blob: 35430207f9bed5663ec3e9b34b77344516acfa9c [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "TestHelpers.h"
#include <attestation/HmacKeyManager.h>
#include <gtest/gtest.h>
#include <gui/constants.h>
#include <input/InputTransport.h>
using android::base::Result;
namespace android {
namespace {
static constexpr float EPSILON = MotionEvent::ROUNDING_PRECISION;
static constexpr int32_t POINTER_1_DOWN =
AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
static constexpr int32_t POINTER_2_DOWN =
AMOTION_EVENT_ACTION_POINTER_DOWN | (2 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
struct Pointer {
int32_t id;
float x;
float y;
bool isResampled = false;
};
// A collection of arguments to be sent as publishMotionEvent(). The saved members of this struct
// allow to check the expectations against the event acquired from the InputReceiver. To help
// simplify expectation checking it carries members not present in MotionEvent, like |rawXScale|.
struct PublishMotionArgs {
const int32_t action;
const nsecs_t downTime;
const uint32_t seq;
const int32_t eventId;
const int32_t deviceId = 1;
const uint32_t source = AINPUT_SOURCE_TOUCHSCREEN;
const int32_t displayId = ADISPLAY_ID_DEFAULT;
const int32_t actionButton = 0;
const int32_t edgeFlags = AMOTION_EVENT_EDGE_FLAG_TOP;
const int32_t metaState = AMETA_ALT_LEFT_ON | AMETA_ALT_ON;
const int32_t buttonState = AMOTION_EVENT_BUTTON_PRIMARY;
const MotionClassification classification = MotionClassification::AMBIGUOUS_GESTURE;
const float xScale = 2;
const float yScale = 3;
const float xOffset = -10;
const float yOffset = -20;
const float rawXScale = 4;
const float rawYScale = -5;
const float rawXOffset = -11;
const float rawYOffset = 42;
const float xPrecision = 0.25;
const float yPrecision = 0.5;
const float xCursorPosition = 1.3;
const float yCursorPosition = 50.6;
std::array<uint8_t, 32> hmac;
int32_t flags;
ui::Transform transform;
ui::Transform rawTransform;
const nsecs_t eventTime;
size_t pointerCount;
std::vector<PointerProperties> pointerProperties;
std::vector<PointerCoords> pointerCoords;
PublishMotionArgs(int32_t action, nsecs_t downTime, const std::vector<Pointer>& pointers,
const uint32_t seq);
};
PublishMotionArgs::PublishMotionArgs(int32_t inAction, nsecs_t inDownTime,
const std::vector<Pointer>& pointers, const uint32_t inSeq)
: action(inAction),
downTime(inDownTime),
seq(inSeq),
eventId(InputEvent::nextId()),
eventTime(systemTime(SYSTEM_TIME_MONOTONIC)) {
hmac = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31};
flags = AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED;
if (action == AMOTION_EVENT_ACTION_CANCEL) {
flags |= AMOTION_EVENT_FLAG_CANCELED;
}
pointerCount = pointers.size();
for (size_t i = 0; i < pointerCount; i++) {
pointerProperties.push_back({});
pointerProperties[i].clear();
pointerProperties[i].id = pointers[i].id;
pointerProperties[i].toolType = ToolType::FINGER;
pointerCoords.push_back({});
pointerCoords[i].clear();
pointerCoords[i].isResampled = pointers[i].isResampled;
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_X, pointers[i].x);
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_Y, pointers[i].y);
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 0.5 * i);
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 0.7 * i);
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 1.5 * i);
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 1.7 * i);
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 2.5 * i);
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 2.7 * i);
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 3.5 * i);
}
transform.set({xScale, 0, xOffset, 0, yScale, yOffset, 0, 0, 1});
rawTransform.set({rawXScale, 0, rawXOffset, 0, rawYScale, rawYOffset, 0, 0, 1});
}
// Checks expectations against |motionEvent| acquired from an InputConsumer. Floating point
// comparisons limit precision to EPSILON.
