blob: da5a8e388151d6349e2fe890d1bbb4b06931032f [file] [log] [blame] [edit]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __ANDROID_VENDOR__
// only used on NDK tests outside of vendor
#include <aidl/IBinderRpcTest.h>
#endif
#if defined(__LP64__)
#define TEST_FILE_SUFFIX "64"
#else
#define TEST_FILE_SUFFIX "32"
#endif
#include <chrono>
#include <cstdlib>
#include <iostream>
#include <thread>
#include <type_traits>
#include <dirent.h>
#include <dlfcn.h>
#include <poll.h>
#include <sys/prctl.h>
#include <sys/socket.h>
#ifdef BINDER_RPC_TO_TRUSTY_TEST
#include <binder/RpcTransportTipcAndroid.h>
#include <trusty/tipc.h>
#endif // BINDER_RPC_TO_TRUSTY_TEST
#include "../Utils.h"
#include "binderRpcTestCommon.h"
#include "binderRpcTestFixture.h"
// TODO need to add IServiceManager.cpp/.h to libbinder_no_kernel
#ifdef BINDER_WITH_KERNEL_IPC
#include "android-base/logging.h"
#include "android/binder_manager.h"
#include "android/binder_rpc.h"
#endif // BINDER_WITH_KERNEL_IPC
using namespace std::chrono_literals;
using namespace std::placeholders;
using android::binder::borrowed_fd;
using android::binder::GetExecutableDirectory;
using android::binder::ReadFdToString;
using android::binder::unique_fd;
using testing::AssertionFailure;
using testing::AssertionResult;
using testing::AssertionSuccess;
namespace android {
#ifdef BINDER_TEST_NO_SHARED_LIBS
constexpr bool kEnableSharedLibs = false;
#else
constexpr bool kEnableSharedLibs = true;
#endif
#ifdef BINDER_RPC_TO_TRUSTY_TEST
constexpr char kTrustyIpcDevice[] = "/dev/trusty-ipc-dev0";
#endif
constexpr char kKnownAidlService[] = "activity";
static std::string WaitStatusToString(int wstatus) {
if (WIFEXITED(wstatus)) {
return "exit status " + std::to_string(WEXITSTATUS(wstatus));
}
if (WIFSIGNALED(wstatus)) {
return "term signal " + std::to_string(WTERMSIG(wstatus));
}
return "unexpected state " + std::to_string(wstatus);
}
static void debugBacktrace(pid_t pid) {
std::cerr << "TAKING BACKTRACE FOR PID " << pid << std::endl;
system((std::string("debuggerd -b ") + std::to_string(pid)).c_str());
}
class Process {
public:
Process(Process&& other)
: mCustomExitStatusCheck(std::move(other.mCustomExitStatusCheck)),
mReadEnd(std::move(other.mReadEnd)),
mWriteEnd(std::move(other.mWriteEnd)) {
// The default move constructor doesn't clear mPid after moving it,
// which we need to do because the destructor checks for mPid!=0
mPid = other.mPid;
other.mPid = 0;
}
Process(const std::function<void(borrowed_fd /* writeEnd */, borrowed_fd /* readEnd */)>& f) {
unique_fd childWriteEnd;
unique_fd childReadEnd;
if (!binder::Pipe(&mReadEnd, &childWriteEnd, 0)) PLOGF("child write pipe failed");
if (!binder::Pipe(&childReadEnd, &mWriteEnd, 0)) PLOGF("child read pipe failed");
if (0 == (mPid = fork())) {
// racey: assume parent doesn't crash before this is set
prctl(PR_SET_PDEATHSIG, SIGHUP);
f(childWriteEnd, childReadEnd);
exit(0);
}
}
~Process() {
if (mPid != 0) {
int wstatus;
waitpid(mPid, &wstatus, 0);
if (mCustomExitStatusCheck) {
mCustomExitStatusCheck(wstatus);
} else {
EXPECT_TRUE(WIFEXITED(wstatus) && WEXITSTATUS(wstatus) == 0)
<< "server process failed: " << WaitStatusToString(wstatus);
}
}
}
borrowed_fd readEnd() { return mReadEnd; }
borrowed_fd writeEnd() { return mWriteEnd; }
void setCustomExitStatusCheck(std::function<void(int wstatus)> f) {
mCustomExitStatusCheck = std::move(f);
}
// Kill the process. Avoid if possible. Shutdown gracefully via an RPC instead.
void terminate() { kill(mPid, SIGTERM); }
pid_t getPid() { return mPid; }
private:
std::function<void(int wstatus)> mCustomExitStatusCheck;
pid_t mPid = 0;
unique_fd mReadEnd;
unique_fd mWriteEnd;
};
static std::string allocateSocketAddress() {
static size_t id = 0;
std::string temp = getenv("TMPDIR") ?: "/tmp";
auto ret = temp + "/binderRpcTest_" + std::to_string(getpid()) + "_" + std::to_string(id++);
unlink(ret.c_str());
return ret;
};
static unique_fd initUnixSocket(std::string addr) {
auto socket_addr = UnixSocketAddress(addr.c_str());
unique_fd fd(TEMP_FAILURE_RETRY(socket(socket_addr.addr()->sa_family, SOCK_STREAM, AF_UNIX)));
if (!fd.ok()) PLOGF("initUnixSocket failed to create socket");
if (0 != TEMP_FAILURE_RETRY(bind(fd.get(), socket_addr.addr(), socket_addr.addrSize()))) {
PLOGF("initUnixSocket failed to bind");
}
return fd;
}
// Destructors need to be defined, even if pure virtual
ProcessSession::~ProcessSession() {}
class LinuxProcessSession : public ProcessSession {
public:
// reference to process hosting a socket server
Process host;
LinuxProcessSession(LinuxProcessSession&&) = default;
LinuxProcessSession(Process&& host) : host(std::move(host)) {}
~LinuxProcessSession() override {
for (auto& session : sessions) {
session.root = nullptr;
}
for (size_t sessionNum = 0; sessionNum < sessions.size(); sessionNum++) {
auto& info = sessions.at(sessionNum);
sp<RpcSession>& session = info.session;
EXPECT_NE(nullptr, session);
EXPECT_NE(nullptr, session->state());
EXPECT_EQ(0u, session->state()->countBinders()) << (session->state()->dump(), "dump:");
wp<RpcSession> weakSession = session;
session = nullptr;
// b/244325464 - 'getStrongCount' is printing '1' on failure here, which indicates the
// the object should not actually be promotable. By looping, we distinguish a race here
// from a bug causing the object to not be promotable.
for (size_t i = 0; i < 3; i++) {
sp<RpcSession> strongSession = weakSession.promote();
EXPECT_EQ(nullptr, strongSession)
<< "For session " << sessionNum << ". "
<< (debugBacktrace(host.getPid()), debugBacktrace(getpid()),
"Leaked sess: ")
<< strongSession->getStrongCount() << " checked time " << i;
if (strongSession != nullptr) {
sleep(1);
}
}
}
}
void setCustomExitStatusCheck(std::function<void(int wstatus)> f) override {
host.setCustomExitStatusCheck(std::move(f));
}
void terminate() override { host.terminate(); }
};
static unique_fd connectTo(const RpcSocketAddress& addr) {
unique_fd serverFd(
TEMP_FAILURE_RETRY(socket(addr.addr()->sa_family, SOCK_STREAM | SOCK_CLOEXEC, 0)));
if (!serverFd.ok()) {
PLOGF("Could not create socket %s", addr.toString().c_str());
}
if (0 != TEMP_FAILURE_RETRY(connect(serverFd.get(), addr.addr(), addr.addrSize()))) {
PLOGF("Could not connect to socket %s", addr.toString().c_str());
}
return serverFd;
}
#ifndef BINDER_RPC_TO_TRUSTY_TEST
static unique_fd connectToUnixBootstrap(const RpcTransportFd& transportFd) {
unique_fd sockClient, sockServer;
if (!binder::Socketpair(SOCK_STREAM, &sockClient, &sockServer)) {
PLOGF("Failed socketpair()");
}
int zero = 0;
iovec iov{&zero, sizeof(zero)};
std::vector<std::variant<unique_fd, borrowed_fd>> fds;
fds.emplace_back(std::move(sockServer));
if (binder::os::sendMessageOnSocket(transportFd, &iov, 1, &fds) < 0) {
PLOGF("Failed sendMessageOnSocket");
}
return sockClient;
}
#endif // BINDER_RPC_TO_TRUSTY_TEST
std::unique_ptr<RpcTransportCtxFactory> BinderRpc::newFactory(RpcSecurity rpcSecurity) {
return newTlsFactory(rpcSecurity);
}
// This creates a new process serving an interface on a certain number of
// threads.
std::unique_ptr<ProcessSession> BinderRpc::createRpcTestSocketServerProcessEtc(
const BinderRpcOptions& options) {
LOG_ALWAYS_FATAL_IF(options.numSessions < 1, "Must have at least one session to a server");
if (options.numIncomingConnectionsBySession.size() != 0) {
LOG_ALWAYS_FATAL_IF(options.numIncomingConnectionsBySession.size() != options.numSessions,
"%s: %zu != %zu", __func__,
options.numIncomingConnectionsBySession.size(), options.numSessions);
}
SocketType socketType = GetParam().type;
RpcSecurity rpcSecurity = GetParam().security;
uint32_t clientVersion = GetParam().clientVersion;
uint32_t serverVersion = GetParam().serverVersion;
bool singleThreaded = GetParam().singleThreaded;
bool noKernel = GetParam().noKernel;
std::string path = GetExecutableDirectory();
auto servicePath = path + "/binder_rpc_test_service" +
(singleThreaded ? "_single_threaded" : "") + (noKernel ? "_no_kernel" : "") +
TEST_FILE_SUFFIX;
unique_fd bootstrapClientFd, socketFd;
auto addr = allocateSocketAddress();
// Initializes the socket before the fork/exec.
if (socketType == SocketType::UNIX_RAW) {
socketFd = initUnixSocket(addr);
} else if (socketType == SocketType::UNIX_BOOTSTRAP) {
// Do not set O_CLOEXEC, bootstrapServerFd needs to survive fork/exec.
