGlobalInfoSkipConstant) {
rsAssert(cacheDir && resName && core_lib);
args->push_back(android::renderscript::RsdCpuScriptImpl::BCC_EXE_PATH);
args->push_back("-unroll-runtime");
args->push_back("-scalarize-load-store");
if (emitGlobalInfo) {
args->push_back("-rs-global-info");
if (emitGlobalInfoSkipConstant) {
args->push_back("-rs-global-info-skip-constant");
}
}
args->push_back("-o");
args->push_back(resName);
args->push_back("-output_path");
args->push_back(cacheDir);
args->push_back("-bclib");
args->push_back(core_lib);
args->push_back("-mtriple");
args->push_back(DEFAULT_TARGET_TRIPLE_STRING);
args->push_back("-O");
switch (optLevel) {
case 0:
args->push_back("0");
break;
case 3:
args->push_back("3");
break;
default:
ALOGW("Expected optimization level of 0 or 3. Received %d", optLevel);
args->push_back("3");
break;
}
// Enable workaround for A53 codegen by default.
#if defined(__aarch64__) && !defined(DISABLE_A53_WORKAROUND)
args->push_back("-aarch64-fix-cortex-a53-835769");
#endif
// Execute the bcc compiler.
if (useRSDebugContext) {
args->push_back("-rs-debug-ctx");
} else {
// Only load additional libraries for compiles that don't use
// the debug context.
if (bccPluginName && strlen(bccPluginName) > 0) {
args->push_back("-load");
args->push_back(bccPluginName);
}
}
args->push_back("-fPIC");
args->push_back("-embedRSInfo");
args->push_back(bcFileName.c_str());
args->push_back(nullptr);
}
static bool compileBitcode(const std::string &bcFileName,
const char *bitcode,
size_t bitcodeSize,
std::vector<const char *> &compileArguments) {
rsAssert(bitcode && bitcodeSize);
FILE *bcfile = fopen(bcFileName.c_str(), "w");
if (!bcfile) {
ALOGE("Could not write to %s", bcFileName.c_str());
return false;
}
size_t nwritten = fwrite(bitcode, 1, bitcodeSize, bcfile);
fclose(bcfile);
if (nwritten != bitcodeSize) {
ALOGE("Could not write %zu bytes to %s", bitcodeSize,
bcFileName.c_str());
return false;
}
return android::renderscript::rsuExecuteCommand(
android::renderscript::RsdCpuScriptImpl::BCC_EXE_PATH,
compileArguments.size()-1, compileArguments.data());
}
// The checksum is unnecessary under a few conditions, since the primary
// use-case for it is debugging. If we are loading something from the
// system partition (read-only), we know that it was precompiled as part of
// application ahead of time (and thus the checksum is completely
// unnecessary). The checksum is also unnecessary on release (non-debug)
// builds, as the only way to get a shared object is to have compiled the
// script once already. On a release build, there is no way to adjust the
// other libraries/dependencies, and so the only reason to recompile would
// be for a source APK change or an OTA. In either case, the APK would be
// reinstalled, which would already clear the code_cache/ directory.