void verifyArgsEqualToEvent(const PublishMotionArgs& args, const MotionEvent& motionEvent) {
EXPECT_EQ(args.eventId, motionEvent.getId());
EXPECT_EQ(args.deviceId, motionEvent.getDeviceId());
EXPECT_EQ(args.source, motionEvent.getSource());
EXPECT_EQ(args.displayId, motionEvent.getDisplayId());
EXPECT_EQ(args.hmac, motionEvent.getHmac());
EXPECT_EQ(args.action, motionEvent.getAction());
EXPECT_EQ(args.downTime, motionEvent.getDownTime());
EXPECT_EQ(args.flags, motionEvent.getFlags());
EXPECT_EQ(args.edgeFlags, motionEvent.getEdgeFlags());
EXPECT_EQ(args.metaState, motionEvent.getMetaState());
EXPECT_EQ(args.buttonState, motionEvent.getButtonState());
EXPECT_EQ(args.classification, motionEvent.getClassification());
EXPECT_EQ(args.transform, motionEvent.getTransform());
EXPECT_EQ(args.xOffset, motionEvent.getXOffset());
EXPECT_EQ(args.yOffset, motionEvent.getYOffset());
EXPECT_EQ(args.xPrecision, motionEvent.getXPrecision());
EXPECT_EQ(args.yPrecision, motionEvent.getYPrecision());
EXPECT_NEAR(args.xCursorPosition, motionEvent.getRawXCursorPosition(), EPSILON);
EXPECT_NEAR(args.yCursorPosition, motionEvent.getRawYCursorPosition(), EPSILON);
EXPECT_NEAR(args.xCursorPosition * args.xScale + args.xOffset, motionEvent.getXCursorPosition(),
EPSILON);
EXPECT_NEAR(args.yCursorPosition * args.yScale + args.yOffset, motionEvent.getYCursorPosition(),
EPSILON);
EXPECT_EQ(args.rawTransform, motionEvent.getRawTransform());
EXPECT_EQ(args.eventTime, motionEvent.getEventTime());
EXPECT_EQ(args.pointerCount, motionEvent.getPointerCount());
EXPECT_EQ(0U, motionEvent.getHistorySize());
for (size_t i = 0; i < args.pointerCount; i++) {
SCOPED_TRACE(i);
EXPECT_EQ(args.pointerProperties[i].id, motionEvent.getPointerId(i));
EXPECT_EQ(args.pointerProperties[i].toolType, motionEvent.getToolType(i));
const auto& pc = args.pointerCoords[i];
EXPECT_EQ(pc, motionEvent.getSamplePointerCoords()[i]);
EXPECT_NEAR(pc.getX() * args.rawXScale + args.rawXOffset, motionEvent.getRawX(i), EPSILON);
EXPECT_NEAR(pc.getY() * args.rawYScale + args.rawYOffset, motionEvent.getRawY(i), EPSILON);
EXPECT_NEAR(pc.getX() * args.xScale + args.xOffset, motionEvent.getX(i), EPSILON);
EXPECT_NEAR(pc.getY() * args.yScale + args.yOffset, motionEvent.getY(i), EPSILON);
EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE), motionEvent.getPressure(i));
EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_SIZE), motionEvent.getSize(i));
EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR), motionEvent.getTouchMajor(i));
EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR), motionEvent.getTouchMinor(i));
EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR), motionEvent.getToolMajor(i));
EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR), motionEvent.getToolMinor(i));
// Calculate the orientation after scaling, keeping in mind that an orientation of 0 is
// "up", and the positive y direction is "down".
