blob: 7afeea462d044b4df1a3d6b1366f43cd8fa3e239 [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include <cctype>
#include <cstdlib>
#include <fstream>
#include <functional>
#include <iostream>
#include <memory>
#include <sstream>
#include <strings.h>
#include "Generator.h"
#include "Scanner.h"
#include "Specification.h"
#include "Utilities.h"
using namespace std;
// API level when RenderScript was added.
const unsigned int MIN_API_LEVEL = 9;
const NumericalType TYPES[] = {
{"f16", "FLOAT_16", "half", "float", FLOATING_POINT, 11, 5},
{"f32", "FLOAT_32", "float", "float", FLOATING_POINT, 24, 8},
{"f64", "FLOAT_64", "double", "double", FLOATING_POINT, 53, 11},
{"i8", "SIGNED_8", "char", "byte", SIGNED_INTEGER, 7, 0},
{"u8", "UNSIGNED_8", "uchar", "byte", UNSIGNED_INTEGER, 8, 0},
{"i16", "SIGNED_16", "short", "short", SIGNED_INTEGER, 15, 0},
{"u16", "UNSIGNED_16", "ushort", "short", UNSIGNED_INTEGER, 16, 0},
{"i32", "SIGNED_32", "int", "int", SIGNED_INTEGER, 31, 0},
{"u32", "UNSIGNED_32", "uint", "int", UNSIGNED_INTEGER, 32, 0},
{"i64", "SIGNED_64", "long", "long", SIGNED_INTEGER, 63, 0},
{"u64", "UNSIGNED_64", "ulong", "long", UNSIGNED_INTEGER, 64, 0},
};
const int NUM_TYPES = sizeof(TYPES) / sizeof(TYPES[0]);
static const char kTagUnreleased[] = "UNRELEASED";
// Patterns that get substituted with C type or RS Data type names in function
// names, arguments, return types, and inlines.
static const string kCTypePatterns[] = {"#1", "#2", "#3", "#4"};
static const string kRSTypePatterns[] = {"#RST_1", "#RST_2", "#RST_3", "#RST_4"};
// The singleton of the collected information of all the spec files.
SystemSpecification systemSpecification;
// Returns the index in TYPES for the provided cType
static int findCType(const string& cType) {
for (int i = 0; i < NUM_TYPES; i++) {
if (cType == TYPES[i].cType) {
return i;
}
}
return -1;
}
/* Converts a string like "u8, u16" to a vector of "ushort", "uint".
* For non-numerical types, we don't need to convert the abbreviation.
*/
static vector<string> convertToTypeVector(const string& input) {
// First convert the string to an array of strings.
vector<string> entries;
stringstream stream(input);
string entry;
while (getline(stream, entry, ',')) {
trimSpaces(&entry);
entries.push_back(entry);
}
/* Second, we look for present numerical types. We do it this way
* so the order of numerical types is always the same, no matter
* how specified in the spec file.
*/
vector<string> result;
for (auto t : TYPES) {
for (auto i = entries.begin(); i != entries.end(); ++i) {
if (*i == t.specType) {
result.push_back(t.cType);
entries.erase(i);
break;
}
}
}
// Add the remaining; they are not numerical types.
for (auto s : entries) {
result.push_back(s);
}
return result;
}
// Returns true if each entry in typeVector is an RS numerical type
static bool isRSTValid(const vector<string> &typeVector) {
for (auto type: typeVector) {
if (findCType(type) == -1)
return false;
}
return true;
}
void getVectorSizeAndBaseType(const string& type, string& vectorSize, string& baseType) {
vectorSize = "1";
baseType = type;
/* If it's a vector type, we need to split the base type from the size.
* We know that's it's a vector type if the last character is a digit and
* the rest is an actual base type. We used to only verify the first part,
* which created a problem with rs_matrix2x2.
