blob: 1e5a6fbd1e63806f868bcc3d7d55504d83bb2203 [file] [log] [blame]
/*
* Copyright 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#undef LOG_TAG
#define LOG_TAG "SurfaceFlinger"
#include "LayerHierarchy.h"
#include "LayerLog.h"
#include "SwapErase.h"
namespace android::surfaceflinger::frontend {
namespace {
auto layerZCompare = [](const std::pair<LayerHierarchy*, LayerHierarchy::Variant>& lhs,
const std::pair<LayerHierarchy*, LayerHierarchy::Variant>& rhs) {
auto lhsLayer = lhs.first->getLayer();
auto rhsLayer = rhs.first->getLayer();
if (lhsLayer->layerStack.id != rhsLayer->layerStack.id) {
return lhsLayer->layerStack.id < rhsLayer->layerStack.id;
}
if (lhsLayer->z != rhsLayer->z) {
return lhsLayer->z < rhsLayer->z;
}
return lhsLayer->id < rhsLayer->id;
};
void insertSorted(std::vector<std::pair<LayerHierarchy*, LayerHierarchy::Variant>>& vec,
std::pair<LayerHierarchy*, LayerHierarchy::Variant> value) {
auto it = std::upper_bound(vec.begin(), vec.end(), value, layerZCompare);
vec.insert(it, std::move(value));
}
} // namespace
LayerHierarchy::LayerHierarchy(RequestedLayerState* layer) : mLayer(layer) {}
LayerHierarchy::LayerHierarchy(const LayerHierarchy& hierarchy, bool childrenOnly) {
mLayer = (childrenOnly) ? nullptr : hierarchy.mLayer;
mChildren = hierarchy.mChildren;
}
void LayerHierarchy::traverse(const Visitor& visitor,
LayerHierarchy::TraversalPath& traversalPath) const {
if (mLayer) {
bool breakTraversal = !visitor(*this, traversalPath);
if (breakTraversal) {
return;
}
}
LLOG_ALWAYS_FATAL_WITH_TRACE_IF(traversalPath.hasRelZLoop(), "Found relative z loop layerId:%d",
traversalPath.invalidRelativeRootId);
for (auto& [child, childVariant] : mChildren) {
ScopedAddToTraversalPath addChildToTraversalPath(traversalPath, child->mLayer->id,
childVariant);
child->traverse(visitor, traversalPath);
}
}
void LayerHierarchy::traverseInZOrder(const Visitor& visitor,
LayerHierarchy::TraversalPath& traversalPath) const {
bool traverseThisLayer = (mLayer != nullptr);
for (auto it = mChildren.begin(); it < mChildren.end(); it++) {
auto& [child, childVariant] = *it;
if (traverseThisLayer && child->getLayer()->z >= 0) {
traverseThisLayer = false;
bool breakTraversal = !visitor(*this, traversalPath);
if (breakTraversal) {
return;
}
}
if (childVariant == LayerHierarchy::Variant::Detached) {
continue;
}
ScopedAddToTraversalPath addChildToTraversalPath(traversalPath, child->mLayer->id,
childVariant);
child->traverseInZOrder(visitor, traversalPath);
}
if (traverseThisLayer) {
visitor(*this, traversalPath);
}
}
void LayerHierarchy::addChild(LayerHierarchy* child, LayerHierarchy::Variant variant) {
insertSorted(mChildren, {child, variant});
}
void LayerHierarchy::removeChild(LayerHierarchy* child) {
auto it = std::find_if(mChildren.begin(), mChildren.end(),
[child](const std::pair<LayerHierarchy*, Variant>& x) {
return x.first == child;
});
LLOG_ALWAYS_FATAL_WITH_TRACE_IF(it == mChildren.end(), "Could not find child!");
mChildren.erase(it);
}
void LayerHierarchy::sortChildrenByZOrder() {
std::sort(mChildren.begin(), mChildren.end(), layerZCompare);
}
void LayerHierarchy::updateChild(LayerHierarchy* hierarchy, LayerHierarchy::Variant variant) {
auto it = std::find_if(mChildren.begin(), mChildren.end(),
[hierarchy](std::pair<LayerHierarchy*, Variant>& child) {
return child.first == hierarchy;
});
LLOG_ALWAYS_FATAL_WITH_TRACE_IF(it == mChildren.end(), "Could not find child!");
it->second = variant;
}
const RequestedLayerState* LayerHierarchy::getLayer() const {
return mLayer;
}
const LayerHierarchy* LayerHierarchy::getRelativeParent() const {
return mRelativeParent;
}
const LayerHierarchy* LayerHierarchy::getParent() const {
return mParent;
}
std::string LayerHierarchy::getDebugStringShort() const {
std::string debug = "LayerHierarchy{";
debug += ((mLayer) ? mLayer->getDebugString() : "root") + " ";
if (mChildren.empty()) {
debug += "no children";
} else {
debug += std::to_string(mChildren.size()) + " children";
}
return debug + "}";
}
void LayerHierarchy::dump(std::ostream& out, const std::string& prefix,
LayerHierarchy::Variant variant, bool isLastChild,
bool includeMirroredHierarchy) const {
if (!mLayer) {
out << " ROOT";
} else {
out << prefix + (isLastChild ? "└─ " : "├─ ");
if (variant == LayerHierarchy::Variant::Relative) {
out << "(Relative) ";