const float unscaledOrientation = pc.getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION);
const float x = sinf(unscaledOrientation) * args.xScale;
const float y = -cosf(unscaledOrientation) * args.yScale;
EXPECT_EQ(atan2f(x, -y), motionEvent.getOrientation(i));
}
}
void publishMotionEvent(InputPublisher& publisher, const PublishMotionArgs& a) {
status_t status =
publisher.publishMotionEvent(a.seq, a.eventId, a.deviceId, a.source, a.displayId,
a.hmac, a.action, a.actionButton, a.flags, a.edgeFlags,
a.metaState, a.buttonState, a.classification, a.transform,
a.xPrecision, a.yPrecision, a.xCursorPosition,
a.yCursorPosition, a.rawTransform, a.downTime, a.eventTime,
a.pointerCount, a.pointerProperties.data(),
a.pointerCoords.data());
ASSERT_EQ(OK, status) << "publisher publishMotionEvent should return OK";
}
void sendAndVerifyFinishedSignal(InputConsumer& consumer, InputPublisher& publisher, uint32_t seq,
nsecs_t publishTime) {
status_t status = consumer.sendFinishedSignal(seq, false);
ASSERT_EQ(OK, status) << "consumer sendFinishedSignal should return OK";
Result<InputPublisher::ConsumerResponse> result = publisher.receiveConsumerResponse();
ASSERT_TRUE(result.ok()) << "receiveConsumerResponse should return OK";
ASSERT_TRUE(std::holds_alternative<InputPublisher::Finished>(*result));
const InputPublisher::Finished& finish = std::get<InputPublisher::Finished>(*result);
ASSERT_EQ(seq, finish.seq)
<< "receiveConsumerResponse should have returned the original sequence number";
ASSERT_FALSE(finish.handled)
<< "receiveConsumerResponse should have set handled to consumer's reply";
ASSERT_GE(finish.consumeTime, publishTime)
<< "finished signal's consume time should be greater than publish time";
}
void waitUntilInputAvailable(const InputConsumer& inputConsumer) {
bool hasInput;
do {
// The probablyHasInput() can return false positive under rare circumstances uncontrollable
// by the tests. Re-request the availability in this case. Returning |false| for a long
// time is not intended, and would cause a test timeout.
hasInput = inputConsumer.probablyHasInput();
} while (!hasInput);
}
} // namespace
class InputPublisherAndConsumerTest : public testing::Test {
protected:
std::unique_ptr<InputPublisher> mPublisher;
std::unique_ptr<InputConsumer> mConsumer;
PreallocatedInputEventFactory mEventFactory;
void SetUp() override {
std::unique_ptr<InputChannel> serverChannel, clientChannel;
status_t result = InputChannel::openInputChannelPair("channel name",
serverChannel, clientChannel);
ASSERT_EQ(OK, result);
mPublisher = std::make_unique<InputPublisher>(std::move(serverChannel));
mConsumer = std::make_unique<InputConsumer>(std::move(clientChannel));
}
void publishAndConsumeKeyEvent();
void publishAndConsumeMotionStream();
void publishAndConsumeMotionDown(nsecs_t downTime);
void publishAndConsumeBatchedMotionMove(nsecs_t downTime);
void publishAndConsumeFocusEvent();
void publishAndConsumeCaptureEvent();
void publishAndConsumeDragEvent();
void publishAndConsumeTouchModeEvent();
void publishAndConsumeMotionEvent(int32_t action, nsecs_t downTime,
const std::vector<Pointer>& pointers);
private:
// The sequence number to use when publishing the next event
uint32_t mSeq = 1;
};
TEST_F(InputPublisherAndConsumerTest, GetChannel_ReturnsTheChannel) {
ASSERT_EQ(mPublisher->getChannel().getConnectionToken(),
mConsumer->getChannel()->getConnectionToken());
}
void InputPublisherAndConsumerTest::publishAndConsumeKeyEvent() {
status_t status;
const uint32_t seq = mSeq++;
int32_t eventId = InputEvent::nextId();
constexpr int32_t deviceId = 1;
constexpr uint32_t source = AINPUT_SOURCE_KEYBOARD;
constexpr int32_t displayId = ADISPLAY_ID_DEFAULT;
constexpr std::array<uint8_t, 32> hmac = {31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21,
20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10,
9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
constexpr int32_t action = AKEY_EVENT_ACTION_DOWN;