// This is because we cannot pass ParcelFileDescriptor over a pipe.
if (!binder::Socketpair(SOCK_STREAM, &bootstrapClientFd, &socketFd)) {
PLOGF("Failed socketpair()");
}
}
auto ret = std::make_unique<LinuxProcessSession>(
Process([=](borrowed_fd writeEnd, borrowed_fd readEnd) {
if (socketType == SocketType::TIPC) {
// Trusty has a single persistent service
return;
}
auto writeFd = std::to_string(writeEnd.get());
auto readFd = std::to_string(readEnd.get());
auto status = execl(servicePath.c_str(), servicePath.c_str(), writeFd.c_str(),
readFd.c_str(), NULL);
PLOGF("execl('%s', _, %s, %s) should not return at all, but it returned %d",
servicePath.c_str(), writeFd.c_str(), readFd.c_str(), status);
}));
BinderRpcTestServerConfig serverConfig;
serverConfig.numThreads = options.numThreads;
serverConfig.socketType = static_cast<int32_t>(socketType);
serverConfig.rpcSecurity = static_cast<int32_t>(rpcSecurity);
serverConfig.serverVersion = serverVersion;
serverConfig.addr = addr;
serverConfig.socketFd = socketFd.get();
for (auto mode : options.serverSupportedFileDescriptorTransportModes) {
serverConfig.serverSupportedFileDescriptorTransportModes.push_back(
static_cast<int32_t>(mode));
}
if (socketType != SocketType::TIPC) {
writeToFd(ret->host.writeEnd(), serverConfig);
}
std::vector<sp<RpcSession>> sessions;
auto certVerifier = std::make_shared<RpcCertificateVerifierSimple>();
for (size_t i = 0; i < options.numSessions; i++) {
std::unique_ptr<RpcTransportCtxFactory> factory;
if (socketType == SocketType::TIPC) {
#ifdef BINDER_RPC_TO_TRUSTY_TEST
factory = RpcTransportCtxFactoryTipcAndroid::make();
#else
LOG_ALWAYS_FATAL("TIPC socket type only supported on vendor");
#endif
} else {
factory = newTlsFactory(rpcSecurity, certVerifier);
}
sessions.emplace_back(RpcSession::make(std::move(factory)));
}
BinderRpcTestServerInfo serverInfo;
if (socketType != SocketType::TIPC) {
serverInfo = readFromFd<BinderRpcTestServerInfo>(ret->host.readEnd());
BinderRpcTestClientInfo clientInfo;
for (const auto& session : sessions) {
auto& parcelableCert = clientInfo.certs.emplace_back();
parcelableCert.data = session->getCertificate(RpcCertificateFormat::PEM);
}
writeToFd(ret->host.writeEnd(), clientInfo);
LOG_ALWAYS_FATAL_IF(serverInfo.port > std::numeric_limits<unsigned int>::max());
if (socketType == SocketType::INET) {
LOG_ALWAYS_FATAL_IF(0 == serverInfo.port);
}
if (rpcSecurity == RpcSecurity::TLS) {
const auto& serverCert = serverInfo.cert.data;
LOG_ALWAYS_FATAL_IF(
OK !=
certVerifier->addTrustedPeerCertificate(RpcCertificateFormat::PEM, serverCert));
}
}
status_t status;
for (size_t i = 0; i < sessions.size(); i++) {
const auto& session = sessions.at(i);
size_t numIncoming = options.numIncomingConnectionsBySession.size() > 0
? options.numIncomingConnectionsBySession.at(i)
: 0;
LOG_ALWAYS_FATAL_IF(!session->setProtocolVersion(clientVersion));
session->setMaxIncomingThreads(numIncoming);
session->setMaxOutgoingConnections(options.numOutgoingConnections);
session->setFileDescriptorTransportMode(options.clientFileDescriptorTransportMode);
sockaddr_storage addr{};
socklen_t addrLen = 0;
switch (socketType) {
case SocketType::PRECONNECTED: {
sockaddr_un addr_un{};
addr_un.sun_family = AF_UNIX;
strcpy(addr_un.sun_path, serverConfig.addr.c_str());
addr = *reinterpret_cast<sockaddr_storage*>(&addr_un);
addrLen = sizeof(sockaddr_un);
status = session->setupPreconnectedClient({}, [=]() {
return connectTo(UnixSocketAddress(serverConfig.addr.c_str()));
});
} break;
case SocketType::UNIX_RAW:
case SocketType::UNIX: {
sockaddr_un addr_un{};
addr_un.sun_family = AF_UNIX;
strcpy(addr_un.sun_path, serverConfig.addr.c_str());
addr = *reinterpret_cast<sockaddr_storage*>(&addr_un);
addrLen = sizeof(sockaddr_un);
status = session->setupUnixDomainClient(serverConfig.addr.c_str());
} break;
case SocketType::UNIX_BOOTSTRAP:
status = session->setupUnixDomainSocketBootstrapClient(
unique_fd(dup(bootstrapClientFd.get())));
break;
case SocketType::VSOCK: {
sockaddr_vm addr_vm{
.svm_family = AF_VSOCK,
.svm_port = static_cast<unsigned int>(serverInfo.port),
.svm_cid = VMADDR_CID_LOCAL,
};
addr = *reinterpret_cast<sockaddr_storage*>(&addr_vm);
addrLen = sizeof(sockaddr_vm);
status = session->setupVsockClient(VMADDR_CID_LOCAL, serverInfo.port);
} break;
case SocketType::INET: {
const std::string ip_addr = "127.0.0.1";
sockaddr_in addr_in{};
addr_in.sin_family = AF_INET;
addr_in.sin_port = htons(serverInfo.port);
inet_aton(ip_addr.c_str(), &addr_in.sin_addr);
addr = *reinterpret_cast<sockaddr_storage*>(&addr_in);
addrLen = sizeof(sockaddr_in);
status = session->setupInetClient(ip_addr.c_str(), serverInfo.port);
} break;
case SocketType::TIPC:
status = session->setupPreconnectedClient({}, [=]() {
#ifdef BINDER_RPC_TO_TRUSTY_TEST
auto port = trustyIpcPort(serverVersion);
for (size_t i = 0; i < 5; i++) {
// Try to connect several times,
// in case the service is slow to start
int tipcFd = tipc_connect(kTrustyIpcDevice, port.c_str());
if (tipcFd >= 0) {
return unique_fd(tipcFd);
}
usleep(50000);
}
return unique_fd();
#else
LOG_ALWAYS_FATAL("Tried to connect to Trusty outside of vendor");
return unique_fd();
#endif
});
break;
default:
LOG_ALWAYS_FATAL("Unknown socket type");
}
if (options.allowConnectFailure && status != OK) {
ret->sessions.clear();
break;
}
LOG_ALWAYS_FATAL_IF(status != OK, "Could not connect: %s", statusToString(status).c_str());
ret->sessions.push_back({session, session->getRootObject(), addr, addrLen});
}
return ret;
}
TEST_P(BinderRpc, ThreadPoolGreaterThanEqualRequested) {
if (clientOrServerSingleThreaded()) {
GTEST_SKIP() << "This test requires multiple threads";
}
constexpr size_t kNumThreads = 5;
auto proc = createRpcTestSocketServerProcess({.numThreads = kNumThreads});
EXPECT_OK(proc.rootIface->lock());
// block all but one thread taking locks
std::vector<std::thread> ts;
for (size_t i = 0; i < kNumThreads - 1; i++) {
ts.push_back(std::thread([&] { proc.rootIface->lockUnlock(); }));
}
usleep(100000); // give chance for calls on other threads
// other calls still work
EXPECT_EQ(OK, proc.rootBinder->pingBinder());
constexpr size_t blockTimeMs = 100;
size_t epochMsBefore = epochMillis();
// after this, we should never see a response within this time
EXPECT_OK(proc.rootIface->unlockInMsAsync(blockTimeMs));
// this call should be blocked for blockTimeMs
EXPECT_EQ(OK, proc.rootBinder->pingBinder());
size_t epochMsAfter = epochMillis();
EXPECT_GE(epochMsAfter, epochMsBefore + blockTimeMs) << epochMsBefore;
for (auto& t : ts) t.join();
}
static void testThreadPoolOverSaturated(sp<IBinderRpcTest> iface, size_t numCalls, size_t sleepMs) {
size_t epochMsBefore = epochMillis();
std::vector<std::thread> ts;
for (size_t i = 0; i < numCalls; i++) {
ts.push_back(std::thread([&] { iface->sleepMs(sleepMs); }));
}
for (auto& t : ts) t.join();
size_t epochMsAfter = epochMillis();
EXPECT_GE(epochMsAfter, epochMsBefore + 2 * sleepMs);
// b/272429574, b/365294257
// This flakes too much to test. Parallelization is tested
// in ThreadPoolGreaterThanEqualRequested and other tests.
// Test to make sure calls are handled in parallel.
// EXPECT_LE(epochMsAfter, epochMsBefore + (numCalls - 1) * sleepMs);
}
TEST_P(BinderRpc, ThreadPoolOverSaturated) {
if (clientOrServerSingleThreaded()) {
GTEST_SKIP() << "This test requires multiple threads";
}
constexpr size_t kNumThreads = 10;
constexpr size_t kNumCalls = kNumThreads + 3;
auto proc = createRpcTestSocketServerProcess({.numThreads = kNumThreads});
testThreadPoolOverSaturated(proc.rootIface, kNumCalls, 200 /*ms*/);
}
TEST_P(BinderRpc, ThreadPoolLimitOutgoing) {
if (clientOrServerSingleThreaded()) {
GTEST_SKIP() << "This test requires multiple threads";
}
constexpr size_t kNumThreads = 20;
constexpr size_t kNumOutgoingConnections = 10;
constexpr size_t kNumCalls = kNumOutgoingConnections + 3;
auto proc = createRpcTestSocketServerProcess(
{.numThreads = kNumThreads, .numOutgoingConnections = kNumOutgoingConnections});
testThreadPoolOverSaturated(proc.rootIface, kNumCalls, 200 /*ms*/);
}
TEST_P(BinderRpc, ThreadingStressTest) {
if (clientOrServerSingleThreaded()) {
GTEST_SKIP() << "This test requires multiple threads";
}
constexpr size_t kNumClientThreads = 5;
constexpr size_t kNumServerThreads = 5;
constexpr size_t kNumCalls = 50;
auto proc = createRpcTestSocketServerProcess({.numThreads = kNumServerThreads});
std::vector<std::thread> threads;
for (size_t i = 0; i < kNumClientThreads; i++) {
threads.push_back(std::thread([&] {
for (size_t j = 0; j < kNumCalls; j++) {
sp<IBinder> out;
EXPECT_OK(proc.rootIface->repeatBinder(proc.rootBinder, &out));
EXPECT_EQ(proc.rootBinder, out);
}
}));
}
for (auto& t : threads) t.join();
}
static void saturateThreadPool(size_t threadCount, const sp<IBinderRpcTest>& iface) {
std::vector<std::thread> threads;
for (size_t i = 0; i < threadCount; i++) {
threads.push_back(std::thread([&] { EXPECT_OK(iface->sleepMs(500)); }));
}
for (auto& t : threads) t.join();
}
TEST_P(BinderRpc, OnewayStressTest) {
if (clientOrServerSingleThreaded()) {
GTEST_SKIP() << "This test requires multiple threads";
}
constexpr size_t kNumClientThreads = 10;
constexpr size_t kNumServerThreads = 10;
constexpr size_t kNumCalls = 1000;
auto proc = createRpcTestSocketServerProcess({.numThreads = kNumServerThreads});
std::vector<std::thread> threads;
for (size_t i = 0; i < kNumClientThreads; i++) {
threads.push_back(std::thread([&] {
for (size_t j = 0; j < kNumCalls; j++) {
EXPECT_OK(proc.rootIface->sendString("a"));
}
}));
}
for (auto& t : threads) t.join();
saturateThreadPool(kNumServerThreads, proc.rootIface);
}
TEST_P(BinderRpc, OnewayCallQueueingWithFds) {
if (!supportsFdTransport()) {
GTEST_SKIP() << "Would fail trivially (which is tested elsewhere)";
}
if (clientOrServerSingleThreaded()) {
GTEST_SKIP() << "This test requires multiple threads";
}
constexpr size_t kNumServerThreads = 3;
// This test forces a oneway transaction to be queued by issuing two
// `blockingSendFdOneway` calls, then drains the queue by issuing two
// `blockingRecvFd` calls.