bool isChecksumNeeded(const char *cacheDir) {
if ((::strcmp(SYSLIBPATH, cacheDir) == 0) ||
(::strcmp(SYSLIBPATH_VENDOR, cacheDir) == 0))
return false;
char buf[PROPERTY_VALUE_MAX];
property_get("ro.debuggable", buf, "");
return (buf[0] == '1');
}
bool addFileToChecksum(const char *fileName, uint32_t &checksum) {
int FD = open(fileName, O_RDONLY);
if (FD == -1) {
ALOGE("Cannot open file \'%s\' to compute checksum", fileName);
return false;
}
char buf[256];
while (true) {
ssize_t nread = read(FD, buf, sizeof(buf));
if (nread < 0) { // bail out on failed read
ALOGE("Error while computing checksum for file \'%s\'", fileName);
return false;
}
checksum = adler32(checksum, (const unsigned char *) buf, nread);
if (static_cast<size_t>(nread) < sizeof(buf)) // EOF
break;
}
if (close(FD) != 0) {
ALOGE("Cannot close file \'%s\' after computing checksum", fileName);
return false;
}
return true;
}
#endif // !defined(RS_COMPATIBILITY_LIB)
} // namespace
namespace android {
namespace renderscript {
#ifndef RS_COMPATIBILITY_LIB
uint32_t constructBuildChecksum(uint8_t const *bitcode, size_t bitcodeSize,
const char *commandLine,
const char** bccFiles, size_t numFiles) {
uint32_t checksum = adler32(0L, Z_NULL, 0);
// include checksum of bitcode
if (bitcode != nullptr && bitcodeSize > 0) {
checksum = adler32(checksum, bitcode, bitcodeSize);
}
// include checksum of command line arguments
checksum = adler32(checksum, (const unsigned char *) commandLine,
strlen(commandLine));
// include checksum of bccFiles
for (size_t i = 0; i < numFiles; i++) {
const char* bccFile = bccFiles[i];
if (bccFile[0] != 0 && !addFileToChecksum(bccFile, checksum)) {
// return empty checksum instead of something partial/corrupt
return 0;
}
}
return checksum;
}
#endif // !RS_COMPATIBILITY_LIB
RsdCpuScriptImpl::RsdCpuScriptImpl(RsdCpuReferenceImpl *ctx, const Script *s) {
mCtx = ctx;
mScript = s;
mScriptSO = nullptr;
mRoot = nullptr;
mRootExpand = nullptr;
mInit = nullptr;
mFreeChildren = nullptr;
mScriptExec = nullptr;
mBoundAllocs = nullptr;
mIntrinsicData = nullptr;
mIsThreadable = true;
mBuildChecksum = 0;
mChecksumNeeded = false;
}
bool RsdCpuScriptImpl::storeRSInfoFromSO() {
// The shared object may have an invalid build checksum.
// Validate and fail early.
mScriptExec = ScriptExecutable::createFromSharedObject(
mScriptSO, mChecksumNeeded ? mBuildChecksum : 0);
if (mScriptExec == nullptr) {
return false;
}
mRoot = (RootFunc_t) dlsym(mScriptSO, "root");
if (mRoot) {
//ALOGE("Found root(): %p", mRoot);
}
mRootExpand = (RootFunc_t) dlsym(mScriptSO, "root.expand");
if (mRootExpand) {
//ALOGE("Found root.expand(): %p", mRootExpand);
}
mInit = (InitOrDtorFunc_t) dlsym(mScriptSO, "init");
if (mInit) {
//ALOGE("Found init(): %p", mInit);
}
mFreeChildren = (InitOrDtorFunc_t) dlsym(mScriptSO, ".rs.dtor");
if (mFreeChildren) {
//ALOGE("Found .rs.dtor(): %p", mFreeChildren);
}
size_t varCount = mScriptExec->getExportedVariableCount();
if (varCount > 0) {
mBoundAllocs = new Allocation *[varCount];
memset(mBoundAllocs, 0, varCount * sizeof(*mBoundAllocs));
}
mIsThreadable = mScriptExec->getThreadable();
//ALOGE("Script isThreadable? %d", mIsThreadable);
if (kDebugGlobalVariables) {
mScriptExec->dumpGlobalInfo();
}
return true;
}
bool RsdCpuScriptImpl::init(char const *resName, char const *cacheDir,
uint8_t const *bitcode, size_t bitcodeSize,
uint32_t flags, char const *bccPluginName) {
//ALOGE("rsdScriptCreate %p %p %p %p %i %i %p", rsc, resName, cacheDir,
// bitcode, bitcodeSize, flags, lookupFunc);
//ALOGE("rsdScriptInit %p %p", rsc, script);
mCtx->lockMutex();
#ifndef RS_COMPATIBILITY_LIB
bool useRSDebugContext = false;
bcinfo::MetadataExtractor bitcodeMetadata((const char *) bitcode, bitcodeSize);
if (!bitcodeMetadata.extract()) {
ALOGE("Could not extract metadata from bitcode");
mCtx->unlockMutex();
return false;
}
const char* core_lib = findCoreLib(bitcodeMetadata, (const char*)bitcode, bitcodeSize);
if (mCtx->getContext()->getContextType() == RS_CONTEXT_TYPE_DEBUG) {
useRSDebugContext = true;
}
int optLevel = mCtx->getContext()->getOptLevel();
std::string bcFileName(cacheDir);
bcFileName.append("/");
bcFileName.append(resName);
bcFileName.append(".bc");
std::vector<const char*> compileArguments;
bool emitGlobalInfo = mCtx->getEmbedGlobalInfo();
bool emitGlobalInfoSkipConstant = mCtx->getEmbedGlobalInfoSkipConstant();
setCompileArguments(&compileArguments, bcFileName, cacheDir, resName, core_lib,
useRSDebugContext, bccPluginName, emitGlobalInfo,
optLevel, emitGlobalInfoSkipConstant);
mChecksumNeeded = isChecksumNeeded(cacheDir);
if (mChecksumNeeded) {
std::vector<const char *> bccFiles = { BCC_EXE_PATH,
core_lib,
};
// The last argument of compileArguments is a nullptr, so remove 1 from
// the size.