constexpr int32_t flags = AKEY_EVENT_FLAG_FROM_SYSTEM;
constexpr int32_t keyCode = AKEYCODE_ENTER;
constexpr int32_t scanCode = 13;
constexpr int32_t metaState = AMETA_ALT_LEFT_ON | AMETA_ALT_ON;
constexpr int32_t repeatCount = 1;
constexpr nsecs_t downTime = 3;
constexpr nsecs_t eventTime = 4;
const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC);
status = mPublisher->publishKeyEvent(seq, eventId, deviceId, source, displayId, hmac, action,
flags, keyCode, scanCode, metaState, repeatCount, downTime,
eventTime);
ASSERT_EQ(OK, status)
<< "publisher publishKeyEvent should return OK";
waitUntilInputAvailable(*mConsumer);
uint32_t consumeSeq;
InputEvent* event;
status = mConsumer->consume(&mEventFactory, /*consumeBatches=*/true, -1, &consumeSeq, &event);
ASSERT_EQ(OK, status)
<< "consumer consume should return OK";
EXPECT_FALSE(mConsumer->probablyHasInput())
<< "no events should be waiting after being consumed";
ASSERT_TRUE(event != nullptr)
<< "consumer should have returned non-NULL event";
ASSERT_EQ(InputEventType::KEY, event->getType()) << "consumer should have returned a key event";
KeyEvent* keyEvent = static_cast<KeyEvent*>(event);
EXPECT_EQ(seq, consumeSeq);
EXPECT_EQ(eventId, keyEvent->getId());
EXPECT_EQ(deviceId, keyEvent->getDeviceId());
EXPECT_EQ(source, keyEvent->getSource());
EXPECT_EQ(displayId, keyEvent->getDisplayId());
EXPECT_EQ(hmac, keyEvent->getHmac());
EXPECT_EQ(action, keyEvent->getAction());
EXPECT_EQ(flags, keyEvent->getFlags());
EXPECT_EQ(keyCode, keyEvent->getKeyCode());
EXPECT_EQ(scanCode, keyEvent->getScanCode());
EXPECT_EQ(metaState, keyEvent->getMetaState());
EXPECT_EQ(repeatCount, keyEvent->getRepeatCount());
EXPECT_EQ(downTime, keyEvent->getDownTime());
EXPECT_EQ(eventTime, keyEvent->getEventTime());
status = mConsumer->sendFinishedSignal(seq, true);
ASSERT_EQ(OK, status)
<< "consumer sendFinishedSignal should return OK";
Result<InputPublisher::ConsumerResponse> result = mPublisher->receiveConsumerResponse();
ASSERT_TRUE(result.ok()) << "receiveConsumerResponse should return OK";
ASSERT_TRUE(std::holds_alternative<InputPublisher::Finished>(*result));
const InputPublisher::Finished& finish = std::get<InputPublisher::Finished>(*result);
ASSERT_EQ(seq, finish.seq)
<< "receiveConsumerResponse should have returned the original sequence number";
ASSERT_TRUE(finish.handled)
<< "receiveConsumerResponse should have set handled to consumer's reply";
ASSERT_GE(finish.consumeTime, publishTime)
<< "finished signal's consume time should be greater than publish time";
}
void InputPublisherAndConsumerTest::publishAndConsumeMotionStream() {
const nsecs_t downTime = systemTime(SYSTEM_TIME_MONOTONIC);
publishAndConsumeMotionEvent(AMOTION_EVENT_ACTION_DOWN, downTime,
{Pointer{.id = 0, .x = 20, .y = 30}});
publishAndConsumeMotionEvent(POINTER_1_DOWN, downTime,
{Pointer{.id = 0, .x = 20, .y = 30},
Pointer{.id = 1, .x = 200, .y = 300}});
publishAndConsumeMotionEvent(POINTER_2_DOWN, downTime,
{Pointer{.id = 0, .x = 20, .y = 30},
Pointer{.id = 1, .x = 200, .y = 300},
Pointer{.id = 2, .x = 300, .y = 400}});
// Provide a consistent input stream - cancel the gesture that was started above
publishAndConsumeMotionEvent(AMOTION_EVENT_ACTION_CANCEL, downTime,
{Pointer{.id = 0, .x = 20, .y = 30},
Pointer{.id = 1, .x = 200, .y = 300},
Pointer{.id = 2, .x = 300, .y = 400}});
}
void InputPublisherAndConsumerTest::publishAndConsumeMotionDown(nsecs_t downTime) {
publishAndConsumeMotionEvent(AMOTION_EVENT_ACTION_DOWN, downTime,
{Pointer{.id = 0, .x = 20, .y = 30}});
}
void InputPublisherAndConsumerTest::publishAndConsumeBatchedMotionMove(nsecs_t downTime) {
uint32_t seq = mSeq++;
const std::vector<Pointer> pointers = {Pointer{.id = 0, .x = 20, .y = 30}};
PublishMotionArgs args(AMOTION_EVENT_ACTION_MOVE, downTime, pointers, seq);
const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC);
publishMotionEvent(*mPublisher, args);
// Consume leaving a batch behind.