} else if (variant == LayerHierarchy::Variant::Mirror) {
if (!includeMirroredHierarchy) {
out << "(Mirroring) " << *mLayer << "\n" + prefix + " └─ ...";
return;
}
out << "(Mirroring) ";
}
out << *mLayer;
}
for (size_t i = 0; i < mChildren.size(); i++) {
auto& [child, childVariant] = mChildren[i];
if (childVariant == LayerHierarchy::Variant::Detached) continue;
const bool lastChild = i == (mChildren.size() - 1);
std::string childPrefix = prefix;
if (mLayer) {
childPrefix += (isLastChild ? " " : "│ ");
}
out << "\n";
child->dump(out, childPrefix, childVariant, lastChild, includeMirroredHierarchy);
}
return;
}
bool LayerHierarchy::hasRelZLoop(uint32_t& outInvalidRelativeRoot) const {
outInvalidRelativeRoot = UNASSIGNED_LAYER_ID;
traverse([&outInvalidRelativeRoot](const LayerHierarchy&,
const LayerHierarchy::TraversalPath& traversalPath) -> bool {
if (traversalPath.hasRelZLoop()) {
outInvalidRelativeRoot = traversalPath.invalidRelativeRootId;
return false;
}
return true;
});
return outInvalidRelativeRoot != UNASSIGNED_LAYER_ID;
}
LayerHierarchyBuilder::LayerHierarchyBuilder(
const std::vector<std::unique_ptr<RequestedLayerState>>& layers) {
mHierarchies.reserve(layers.size());
mLayerIdToHierarchy.reserve(layers.size());
for (auto& layer : layers) {
mHierarchies.emplace_back(std::make_unique<LayerHierarchy>(layer.get()));
mLayerIdToHierarchy[layer->id] = mHierarchies.back().get();
}
for (const auto& layer : layers) {
onLayerAdded(layer.get());
}
detachHierarchyFromRelativeParent(&mOffscreenRoot);
}
void LayerHierarchyBuilder::attachToParent(LayerHierarchy* hierarchy) {
auto layer = hierarchy->mLayer;
LayerHierarchy::Variant type = layer->hasValidRelativeParent()
? LayerHierarchy::Variant::Detached
: LayerHierarchy::Variant::Attached;
LayerHierarchy* parent;
if (layer->parentId != UNASSIGNED_LAYER_ID) {
parent = getHierarchyFromId(layer->parentId);
} else if (layer->canBeRoot) {
parent = &mRoot;
} else {
parent = &mOffscreenRoot;
}
parent->addChild(hierarchy, type);
hierarchy->mParent = parent;
}
void LayerHierarchyBuilder::detachFromParent(LayerHierarchy* hierarchy) {
hierarchy->mParent->removeChild(hierarchy);
hierarchy->mParent = nullptr;
}
void LayerHierarchyBuilder::attachToRelativeParent(LayerHierarchy* hierarchy) {
auto layer = hierarchy->mLayer;
if (!layer->hasValidRelativeParent() || hierarchy->mRelativeParent) {
return;
}
if (layer->relativeParentId != UNASSIGNED_LAYER_ID) {
hierarchy->mRelativeParent = getHierarchyFromId(layer->relativeParentId);
} else {
hierarchy->mRelativeParent = &mOffscreenRoot;
}
hierarchy->mRelativeParent->addChild(hierarchy, LayerHierarchy::Variant::Relative);
hierarchy->mParent->updateChild(hierarchy, LayerHierarchy::Variant::Detached);
}
void LayerHierarchyBuilder::detachFromRelativeParent(LayerHierarchy* hierarchy) {
if (hierarchy->mRelativeParent) {
hierarchy->mRelativeParent->removeChild(hierarchy);
}
hierarchy->mRelativeParent = nullptr;
hierarchy->mParent->updateChild(hierarchy, LayerHierarchy::Variant::Attached);
}
void LayerHierarchyBuilder::attachHierarchyToRelativeParent(LayerHierarchy* root) {
if (root->mLayer) {
attachToRelativeParent(root);
}
for (auto& [child, childVariant] : root->mChildren) {
if (childVariant == LayerHierarchy::Variant::Detached ||
childVariant == LayerHierarchy::Variant::Attached) {
attachHierarchyToRelativeParent(child);
}
}
}
void LayerHierarchyBuilder::detachHierarchyFromRelativeParent(LayerHierarchy* root) {
if (root->mLayer) {
detachFromRelativeParent(root);
}
for (auto& [child, childVariant] : root->mChildren) {
if (childVariant == LayerHierarchy::Variant::Detached ||
childVariant == LayerHierarchy::Variant::Attached) {
detachHierarchyFromRelativeParent(child);
}
}
}
void LayerHierarchyBuilder::onLayerAdded(RequestedLayerState* layer) {
LayerHierarchy* hierarchy = getHierarchyFromId(layer->id);
attachToParent(hierarchy);
attachToRelativeParent(hierarchy);
for (uint32_t mirrorId : layer->mirrorIds) {
LayerHierarchy* mirror = getHierarchyFromId(mirrorId);
hierarchy->addChild(mirror, LayerHierarchy::Variant::Mirror);
}
}
void LayerHierarchyBuilder::onLayerDestroyed(RequestedLayerState* layer) {
LLOGV(layer->id, "");
LayerHierarchy* hierarchy = getHierarchyFromId(layer->id, /*crashOnFailure=*/false);
if (!hierarchy) {
// Layer was never part of the hierarchy if it was created and destroyed in the same
// transaction.