std::unique_ptr<const char> compileCommandLine(
rsuJoinStrings(compileArguments.size()-1, compileArguments.data()));
mBuildChecksum = constructBuildChecksum(bitcode, bitcodeSize,
compileCommandLine.get(),
bccFiles.data(), bccFiles.size());
if (mBuildChecksum == 0) {
// cannot compute checksum but verification is enabled
mCtx->unlockMutex();
return false;
}
}
else {
// add a dummy/constant as a checksum if verification is disabled
mBuildChecksum = 0xabadcafe;
}
// Append build checksum to commandline
// Handle the terminal nullptr in compileArguments
compileArguments.pop_back();
compileArguments.push_back("-build-checksum");
std::stringstream ss;
ss << std::hex << mBuildChecksum;
compileArguments.push_back(ss.str().c_str());
compileArguments.push_back(nullptr);
if (!is_force_recompile() && !useRSDebugContext) {
mScriptSO = SharedLibraryUtils::loadSharedLibrary(cacheDir, resName);
// Read RS info from the shared object to detect checksum mismatch
if (mScriptSO != nullptr && !storeRSInfoFromSO()) {
dlclose(mScriptSO);
mScriptSO = nullptr;
}
}
// If we can't, it's either not there or out of date. We compile the bit code and try loading
// again.
if (mScriptSO == nullptr) {
if (!compileBitcode(bcFileName, (const char*)bitcode, bitcodeSize,
compileArguments))
{
ALOGE("bcc: FAILS to compile '%s'", resName);
mCtx->unlockMutex();
return false;
}
if (!SharedLibraryUtils::createSharedLibrary(mCtx->getContext()->getDriverName(),
cacheDir, resName)) {
ALOGE("Linker: Failed to link object file '%s'", resName);
mCtx->unlockMutex();
return false;
}
mScriptSO = SharedLibraryUtils::loadSharedLibrary(cacheDir, resName);
if (mScriptSO == nullptr) {
ALOGE("Unable to load '%s'", resName);
mCtx->unlockMutex();
return false;
}
// Read RS symbol information from the .so.
if (!storeRSInfoFromSO()) {
goto error;
}
}
mBitcodeFilePath.setTo(bcFileName.c_str());
#else // RS_COMPATIBILITY_LIB is defined
const char *nativeLibDir = mCtx->getContext()->getNativeLibDir();
mScriptSO = SharedLibraryUtils::loadSharedLibrary(cacheDir, resName, nativeLibDir);
if (!mScriptSO) {
goto error;
}
if (!storeRSInfoFromSO()) {
goto error;
}
#endif
mCtx->unlockMutex();
return true;
error:
mCtx->unlockMutex();
if (mScriptSO) {
dlclose(mScriptSO);
mScriptSO = nullptr;
}
return false;
}
#ifndef RS_COMPATIBILITY_LIB
const char* RsdCpuScriptImpl::findCoreLib(const bcinfo::MetadataExtractor& ME, const char* bitcode,
size_t bitcodeSize) {
const char* defaultLib = SYSLIBPATH"/libclcore.bc";
// If we're debugging, use the debug library.
if (mCtx->getContext()->getContextType() == RS_CONTEXT_TYPE_DEBUG) {
return SYSLIBPATH"/libclcore_debug.bc";
}
if (ME.hasDebugInfo()) {
return SYSLIBPATH"/libclcore_g.bc";
}
// If a callback has been registered to specify a library, use that.