uint32_t consumeSeq;
InputEvent* event;
status_t status = mConsumer->consume(&mEventFactory,
/*consumeBatches=*/false, -1, &consumeSeq, &event);
ASSERT_EQ(WOULD_BLOCK, status)
<< "consumer consume should return WOULD_BLOCK when a new batch is started";
ASSERT_TRUE(mConsumer->hasPendingBatch()) << "consume should have created a batch";
EXPECT_TRUE(mConsumer->probablyHasInput())
<< "should deterministically have input because there is a batch";
sendAndVerifyFinishedSignal(*mConsumer, *mPublisher, seq, publishTime);
}
void InputPublisherAndConsumerTest::publishAndConsumeMotionEvent(
int32_t action, nsecs_t downTime, const std::vector<Pointer>& pointers) {
uint32_t seq = mSeq++;
PublishMotionArgs args(action, downTime, pointers, seq);
nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC);
publishMotionEvent(*mPublisher, args);
uint32_t consumeSeq;
InputEvent* event;
status_t status =
mConsumer->consume(&mEventFactory, /*consumeBatches=*/true, -1, &consumeSeq, &event);
ASSERT_EQ(OK, status) << "consumer consume should return OK";
ASSERT_TRUE(event != nullptr)
<< "consumer should have returned non-NULL event";
ASSERT_EQ(InputEventType::MOTION, event->getType())
<< "consumer should have returned a motion event";
EXPECT_EQ(seq, consumeSeq);
verifyArgsEqualToEvent(args, static_cast<const MotionEvent&>(*event));
sendAndVerifyFinishedSignal(*mConsumer, *mPublisher, seq, publishTime);
}
void InputPublisherAndConsumerTest::publishAndConsumeFocusEvent() {
status_t status;
constexpr uint32_t seq = 15;
int32_t eventId = InputEvent::nextId();
constexpr bool hasFocus = true;
const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC);
status = mPublisher->publishFocusEvent(seq, eventId, hasFocus);
ASSERT_EQ(OK, status) << "publisher publishFocusEvent should return OK";
uint32_t consumeSeq;
InputEvent* event;
status = mConsumer->consume(&mEventFactory, /*consumeBatches=*/true, -1, &consumeSeq, &event);
ASSERT_EQ(OK, status) << "consumer consume should return OK";
ASSERT_TRUE(event != nullptr) << "consumer should have returned non-NULL event";
ASSERT_EQ(InputEventType::FOCUS, event->getType())
<< "consumer should have returned a focus event";
FocusEvent* focusEvent = static_cast<FocusEvent*>(event);
EXPECT_EQ(seq, consumeSeq);
EXPECT_EQ(eventId, focusEvent->getId());
EXPECT_EQ(hasFocus, focusEvent->getHasFocus());
status = mConsumer->sendFinishedSignal(seq, true);
ASSERT_EQ(OK, status) << "consumer sendFinishedSignal should return OK";
Result<InputPublisher::ConsumerResponse> result = mPublisher->receiveConsumerResponse();
ASSERT_TRUE(result.ok()) << "receiveConsumerResponse should return OK";
ASSERT_TRUE(std::holds_alternative<InputPublisher::Finished>(*result));
const InputPublisher::Finished& finish = std::get<InputPublisher::Finished>(*result);
ASSERT_EQ(seq, finish.seq)
<< "receiveConsumerResponse should have returned the original sequence number";
ASSERT_TRUE(finish.handled)
<< "receiveConsumerResponse should have set handled to consumer's reply";
ASSERT_GE(finish.consumeTime, publishTime)
<< "finished signal's consume time should be greater than publish time";
}
void InputPublisherAndConsumerTest::publishAndConsumeCaptureEvent() {
status_t status;
constexpr uint32_t seq = 42;
int32_t eventId = InputEvent::nextId();