*/
const int last = type.size() - 1;
const char lastChar = type[last];
if (lastChar >= '0' && lastChar <= '9') {
const string trimmed = type.substr(0, last);
int i = findCType(trimmed);
if (i >= 0) {
baseType = trimmed;
vectorSize = lastChar;
}
}
}
void ParameterDefinition::parseParameterDefinition(const string& type, const string& name,
const string& testOption, int lineNumber,
bool isReturn, Scanner* scanner) {
rsType = type;
specName = name;
// Determine if this is an output.
isOutParameter = isReturn || charRemoved('*', &rsType);
getVectorSizeAndBaseType(rsType, mVectorSize, rsBaseType);
typeIndex = findCType(rsBaseType);
if (mVectorSize == "3") {
vectorWidth = "4";
} else {
vectorWidth = mVectorSize;
}
/* Create variable names to be used in the java and .rs files. Because x and
* y are reserved in .rs files, we prefix variable names with "in" or "out".
*/
if (isOutParameter) {
variableName = "out";
if (!specName.empty()) {
variableName += capitalize(specName);
} else if (!isReturn) {
scanner->error(lineNumber) << "Should have a name.\n";
}
} else {
variableName = "in";
if (specName.empty()) {
scanner->error(lineNumber) << "Should have a name.\n";
}
variableName += capitalize(specName);
}
rsAllocName = "gAlloc" + capitalize(variableName);
javaAllocName = variableName;
javaArrayName = "array" + capitalize(javaAllocName);
// Process the option.
undefinedIfOutIsNan = false;
compatibleTypeIndex = -1;
if (!testOption.empty()) {
if (testOption.compare(0, 6, "range(") == 0) {
size_t pComma = testOption.find(',');
size_t pParen = testOption.find(')');
if (pComma == string::npos || pParen == string::npos) {
scanner->error(lineNumber) << "Incorrect range " << testOption << "\n";
} else {
minValue = testOption.substr(6, pComma - 6);
maxValue = testOption.substr(pComma + 1, pParen - pComma - 1);
}
} else if (testOption.compare(0, 6, "above(") == 0) {
size_t pParen = testOption.find(')');
if (pParen == string::npos) {
scanner->error(lineNumber) << "Incorrect testOption " << testOption << "\n";
} else {
smallerParameter = testOption.substr(6, pParen - 6);
}
} else if (testOption.compare(0, 11, "compatible(") == 0) {
size_t pParen = testOption.find(')');
if (pParen == string::npos) {
scanner->error(lineNumber) << "Incorrect testOption " << testOption << "\n";
} else {
compatibleTypeIndex = findCType(testOption.substr(11, pParen - 11));
}
} else if (testOption.compare(0, 11, "conditional") == 0) {
undefinedIfOutIsNan = true;
} else {
scanner->error(lineNumber) << "Unrecognized testOption " << testOption << "\n";
}
}
isFloatType = false;
if (typeIndex >= 0) {
javaBaseType = TYPES[typeIndex].javaType;
specType = TYPES[typeIndex].specType;
isFloatType = TYPES[typeIndex].exponentBits > 0;
}
if (!minValue.empty()) {
if (typeIndex < 0 || TYPES[typeIndex].kind != FLOATING_POINT) {
scanner->error(lineNumber) << "range(,) is only supported for floating point\n";
}
}
}
bool VersionInfo::scan(Scanner* scanner, unsigned int maxApiLevel) {
if (scanner->findOptionalTag("version:")) {
const string s = scanner->getValue();
if (s.compare(0, sizeof(kTagUnreleased), kTagUnreleased) == 0) {
// The API is still under development and does not have
// an official version number.