//
// For more details about the queuing semantics see
// https://developer.android.com/reference/android/os/IBinder#FLAG_ONEWAY
auto proc = createRpcTestSocketServerProcess({
.numThreads = kNumServerThreads,
.clientFileDescriptorTransportMode = RpcSession::FileDescriptorTransportMode::UNIX,
.serverSupportedFileDescriptorTransportModes =
{RpcSession::FileDescriptorTransportMode::UNIX},
});
EXPECT_OK(proc.rootIface->blockingSendFdOneway(
android::os::ParcelFileDescriptor(mockFileDescriptor("a"))));
EXPECT_OK(proc.rootIface->blockingSendFdOneway(
android::os::ParcelFileDescriptor(mockFileDescriptor("b"))));
android::os::ParcelFileDescriptor fdA;
EXPECT_OK(proc.rootIface->blockingRecvFd(&fdA));
std::string result;
ASSERT_TRUE(ReadFdToString(fdA.get(), &result));
EXPECT_EQ(result, "a");
android::os::ParcelFileDescriptor fdB;
EXPECT_OK(proc.rootIface->blockingRecvFd(&fdB));
ASSERT_TRUE(ReadFdToString(fdB.get(), &result));
EXPECT_EQ(result, "b");
saturateThreadPool(kNumServerThreads, proc.rootIface);
}
TEST_P(BinderRpc, OnewayCallQueueing) {
if (clientOrServerSingleThreaded()) {
GTEST_SKIP() << "This test requires multiple threads";
}
constexpr size_t kNumQueued = 10;
constexpr size_t kNumExtraServerThreads = 4;
// make sure calls to the same object happen on the same thread
auto proc = createRpcTestSocketServerProcess({.numThreads = 1 + kNumExtraServerThreads});
// all these *Oneway commands should be queued on the server sequentially,
// even though there are multiple threads.
for (size_t i = 0; i + 1 < kNumQueued; i++) {
proc.rootIface->blockingSendIntOneway(i);
}
for (size_t i = 0; i + 1 < kNumQueued; i++) {
int n;
proc.rootIface->blockingRecvInt(&n);
EXPECT_EQ(n, static_cast<ssize_t>(i));
}
saturateThreadPool(1 + kNumExtraServerThreads, proc.rootIface);
}
TEST_P(BinderRpc, OnewayCallExhaustion) {
if (clientOrServerSingleThreaded()) {
GTEST_SKIP() << "This test requires multiple threads";
}
constexpr size_t kNumClients = 2;
constexpr size_t kTooLongMs = 1000;
auto proc = createRpcTestSocketServerProcess({.numThreads = kNumClients, .numSessions = 2});
// Build up oneway calls on the second session to make sure it terminates
// and shuts down. The first session should be unaffected (proc destructor
// checks the first session).
auto iface = interface_cast<IBinderRpcTest>(proc.proc->sessions.at(1).root);
std::vector<std::thread> threads;
for (size_t i = 0; i < kNumClients; i++) {
// one of these threads will get stuck queueing a transaction once the
// socket fills up, the other will be able to fill up transactions on
// this object
threads.push_back(std::thread([&] {
while (iface->sleepMsAsync(kTooLongMs).isOk()) {
}
}));
}
for (auto& t : threads) t.join();
Status status = iface->sleepMsAsync(kTooLongMs);
EXPECT_EQ(DEAD_OBJECT, status.transactionError()) << status;
// now that it has died, wait for the remote session to shutdown
std::vector<int32_t> remoteCounts;
do {
EXPECT_OK(proc.rootIface->countBinders(&remoteCounts));
} while (remoteCounts.size() == kNumClients);
// the second session should be shutdown in the other process by the time we
// are able to join above (it'll only be hung up once it finishes processing
// any pending commands). We need to erase this session from the record
// here, so that the destructor for our session won't check that this
// session is valid, but we still want it to test the other session.
proc.proc->sessions.erase(proc.proc->sessions.begin() + 1);
}
TEST_P(BinderRpc, SessionWithIncomingThreadpoolDoesntLeak) {
if (clientOrServerSingleThreaded()) {
GTEST_SKIP() << "This test requires multiple threads";
}
// session 0 - will check for leaks in destrutor of proc
// session 1 - we want to make sure it gets deleted when we drop all references to it
auto proc = createRpcTestSocketServerProcess(
{.numThreads = 1, .numSessions = 2, .numIncomingConnectionsBySession = {0, 1}});
wp<RpcSession> session = proc.proc->sessions.at(1).session;
// remove all references to the second session
proc.proc->sessions.at(1).root = nullptr;
proc.proc->sessions.erase(proc.proc->sessions.begin() + 1);
// TODO(b/271830568) more efficient way to wait for other incoming threadpool
// to drain commands.
for (size_t i = 0; i < 100; i++) {
usleep(10 * 1000);
if (session.promote() == nullptr) break;
}
EXPECT_EQ(nullptr, session.promote());
// now that it has died, wait for the remote session to shutdown
std::vector<int32_t> remoteCounts;
do {
EXPECT_OK(proc.rootIface->countBinders(&remoteCounts));
} while (remoteCounts.size() > 1);
}
TEST_P(BinderRpc, SingleDeathRecipient) {
if (clientOrServerSingleThreaded()) {
GTEST_SKIP() << "This test requires multiple threads";
}
class MyDeathRec : public IBinder::DeathRecipient {
public:
void binderDied(const wp<IBinder>& /* who */) override {
dead = true;
mCv.notify_one();
}
std::mutex mMtx;
std::condition_variable mCv;
bool dead = false;
};
// Death recipient needs to have an incoming connection to be called
auto proc = createRpcTestSocketServerProcess(
{.numThreads = 1, .numSessions = 1, .numIncomingConnectionsBySession = {1}});
auto dr = sp<MyDeathRec>::make();
ASSERT_EQ(OK, proc.rootBinder->linkToDeath(dr, (void*)1, 0));
if (auto status = proc.rootIface->scheduleShutdown(); !status.isOk()) {
EXPECT_EQ(DEAD_OBJECT, status.transactionError()) << status;
}
std::unique_lock<std::mutex> lock(dr->mMtx);
ASSERT_TRUE(dr->mCv.wait_for(lock, 100ms, [&]() { return dr->dead; }));
// need to wait for the session to shutdown so we don't "Leak session"
// can't do this before checking the death recipient by calling
// forceShutdown earlier, because shutdownAndWait will also trigger
// a death recipient, but if we had a way to wait for the service
// to gracefully shutdown, we could use that here.
EXPECT_TRUE(proc.proc->sessions.at(0).session->shutdownAndWait(true));
proc.expectAlreadyShutdown = true;
}
TEST_P(BinderRpc, SingleDeathRecipientOnShutdown) {
if (clientOrServerSingleThreaded()) {
GTEST_SKIP() << "This test requires multiple threads";
}
class MyDeathRec : public IBinder::DeathRecipient {
public:
void binderDied(const wp<IBinder>& /* who */) override {
dead = true;
mCv.notify_one();
}
std::mutex mMtx;
std::condition_variable mCv;
bool dead = false;
};
// Death recipient needs to have an incoming connection to be called
auto proc = createRpcTestSocketServerProcess(
{.numThreads = 1, .numSessions = 1, .numIncomingConnectionsBySession = {1}});
auto dr = sp<MyDeathRec>::make();
EXPECT_EQ(OK, proc.rootBinder->linkToDeath(dr, (void*)1, 0));
// Explicitly calling shutDownAndWait will cause the death recipients
// to be called.
EXPECT_TRUE(proc.proc->sessions.at(0).session->shutdownAndWait(true));
std::unique_lock<std::mutex> lock(dr->mMtx);
if (!dr->dead) {
EXPECT_EQ(std::cv_status::no_timeout, dr->mCv.wait_for(lock, 100ms));
}
EXPECT_TRUE(dr->dead) << "Failed to receive the death notification.";
proc.proc->terminate();
proc.proc->setCustomExitStatusCheck([](int wstatus) {
EXPECT_TRUE(WIFSIGNALED(wstatus) && WTERMSIG(wstatus) == SIGTERM)
<< "server process failed incorrectly: " << WaitStatusToString(wstatus);
});
proc.expectAlreadyShutdown = true;
}
TEST_P(BinderRpc, DeathRecipientFailsWithoutIncoming) {
if (socketType() == SocketType::TIPC) {
// This should work, but Trusty takes too long to restart the service
GTEST_SKIP() << "Service death test not supported on Trusty";
}
class MyDeathRec : public IBinder::DeathRecipient {
public:
void binderDied(const wp<IBinder>& /* who */) override {}
};
auto proc = createRpcTestSocketServerProcess({.numThreads = 1, .numSessions = 1});
auto dr = sp<MyDeathRec>::make();
EXPECT_EQ(INVALID_OPERATION, proc.rootBinder->linkToDeath(dr, (void*)1, 0));
}
TEST_P(BinderRpc, UnlinkDeathRecipient) {
if (clientOrServerSingleThreaded()) {
GTEST_SKIP() << "This test requires multiple threads";
}
class MyDeathRec : public IBinder::DeathRecipient {
public:
void binderDied(const wp<IBinder>& /* who */) override {
GTEST_FAIL() << "This should not be called after unlinkToDeath";
}
};
// Death recipient needs to have an incoming connection to be called
auto proc = createRpcTestSocketServerProcess(
{.numThreads = 1, .numSessions = 1, .numIncomingConnectionsBySession = {1}});
auto dr = sp<MyDeathRec>::make();
ASSERT_EQ(OK, proc.rootBinder->linkToDeath(dr, (void*)1, 0));
ASSERT_EQ(OK, proc.rootBinder->unlinkToDeath(dr, (void*)1, 0, nullptr));
proc.forceShutdown();
}
TEST_P(BinderRpc, Die) {
if (socketType() == SocketType::TIPC) {
// This should work, but Trusty takes too long to restart the service
GTEST_SKIP() << "Service death test not supported on Trusty";
}
for (bool doDeathCleanup : {true, false}) {
auto proc = createRpcTestSocketServerProcess({});
// make sure there is some state during crash
// 1. we hold their binder
sp<IBinderRpcSession> session;
EXPECT_OK(proc.rootIface->openSession("happy", &session));
// 2. they hold our binder
sp<IBinder> binder = new BBinder();
EXPECT_OK(proc.rootIface->holdBinder(binder));
EXPECT_EQ(DEAD_OBJECT, proc.rootIface->die(doDeathCleanup).transactionError())
<< "Do death cleanup: " << doDeathCleanup;
proc.proc->setCustomExitStatusCheck([](int wstatus) {
EXPECT_TRUE(WIFEXITED(wstatus) && WEXITSTATUS(wstatus) == 1)
<< "server process failed incorrectly: " << WaitStatusToString(wstatus);
});
proc.expectAlreadyShutdown = true;
}
}
TEST_P(BinderRpc, UseKernelBinderCallingId) {
// This test only works if the current process shared the internal state of
// ProcessState with the service across the call to fork(). Both the static
// libraries and libbinder.so have their own separate copies of all the
// globals, so the test only works when the test client and service both use
// libbinder.so (when using static libraries, even a client and service
// using the same kind of static library should have separate copies of the
// variables).