return;
}
// detach from parent
detachFromRelativeParent(hierarchy);
detachFromParent(hierarchy);
// detach children
for (auto& [child, variant] : hierarchy->mChildren) {
if (variant == LayerHierarchy::Variant::Attached ||
variant == LayerHierarchy::Variant::Detached) {
mOffscreenRoot.addChild(child, LayerHierarchy::Variant::Attached);
child->mParent = &mOffscreenRoot;
} else if (variant == LayerHierarchy::Variant::Relative) {
mOffscreenRoot.addChild(child, LayerHierarchy::Variant::Attached);
child->mRelativeParent = &mOffscreenRoot;
}
}
swapErase(mHierarchies, [hierarchy](std::unique_ptr<LayerHierarchy>& layerHierarchy) {
return layerHierarchy.get() == hierarchy;
});
mLayerIdToHierarchy.erase(layer->id);
}
void LayerHierarchyBuilder::updateMirrorLayer(RequestedLayerState* layer) {
LayerHierarchy* hierarchy = getHierarchyFromId(layer->id);
auto it = hierarchy->mChildren.begin();
while (it != hierarchy->mChildren.end()) {
if (it->second == LayerHierarchy::Variant::Mirror) {
it = hierarchy->mChildren.erase(it);
} else {
it++;
}
}
for (uint32_t mirrorId : layer->mirrorIds) {
hierarchy->addChild(getHierarchyFromId(mirrorId), LayerHierarchy::Variant::Mirror);
}
}
void LayerHierarchyBuilder::update(
const std::vector<std::unique_ptr<RequestedLayerState>>& layers,
const std::vector<std::unique_ptr<RequestedLayerState>>& destroyedLayers) {
// rebuild map
for (auto& layer : layers) {
if (layer->changes.test(RequestedLayerState::Changes::Created)) {
mHierarchies.emplace_back(std::make_unique<LayerHierarchy>(layer.get()));
mLayerIdToHierarchy[layer->id] = mHierarchies.back().get();
}
}
for (auto& layer : layers) {
if (layer->changes.get() == 0) {
continue;
}
if (layer->changes.test(RequestedLayerState::Changes::Created)) {
onLayerAdded(layer.get());
continue;
}
LayerHierarchy* hierarchy = getHierarchyFromId(layer->id);
if (layer->changes.test(RequestedLayerState::Changes::Parent)) {
detachFromParent(hierarchy);
attachToParent(hierarchy);
}
if (layer->changes.test(RequestedLayerState::Changes::RelativeParent)) {
detachFromRelativeParent(hierarchy);
attachToRelativeParent(hierarchy);
}
if (layer->changes.test(RequestedLayerState::Changes::Z)) {
hierarchy->mParent->sortChildrenByZOrder();
if (hierarchy->mRelativeParent) {
hierarchy->mRelativeParent->sortChildrenByZOrder();
}
}
if (layer->changes.test(RequestedLayerState::Changes::Mirror)) {
updateMirrorLayer(layer.get());
}
}
for (auto& layer : destroyedLayers) {
onLayerDestroyed(layer.get());
}
// When moving from onscreen to offscreen and vice versa, we need to attach and detach
// from our relative parents. This walks down both trees to do so. We can optimize this
// further by tracking onscreen, offscreen state in LayerHierarchy.