minVersion = maxVersion = kUnreleasedVersion;
} else {
sscanf(s.c_str(), "%u %u", &minVersion, &maxVersion);
if (minVersion && minVersion < MIN_API_LEVEL) {
scanner->error() << "Minimum version must >= 9\n";
}
if (minVersion == MIN_API_LEVEL) {
minVersion = 0;
}
if (maxVersion && maxVersion < MIN_API_LEVEL) {
scanner->error() << "Maximum version must >= 9\n";
}
}
}
if (scanner->findOptionalTag("size:")) {
sscanf(scanner->getValue().c_str(), "%i", &intSize);
}
if (maxVersion > maxApiLevel) {
maxVersion = maxApiLevel;
}
return minVersion == 0 || minVersion <= maxApiLevel;
}
Definition::Definition(const std::string& name)
: mName(name), mDeprecatedApiLevel(0), mHidden(false), mFinalVersion(-1) {
}
void Definition::updateFinalVersion(const VersionInfo& info) {
/* We set it if:
* - We have never set mFinalVersion before, or
* - The max version is 0, which means we have not expired this API, or
* - We have a max that's later than what we currently have.
*/
if (mFinalVersion < 0 || info.maxVersion == 0 ||
(mFinalVersion > 0 && info.maxVersion > mFinalVersion)) {
mFinalVersion = info.maxVersion;
}
}
void Definition::scanDocumentationTags(Scanner* scanner, bool firstOccurence,
const SpecFile* specFile) {
if (scanner->findOptionalTag("hidden:")) {
scanner->checkNoValue();
mHidden = true;
}
if (scanner->findOptionalTag("deprecated:")) {
string value = scanner->getValue();
size_t pComma = value.find(", ");
if (pComma != string::npos) {
mDeprecatedMessage = value.substr(pComma + 2);
value.erase(pComma);
}
sscanf(value.c_str(), "%i", &mDeprecatedApiLevel);
if (mDeprecatedApiLevel <= 0) {
scanner->error() << "deprecated entries should have a level > 0\n";
}
}
if (firstOccurence) {
if (scanner->findTag("summary:")) {
mSummary = scanner->getValue();
}
if (scanner->findTag("description:")) {
scanner->checkNoValue();
while (scanner->findOptionalTag("")) {
mDescription.push_back(scanner->getValue());
}
}
mUrl = specFile->getDetailedDocumentationUrl() + "#android_rs:" + mName;
} else if (scanner->findOptionalTag("summary:")) {
scanner->error() << "Only the first specification should have a summary.\n";
}
}
Constant::~Constant() {
for (auto i : mSpecifications) {
delete i;
}
}
Type::~Type() {
for (auto i : mSpecifications) {
delete i;
}
}
Function::Function(const string& name) : Definition(name) {
mCapitalizedName = capitalize(mName);
}
Function::~Function() {
for (auto i : mSpecifications) {
delete i;
}
}
bool Function::someParametersAreDocumented() const {
for (auto p : mParameters) {
if (!p->documentation.empty()) {
return true;
}
}
return false;
}
void Function::addParameter(ParameterEntry* entry, Scanner* scanner) {
for (auto i : mParameters) {
if (i->name == entry->name) {
// It's a duplicate.