constexpr bool captureEnabled = true;
const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC);
status = mPublisher->publishCaptureEvent(seq, eventId, captureEnabled);
ASSERT_EQ(OK, status) << "publisher publishCaptureEvent should return OK";
uint32_t consumeSeq;
InputEvent* event;
status = mConsumer->consume(&mEventFactory, /*consumeBatches=*/true, -1, &consumeSeq, &event);
ASSERT_EQ(OK, status) << "consumer consume should return OK";
ASSERT_TRUE(event != nullptr) << "consumer should have returned non-NULL event";
ASSERT_EQ(InputEventType::CAPTURE, event->getType())
<< "consumer should have returned a capture event";
const CaptureEvent* captureEvent = static_cast<CaptureEvent*>(event);
EXPECT_EQ(seq, consumeSeq);
EXPECT_EQ(eventId, captureEvent->getId());
EXPECT_EQ(captureEnabled, captureEvent->getPointerCaptureEnabled());
status = mConsumer->sendFinishedSignal(seq, true);
ASSERT_EQ(OK, status) << "consumer sendFinishedSignal should return OK";
Result<InputPublisher::ConsumerResponse> result = mPublisher->receiveConsumerResponse();
ASSERT_TRUE(result.ok()) << "receiveConsumerResponse should return OK";
ASSERT_TRUE(std::holds_alternative<InputPublisher::Finished>(*result));
const InputPublisher::Finished& finish = std::get<InputPublisher::Finished>(*result);
ASSERT_EQ(seq, finish.seq)
<< "receiveConsumerResponse should have returned the original sequence number";
ASSERT_TRUE(finish.handled)
<< "receiveConsumerResponse should have set handled to consumer's reply";
ASSERT_GE(finish.consumeTime, publishTime)
<< "finished signal's consume time should be greater than publish time";
}
void InputPublisherAndConsumerTest::publishAndConsumeDragEvent() {
status_t status;
constexpr uint32_t seq = 15;
int32_t eventId = InputEvent::nextId();
constexpr bool isExiting = false;
constexpr float x = 10;
constexpr float y = 15;
const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC);
status = mPublisher->publishDragEvent(seq, eventId, x, y, isExiting);
ASSERT_EQ(OK, status) << "publisher publishDragEvent should return OK";
uint32_t consumeSeq;
InputEvent* event;
status = mConsumer->consume(&mEventFactory, /*consumeBatches=*/true, -1, &consumeSeq, &event);
ASSERT_EQ(OK, status) << "consumer consume should return OK";
ASSERT_TRUE(event != nullptr) << "consumer should have returned non-NULL event";
ASSERT_EQ(InputEventType::DRAG, event->getType())
<< "consumer should have returned a drag event";
const DragEvent& dragEvent = static_cast<const DragEvent&>(*event);
EXPECT_EQ(seq, consumeSeq);
EXPECT_EQ(eventId, dragEvent.getId());
EXPECT_EQ(isExiting, dragEvent.isExiting());
EXPECT_EQ(x, dragEvent.getX());
EXPECT_EQ(y, dragEvent.getY());
status = mConsumer->sendFinishedSignal(seq, true);
ASSERT_EQ(OK, status) << "consumer sendFinishedSignal should return OK";
Result<InputPublisher::ConsumerResponse> result = mPublisher->receiveConsumerResponse();
ASSERT_TRUE(result.ok()) << "receiveConsumerResponse should return OK";
ASSERT_TRUE(std::holds_alternative<InputPublisher::Finished>(*result));
const InputPublisher::Finished& finish = std::get<InputPublisher::Finished>(*result);
ASSERT_EQ(seq, finish.seq)
<< "receiveConsumerResponse should have returned the original sequence number";
ASSERT_TRUE(finish.handled)
<< "receiveConsumerResponse should have set handled to consumer's reply";