RSSelectRTCallback selectRTCallback = mCtx->getSelectRTCallback();
if (selectRTCallback != nullptr) {
return selectRTCallback((const char*)bitcode, bitcodeSize);
}
// Check for a platform specific library
#if defined(ARCH_ARM_HAVE_NEON) && !defined(DISABLE_CLCORE_NEON)
enum bcinfo::RSFloatPrecision prec = ME.getRSFloatPrecision();
if (prec == bcinfo::RS_FP_Relaxed) {
// NEON-capable ARMv7a devices can use an accelerated math library
// for all reduced precision scripts.
// ARMv8 does not use NEON, as ASIMD can be used with all precision
// levels.
return SYSLIBPATH"/libclcore_neon.bc";
} else {
return defaultLib;
}
#elif defined(__i386__) || defined(__x86_64__)
// x86 devices will use an optimized library.
return SYSLIBPATH"/libclcore_x86.bc";
#else
return defaultLib;
#endif
}
#endif
void RsdCpuScriptImpl::populateScript(Script *script) {
// Copy info over to runtime
script->mHal.info.exportedFunctionCount = mScriptExec->getExportedFunctionCount();
script->mHal.info.exportedReduceCount = mScriptExec->getExportedReduceCount();
script->mHal.info.exportedReduceNewCount = mScriptExec->getExportedReduceNewCount();
script->mHal.info.exportedForEachCount = mScriptExec->getExportedForEachCount();
script->mHal.info.exportedVariableCount = mScriptExec->getExportedVariableCount();
script->mHal.info.exportedPragmaCount = mScriptExec->getPragmaCount();;
script->mHal.info.exportedPragmaKeyList = mScriptExec->getPragmaKeys();
script->mHal.info.exportedPragmaValueList = mScriptExec->getPragmaValues();
// Bug, need to stash in metadata
if (mRootExpand) {
script->mHal.info.root = mRootExpand;
} else {
script->mHal.info.root = mRoot;
}
}
// Set up the launch dimensions, and write the values of the launch
// dimensions into the mtls start/end fields.
//
// Inputs:
// baseDim - base shape of the input
// sc - used to constrain the launch dimensions
//
// Returns:
// True on success, false on failure to set up
bool RsdCpuScriptImpl::setUpMtlsDimensions(MTLaunchStructCommon *mtls,
const RsLaunchDimensions &baseDim,
const RsScriptCall *sc) {
rsAssert(mtls);
#define SET_UP_DIMENSION(DIM_FIELD, SC_FIELD) do { \
if (!sc || (sc->SC_FIELD##End == 0)) { \
mtls->end.DIM_FIELD = baseDim.DIM_FIELD; \
} else { \
mtls->start.DIM_FIELD = \
rsMin(baseDim.DIM_FIELD, sc->SC_FIELD##Start); \
mtls->end.DIM_FIELD = \
rsMin(baseDim.DIM_FIELD, sc->SC_FIELD##End); \
if (mtls->start.DIM_FIELD >= mtls->end.DIM_FIELD) { \
mCtx->getContext()->setError(RS_ERROR_BAD_SCRIPT, \
"Failed to launch kernel; Invalid " \
#SC_FIELD "Start or " #SC_FIELD "End."); \
return false; \
} \
}} while(0)
SET_UP_DIMENSION(x, x);
SET_UP_DIMENSION(y, y);
SET_UP_DIMENSION(z, z);
SET_UP_DIMENSION(array[0], array);
SET_UP_DIMENSION(array[1], array2);
SET_UP_DIMENSION(array[2], array3);
SET_UP_DIMENSION(array[3], array4);
#undef SET_UP_DIMENSION
return true;
}
// Preliminary work to prepare a simple reduce-style kernel for launch.
bool RsdCpuScriptImpl::reduceMtlsSetup(const Allocation *ain,
const Allocation *aout,
const RsScriptCall *sc,
MTLaunchStructReduce *mtls) {
rsAssert(ain && aout);
memset(mtls, 0, sizeof(MTLaunchStructReduce));
mtls->dimPtr = &mtls->inputDim;
if (allocationLODIsNull(ain) || allocationLODIsNull(aout)) {
mCtx->getContext()->setError(RS_ERROR_BAD_SCRIPT,
"reduce called with a null allocation");
return false;
}
// Set up the dimensions of the input.