if (!entry->documentation.empty()) {
scanner->error(entry->lineNumber)
<< "Only the first occurence of an arg should have the "
"documentation.\n";
}
return;
}
}
mParameters.push_back(entry);
}
void Function::addReturn(ParameterEntry* entry, Scanner* scanner) {
if (entry->documentation.empty()) {
return;
}
if (!mReturnDocumentation.empty()) {
scanner->error() << "ret: should be documented only for the first variant\n";
}
mReturnDocumentation = entry->documentation;
}
void ConstantSpecification::scanConstantSpecification(Scanner* scanner, SpecFile* specFile,
unsigned int maxApiLevel) {
string name = scanner->getValue();
VersionInfo info;
if (!info.scan(scanner, maxApiLevel)) {
cout << "Skipping some " << name << " definitions.\n";
scanner->skipUntilTag("end:");
return;
}
bool created = false;
Constant* constant = systemSpecification.findOrCreateConstant(name, &created);
ConstantSpecification* spec = new ConstantSpecification(constant);
constant->addSpecification(spec);
constant->updateFinalVersion(info);
specFile->addConstantSpecification(spec, created);
spec->mVersionInfo = info;
if (scanner->findTag("value:")) {
spec->mValue = scanner->getValue();
}
constant->scanDocumentationTags(scanner, created, specFile);
scanner->findTag("end:");
}
void TypeSpecification::scanTypeSpecification(Scanner* scanner, SpecFile* specFile,
unsigned int maxApiLevel) {
string name = scanner->getValue();
VersionInfo info;
if (!info.scan(scanner, maxApiLevel)) {
cout << "Skipping some " << name << " definitions.\n";
scanner->skipUntilTag("end:");
return;
}
bool created = false;
Type* type = systemSpecification.findOrCreateType(name, &created);
TypeSpecification* spec = new TypeSpecification(type);
type->addSpecification(spec);
type->updateFinalVersion(info);
specFile->addTypeSpecification(spec, created);
spec->mVersionInfo = info;
if (scanner->findOptionalTag("simple:")) {
spec->mKind = SIMPLE;
spec->mSimpleType = scanner->getValue();
}
if (scanner->findOptionalTag("rs_object:")) {
spec->mKind = RS_OBJECT;
}
if (scanner->findOptionalTag("struct:")) {
spec->mKind = STRUCT;
spec->mStructName = scanner->getValue();
while (scanner->findOptionalTag("field:")) {
string s = scanner->getValue();
string comment;
scanner->parseDocumentation(&s, &comment);
spec->mFields.push_back(s);
spec->mFieldComments.push_back(comment);
}
}
if (scanner->findOptionalTag("enum:")) {
spec->mKind = ENUM;
spec->mEnumName = scanner->getValue();
while (scanner->findOptionalTag("value:")) {
string s = scanner->getValue();
string comment;
scanner->parseDocumentation(&s, &comment);
spec->mValues.push_back(s);
spec->mValueComments.push_back(comment);
}
}
if (scanner->findOptionalTag("attrib:")) {
spec->mAttribute = scanner->getValue();
}
type->scanDocumentationTags(scanner, created, specFile);
scanner->findTag("end:");
}
FunctionSpecification::~FunctionSpecification() {
for (auto i : mParameters) {
delete i;
}
delete mReturn;
for (auto i : mPermutations) {
delete i;
}
}
string FunctionSpecification::expandRSTypeInString(const string &s,
const string &pattern,
const string &cTypeStr) const {
// Find index of numerical type corresponding to cTypeStr. The case where
// pattern is found in s but cTypeStr is not a numerical type is checked in
// checkRSTPatternValidity.
int typeIdx = findCType(cTypeStr);
if (typeIdx == -1) {
return s;
}
// If index exists, perform replacement.
return stringReplace(s, pattern, TYPES[typeIdx].rsDataType);
}
string FunctionSpecification::expandString(string s,
int replacementIndexes[MAX_REPLACEABLES]) const {
for (unsigned idx = 0; idx < mReplaceables.size(); idx ++) {
string toString = mReplaceables[idx][replacementIndexes[idx]];
// replace #RST_i patterns with RS datatype corresponding to toString
s = expandRSTypeInString(s, kRSTypePatterns[idx], toString);
// replace #i patterns with C type from mReplaceables
s = stringReplace(s, kCTypePatterns[idx], toString);
}
return s;
}
void FunctionSpecification::expandStringVector(const vector<string>& in,
int replacementIndexes[MAX_REPLACEABLES],
vector<string>* out) const {
out->clear();
for (vector<string>::const_iterator iter = in.begin(); iter != in.end(); iter++) {
out->push_back(expandString(*iter, replacementIndexes));
}
}
void FunctionSpecification::createPermutations(Function* function, Scanner* scanner) {
int start[MAX_REPLACEABLES];
int end[MAX_REPLACEABLES];
for (int i = 0; i < MAX_REPLACEABLES; i++) {
if (i < (int)mReplaceables.size()) {
start[i] = 0;
end[i] = mReplaceables[i].size();
} else {
start[i] = -1;
end[i] = 0;
}
}
int replacementIndexes[MAX_REPLACEABLES];
// TODO: These loops assume that MAX_REPLACEABLES is 4.