if (!kEnableSharedLibs || serverSingleThreaded() || noKernel()) {
GTEST_SKIP() << "Test disabled because Binder kernel driver was disabled "
"at build time.";
}
auto proc = createRpcTestSocketServerProcess({});
// we can't allocate IPCThreadState so actually the first time should
// succeed :(
EXPECT_OK(proc.rootIface->useKernelBinderCallingId());
// second time! we catch the error :)
EXPECT_EQ(DEAD_OBJECT, proc.rootIface->useKernelBinderCallingId().transactionError());
proc.proc->setCustomExitStatusCheck([](int wstatus) {
EXPECT_TRUE(WIFSIGNALED(wstatus) && WTERMSIG(wstatus) == SIGABRT)
<< "server process failed incorrectly: " << WaitStatusToString(wstatus);
});
proc.expectAlreadyShutdown = true;
}
TEST_P(BinderRpc, FileDescriptorTransportRejectNone) {
if (socketType() == SocketType::TIPC) {
GTEST_SKIP() << "File descriptor tests not supported on Trusty (yet)";
}
auto proc = createRpcTestSocketServerProcess({
.clientFileDescriptorTransportMode = RpcSession::FileDescriptorTransportMode::NONE,
.serverSupportedFileDescriptorTransportModes =
{RpcSession::FileDescriptorTransportMode::UNIX},
.allowConnectFailure = true,
});
EXPECT_TRUE(proc.proc->sessions.empty()) << "session connections should have failed";
proc.proc->terminate();
proc.proc->setCustomExitStatusCheck([](int wstatus) {
EXPECT_TRUE(WIFSIGNALED(wstatus) && WTERMSIG(wstatus) == SIGTERM)
<< "server process failed incorrectly: " << WaitStatusToString(wstatus);
});
proc.expectAlreadyShutdown = true;
}
TEST_P(BinderRpc, FileDescriptorTransportRejectUnix) {
if (socketType() == SocketType::TIPC) {
GTEST_SKIP() << "File descriptor tests not supported on Trusty (yet)";
}
auto proc = createRpcTestSocketServerProcess({
.clientFileDescriptorTransportMode = RpcSession::FileDescriptorTransportMode::UNIX,
.serverSupportedFileDescriptorTransportModes =
{RpcSession::FileDescriptorTransportMode::NONE},
.allowConnectFailure = true,
});
EXPECT_TRUE(proc.proc->sessions.empty()) << "session connections should have failed";
proc.proc->terminate();
proc.proc->setCustomExitStatusCheck([](int wstatus) {
EXPECT_TRUE(WIFSIGNALED(wstatus) && WTERMSIG(wstatus) == SIGTERM)
<< "server process failed incorrectly: " << WaitStatusToString(wstatus);
});
proc.expectAlreadyShutdown = true;
}
TEST_P(BinderRpc, FileDescriptorTransportOptionalUnix) {
if (socketType() == SocketType::TIPC) {
GTEST_SKIP() << "File descriptor tests not supported on Trusty (yet)";
}
auto proc = createRpcTestSocketServerProcess({
.clientFileDescriptorTransportMode = RpcSession::FileDescriptorTransportMode::NONE,
.serverSupportedFileDescriptorTransportModes =
{RpcSession::FileDescriptorTransportMode::NONE,
RpcSession::FileDescriptorTransportMode::UNIX},
});
android::os::ParcelFileDescriptor out;
auto status = proc.rootIface->echoAsFile("hello", &out);
EXPECT_EQ(status.transactionError(), FDS_NOT_ALLOWED) << status;
}
TEST_P(BinderRpc, ReceiveFile) {
if (socketType() == SocketType::TIPC) {
GTEST_SKIP() << "File descriptor tests not supported on Trusty (yet)";
}
auto proc = createRpcTestSocketServerProcess({
.clientFileDescriptorTransportMode = RpcSession::FileDescriptorTransportMode::UNIX,
.serverSupportedFileDescriptorTransportModes =
{RpcSession::FileDescriptorTransportMode::UNIX},
});
android::os::ParcelFileDescriptor out;
auto status = proc.rootIface->echoAsFile("hello", &out);
if (!supportsFdTransport()) {
EXPECT_EQ(status.transactionError(), BAD_VALUE) << status;
return;
}
ASSERT_TRUE(status.isOk()) << status;
std::string result;
ASSERT_TRUE(ReadFdToString(out.get(), &result));
ASSERT_EQ(result, "hello");
}
TEST_P(BinderRpc, SendFiles) {
if (socketType() == SocketType::TIPC) {
GTEST_SKIP() << "File descriptor tests not supported on Trusty (yet)";
}
auto proc = createRpcTestSocketServerProcess({
.clientFileDescriptorTransportMode = RpcSession::FileDescriptorTransportMode::UNIX,
.serverSupportedFileDescriptorTransportModes =
{RpcSession::FileDescriptorTransportMode::UNIX},
});
std::vector<android::os::ParcelFileDescriptor> files;
files.emplace_back(android::os::ParcelFileDescriptor(mockFileDescriptor("123")));
files.emplace_back(android::os::ParcelFileDescriptor(mockFileDescriptor("a")));
files.emplace_back(android::os::ParcelFileDescriptor(mockFileDescriptor("b")));
files.emplace_back(android::os::ParcelFileDescriptor(mockFileDescriptor("cd")));
android::os::ParcelFileDescriptor out;
auto status = proc.rootIface->concatFiles(files, &out);
if (!supportsFdTransport()) {
EXPECT_EQ(status.transactionError(), BAD_VALUE) << status;
return;
}
ASSERT_TRUE(status.isOk()) << status;
std::string result;
EXPECT_TRUE(ReadFdToString(out.get(), &result));
EXPECT_EQ(result, "123abcd");
}
TEST_P(BinderRpc, SendMaxFiles) {
if (!supportsFdTransport()) {
GTEST_SKIP() << "Would fail trivially (which is tested by BinderRpc::SendFiles)";
}
auto proc = createRpcTestSocketServerProcess({
.clientFileDescriptorTransportMode = RpcSession::FileDescriptorTransportMode::UNIX,
.serverSupportedFileDescriptorTransportModes =
{RpcSession::FileDescriptorTransportMode::UNIX},
});
std::vector<android::os::ParcelFileDescriptor> files;
for (int i = 0; i < 253; i++) {
files.emplace_back(android::os::ParcelFileDescriptor(mockFileDescriptor("a")));
}
android::os::ParcelFileDescriptor out;
auto status = proc.rootIface->concatFiles(files, &out);
ASSERT_TRUE(status.isOk()) << status;
std::string result;
EXPECT_TRUE(ReadFdToString(out.get(), &result));
EXPECT_EQ(result, std::string(253, 'a'));
}
TEST_P(BinderRpc, SendTooManyFiles) {
if (!supportsFdTransport()) {
GTEST_SKIP() << "Would fail trivially (which is tested by BinderRpc::SendFiles)";
}
auto proc = createRpcTestSocketServerProcess({
.clientFileDescriptorTransportMode = RpcSession::FileDescriptorTransportMode::UNIX,
.serverSupportedFileDescriptorTransportModes =
{RpcSession::FileDescriptorTransportMode::UNIX},
});
std::vector<android::os::ParcelFileDescriptor> files;
for (int i = 0; i < 254; i++) {
files.emplace_back(android::os::ParcelFileDescriptor(mockFileDescriptor("a")));
}
android::os::ParcelFileDescriptor out;
auto status = proc.rootIface->concatFiles(files, &out);
EXPECT_EQ(status.transactionError(), BAD_VALUE) << status;
}
TEST_P(BinderRpc, AppendInvalidFd) {
if (socketType() == SocketType::TIPC) {
GTEST_SKIP() << "File descriptor tests not supported on Trusty (yet)";
}
auto proc = createRpcTestSocketServerProcess({
.clientFileDescriptorTransportMode = RpcSession::FileDescriptorTransportMode::UNIX,
.serverSupportedFileDescriptorTransportModes =
{RpcSession::FileDescriptorTransportMode::UNIX},
});
int badFd = fcntl(STDERR_FILENO, F_DUPFD_CLOEXEC, 0);
ASSERT_NE(badFd, -1);
// Close the file descriptor so it becomes invalid for dup
close(badFd);
Parcel p1;
p1.markForBinder(proc.rootBinder);
p1.writeInt32(3);
EXPECT_EQ(OK, p1.writeFileDescriptor(badFd, false));
Parcel pRaw;
pRaw.markForBinder(proc.rootBinder);
EXPECT_EQ(OK, pRaw.appendFrom(&p1, 0, p1.dataSize()));
pRaw.setDataPosition(0);
EXPECT_EQ(3, pRaw.readInt32());
ASSERT_EQ(-1, pRaw.readFileDescriptor());
}
#ifndef __ANDROID_VENDOR__ // No AIBinder_fromPlatformBinder on vendor
TEST_P(BinderRpc, WorksWithLibbinderNdkPing) {
if constexpr (!kEnableSharedLibs) {
GTEST_SKIP() << "Test disabled because Binder was built as a static library";
}
auto proc = createRpcTestSocketServerProcess({});
ndk::SpAIBinder binder = ndk::SpAIBinder(AIBinder_fromPlatformBinder(proc.rootBinder));
ASSERT_NE(binder, nullptr);
ASSERT_EQ(STATUS_OK, AIBinder_ping(binder.get()));
}
TEST_P(BinderRpc, WorksWithLibbinderNdkUserTransaction) {
if constexpr (!kEnableSharedLibs) {
GTEST_SKIP() << "Test disabled because Binder was built as a static library";
}
auto proc = createRpcTestSocketServerProcess({});
ndk::SpAIBinder binder = ndk::SpAIBinder(AIBinder_fromPlatformBinder(proc.rootBinder));
ASSERT_NE(binder, nullptr);
auto ndkBinder = aidl::IBinderRpcTest::fromBinder(binder);
ASSERT_NE(ndkBinder, nullptr);
std::string out;
ndk::ScopedAStatus status = ndkBinder->doubleString("aoeu", &out);
ASSERT_TRUE(status.isOk()) << status.getDescription();
ASSERT_EQ("aoeuaoeu", out);
}
#endif // __ANDROID_VENDOR__
ssize_t countFds() {
DIR* dir = opendir("/proc/self/fd/");
if (dir == nullptr) return -1;
ssize_t ret = 0;
dirent* ent;
while ((ent = readdir(dir)) != nullptr) ret++;
closedir(dir);
return ret;
}
TEST_P(BinderRpc, Fds) {
if (serverSingleThreaded()) {
GTEST_SKIP() << "This test requires multiple threads";
}
if (socketType() == SocketType::TIPC) {
GTEST_SKIP() << "File descriptor tests not supported on Trusty (yet)";
}
ssize_t beforeFds = countFds();
ASSERT_GE(beforeFds, 0);
{
auto proc = createRpcTestSocketServerProcess({.numThreads = 10});
ASSERT_EQ(OK, proc.rootBinder->pingBinder());
}
ASSERT_EQ(beforeFds, countFds()) << (system("ls -l /proc/self/fd/"), "fd leak?");
}
// TODO need to add IServiceManager.cpp/.h to libbinder_no_kernel
#ifdef BINDER_WITH_KERNEL_IPC
class BinderRpcAccessor : public BinderRpc {
void SetUp() override {
if (serverSingleThreaded()) {
// This blocks on android::FdTrigger::triggerablePoll when attempting to set
// up the client RpcSession
GTEST_SKIP() << "Accessors are not supported for single threaded libbinder";
}
if (rpcSecurity() == RpcSecurity::TLS) {
GTEST_SKIP() << "Accessors are not supported with TLS";
// ... for now
}
if (socketType() == SocketType::UNIX_BOOTSTRAP) {
GTEST_SKIP() << "Accessors do not support UNIX_BOOTSTRAP because no connection "
"information is known";
}
if (socketType() == SocketType::TIPC) {
GTEST_SKIP() << "Accessors do not support TIPC because the socket transport is not "
"known in libbinder";
}
BinderRpc::SetUp();
}
};
inline void waitForExtraSessionCleanup(const BinderRpcTestProcessSession& proc) {
// Need to give the server some time to delete its RpcSession after our last
// reference is dropped, closing the connection. Check for up to 1 second,
// every 10 ms.
for (size_t i = 0; i < 100; i++) {
std::vector<int32_t> remoteCounts;
EXPECT_OK(proc.rootIface->countBinders(&remoteCounts));
// We exect the original binder to still be alive, we just want to wait
// for this extra session to be cleaned up.