ASSERT_GE(finish.consumeTime, publishTime)
<< "finished signal's consume time should be greater than publish time";
}
void InputPublisherAndConsumerTest::publishAndConsumeTouchModeEvent() {
status_t status;
constexpr uint32_t seq = 15;
int32_t eventId = InputEvent::nextId();
constexpr bool touchModeEnabled = true;
const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC);
status = mPublisher->publishTouchModeEvent(seq, eventId, touchModeEnabled);
ASSERT_EQ(OK, status) << "publisher publishTouchModeEvent should return OK";
uint32_t consumeSeq;
InputEvent* event;
status = mConsumer->consume(&mEventFactory, /*consumeBatches=*/true, -1, &consumeSeq, &event);
ASSERT_EQ(OK, status) << "consumer consume should return OK";
ASSERT_TRUE(event != nullptr) << "consumer should have returned non-NULL event";
ASSERT_EQ(InputEventType::TOUCH_MODE, event->getType())
<< "consumer should have returned a touch mode event";
const TouchModeEvent& touchModeEvent = static_cast<const TouchModeEvent&>(*event);
EXPECT_EQ(seq, consumeSeq);
EXPECT_EQ(eventId, touchModeEvent.getId());
EXPECT_EQ(touchModeEnabled, touchModeEvent.isInTouchMode());
status = mConsumer->sendFinishedSignal(seq, true);
ASSERT_EQ(OK, status) << "consumer sendFinishedSignal should return OK";
Result<InputPublisher::ConsumerResponse> result = mPublisher->receiveConsumerResponse();
ASSERT_TRUE(result.ok()) << "receiveConsumerResponse should return OK";
ASSERT_TRUE(std::holds_alternative<InputPublisher::Finished>(*result));
const InputPublisher::Finished& finish = std::get<InputPublisher::Finished>(*result);
ASSERT_EQ(seq, finish.seq)
<< "receiveConsumerResponse should have returned the original sequence number";
ASSERT_TRUE(finish.handled)
<< "receiveConsumerResponse should have set handled to consumer's reply";
ASSERT_GE(finish.consumeTime, publishTime)
<< "finished signal's consume time should be greater than publish time";
}
TEST_F(InputPublisherAndConsumerTest, SendTimeline) {
const int32_t inputEventId = 20;
std::array<nsecs_t, GraphicsTimeline::SIZE> graphicsTimeline;
graphicsTimeline[GraphicsTimeline::GPU_COMPLETED_TIME] = 30;
graphicsTimeline[GraphicsTimeline::PRESENT_TIME] = 40;
status_t status = mConsumer->sendTimeline(inputEventId, graphicsTimeline);
ASSERT_EQ(OK, status);
Result<InputPublisher::ConsumerResponse> result = mPublisher->receiveConsumerResponse();
ASSERT_TRUE(result.ok()) << "receiveConsumerResponse should return OK";
ASSERT_TRUE(std::holds_alternative<InputPublisher::Timeline>(*result));
const InputPublisher::Timeline& timeline = std::get<InputPublisher::Timeline>(*result);
ASSERT_EQ(inputEventId, timeline.inputEventId);
ASSERT_EQ(graphicsTimeline, timeline.graphicsTimeline);
}
TEST_F(InputPublisherAndConsumerTest, PublishKeyEvent_EndToEnd) {
ASSERT_NO_FATAL_FAILURE(publishAndConsumeKeyEvent());
}
TEST_F(InputPublisherAndConsumerTest, PublishMotionEvent_EndToEnd) {
ASSERT_NO_FATAL_FAILURE(publishAndConsumeMotionStream());
}
TEST_F(InputPublisherAndConsumerTest, PublishMotionMoveEvent_EndToEnd) {
// Publish a DOWN event before MOVE to pass the InputVerifier checks.
const nsecs_t downTime = systemTime(SYSTEM_TIME_MONOTONIC);
ASSERT_NO_FATAL_FAILURE(publishAndConsumeMotionDown(downTime));
// Publish the MOVE event and check expectations.