for (replacementIndexes[3] = start[3]; replacementIndexes[3] < end[3];
replacementIndexes[3]++) {
for (replacementIndexes[2] = start[2]; replacementIndexes[2] < end[2];
replacementIndexes[2]++) {
for (replacementIndexes[1] = start[1]; replacementIndexes[1] < end[1];
replacementIndexes[1]++) {
for (replacementIndexes[0] = start[0]; replacementIndexes[0] < end[0];
replacementIndexes[0]++) {
auto p = new FunctionPermutation(function, this, replacementIndexes, scanner);
mPermutations.push_back(p);
}
}
}
}
}
string FunctionSpecification::getName(int replacementIndexes[MAX_REPLACEABLES]) const {
return expandString(mUnexpandedName, replacementIndexes);
}
void FunctionSpecification::getReturn(int replacementIndexes[MAX_REPLACEABLES],
std::string* retType, int* lineNumber) const {
*retType = expandString(mReturn->type, replacementIndexes);
*lineNumber = mReturn->lineNumber;
}
void FunctionSpecification::getParam(size_t index, int replacementIndexes[MAX_REPLACEABLES],
std::string* type, std::string* name, std::string* testOption,
int* lineNumber) const {
ParameterEntry* p = mParameters[index];
*type = expandString(p->type, replacementIndexes);
*name = p->name;
*testOption = expandString(p->testOption, replacementIndexes);
*lineNumber = p->lineNumber;
}
void FunctionSpecification::getInlines(int replacementIndexes[MAX_REPLACEABLES],
std::vector<std::string>* inlines) const {
expandStringVector(mInline, replacementIndexes, inlines);
}
void FunctionSpecification::parseTest(Scanner* scanner) {
const string value = scanner->getValue();
if (value == "scalar" || value == "vector" || value == "noverify" || value == "custom" ||
value == "none") {
mTest = value;
} else if (value.compare(0, 7, "limited") == 0) {
mTest = "limited";
if (value.compare(7, 1, "(") == 0) {
size_t pParen = value.find(')');
if (pParen == string::npos) {
scanner->error() << "Incorrect test: \"" << value << "\"\n";
} else {
mPrecisionLimit = value.substr(8, pParen - 8);
}
}
} else {
scanner->error() << "Unrecognized test option: \"" << value << "\"\n";
}
}
bool FunctionSpecification::hasTests(unsigned int versionOfTestFiles) const {
if (mVersionInfo.maxVersion != 0 && mVersionInfo.maxVersion < versionOfTestFiles) {
return false;
}
if (mTest == "none") {
return false;
}
return true;
}
void FunctionSpecification::checkRSTPatternValidity(const string &inlineStr, bool allow,
Scanner *scanner) {
for (int i = 0; i < MAX_REPLACEABLES; i ++) {
bool patternFound = inlineStr.find(kRSTypePatterns[i]) != string::npos;
if (patternFound) {
if (!allow) {
scanner->error() << "RST_i pattern not allowed here\n";
}
else if (mIsRSTAllowed[i] == false) {
scanner->error() << "Found pattern \"" << kRSTypePatterns[i]
<< "\" in spec. But some entry in the corresponding"
<< " parameter list cannot be translated to an RS type\n";
}
}
}
}
void FunctionSpecification::scanFunctionSpecification(Scanner* scanner, SpecFile* specFile,
unsigned int maxApiLevel) {
// Some functions like convert have # part of the name. Truncate at that point.