detachHierarchyFromRelativeParent(&mOffscreenRoot);
attachHierarchyToRelativeParent(&mRoot);
}
const LayerHierarchy& LayerHierarchyBuilder::getHierarchy() const {
return mRoot;
}
const LayerHierarchy& LayerHierarchyBuilder::getOffscreenHierarchy() const {
return mOffscreenRoot;
}
std::string LayerHierarchyBuilder::getDebugString(uint32_t layerId, uint32_t depth) const {
if (depth > 10) return "too deep, loop?";
if (layerId == UNASSIGNED_LAYER_ID) return "";
auto it = mLayerIdToHierarchy.find(layerId);
if (it == mLayerIdToHierarchy.end()) return "not found";
LayerHierarchy* hierarchy = it->second;
if (!hierarchy->mLayer) return "none";
std::string debug =
"[" + std::to_string(hierarchy->mLayer->id) + "] " + hierarchy->mLayer->name;
if (hierarchy->mRelativeParent) {
debug += " Relative:" + hierarchy->mRelativeParent->getDebugStringShort();
}
if (hierarchy->mParent) {
debug += " Parent:" + hierarchy->mParent->getDebugStringShort();
}
return debug;
}
LayerHierarchy LayerHierarchyBuilder::getPartialHierarchy(uint32_t layerId,
bool childrenOnly) const {
auto it = mLayerIdToHierarchy.find(layerId);
if (it == mLayerIdToHierarchy.end()) return {nullptr};
LayerHierarchy hierarchy(*it->second, childrenOnly);
return hierarchy;
}
LayerHierarchy* LayerHierarchyBuilder::getHierarchyFromId(uint32_t layerId, bool crashOnFailure) {
auto it = mLayerIdToHierarchy.find(layerId);
if (it == mLayerIdToHierarchy.end()) {
LLOG_ALWAYS_FATAL_WITH_TRACE_IF(crashOnFailure, "Could not find hierarchy for layer id %d",
layerId);
return nullptr;
};
return it->second;
}
const LayerHierarchy::TraversalPath LayerHierarchy::TraversalPath::ROOT =
{.id = UNASSIGNED_LAYER_ID, .variant = LayerHierarchy::Attached};
std::string LayerHierarchy::TraversalPath::toString() const {
if (id == UNASSIGNED_LAYER_ID) {
return "TraversalPath{ROOT}";
}
std::stringstream ss;
ss << "TraversalPath{.id = " << id;
if (!mirrorRootIds.empty()) {
ss << ", .mirrorRootIds=";
for (auto rootId : mirrorRootIds) {
ss << rootId << ",";
}
}
if (!relativeRootIds.empty()) {
ss << ", .relativeRootIds=";
for (auto rootId : relativeRootIds) {
ss << rootId << ",";
}
}
if (hasRelZLoop()) {
ss << "hasRelZLoop=true invalidRelativeRootId=" << invalidRelativeRootId << ",";
}
ss << "}";
return ss.str();
}
// Helper class to update a passed in TraversalPath when visiting a child. When the object goes out
// of scope the TraversalPath is reset to its original state.
LayerHierarchy::ScopedAddToTraversalPath::ScopedAddToTraversalPath(TraversalPath& traversalPath,
uint32_t layerId,
LayerHierarchy::Variant variant)
: mTraversalPath(traversalPath), mParentPath(traversalPath) {
// Update the traversal id with the child layer id and variant. Parent id and variant are
// stored to reset the id upon destruction.
traversalPath.id = layerId;
traversalPath.variant = variant;
if (variant == LayerHierarchy::Variant::Mirror) {
traversalPath.mirrorRootIds.emplace_back(mParentPath.id);
} else if (variant == LayerHierarchy::Variant::Relative) {
if (std::find(traversalPath.relativeRootIds.begin(), traversalPath.relativeRootIds.end(),
layerId) != traversalPath.relativeRootIds.end()) {
traversalPath.invalidRelativeRootId = layerId;
}
traversalPath.relativeRootIds.emplace_back(layerId);
} else if (variant == LayerHierarchy::Variant::Detached) {
traversalPath.detached = true;
}
}
LayerHierarchy::ScopedAddToTraversalPath::~ScopedAddToTraversalPath() {
// Reset the traversal id to its original parent state using the state that was saved in
// the constructor.
if (mTraversalPath.variant == LayerHierarchy::Variant::Mirror) {
mTraversalPath.mirrorRootIds.pop_back();
} else if (mTraversalPath.variant == LayerHierarchy::Variant::Relative) {
mTraversalPath.relativeRootIds.pop_back();
}
if (mTraversalPath.invalidRelativeRootId == mTraversalPath.id) {
mTraversalPath.invalidRelativeRootId = UNASSIGNED_LAYER_ID;
}
mTraversalPath.id = mParentPath.id;
mTraversalPath.variant = mParentPath.variant;
mTraversalPath.detached = mParentPath.detached;
}
} // namespace android::surfaceflinger::frontend