ASSERT_NO_FATAL_FAILURE(publishAndConsumeBatchedMotionMove(downTime));
}
TEST_F(InputPublisherAndConsumerTest, PublishFocusEvent_EndToEnd) {
ASSERT_NO_FATAL_FAILURE(publishAndConsumeFocusEvent());
}
TEST_F(InputPublisherAndConsumerTest, PublishCaptureEvent_EndToEnd) {
ASSERT_NO_FATAL_FAILURE(publishAndConsumeCaptureEvent());
}
TEST_F(InputPublisherAndConsumerTest, PublishDragEvent_EndToEnd) {
ASSERT_NO_FATAL_FAILURE(publishAndConsumeDragEvent());
}
TEST_F(InputPublisherAndConsumerTest, PublishTouchModeEvent_EndToEnd) {
ASSERT_NO_FATAL_FAILURE(publishAndConsumeTouchModeEvent());
}
TEST_F(InputPublisherAndConsumerTest, PublishMotionEvent_WhenSequenceNumberIsZero_ReturnsError) {
status_t status;
const size_t pointerCount = 1;
PointerProperties pointerProperties[pointerCount];
PointerCoords pointerCoords[pointerCount];
for (size_t i = 0; i < pointerCount; i++) {
pointerProperties[i].clear();
pointerCoords[i].clear();
}
ui::Transform identityTransform;
status =
mPublisher->publishMotionEvent(0, InputEvent::nextId(), 0, 0, 0, INVALID_HMAC, 0, 0, 0,
0, 0, 0, MotionClassification::NONE, identityTransform,
0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform,
0, 0, pointerCount, pointerProperties, pointerCoords);
ASSERT_EQ(BAD_VALUE, status)
<< "publisher publishMotionEvent should return BAD_VALUE";
}
TEST_F(InputPublisherAndConsumerTest, PublishMotionEvent_WhenPointerCountLessThan1_ReturnsError) {
status_t status;
const size_t pointerCount = 0;
PointerProperties pointerProperties[pointerCount];
PointerCoords pointerCoords[pointerCount];
ui::Transform identityTransform;
status =
mPublisher->publishMotionEvent(1, InputEvent::nextId(), 0, 0, 0, INVALID_HMAC, 0, 0, 0,
0, 0, 0, MotionClassification::NONE, identityTransform,
0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform,
0, 0, pointerCount, pointerProperties, pointerCoords);
ASSERT_EQ(BAD_VALUE, status)
<< "publisher publishMotionEvent should return BAD_VALUE";
}
TEST_F(InputPublisherAndConsumerTest,
PublishMotionEvent_WhenPointerCountGreaterThanMax_ReturnsError) {
status_t status;
const size_t pointerCount = MAX_POINTERS + 1;
PointerProperties pointerProperties[pointerCount];
PointerCoords pointerCoords[pointerCount];
for (size_t i = 0; i < pointerCount; i++) {
pointerProperties[i].clear();
pointerCoords[i].clear();
}
ui::Transform identityTransform;
status =
mPublisher->publishMotionEvent(1, InputEvent::nextId(), 0, 0, 0, INVALID_HMAC, 0, 0, 0,
0, 0, 0, MotionClassification::NONE, identityTransform,
0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform,
0, 0, pointerCount, pointerProperties, pointerCoords);
ASSERT_EQ(BAD_VALUE, status)
<< "publisher publishMotionEvent should return BAD_VALUE";
}
TEST_F(InputPublisherAndConsumerTest, PublishMultipleEvents_EndToEnd) {
const nsecs_t downTime = systemTime(SYSTEM_TIME_MONOTONIC);
publishAndConsumeMotionEvent(AMOTION_EVENT_ACTION_DOWN, downTime,
{Pointer{.id = 0, .x = 20, .y = 30}});
ASSERT_NO_FATAL_FAILURE(publishAndConsumeKeyEvent());
publishAndConsumeMotionEvent(POINTER_1_DOWN, downTime,
{Pointer{.id = 0, .x = 20, .y = 30},
Pointer{.id = 1, .x = 200, .y = 300}});
ASSERT_NO_FATAL_FAILURE(publishAndConsumeFocusEvent());
publishAndConsumeMotionEvent(POINTER_2_DOWN, downTime,
{Pointer{.id = 0, .x = 20, .y = 30},
Pointer{.id = 1, .x = 200, .y = 300},
Pointer{.id = 2, .x = 200, .y = 300}});
ASSERT_NO_FATAL_FAILURE(publishAndConsumeKeyEvent());
ASSERT_NO_FATAL_FAILURE(publishAndConsumeCaptureEvent());
ASSERT_NO_FATAL_FAILURE(publishAndConsumeDragEvent());
// Provide a consistent input stream - cancel the gesture that was started above
publishAndConsumeMotionEvent(AMOTION_EVENT_ACTION_CANCEL, downTime,
{Pointer{.id = 0, .x = 20, .y = 30},
Pointer{.id = 1, .x = 200, .y = 300},
Pointer{.id = 2, .x = 200, .y = 300}});
ASSERT_NO_FATAL_FAILURE(publishAndConsumeKeyEvent());
ASSERT_NO_FATAL_FAILURE(publishAndConsumeTouchModeEvent());
}
} // namespace android