const Type *inType = ain->getType();
mtls->inputDim.x = inType->getDimX();
rsAssert(inType->getDimY() == 0);
if (!setUpMtlsDimensions(mtls, mtls->inputDim, sc)) {
return false;
}
mtls->rs = mCtx;
// Currently not threaded.
mtls->isThreadable = false;
mtls->mSliceNum = -1;
// Set up input and output.
mtls->inBuf = static_cast<uint8_t *>(ain->getPointerUnchecked(0, 0));
mtls->outBuf = static_cast<uint8_t *>(aout->getPointerUnchecked(0, 0));
rsAssert(mtls->inBuf && mtls->outBuf);
return true;
}
// Preliminary work to prepare a general reduce-style kernel for launch.
bool RsdCpuScriptImpl::reduceNewMtlsSetup(const Allocation ** ains,
uint32_t inLen,
const Allocation * aout,
const RsScriptCall *sc,
MTLaunchStructReduceNew *mtls) {
rsAssert(ains && (inLen >= 1) && aout);
memset(mtls, 0, sizeof(MTLaunchStructReduceNew));
mtls->dimPtr = &mtls->redp.dim;
for (int index = inLen; --index >= 0;) {
if (allocationLODIsNull(ains[index])) {
mCtx->getContext()->setError(RS_ERROR_BAD_SCRIPT,
"reduce called with null in allocations");
return false;
}
}
if (allocationLODIsNull(aout)) {
mCtx->getContext()->setError(RS_ERROR_BAD_SCRIPT,
"reduce called with null out allocation");
return false;
}
const Allocation *ain0 = ains[0];
const Type *inType = ain0->getType();
mtls->redp.dim.x = inType->getDimX();
mtls->redp.dim.y = inType->getDimY();
mtls->redp.dim.z = inType->getDimZ();
for (int Index = inLen; --Index >= 1;) {
if (!ain0->hasSameDims(ains[Index])) {
mCtx->getContext()->setError(RS_ERROR_BAD_SCRIPT,
"Failed to launch reduction kernel;"
"dimensions of input allocations do not match.");
return false;
}
}
if (!setUpMtlsDimensions(mtls, mtls->redp.dim, sc)) {
return false;
}
// The X & Y walkers always want 0-1 min even if dim is not present
mtls->end.x = rsMax((uint32_t)1, mtls->end.x);
mtls->end.y = rsMax((uint32_t)1, mtls->end.y);
mtls->rs = mCtx;
// Currently not threaded.
mtls->isThreadable = false;
mtls->mSliceNum = -1;
// Set up output,
mtls->redp.outLen = 1;
mtls->redp.outPtr[0] = (uint8_t *)aout->mHal.drvState.lod[0].mallocPtr;
mtls->redp.outStride[0] = aout->getType()->getElementSizeBytes();
// Set up input.
memcpy(mtls->ains, ains, inLen * sizeof(ains[0]));
mtls->redp.inLen = inLen;
for (int index = inLen; --index >= 0;) {
mtls->redp.inPtr[index] = (const uint8_t*)ains[index]->mHal.drvState.lod[0].mallocPtr;
mtls->redp.inStride[index] = ains[index]->getType()->getElementSizeBytes();
}
// All validation passed, ok to launch threads
return true;
}
// Preliminary work to prepare a forEach-style kernel for launch.