const string& unexpandedName = scanner->getValue();
string name = unexpandedName;
size_t p = name.find('#');
if (p != string::npos) {
if (p > 0 && name[p - 1] == '_') {
p--;
}
name.erase(p);
}
VersionInfo info;
if (!info.scan(scanner, maxApiLevel)) {
cout << "Skipping some " << name << " definitions.\n";
scanner->skipUntilTag("end:");
return;
}
bool created = false;
Function* function = systemSpecification.findOrCreateFunction(name, &created);
FunctionSpecification* spec = new FunctionSpecification(function);
function->addSpecification(spec);
function->updateFinalVersion(info);
specFile->addFunctionSpecification(spec, created);
spec->mUnexpandedName = unexpandedName;
spec->mTest = "scalar"; // default
spec->mVersionInfo = info;
if (scanner->findOptionalTag("internal:")) {
spec->mInternal = (scanner->getValue() == "true");
}
if (scanner->findOptionalTag("intrinsic:")) {
spec->mIntrinsic = (scanner->getValue() == "true");
}
if (scanner->findOptionalTag("attrib:")) {
spec->mAttribute = scanner->getValue();
}
if (scanner->findOptionalTag("w:")) {
vector<string> t;
if (scanner->getValue().find("1") != string::npos) {
t.push_back("");
}
if (scanner->getValue().find("2") != string::npos) {
t.push_back("2");
}
if (scanner->getValue().find("3") != string::npos) {
t.push_back("3");
}
if (scanner->getValue().find("4") != string::npos) {
t.push_back("4");
}
spec->mReplaceables.push_back(t);
// RST_i pattern not applicable for width.
spec->mIsRSTAllowed.push_back(false);
}
while (scanner->findOptionalTag("t:")) {
spec->mReplaceables.push_back(convertToTypeVector(scanner->getValue()));
spec->mIsRSTAllowed.push_back(isRSTValid(spec->mReplaceables.back()));
}
// Disallow RST_* pattern in function name
// FIXME the line number for this error would be wrong
spec->checkRSTPatternValidity(unexpandedName, false, scanner);
if (scanner->findTag("ret:")) {
ParameterEntry* p = scanner->parseArgString(true);
function->addReturn(p, scanner);
spec->mReturn = p;
// Disallow RST_* pattern in return type
spec->checkRSTPatternValidity(p->type, false, scanner);
}
while (scanner->findOptionalTag("arg:")) {
ParameterEntry* p = scanner->parseArgString(false);
function->addParameter(p, scanner);
spec->mParameters.push_back(p);
// Disallow RST_* pattern in parameter type or testOption
spec->checkRSTPatternValidity(p->type, false, scanner);
spec->checkRSTPatternValidity(p->testOption, false, scanner);
}
function->scanDocumentationTags(scanner, created, specFile);
if (scanner->findOptionalTag("inline:")) {
scanner->checkNoValue();
while (scanner->findOptionalTag("")) {
spec->mInline.push_back(scanner->getValue());
// Allow RST_* pattern in inline definitions
spec->checkRSTPatternValidity(spec->mInline.back(), true, scanner);
}
}
if (scanner->findOptionalTag("test:")) {
spec->parseTest(scanner);
}
scanner->findTag("end:");
spec->createPermutations(function, scanner);
}
FunctionPermutation::FunctionPermutation(Function* func, FunctionSpecification* spec,
int replacementIndexes[MAX_REPLACEABLES], Scanner* scanner)
: mReturn(nullptr), mInputCount(0), mOutputCount(0) {
// We expand the strings now to make capitalization easier. The previous code preserved
// the #n
// markers just before emitting, which made capitalization difficult.