if (remoteCounts.size() == proc.proc->sessions.size()) break;
usleep(10000);
}
}
TEST_P(BinderRpcAccessor, InjectAndGetServiceHappyPath) {
constexpr size_t kNumThreads = 10;
const String16 kInstanceName("super.cool.service/better_than_default");
auto proc = createRpcTestSocketServerProcess({.numThreads = kNumThreads});
EXPECT_EQ(OK, proc.rootBinder->pingBinder());
auto receipt = addAccessorProvider(
{String8(kInstanceName).c_str()}, [&](const String16& name) -> sp<IBinder> {
return createAccessor(name,
[&](const String16& name, sockaddr* outAddr,
socklen_t addrSize) -> status_t {
if (outAddr == nullptr ||
addrSize < proc.proc->sessions[0].addrLen) {
return BAD_VALUE;
}
if (name == kInstanceName) {
if (proc.proc->sessions[0].addr.ss_family ==
AF_UNIX) {
sockaddr_un* un = reinterpret_cast<sockaddr_un*>(
&proc.proc->sessions[0].addr);
ALOGE("inside callback: %s", un->sun_path);
}
std::memcpy(outAddr, &proc.proc->sessions[0].addr,
proc.proc->sessions[0].addrLen);
return OK;
}
return NAME_NOT_FOUND;
});
});
EXPECT_FALSE(receipt.expired());
sp<IBinder> binder = defaultServiceManager()->checkService(kInstanceName);
sp<IBinderRpcTest> service = checked_interface_cast<IBinderRpcTest>(binder);
EXPECT_NE(service, nullptr);
sp<IBinder> out;
EXPECT_OK(service->repeatBinder(binder, &out));
EXPECT_EQ(binder, out);
out.clear();
binder.clear();
service.clear();
status_t status = removeAccessorProvider(receipt);
EXPECT_EQ(status, OK);
waitForExtraSessionCleanup(proc);
}
TEST_P(BinderRpcAccessor, InjectNoAccessorProvided) {
const String16 kInstanceName("doesnt_matter_nothing_checks");
bool isProviderDeleted = false;
auto receipt = addAccessorProvider({String8(kInstanceName).c_str()},
[&](const String16&) -> sp<IBinder> { return nullptr; });
EXPECT_FALSE(receipt.expired());
sp<IBinder> binder = defaultServiceManager()->checkService(kInstanceName);
EXPECT_EQ(binder, nullptr);
status_t status = removeAccessorProvider(receipt);
EXPECT_EQ(status, OK);
}
TEST_P(BinderRpcAccessor, InjectDuplicateAccessorProvider) {
const String16 kInstanceName("super.cool.service/better_than_default");
const String16 kInstanceName2("super.cool.service/better_than_default2");
auto receipt =
addAccessorProvider({String8(kInstanceName).c_str(), String8(kInstanceName2).c_str()},
[&](const String16&) -> sp<IBinder> { return nullptr; });
EXPECT_FALSE(receipt.expired());
// reject this because it's associated with an already used instance name
auto receipt2 = addAccessorProvider({String8(kInstanceName).c_str()},
[&](const String16&) -> sp<IBinder> { return nullptr; });
EXPECT_TRUE(receipt2.expired());
// the first provider should still be usable
sp<IBinder> binder = defaultServiceManager()->checkService(kInstanceName);
EXPECT_EQ(binder, nullptr);
status_t status = removeAccessorProvider(receipt);
EXPECT_EQ(status, OK);
}
TEST_P(BinderRpcAccessor, InjectAccessorProviderNoInstance) {
auto receipt = addAccessorProvider({}, [&](const String16&) -> sp<IBinder> { return nullptr; });
EXPECT_TRUE(receipt.expired());
}
TEST_P(BinderRpcAccessor, InjectNoSockaddrProvided) {
constexpr size_t kNumThreads = 10;
const String16 kInstanceName("super.cool.service/better_than_default");
auto proc = createRpcTestSocketServerProcess({.numThreads = kNumThreads});
EXPECT_EQ(OK, proc.rootBinder->pingBinder());
bool isProviderDeleted = false;
bool isAccessorDeleted = false;
auto receipt = addAccessorProvider({String8(kInstanceName).c_str()},
[&](const String16& name) -> sp<IBinder> {
return createAccessor(name,
[&](const String16&, sockaddr*,
socklen_t) -> status_t {
// don't fill in outAddr
return NAME_NOT_FOUND;
});
});
EXPECT_FALSE(receipt.expired());
sp<IBinder> binder = defaultServiceManager()->checkService(kInstanceName);
EXPECT_EQ(binder, nullptr);
status_t status = removeAccessorProvider(receipt);
EXPECT_EQ(status, OK);
}
constexpr const char* kARpcInstance = "some.instance.name.IFoo/default";
const char* kARpcSupportedServices[] = {
kARpcInstance,
};
const uint32_t kARpcNumSupportedServices = 1;
struct ConnectionInfoData {
sockaddr_storage addr;
socklen_t len;
bool* isDeleted;
~ConnectionInfoData() {
if (isDeleted) *isDeleted = true;
}
};
struct AccessorProviderData {
sockaddr_storage addr;
socklen_t len;
bool* isDeleted;
~AccessorProviderData() {
if (isDeleted) *isDeleted = true;
}
};
void accessorProviderDataOnDelete(void* data) {
delete reinterpret_cast<AccessorProviderData*>(data);
}
void infoProviderDataOnDelete(void* data) {
delete reinterpret_cast<ConnectionInfoData*>(data);
}
ABinderRpc_ConnectionInfo* infoProvider(const char* instance, void* cookie) {
if (instance == nullptr || cookie == nullptr) return nullptr;
ConnectionInfoData* data = reinterpret_cast<ConnectionInfoData*>(cookie);
return ABinderRpc_ConnectionInfo_new(reinterpret_cast<const sockaddr*>(&data->addr), data->len);
}
ABinderRpc_Accessor* getAccessor(const char* instance, void* cookie) {
if (instance == nullptr || cookie == nullptr) return nullptr;
if (0 != strcmp(instance, kARpcInstance)) return nullptr;
AccessorProviderData* data = reinterpret_cast<AccessorProviderData*>(cookie);
ConnectionInfoData* info = new ConnectionInfoData{
.addr = data->addr,
.len = data->len,
.isDeleted = nullptr,
};
return ABinderRpc_Accessor_new(instance, infoProvider, info, infoProviderDataOnDelete);
}
class BinderARpcNdk : public ::testing::Test {};
TEST_F(BinderARpcNdk, ARpcProviderNewDelete) {
bool isDeleted = false;
AccessorProviderData* data = new AccessorProviderData{{}, 0, &isDeleted};
ABinderRpc_AccessorProvider* provider =
ABinderRpc_registerAccessorProvider(getAccessor, kARpcSupportedServices,
kARpcNumSupportedServices, data,
accessorProviderDataOnDelete);
ASSERT_NE(provider, nullptr);
EXPECT_FALSE(isDeleted);
ABinderRpc_unregisterAccessorProvider(provider);
EXPECT_TRUE(isDeleted);
}
TEST_F(BinderARpcNdk, ARpcProviderDeleteOnError) {
bool isDeleted = false;
AccessorProviderData* data = new AccessorProviderData{{}, 0, &isDeleted};
ABinderRpc_AccessorProvider* provider =
ABinderRpc_registerAccessorProvider(getAccessor, kARpcSupportedServices, 0, data,
accessorProviderDataOnDelete);
ASSERT_EQ(provider, nullptr);
EXPECT_TRUE(isDeleted);
}
TEST_F(BinderARpcNdk, ARpcProvideOnErrorNoDeleteCbNoCrash) {
ABinderRpc_AccessorProvider* provider =
ABinderRpc_registerAccessorProvider(getAccessor, kARpcSupportedServices, 0, nullptr,
nullptr);
ASSERT_EQ(provider, nullptr);
}
TEST_F(BinderARpcNdk, ARpcProviderDuplicateInstance) {
const char* instance = "some.instance.name.IFoo/default";
const uint32_t numInstances = 2;
const char* instances[numInstances] = {
instance,
"some.other.instance/default",
};
bool isDeleted = false;
AccessorProviderData* data = new AccessorProviderData{{}, 0, &isDeleted};
ABinderRpc_AccessorProvider* provider =
ABinderRpc_registerAccessorProvider(getAccessor, instances, numInstances, data,
accessorProviderDataOnDelete);
ASSERT_NE(provider, nullptr);
EXPECT_FALSE(isDeleted);
const uint32_t numInstances2 = 1;
const char* instances2[numInstances2] = {
instance,
};
bool isDeleted2 = false;
AccessorProviderData* data2 = new AccessorProviderData{{}, 0, &isDeleted2};
ABinderRpc_AccessorProvider* provider2 =
ABinderRpc_registerAccessorProvider(getAccessor, instances2, numInstances2, data2,
accessorProviderDataOnDelete);
EXPECT_EQ(provider2, nullptr);
// If it fails to be registered, the data is still cleaned up with
// accessorProviderDataOnDelete
EXPECT_TRUE(isDeleted2);
ABinderRpc_unregisterAccessorProvider(provider);
EXPECT_TRUE(isDeleted);
}
TEST_F(BinderARpcNdk, ARpcProviderRegisterNoInstance) {
const uint32_t numInstances = 0;
const char* instances[numInstances] = {};
bool isDeleted = false;
AccessorProviderData* data = new AccessorProviderData{{}, 0, &isDeleted};
ABinderRpc_AccessorProvider* provider =
ABinderRpc_registerAccessorProvider(getAccessor, instances, numInstances, data,
accessorProviderDataOnDelete);
ASSERT_EQ(provider, nullptr);
}
TEST_F(BinderARpcNdk, ARpcAccessorNewDelete) {
bool isDeleted = false;
ConnectionInfoData* data = new ConnectionInfoData{{}, 0, &isDeleted};
ABinderRpc_Accessor* accessor =
ABinderRpc_Accessor_new("gshoe_service", infoProvider, data, infoProviderDataOnDelete);
ASSERT_NE(accessor, nullptr);
EXPECT_FALSE(isDeleted);
ABinderRpc_Accessor_delete(accessor);
EXPECT_TRUE(isDeleted);
}
TEST_F(BinderARpcNdk, ARpcConnectionInfoNewDelete) {
sockaddr_vm addr{
.svm_family = AF_VSOCK,
.svm_port = VMADDR_PORT_ANY,
.svm_cid = VMADDR_CID_ANY,
};
ABinderRpc_ConnectionInfo* info =
ABinderRpc_ConnectionInfo_new(reinterpret_cast<sockaddr*>(&addr), sizeof(sockaddr_vm));
EXPECT_NE(info, nullptr);
ABinderRpc_ConnectionInfo_delete(info);
}
TEST_F(BinderARpcNdk, ARpcAsFromBinderAsBinder) {
bool isDeleted = false;
ConnectionInfoData* data = new ConnectionInfoData{{}, 0, &isDeleted};
ABinderRpc_Accessor* accessor =
ABinderRpc_Accessor_new("gshoe_service", infoProvider, data, infoProviderDataOnDelete);
ASSERT_NE(accessor, nullptr);
EXPECT_FALSE(isDeleted);
{
ndk::SpAIBinder binder = ndk::SpAIBinder(ABinderRpc_Accessor_asBinder(accessor));
EXPECT_NE(binder.get(), nullptr);
ABinderRpc_Accessor* accessor2 =
ABinderRpc_Accessor_fromBinder("wrong_service_name", binder.get());
// The API checks for the expected service name that is associated with
// the accessor!
EXPECT_EQ(accessor2, nullptr);
accessor2 = ABinderRpc_Accessor_fromBinder("gshoe_service", binder.get());
EXPECT_NE(accessor2, nullptr);
// this is a new ABinderRpc_Accessor object that wraps the underlying
// libbinder object.