bool RsdCpuScriptImpl::forEachMtlsSetup(const Allocation ** ains,
uint32_t inLen,
Allocation * aout,
const void * usr, uint32_t usrLen,
const RsScriptCall *sc,
MTLaunchStructForEach *mtls) {
if (ains == nullptr && inLen != 0) {
mCtx->getContext()->setError(RS_ERROR_BAD_SCRIPT,
"rsForEach called with none-zero inLen with null in allocations");
return false;
}
memset(mtls, 0, sizeof(MTLaunchStructForEach));
mtls->dimPtr = &mtls->fep.dim;
for (int index = inLen; --index >= 0;) {
if (allocationLODIsNull(ains[index])) {
mCtx->getContext()->setError(RS_ERROR_BAD_SCRIPT,
"rsForEach called with null in allocations");
return false;
}
}
if (allocationLODIsNull(aout)) {
mCtx->getContext()->setError(RS_ERROR_BAD_SCRIPT,
"rsForEach called with null out allocations");
return false;
}
if (inLen > 0) {
const Allocation *ain0 = ains[0];
const Type *inType = ain0->getType();
mtls->fep.dim.x = inType->getDimX();
mtls->fep.dim.y = inType->getDimY();
mtls->fep.dim.z = inType->getDimZ();
for (int Index = inLen; --Index >= 1;) {
if (!ain0->hasSameDims(ains[Index])) {
mCtx->getContext()->setError(RS_ERROR_BAD_SCRIPT,
"Failed to launch kernel; dimensions of input"
"allocations do not match.");
return false;
}
}
} else if (aout != nullptr) {
const Type *outType = aout->getType();
mtls->fep.dim.x = outType->getDimX();
mtls->fep.dim.y = outType->getDimY();
mtls->fep.dim.z = outType->getDimZ();
} else if (sc != nullptr) {
mtls->fep.dim.x = sc->xEnd;
mtls->fep.dim.y = sc->yEnd;
mtls->fep.dim.z = 0;
} else {
mCtx->getContext()->setError(RS_ERROR_BAD_SCRIPT,
"rsForEach called with null allocations");
return false;
}
if (inLen > 0 && aout != nullptr) {
if (!ains[0]->hasSameDims(aout)) {
mCtx->getContext()->setError(RS_ERROR_BAD_SCRIPT,
"Failed to launch kernel; dimensions of input and output allocations do not match.");
return false;
}
}
if (!setUpMtlsDimensions(mtls, mtls->fep.dim, sc)) {
return false;
}
// The X & Y walkers always want 0-1 min even if dim is not present
mtls->end.x = rsMax((uint32_t)1, mtls->end.x);
mtls->end.y = rsMax((uint32_t)1, mtls->end.y);
mtls->rs = mCtx;
if (ains) {
memcpy(mtls->ains, ains, inLen * sizeof(ains[0]));
}
mtls->aout[0] = aout;
mtls->fep.usr = usr;
mtls->fep.usrLen = usrLen;
mtls->mSliceSize = 1;
mtls->mSliceNum = 0;
mtls->isThreadable = mIsThreadable;
if (inLen > 0) {
mtls->fep.inLen = inLen;
for (int index = inLen; --index >= 0;) {
mtls->fep.inPtr[index] = (const uint8_t*)ains[index]->mHal.drvState.lod[0].mallocPtr;
mtls->fep.inStride[index] = ains[index]->getType()->getElementSizeBytes();
}
}
if (aout != nullptr) {
mtls->fep.outPtr[0] = (uint8_t *)aout->mHal.drvState.lod[0].mallocPtr;
mtls->fep.outStride[0] = aout->getType()->getElementSizeBytes();
}
// All validation passed, ok to launch threads
return true;
}
void RsdCpuScriptImpl::invokeForEach(uint32_t slot,
const Allocation ** ains,
uint32_t inLen,
Allocation * aout,
const void * usr,
uint32_t usrLen,
const RsScriptCall *sc) {
MTLaunchStructForEach mtls;
if (forEachMtlsSetup(ains, inLen, aout, usr, usrLen, sc, &mtls)) {
forEachKernelSetup(slot, &mtls);
RsdCpuScriptImpl * oldTLS = mCtx->setTLS(this);
mCtx->launchForEach(ains, inLen, aout, sc, &mtls);
mCtx->setTLS(oldTLS);
}
}
void RsdCpuScriptImpl::invokeReduce(uint32_t slot,
const Allocation *ain,
Allocation *aout,
const RsScriptCall *sc) {
MTLaunchStructReduce mtls;
if (reduceMtlsSetup(ain, aout, sc, &mtls)) {
reduceKernelSetup(slot, &mtls);
RsdCpuScriptImpl *oldTLS = mCtx->setTLS(this);
mCtx->launchReduce(ain, aout, &mtls);
mCtx->setTLS(oldTLS);
}
}
void RsdCpuScriptImpl::invokeReduceNew(uint32_t slot,
const Allocation ** ains, uint32_t inLen,
Allocation *aout,
const RsScriptCall *sc) {
MTLaunchStructReduceNew mtls;