mName = spec->getName(replacementIndexes);
mNameTrunk = func->getName();
mTest = spec->getTest();
mPrecisionLimit = spec->getPrecisionLimit();
spec->getInlines(replacementIndexes, &mInline);
mHasFloatAnswers = false;
for (size_t i = 0; i < spec->getNumberOfParams(); i++) {
string type, name, testOption;
int lineNumber = 0;
spec->getParam(i, replacementIndexes, &type, &name, &testOption, &lineNumber);
ParameterDefinition* def = new ParameterDefinition();
def->parseParameterDefinition(type, name, testOption, lineNumber, false, scanner);
if (def->isOutParameter) {
mOutputCount++;
} else {
mInputCount++;
}
if (def->typeIndex < 0 && mTest != "none") {
scanner->error(lineNumber)
<< "Could not find " << def->rsBaseType
<< " while generating automated tests. Use test: none if not needed.\n";
}
if (def->isOutParameter && def->isFloatType) {
mHasFloatAnswers = true;
}
mParams.push_back(def);
}
string retType;
int lineNumber = 0;
spec->getReturn(replacementIndexes, &retType, &lineNumber);
if (!retType.empty()) {
mReturn = new ParameterDefinition();
mReturn->parseParameterDefinition(retType, "", "", lineNumber, true, scanner);
if (mReturn->isFloatType) {
mHasFloatAnswers = true;
}
mOutputCount++;
}
}
FunctionPermutation::~FunctionPermutation() {
for (auto i : mParams) {
delete i;
}
delete mReturn;
}
SpecFile::SpecFile(const string& specFileName) : mSpecFileName(specFileName) {
string core = mSpecFileName;
// Remove .spec
size_t l = core.length();
const char SPEC[] = ".spec";
const int SPEC_SIZE = sizeof(SPEC) - 1;
const int start = l - SPEC_SIZE;
if (start >= 0 && core.compare(start, SPEC_SIZE, SPEC) == 0) {
core.erase(start);
}
// The header file name should have the same base but with a ".rsh" extension.
mHeaderFileName = core + ".rsh";
mDetailedDocumentationUrl = core + ".html";
}
void SpecFile::addConstantSpecification(ConstantSpecification* spec, bool hasDocumentation) {
mConstantSpecificationsList.push_back(spec);
if (hasDocumentation) {
Constant* constant = spec->getConstant();
mDocumentedConstants.insert(pair<string, Constant*>(constant->getName(), constant));
}
}
void SpecFile::addTypeSpecification(TypeSpecification* spec, bool hasDocumentation) {
mTypeSpecificationsList.push_back(spec);
if (hasDocumentation) {
Type* type = spec->getType();
mDocumentedTypes.insert(pair<string, Type*>(type->getName(), type));
}
}
void SpecFile::addFunctionSpecification(FunctionSpecification* spec, bool hasDocumentation) {
mFunctionSpecificationsList.push_back(spec);
if (hasDocumentation) {
Function* function = spec->getFunction();
mDocumentedFunctions.insert(pair<string, Function*>(function->getName(), function));
}
}
// Read the specification, adding the definitions to the global functions map.
bool SpecFile::readSpecFile(unsigned int maxApiLevel) {
FILE* specFile = fopen(mSpecFileName.c_str(), "rt");
if (!specFile) {
cerr << "Error opening input file: " << mSpecFileName << "\n";
return false;
}
Scanner scanner(mSpecFileName, specFile);
// Scan the header that should start the file.
scanner.skipBlankEntries();
if (scanner.findTag("header:")) {
if (scanner.findTag("summary:")) {
mBriefDescription = scanner.getValue();
}
if (scanner.findTag("description:")) {
scanner.checkNoValue();
while (scanner.findOptionalTag("")) {
mFullDescription.push_back(scanner.getValue());
}
}
if (scanner.findOptionalTag("include:")) {
scanner.checkNoValue();
while (scanner.findOptionalTag("")) {
mVerbatimInclude.push_back(scanner.getValue());
}
}
scanner.findTag("end:");
}
while (1) {
scanner.skipBlankEntries();
if (scanner.atEnd()) {
break;
}
const string tag = scanner.getNextTag();
if (tag == "function:") {
FunctionSpecification::scanFunctionSpecification(&scanner, this, maxApiLevel);
} else if (tag == "type:") {
TypeSpecification::scanTypeSpecification(&scanner, this, maxApiLevel);
} else if (tag == "constant:") {
ConstantSpecification::scanConstantSpecification(&scanner, this, maxApiLevel);
} else {
scanner.error() << "Expected function:, type:, or constant:. Found: " << tag << "\n";
return false;
}
}
fclose(specFile);
return scanner.getErrorCount() == 0;
}
SystemSpecification::~SystemSpecification() {
for (auto i : mConstants) {
delete i.second;
}
for (auto i : mTypes) {
delete i.second;
}
for (auto i : mFunctions) {
delete i.second;
}
for (auto i : mSpecFiles) {
delete i;
}
}
// Returns the named entry in the map. Creates it if it's not there.