EXPECT_NE(accessor, accessor2);
ndk::SpAIBinder binder2 = ndk::SpAIBinder(ABinderRpc_Accessor_asBinder(accessor2));
EXPECT_EQ(binder.get(), binder2.get());
ABinderRpc_Accessor_delete(accessor2);
}
EXPECT_FALSE(isDeleted);
ABinderRpc_Accessor_delete(accessor);
EXPECT_TRUE(isDeleted);
}
TEST_F(BinderARpcNdk, ARpcRequireProviderOnDeleteCallback) {
EXPECT_EQ(nullptr,
ABinderRpc_registerAccessorProvider(getAccessor, kARpcSupportedServices,
kARpcNumSupportedServices,
reinterpret_cast<void*>(1), nullptr));
}
TEST_F(BinderARpcNdk, ARpcRequireInfoOnDeleteCallback) {
EXPECT_EQ(nullptr,
ABinderRpc_Accessor_new("the_best_service_name", infoProvider,
reinterpret_cast<void*>(1), nullptr));
}
TEST_F(BinderARpcNdk, ARpcNoDataNoProviderOnDeleteCallback) {
ABinderRpc_AccessorProvider* provider =
ABinderRpc_registerAccessorProvider(getAccessor, kARpcSupportedServices,
kARpcNumSupportedServices, nullptr, nullptr);
ASSERT_NE(nullptr, provider);
ABinderRpc_unregisterAccessorProvider(provider);
}
TEST_F(BinderARpcNdk, ARpcNoDataNoInfoOnDeleteCallback) {
ABinderRpc_Accessor* accessor =
ABinderRpc_Accessor_new("the_best_service_name", infoProvider, nullptr, nullptr);
ASSERT_NE(nullptr, accessor);
ABinderRpc_Accessor_delete(accessor);
}
TEST_F(BinderARpcNdk, ARpcNullArgs_ConnectionInfo_new) {
sockaddr_storage addr;
EXPECT_EQ(nullptr, ABinderRpc_ConnectionInfo_new(reinterpret_cast<const sockaddr*>(&addr), 0));
}
TEST_F(BinderARpcNdk, ARpcDelegateAccessorWrongInstance) {
AccessorProviderData* data = new AccessorProviderData();
ABinderRpc_Accessor* accessor = getAccessor(kARpcInstance, data);
ASSERT_NE(accessor, nullptr);
AIBinder* localAccessorBinder = ABinderRpc_Accessor_asBinder(accessor);
EXPECT_NE(localAccessorBinder, nullptr);
AIBinder* delegatorBinder = nullptr;
binder_status_t status =
ABinderRpc_Accessor_delegateAccessor("bar", localAccessorBinder, &delegatorBinder);
EXPECT_EQ(status, NAME_NOT_FOUND);
AIBinder_decStrong(localAccessorBinder);
ABinderRpc_Accessor_delete(accessor);
delete data;
}
TEST_F(BinderARpcNdk, ARpcDelegateNonAccessor) {
auto service = defaultServiceManager()->checkService(String16(kKnownAidlService));
ASSERT_NE(nullptr, service);
ndk::SpAIBinder binder = ndk::SpAIBinder(AIBinder_fromPlatformBinder(service));
AIBinder* delegatorBinder = nullptr;
binder_status_t status =
ABinderRpc_Accessor_delegateAccessor("bar", binder.get(), &delegatorBinder);
EXPECT_EQ(status, BAD_TYPE);
}
inline void getServiceTest(BinderRpcTestProcessSession& proc,
ABinderRpc_AccessorProvider_getAccessorCallback getAccessor) {
constexpr size_t kNumThreads = 10;
bool isDeleted = false;
AccessorProviderData* data =
new AccessorProviderData{proc.proc->sessions[0].addr, proc.proc->sessions[0].addrLen,
&isDeleted};
ABinderRpc_AccessorProvider* provider =
ABinderRpc_registerAccessorProvider(getAccessor, kARpcSupportedServices,
kARpcNumSupportedServices, data,
accessorProviderDataOnDelete);
EXPECT_NE(provider, nullptr);
EXPECT_FALSE(isDeleted);
{
ndk::SpAIBinder binder = ndk::SpAIBinder(AServiceManager_checkService(kARpcInstance));
ASSERT_NE(binder.get(), nullptr);
EXPECT_EQ(STATUS_OK, AIBinder_ping(binder.get()));
}
ABinderRpc_unregisterAccessorProvider(provider);
EXPECT_TRUE(isDeleted);
waitForExtraSessionCleanup(proc);
}
TEST_P(BinderRpcAccessor, ARpcGetService) {
constexpr size_t kNumThreads = 10;
auto proc = createRpcTestSocketServerProcess({.numThreads = kNumThreads});
EXPECT_EQ(OK, proc.rootBinder->pingBinder());
getServiceTest(proc, getAccessor);
}
// Create accessors and wrap each of the accessors in a delegator
ABinderRpc_Accessor* getDelegatedAccessor(const char* instance, void* cookie) {
ABinderRpc_Accessor* accessor = getAccessor(instance, cookie);
AIBinder* accessorBinder = ABinderRpc_Accessor_asBinder(accessor);
// Once we have a handle to the AIBinder which holds a reference to the
// underlying accessor IBinder, we can get rid of the ABinderRpc_Accessor
ABinderRpc_Accessor_delete(accessor);
AIBinder* delegatorBinder = nullptr;
binder_status_t status =
ABinderRpc_Accessor_delegateAccessor(instance, accessorBinder, &delegatorBinder);
// No longer need this AIBinder. The delegator has a reference to the
// underlying IBinder on success, and on failure we are done here.
AIBinder_decStrong(accessorBinder);
if (status != OK || delegatorBinder == nullptr) {
ALOGE("Unexpected behavior. Status: %s, delegator ptr: %p", statusToString(status).c_str(),
delegatorBinder);
return nullptr;
}
return ABinderRpc_Accessor_fromBinder(instance, delegatorBinder);
}
TEST_P(BinderRpcAccessor, ARpcGetServiceWithDelegator) {
constexpr size_t kNumThreads = 10;
auto proc = createRpcTestSocketServerProcess({.numThreads = kNumThreads});
EXPECT_EQ(OK, proc.rootBinder->pingBinder());
getServiceTest(proc, getDelegatedAccessor);
}
#endif // BINDER_WITH_KERNEL_IPC
#ifdef BINDER_RPC_TO_TRUSTY_TEST
static std::vector<BinderRpc::ParamType> getTrustyBinderRpcParams() {
std::vector<BinderRpc::ParamType> ret;
for (const auto& clientVersion : testVersions()) {
for (const auto& serverVersion : testVersions()) {
ret.push_back(BinderRpc::ParamType{
.type = SocketType::TIPC,
.security = RpcSecurity::RAW,
.clientVersion = clientVersion,
.serverVersion = serverVersion,
.singleThreaded = true,
.noKernel = true,
});
}
}
return ret;
}
INSTANTIATE_TEST_SUITE_P(Trusty, BinderRpc, ::testing::ValuesIn(getTrustyBinderRpcParams()),
BinderRpc::PrintParamInfo);
#else // BINDER_RPC_TO_TRUSTY_TEST
bool testSupportVsockLoopback() {
// We don't need to enable TLS to know if vsock is supported.
unique_fd serverFd(
TEMP_FAILURE_RETRY(socket(AF_VSOCK, SOCK_STREAM | SOCK_CLOEXEC | SOCK_NONBLOCK, 0)));
if (errno == EAFNOSUPPORT) {
return false;
}
LOG_ALWAYS_FATAL_IF(!serverFd.ok(), "Could not create socket: %s", strerror(errno));
sockaddr_vm serverAddr{
.svm_family = AF_VSOCK,
.svm_port = VMADDR_PORT_ANY,
.svm_cid = VMADDR_CID_ANY,
};
int ret = TEMP_FAILURE_RETRY(
bind(serverFd.get(), reinterpret_cast<sockaddr*>(&serverAddr), sizeof(serverAddr)));
LOG_ALWAYS_FATAL_IF(0 != ret, "Could not bind socket to port VMADDR_PORT_ANY: %s",
strerror(errno));
socklen_t len = sizeof(serverAddr);
ret = getsockname(serverFd.get(), reinterpret_cast<sockaddr*>(&serverAddr), &len);
LOG_ALWAYS_FATAL_IF(0 != ret, "Failed to getsockname: %s", strerror(errno));
LOG_ALWAYS_FATAL_IF(len < static_cast<socklen_t>(sizeof(serverAddr)),
"getsockname didn't read the full addr struct");
ret = TEMP_FAILURE_RETRY(listen(serverFd.get(), 1 /*backlog*/));
LOG_ALWAYS_FATAL_IF(0 != ret, "Could not listen socket on port %u: %s", serverAddr.svm_port,
strerror(errno));
// Try to connect to the server using the VMADDR_CID_LOCAL cid
// to see if the kernel supports it. It's safe to use a blocking
// connect because vsock sockets have a 2 second connection timeout,
// and they return ETIMEDOUT after that.
unique_fd connectFd(
TEMP_FAILURE_RETRY(socket(AF_VSOCK, SOCK_STREAM | SOCK_CLOEXEC | SOCK_NONBLOCK, 0)));
LOG_ALWAYS_FATAL_IF(!connectFd.ok(), "Could not create socket for port %u: %s",
serverAddr.svm_port, strerror(errno));
bool success = false;
sockaddr_vm connectAddr{
.svm_family = AF_VSOCK,
.svm_port = serverAddr.svm_port,
.svm_cid = VMADDR_CID_LOCAL,
};
ret = TEMP_FAILURE_RETRY(connect(connectFd.get(), reinterpret_cast<sockaddr*>(&connectAddr),
sizeof(connectAddr)));
if (ret != 0 && (errno == EAGAIN || errno == EINPROGRESS)) {
unique_fd acceptFd;
while (true) {
pollfd pfd[]{
{.fd = serverFd.get(), .events = POLLIN, .revents = 0},
{.fd = connectFd.get(), .events = POLLOUT, .revents = 0},
};
ret = TEMP_FAILURE_RETRY(poll(pfd, countof(pfd), -1));
LOG_ALWAYS_FATAL_IF(ret < 0, "Error polling: %s", strerror(errno));
if (pfd[0].revents & POLLIN) {
sockaddr_vm acceptAddr;
socklen_t acceptAddrLen = sizeof(acceptAddr);
ret = TEMP_FAILURE_RETRY(accept4(serverFd.get(),
reinterpret_cast<sockaddr*>(&acceptAddr),
&acceptAddrLen, SOCK_CLOEXEC));
LOG_ALWAYS_FATAL_IF(ret < 0, "Could not accept4 socket: %s", strerror(errno));
LOG_ALWAYS_FATAL_IF(acceptAddrLen != static_cast<socklen_t>(sizeof(acceptAddr)),
"Truncated address");
// Store the fd in acceptFd so we keep the connection alive
// while polling connectFd
acceptFd.reset(ret);
}
if (pfd[1].revents & POLLOUT) {
// Connect either succeeded or timed out
int connectErrno;
socklen_t connectErrnoLen = sizeof(connectErrno);
int ret = getsockopt(connectFd.get(), SOL_SOCKET, SO_ERROR, &connectErrno,
&connectErrnoLen);
LOG_ALWAYS_FATAL_IF(ret == -1,
"Could not getsockopt() after connect() "
"on non-blocking socket: %s.",
strerror(errno));
// We're done, this is all we wanted
success = connectErrno == 0;
break;
}
}
} else {
success = ret == 0;
}
ALOGE("Detected vsock loopback supported: %s", success ? "yes" : "no");
return success;
}
static std::vector<SocketType> testSocketTypes(bool hasPreconnected = true) {
std::vector<SocketType> ret = {SocketType::UNIX, SocketType::UNIX_BOOTSTRAP, SocketType::INET,
SocketType::UNIX_RAW};
if (hasPreconnected) ret.push_back(SocketType::PRECONNECTED);
#ifdef __BIONIC__
// Devices may not have vsock support. AVF tests will verify whether they do, but
// we can't require it due to old kernels for the time being.
static bool hasVsockLoopback = testSupportVsockLoopback();
#else
// On host machines, we always assume we have vsock loopback. If we don't, the
// subsequent failures will be more clear than showing one now.