if (reduceNewMtlsSetup(ains, inLen, aout, sc, &mtls)) {
reduceNewKernelSetup(slot, &mtls);
RsdCpuScriptImpl *oldTLS = mCtx->setTLS(this);
mCtx->launchReduceNew(ains, inLen, aout, &mtls);
mCtx->setTLS(oldTLS);
}
}
void RsdCpuScriptImpl::forEachKernelSetup(uint32_t slot, MTLaunchStructForEach *mtls) {
mtls->script = this;
mtls->fep.slot = slot;
mtls->kernel = mScriptExec->getForEachFunction(slot);
rsAssert(mtls->kernel != nullptr);
}
void RsdCpuScriptImpl::reduceKernelSetup(uint32_t slot, MTLaunchStructReduce *mtls) {
mtls->script = this;
mtls->kernel = mScriptExec->getReduceFunction(slot);
rsAssert(mtls->kernel != nullptr);
}
void RsdCpuScriptImpl::reduceNewKernelSetup(uint32_t slot, MTLaunchStructReduceNew *mtls) {
mtls->script = this;
mtls->redp.slot = slot;
const ReduceNewDescription *desc = mScriptExec->getReduceNewDescription(slot);
mtls->accumFunc = desc->accumFunc;
mtls->initFunc = desc->initFunc; // might legally be nullptr
mtls->outFunc = desc->outFunc; // might legally be nullptr
mtls->accumSize = desc->accumSize;
rsAssert(mtls->accumFunc != nullptr);
}
int RsdCpuScriptImpl::invokeRoot() {
RsdCpuScriptImpl * oldTLS = mCtx->setTLS(this);
int ret = mRoot();
mCtx->setTLS(oldTLS);
return ret;
}
void RsdCpuScriptImpl::invokeInit() {
if (mInit) {
mInit();
}
}
void RsdCpuScriptImpl::invokeFreeChildren() {
if (mFreeChildren) {
mFreeChildren();
}
}
void RsdCpuScriptImpl::invokeFunction(uint32_t slot, const void *params,
size_t paramLength) {
//ALOGE("invoke %i %p %zu", slot, params, paramLength);
void * ap = nullptr;
#if defined(__x86_64__)
// The invoked function could have input parameter of vector type for example float4 which
// requires void* params to be 16 bytes aligned when using SSE instructions for x86_64 platform.
// So try to align void* params before passing them into RS exported function.
if ((uint8_t)(uint64_t)params & 0x0F) {
if ((ap = (void*)memalign(16, paramLength)) != nullptr) {
memcpy(ap, params, paramLength);
} else {
ALOGE("x86_64: invokeFunction memalign error, still use params which"
" is not 16 bytes aligned.");
}
}
#endif
RsdCpuScriptImpl * oldTLS = mCtx->setTLS(this);
reinterpret_cast<void (*)(const void *, uint32_t)>(
mScriptExec->getInvokeFunction(slot))(ap? (const void *) ap: params, paramLength);
#if defined(__x86_64__)
free(ap);
#endif
mCtx->setTLS(oldTLS);
}
void RsdCpuScriptImpl::setGlobalVar(uint32_t slot, const void *data, size_t dataLength) {
//rsAssert(!script->mFieldIsObject[slot]);
//ALOGE("setGlobalVar %i %p %zu", slot, data, dataLength);
//if (mIntrinsicID) {
//mIntrinsicFuncs.setVar(dc, script, drv->mIntrinsicData, slot, data, dataLength);
//return;
//}
int32_t *destPtr = reinterpret_cast<int32_t *>(mScriptExec->getFieldAddress(slot));
if (!destPtr) {
//ALOGV("Calling setVar on slot = %i which is null", slot);
return;
}
memcpy(destPtr, data, dataLength);
}
void RsdCpuScriptImpl::getGlobalVar(uint32_t slot, void *data, size_t dataLength) {
//rsAssert(!script->mFieldIsObject[slot]);
//ALOGE("getGlobalVar %i %p %zu", slot, data, dataLength);
int32_t *srcPtr = reinterpret_cast<int32_t *>(mScriptExec->getFieldAddress(slot));
if (!srcPtr) {
//ALOGV("Calling setVar on slot = %i which is null", slot);
return;
}
memcpy(data, srcPtr, dataLength);
}
void RsdCpuScriptImpl::setGlobalVarWithElemDims(uint32_t slot, const void *data, size_t dataLength,
const Element *elem,
const uint32_t *dims, size_t dimLength) {
int32_t *destPtr = reinterpret_cast<int32_t *>(mScriptExec->getFieldAddress(slot));
if (!destPtr) {
//ALOGV("Calling setVar on slot = %i which is null", slot);
return;
}
// We want to look at dimension in terms of integer components,
// but dimLength is given in terms of bytes.