template <class T>
T* findOrCreate(const string& name, map<string, T*>* map, bool* created) {
auto iter = map->find(name);
if (iter != map->end()) {
*created = false;
return iter->second;
}
*created = true;
T* f = new T(name);
map->insert(pair<string, T*>(name, f));
return f;
}
Constant* SystemSpecification::findOrCreateConstant(const string& name, bool* created) {
return findOrCreate<Constant>(name, &mConstants, created);
}
Type* SystemSpecification::findOrCreateType(const string& name, bool* created) {
return findOrCreate<Type>(name, &mTypes, created);
}
Function* SystemSpecification::findOrCreateFunction(const string& name, bool* created) {
return findOrCreate<Function>(name, &mFunctions, created);
}
bool SystemSpecification::readSpecFile(const string& fileName, unsigned int maxApiLevel) {
SpecFile* spec = new SpecFile(fileName);
if (!spec->readSpecFile(maxApiLevel)) {
cerr << fileName << ": Failed to parse.\n";
return false;
}
mSpecFiles.push_back(spec);
return true;
}
static void updateMaxApiLevel(const VersionInfo& info, unsigned int* maxApiLevel) {
if (info.minVersion == VersionInfo::kUnreleasedVersion) {
// Ignore development API level in consideration of max API level.
return;
}
*maxApiLevel = max(*maxApiLevel, max(info.minVersion, info.maxVersion));
}
unsigned int SystemSpecification::getMaximumApiLevel() {
unsigned int maxApiLevel = 0;
for (auto i : mConstants) {
for (auto j: i.second->getSpecifications()) {
updateMaxApiLevel(j->getVersionInfo(), &maxApiLevel);
}
}
for (auto i : mTypes) {
for (auto j: i.second->getSpecifications()) {
updateMaxApiLevel(j->getVersionInfo(), &maxApiLevel);
}
}
for (auto i : mFunctions) {
for (auto j: i.second->getSpecifications()) {
updateMaxApiLevel(j->getVersionInfo(), &maxApiLevel);
}
}
return maxApiLevel;
}
bool SystemSpecification::generateFiles(bool forVerification, unsigned int maxApiLevel) const {
bool success = generateHeaderFiles("scriptc") &&
generateDocumentation("docs", forVerification) &&
generateTestFiles("test", maxApiLevel) &&
generateStubsWhiteList("slangtest", maxApiLevel);
if (success) {
cout << "Successfully processed " << mTypes.size() << " types, " << mConstants.size()
<< " constants, and " << mFunctions.size() << " functions.\n";
}
return success;
}
string SystemSpecification::getHtmlAnchor(const string& name) const {
Definition* d = nullptr;
auto c = mConstants.find(name);
if (c != mConstants.end()) {
d = c->second;
} else {
auto t = mTypes.find(name);
if (t != mTypes.end()) {
d = t->second;
} else {
auto f = mFunctions.find(name);
if (f != mFunctions.end()) {
d = f->second;
} else {
return string();
}
}
}
ostringstream stream;
stream << "<a href='" << d->getUrl() << "'>" << name << "</a>";
return stream.str();
}