static bool hasVsockLoopback = true;
#endif
if (hasVsockLoopback) {
ret.push_back(SocketType::VSOCK);
}
return ret;
}
static std::vector<BinderRpc::ParamType> getBinderRpcParams() {
std::vector<BinderRpc::ParamType> ret;
constexpr bool full = false;
for (const auto& type : testSocketTypes()) {
if (full || type == SocketType::UNIX) {
for (const auto& security : RpcSecurityValues()) {
for (const auto& clientVersion : testVersions()) {
for (const auto& serverVersion : testVersions()) {
for (bool singleThreaded : {false, true}) {
for (bool noKernel : noKernelValues()) {
ret.push_back(BinderRpc::ParamType{
.type = type,
.security = security,
.clientVersion = clientVersion,
.serverVersion = serverVersion,
.singleThreaded = singleThreaded,
.noKernel = noKernel,
});
}
}
}
}
}
} else {
ret.push_back(BinderRpc::ParamType{
.type = type,
.security = RpcSecurity::RAW,
.clientVersion = RPC_WIRE_PROTOCOL_VERSION,
.serverVersion = RPC_WIRE_PROTOCOL_VERSION,
.singleThreaded = false,
.noKernel = !kEnableKernelIpcTesting,
});
}
}
return ret;
}
INSTANTIATE_TEST_SUITE_P(PerSocket, BinderRpc, ::testing::ValuesIn(getBinderRpcParams()),
BinderRpc::PrintParamInfo);
#ifdef BINDER_WITH_KERNEL_IPC
INSTANTIATE_TEST_SUITE_P(PerSocket, BinderRpcAccessor, ::testing::ValuesIn(getBinderRpcParams()),
BinderRpc::PrintParamInfo);
#endif // BINDER_WITH_KERNEL_IPC
class BinderRpcServerRootObject
: public ::testing::TestWithParam<std::tuple<bool, bool, RpcSecurity>> {};
TEST_P(BinderRpcServerRootObject, WeakRootObject) {
using SetFn = std::function<void(RpcServer*, sp<IBinder>)>;
auto setRootObject = [](bool isStrong) -> SetFn {
return isStrong ? SetFn(&RpcServer::setRootObject) : SetFn(&RpcServer::setRootObjectWeak);
};
auto [isStrong1, isStrong2, rpcSecurity] = GetParam();
auto server = RpcServer::make(newTlsFactory(rpcSecurity));
auto binder1 = sp<BBinder>::make();
IBinder* binderRaw1 = binder1.get();
setRootObject(isStrong1)(server.get(), binder1);
EXPECT_EQ(binderRaw1, server->getRootObject());
binder1.clear();
EXPECT_EQ((isStrong1 ? binderRaw1 : nullptr), server->getRootObject());
auto binder2 = sp<BBinder>::make();
IBinder* binderRaw2 = binder2.get();
setRootObject(isStrong2)(server.get(), binder2);
EXPECT_EQ(binderRaw2, server->getRootObject());
binder2.clear();
EXPECT_EQ((isStrong2 ? binderRaw2 : nullptr), server->getRootObject());
}
INSTANTIATE_TEST_SUITE_P(BinderRpc, BinderRpcServerRootObject,
::testing::Combine(::testing::Bool(), ::testing::Bool(),
::testing::ValuesIn(RpcSecurityValues())));
class OneOffSignal {
public:
// If notify() was previously called, or is called within |duration|, return true; else false.
template <typename R, typename P>
bool wait(std::chrono::duration<R, P> duration) {
std::unique_lock<std::mutex> lock(mMutex);
return mCv.wait_for(lock, duration, [this] { return mValue; });
}
void notify() {
std::unique_lock<std::mutex> lock(mMutex);
mValue = true;
lock.unlock();
mCv.notify_all();
}
private:
std::mutex mMutex;
std::condition_variable mCv;
bool mValue = false;
};
TEST(BinderRpc, Java) {
bool expectDebuggable = false;
#if defined(__ANDROID__)
expectDebuggable = android::base::GetBoolProperty("ro.debuggable", false) &&
android::base::GetProperty("ro.build.type", "") != "user";
#else
GTEST_SKIP() << "This test is only run on Android. Though it can technically run on host on"
"createRpcDelegateServiceManager() with a device attached, such test belongs "
"to binderHostDeviceTest. Hence, just disable this test on host.";
#endif // !__ANDROID__
if constexpr (!kEnableKernelIpc) {
GTEST_SKIP() << "Test disabled because Binder kernel driver was disabled "
"at build time.";
}
sp<IServiceManager> sm = defaultServiceManager();
ASSERT_NE(nullptr, sm);
// Any Java service with non-empty getInterfaceDescriptor() would do.
// Let's pick activity.
auto binder = sm->checkService(String16(kKnownAidlService));
ASSERT_NE(nullptr, binder);
auto descriptor = binder->getInterfaceDescriptor();
ASSERT_GE(descriptor.size(), 0u);
ASSERT_EQ(OK, binder->pingBinder());
auto rpcServer = RpcServer::make();
unsigned int port;
ASSERT_EQ(OK, rpcServer->setupInetServer(kLocalInetAddress, 0, &port));
auto socket = rpcServer->releaseServer();
auto keepAlive = sp<BBinder>::make();
auto setRpcClientDebugStatus = binder->setRpcClientDebug(std::move(socket), keepAlive);
if (!expectDebuggable) {
ASSERT_EQ(INVALID_OPERATION, setRpcClientDebugStatus)
<< "setRpcClientDebug should return INVALID_OPERATION on non-debuggable or user "
"builds, but get "
<< statusToString(setRpcClientDebugStatus);
GTEST_SKIP();
}
ASSERT_EQ(OK, setRpcClientDebugStatus);
auto rpcSession = RpcSession::make();
ASSERT_EQ(OK, rpcSession->setupInetClient("127.0.0.1", port));
auto rpcBinder = rpcSession->getRootObject();
ASSERT_NE(nullptr, rpcBinder);
ASSERT_EQ(OK, rpcBinder->pingBinder());
ASSERT_EQ(descriptor, rpcBinder->getInterfaceDescriptor())
<< "getInterfaceDescriptor should not crash system_server";
ASSERT_EQ(OK, rpcBinder->pingBinder());
}
class BinderRpcServerOnly : public ::testing::TestWithParam<std::tuple<RpcSecurity, uint32_t>> {
public:
static std::string PrintTestParam(const ::testing::TestParamInfo<ParamType>& info) {
return std::string(newTlsFactory(std::get<0>(info.param))->toCString()) + "_serverV" +
std::to_string(std::get<1>(info.param));
}
};
TEST_P(BinderRpcServerOnly, SetExternalServerTest) {
unique_fd sink(TEMP_FAILURE_RETRY(open("/dev/null", O_RDWR)));
int sinkFd = sink.get();
auto server = RpcServer::make(newTlsFactory(std::get<0>(GetParam())));
ASSERT_TRUE(server->setProtocolVersion(std::get<1>(GetParam())));
ASSERT_FALSE(server->hasServer());
ASSERT_EQ(OK, server->setupExternalServer(std::move(sink)));
ASSERT_TRUE(server->hasServer());
unique_fd retrieved = server->releaseServer();
ASSERT_FALSE(server->hasServer());
ASSERT_EQ(sinkFd, retrieved.get());
}
TEST_P(BinderRpcServerOnly, Shutdown) {
if constexpr (!kEnableRpcThreads) {
GTEST_SKIP() << "Test skipped because threads were disabled at build time";
}
auto addr = allocateSocketAddress();
auto server = RpcServer::make(newTlsFactory(std::get<0>(GetParam())));
ASSERT_TRUE(server->setProtocolVersion(std::get<1>(GetParam())));
ASSERT_EQ(OK, server->setupUnixDomainServer(addr.c_str()));
auto joinEnds = std::make_shared<OneOffSignal>();
// If things are broken and the thread never stops, don't block other tests. Because the thread
// may run after the test finishes, it must not access the stack memory of the test. Hence,
// shared pointers are passed.
std::thread([server, joinEnds] {
server->join();
joinEnds->notify();
}).detach();
bool shutdown = false;
for (int i = 0; i < 10 && !shutdown; i++) {
usleep(30 * 1000); // 30ms; total 300ms
if (server->shutdown()) shutdown = true;
}
ASSERT_TRUE(shutdown) << "server->shutdown() never returns true";
ASSERT_TRUE(joinEnds->wait(2s))
<< "After server->shutdown() returns true, join() did not stop after 2s";
}
INSTANTIATE_TEST_SUITE_P(BinderRpc, BinderRpcServerOnly,
::testing::Combine(::testing::ValuesIn(RpcSecurityValues()),
::testing::ValuesIn(testVersions())),
BinderRpcServerOnly::PrintTestParam);
class RpcTransportTestUtils {
public:
// Only parameterized only server version because `RpcSession` is bypassed
// in the client half of the tests.
using Param =
std::tuple<SocketType, RpcSecurity, std::optional<RpcCertificateFormat>, uint32_t>;
using ConnectToServer = std::function<unique_fd()>;
// A server that handles client socket connections.