dimLength /= sizeof(int);
// Only a single dimension is currently supported.
rsAssert(dimLength == 1);
if (dimLength == 1) {
// First do the increment loop.
size_t stride = elem->getSizeBytes();
const char *cVal = reinterpret_cast<const char *>(data);
for (uint32_t i = 0; i < dims[0]; i++) {
elem->incRefs(cVal);
cVal += stride;
}
// Decrement loop comes after (to prevent race conditions).
char *oldVal = reinterpret_cast<char *>(destPtr);
for (uint32_t i = 0; i < dims[0]; i++) {
elem->decRefs(oldVal);
oldVal += stride;
}
}
memcpy(destPtr, data, dataLength);
}
void RsdCpuScriptImpl::setGlobalBind(uint32_t slot, Allocation *data) {
//rsAssert(!script->mFieldIsObject[slot]);
//ALOGE("setGlobalBind %i %p", slot, data);
int32_t *destPtr = reinterpret_cast<int32_t *>(mScriptExec->getFieldAddress(slot));
if (!destPtr) {
//ALOGV("Calling setVar on slot = %i which is null", slot);
return;
}
void *ptr = nullptr;
mBoundAllocs[slot] = data;
if (data) {
ptr = data->mHal.drvState.lod[0].mallocPtr;
}
memcpy(destPtr, &ptr, sizeof(void *));
}
void RsdCpuScriptImpl::setGlobalObj(uint32_t slot, ObjectBase *data) {
//rsAssert(script->mFieldIsObject[slot]);
//ALOGE("setGlobalObj %i %p", slot, data);
int32_t *destPtr = reinterpret_cast<int32_t *>(mScriptExec->getFieldAddress(slot));
if (!destPtr) {
//ALOGV("Calling setVar on slot = %i which is null", slot);
return;
}
rsrSetObject(mCtx->getContext(), (rs_object_base *)destPtr, data);
}
const char* RsdCpuScriptImpl::getFieldName(uint32_t slot) const {
return mScriptExec->getFieldName(slot);
}
RsdCpuScriptImpl::~RsdCpuScriptImpl() {
delete mScriptExec;
delete[] mBoundAllocs;
if (mScriptSO) {
dlclose(mScriptSO);
}
}
Allocation * RsdCpuScriptImpl::getAllocationForPointer(const void *ptr) const {
if (!ptr) {
return nullptr;
}
for (uint32_t ct=0; ct < mScript->mHal.info.exportedVariableCount; ct++) {
Allocation *a = mBoundAllocs[ct];
if (!a) continue;
if (a->mHal.drvState.lod[0].mallocPtr == ptr) {
return a;
}
}
ALOGE("rsGetAllocation, failed to find %p", ptr);
return nullptr;
}
int RsdCpuScriptImpl::getGlobalEntries() const {
return mScriptExec->getGlobalEntries();
}
const char * RsdCpuScriptImpl::getGlobalName(int i) const {
return mScriptExec->getGlobalName(i);
}
const void * RsdCpuScriptImpl::getGlobalAddress(int i) const {
return mScriptExec->getGlobalAddress(i);
}
size_t RsdCpuScriptImpl::getGlobalSize(int i) const {
return mScriptExec->getGlobalSize(i);
}
uint32_t RsdCpuScriptImpl::getGlobalProperties(int i) const {
return mScriptExec->getGlobalProperties(i);
}
void RsdCpuScriptImpl::preLaunch(uint32_t slot, const Allocation ** ains,
uint32_t inLen, Allocation * aout,
const void * usr, uint32_t usrLen,
const RsScriptCall *sc) {}
void RsdCpuScriptImpl::postLaunch(uint32_t slot, const Allocation ** ains,
uint32_t inLen, Allocation * aout,
const void * usr, uint32_t usrLen,
const RsScriptCall *sc) {}
}
}