class Server {
public:
using AcceptConnection = std::function<unique_fd(Server*)>;
explicit Server() {}
Server(Server&&) = default;
~Server() { shutdownAndWait(); }
[[nodiscard]] AssertionResult setUp(
const Param& param,
std::unique_ptr<RpcAuth> auth = std::make_unique<RpcAuthSelfSigned>()) {
auto [socketType, rpcSecurity, certificateFormat, serverVersion] = param;
auto rpcServer = RpcServer::make(newTlsFactory(rpcSecurity));
if (!rpcServer->setProtocolVersion(serverVersion)) {
return AssertionFailure() << "Invalid protocol version: " << serverVersion;
}
switch (socketType) {
case SocketType::PRECONNECTED: {
return AssertionFailure() << "Not supported by this test";
} break;
case SocketType::UNIX: {
auto addr = allocateSocketAddress();
auto status = rpcServer->setupUnixDomainServer(addr.c_str());
if (status != OK) {
return AssertionFailure()
<< "setupUnixDomainServer: " << statusToString(status);
}
mConnectToServer = [addr] {
return connectTo(UnixSocketAddress(addr.c_str()));
};
} break;
case SocketType::UNIX_BOOTSTRAP: {
unique_fd bootstrapFdClient, bootstrapFdServer;
if (!binder::Socketpair(SOCK_STREAM, &bootstrapFdClient, &bootstrapFdServer)) {
return AssertionFailure() << "Socketpair() failed";
}
auto status = rpcServer->setupUnixDomainSocketBootstrapServer(
std::move(bootstrapFdServer));
if (status != OK) {
return AssertionFailure() << "setupUnixDomainSocketBootstrapServer: "
<< statusToString(status);
}
mBootstrapSocket = RpcTransportFd(std::move(bootstrapFdClient));
mAcceptConnection = &Server::recvmsgServerConnection;
mConnectToServer = [this] { return connectToUnixBootstrap(mBootstrapSocket); };
} break;
case SocketType::UNIX_RAW: {
auto addr = allocateSocketAddress();
auto status = rpcServer->setupRawSocketServer(initUnixSocket(addr));
if (status != OK) {
return AssertionFailure()
<< "setupRawSocketServer: " << statusToString(status);
}
mConnectToServer = [addr] {
return connectTo(UnixSocketAddress(addr.c_str()));
};
} break;
case SocketType::VSOCK: {
unsigned port;
auto status =
rpcServer->setupVsockServer(VMADDR_CID_LOCAL, VMADDR_PORT_ANY, &port);
if (status != OK) {
return AssertionFailure() << "setupVsockServer: " << statusToString(status);
}
mConnectToServer = [port] {
return connectTo(VsockSocketAddress(VMADDR_CID_LOCAL, port));
};
} break;
case SocketType::INET: {
unsigned int port;
auto status = rpcServer->setupInetServer(kLocalInetAddress, 0, &port);
if (status != OK) {
return AssertionFailure() << "setupInetServer: " << statusToString(status);
}
mConnectToServer = [port] {
const char* addr = kLocalInetAddress;
auto aiStart = InetSocketAddress::getAddrInfo(addr, port);
if (aiStart == nullptr) return unique_fd{};
for (auto ai = aiStart.get(); ai != nullptr; ai = ai->ai_next) {
auto fd = connectTo(
InetSocketAddress(ai->ai_addr, ai->ai_addrlen, addr, port));
if (fd.ok()) return fd;
}
ALOGE("None of the socket address resolved for %s:%u can be connected",
addr, port);
return unique_fd{};
};
} break;
case SocketType::TIPC: {
LOG_ALWAYS_FATAL("RpcTransportTest should not be enabled for TIPC");
} break;
}
mFd = rpcServer->releaseServer();
if (!mFd.fd.ok()) return AssertionFailure() << "releaseServer returns invalid fd";
mCtx = newTlsFactory(rpcSecurity, mCertVerifier, std::move(auth))->newServerCtx();
if (mCtx == nullptr) return AssertionFailure() << "newServerCtx";
mSetup = true;
return AssertionSuccess();
}
RpcTransportCtx* getCtx() const { return mCtx.get(); }
std::shared_ptr<RpcCertificateVerifierSimple> getCertVerifier() const {
return mCertVerifier;
}
ConnectToServer getConnectToServerFn() { return mConnectToServer; }
void start() {
LOG_ALWAYS_FATAL_IF(!mSetup, "Call Server::setup first!");
mThread = std::make_unique<std::thread>(&Server::run, this);
}
unique_fd acceptServerConnection() {
return unique_fd(TEMP_FAILURE_RETRY(
accept4(mFd.fd.get(), nullptr, nullptr, SOCK_CLOEXEC | SOCK_NONBLOCK)));
}
unique_fd recvmsgServerConnection() {
std::vector<std::variant<unique_fd, borrowed_fd>> fds;
int buf;
iovec iov{&buf, sizeof(buf)};
if (binder::os::receiveMessageFromSocket(mFd, &iov, 1, &fds) < 0) {
PLOGF("Failed receiveMessage");
}
LOG_ALWAYS_FATAL_IF(fds.size() != 1, "Expected one FD from receiveMessage(), got %zu",
fds.size());
return std::move(std::get<unique_fd>(fds[0]));
}
void run() {
LOG_ALWAYS_FATAL_IF(!mSetup, "Call Server::setup first!");
std::vector<std::thread> threads;
while (OK == mFdTrigger->triggerablePoll(mFd, POLLIN)) {
unique_fd acceptedFd = mAcceptConnection(this);
threads.emplace_back(&Server::handleOne, this, std::move(acceptedFd));
}
for (auto& thread : threads) thread.join();
}
void handleOne(unique_fd acceptedFd) {
ASSERT_TRUE(acceptedFd.ok());
RpcTransportFd transportFd(std::move(acceptedFd));
auto serverTransport = mCtx->newTransport(std::move(transportFd), mFdTrigger.get());
if (serverTransport == nullptr) return; // handshake failed
ASSERT_TRUE(mPostConnect(serverTransport.get(), mFdTrigger.get()));
}
void shutdownAndWait() {
shutdown();
join();
}
void shutdown() { mFdTrigger->trigger(); }
void setPostConnect(
std::function<AssertionResult(RpcTransport*, FdTrigger* fdTrigger)> fn) {
mPostConnect = std::move(fn);
}
private:
std::unique_ptr<std::thread> mThread;
ConnectToServer mConnectToServer;
AcceptConnection mAcceptConnection = &Server::acceptServerConnection;
std::unique_ptr<FdTrigger> mFdTrigger = FdTrigger::make();
RpcTransportFd mFd, mBootstrapSocket;
std::unique_ptr<RpcTransportCtx> mCtx;
std::shared_ptr<RpcCertificateVerifierSimple> mCertVerifier =
std::make_shared<RpcCertificateVerifierSimple>();
bool mSetup = false;
// The function invoked after connection and handshake. By default, it is
// |defaultPostConnect| that sends |kMessage| to the client.
std::function<AssertionResult(RpcTransport*, FdTrigger* fdTrigger)> mPostConnect =
Server::defaultPostConnect;
void join() {
if (mThread != nullptr) {
mThread->join();
mThread = nullptr;
}
}
static AssertionResult defaultPostConnect(RpcTransport* serverTransport,
FdTrigger* fdTrigger) {
std::string message(kMessage);
iovec messageIov{message.data(), message.size()};
auto status = serverTransport->interruptableWriteFully(fdTrigger, &messageIov, 1,
std::nullopt, nullptr);
if (status != OK) return AssertionFailure() << statusToString(status);
return AssertionSuccess();
}
};
class Client {
public:
explicit Client(ConnectToServer connectToServer) : mConnectToServer(connectToServer) {}
Client(Client&&) = default;
[[nodiscard]] AssertionResult setUp(const Param& param) {
auto [socketType, rpcSecurity, certificateFormat, serverVersion] = param;
(void)serverVersion;
mFdTrigger = FdTrigger::make();
mCtx = newTlsFactory(rpcSecurity, mCertVerifier)->newClientCtx();
if (mCtx == nullptr) return AssertionFailure() << "newClientCtx";
return AssertionSuccess();
}
RpcTransportCtx* getCtx() const { return mCtx.get(); }
std::shared_ptr<RpcCertificateVerifierSimple> getCertVerifier() const {
return mCertVerifier;
}
// connect() and do handshake
bool setUpTransport() {
mFd = mConnectToServer();
if (!mFd.fd.ok()) return AssertionFailure() << "Cannot connect to server";
mClientTransport = mCtx->newTransport(std::move(mFd), mFdTrigger.get());
return mClientTransport != nullptr;
}
AssertionResult readMessage(const std::string& expectedMessage = kMessage) {
LOG_ALWAYS_FATAL_IF(mClientTransport == nullptr, "setUpTransport not called or failed");
std::string readMessage(expectedMessage.size(), '\0');
iovec readMessageIov{readMessage.data(), readMessage.size()};
status_t readStatus =
mClientTransport->interruptableReadFully(mFdTrigger.get(), &readMessageIov, 1,
std::nullopt, nullptr);
if (readStatus != OK) {
return AssertionFailure() << statusToString(readStatus);
}
if (readMessage != expectedMessage) {
return AssertionFailure()
<< "Expected " << expectedMessage << ", actual " << readMessage;
}
return AssertionSuccess();
}
void run(bool handshakeOk = true, bool readOk = true) {
if (!setUpTransport()) {
ASSERT_FALSE(handshakeOk) << "newTransport returns nullptr, but it shouldn't";
return;
}
ASSERT_TRUE(handshakeOk) << "newTransport does not return nullptr, but it should";
ASSERT_EQ(readOk, readMessage());
}
bool isTransportWaiting() { return mClientTransport->isWaiting(); }
private:
ConnectToServer mConnectToServer;
RpcTransportFd mFd;
std::unique_ptr<FdTrigger> mFdTrigger = FdTrigger::make();
std::unique_ptr<RpcTransportCtx> mCtx;
std::shared_ptr<RpcCertificateVerifierSimple> mCertVerifier =
std::make_shared<RpcCertificateVerifierSimple>();
std::unique_ptr<RpcTransport> mClientTransport;
};
// Make A trust B.
template <typename A, typename B>
static status_t trust(RpcSecurity rpcSecurity,
std::optional<RpcCertificateFormat> certificateFormat, const A& a,
const B& b) {
if (rpcSecurity != RpcSecurity::TLS) return OK;
LOG_ALWAYS_FATAL_IF(!certificateFormat.has_value());
auto bCert = b->getCtx()->getCertificate(*certificateFormat);
return a->getCertVerifier()->addTrustedPeerCertificate(*certificateFormat, bCert);
}
static constexpr const char* kMessage = "hello";
};
class RpcTransportTest : public testing::TestWithParam<RpcTransportTestUtils::Param> {
public:
using Server = RpcTransportTestUtils::Server;
using Client = RpcTransportTestUtils::Client;
static inline std::string PrintParamInfo(const testing::TestParamInfo<ParamType>& info) {
auto [socketType, rpcSecurity, certificateFormat, serverVersion] = info.param;
auto ret = PrintToString(socketType) + "_" + newTlsFactory(rpcSecurity)->toCString();
if (certificateFormat.has_value()) ret += "_" + PrintToString(*certificateFormat);
ret += "_serverV" + std::to_string(serverVersion);
return ret;
}
static std::vector<ParamType> getRpcTranportTestParams() {
std::vector<ParamType> ret;
for (auto serverVersion : testVersions()) {
for (auto socketType : testSocketTypes(false /* hasPreconnected */)) {
for (auto rpcSecurity : RpcSecurityValues()) {
switch (rpcSecurity) {
case RpcSecurity::RAW: {
ret.emplace_back(socketType, rpcSecurity, std::nullopt, serverVersion);
} break;
case RpcSecurity::TLS: {
ret.emplace_back(socketType, rpcSecurity, RpcCertificateFormat::PEM,
serverVersion);
ret.emplace_back(socketType, rpcSecurity, RpcCertificateFormat::DER,
serverVersion);
} break;
}
}
}
}
return ret;
}
template <typename A, typename B>
status_t trust(const A& a, const B& b) {
auto [socketType, rpcSecurity, certificateFormat, serverVersion] = GetParam();
(void)serverVersion;
return RpcTransportTestUtils::trust(rpcSecurity, certificateFormat, a, b);
}
void SetUp() override {
if constexpr (!kEnableRpcThreads) {
GTEST_SKIP() << "Test skipped because threads were disabled at build time";
}
}
};
TEST_P(RpcTransportTest, GoodCertificate) {
auto server = std::make_unique<Server>();
ASSERT_TRUE(server->setUp(GetParam()));
Client client(server->getConnectToServerFn());
ASSERT_TRUE(client.setUp(GetParam()));
ASSERT_EQ(OK, trust(&client, server));
ASSERT_EQ(OK, trust(server, &client));
server->start();
client.run();
}
TEST_P(RpcTransportTest, MultipleClients) {
auto server = std::make_unique<Server>();
ASSERT_TRUE(server->setUp(GetParam()));
std::vector<Client> clients;
for (int i = 0; i < 2; i++) {
auto& client = clients.emplace_back(server->getConnectToServerFn());
ASSERT_TRUE(client.setUp(GetParam()));
ASSERT_EQ(OK, trust(&client, server));
ASSERT_EQ(OK, trust(server, &client));
}
server->start();
for (auto& client : clients) client.run();
}
TEST_P(RpcTransportTest, UntrustedServer) {
auto [socketType, rpcSecurity, certificateFormat, serverVersion] = GetParam();
(void)serverVersion;
auto untrustedServer = std::make_unique<Server>();
ASSERT_TRUE(untrustedServer->setUp(GetParam()));
Client client(untrustedServer->getConnectToServerFn());
ASSERT_TRUE(client.setUp(GetParam()));
ASSERT_EQ(OK, trust(untrustedServer, &client));
untrustedServer->start();
// For TLS, this should reject the certificate. For RAW sockets, it should pass because
// the client can't verify the server's identity.
bool handshakeOk = rpcSecurity != RpcSecurity::TLS;
client.run(handshakeOk);
}
TEST_P(RpcTransportTest, MaliciousServer) {
auto [socketType, rpcSecurity, certificateFormat, serverVersion] = GetParam();
(void)serverVersion;
auto validServer = std::make_unique<Server>();
ASSERT_TRUE(validServer->setUp(GetParam()));
auto maliciousServer = std::make_unique<Server>();
ASSERT_TRUE(maliciousServer->setUp(GetParam()));
Client client(maliciousServer->getConnectToServerFn());
ASSERT_TRUE(client.setUp(GetParam()));
ASSERT_EQ(OK, trust(&client, validServer));
ASSERT_EQ(OK, trust(validServer, &client));
ASSERT_EQ(OK, trust(maliciousServer, &client));
maliciousServer->start();
// For TLS, this should reject the certificate. For RAW sockets, it should pass because
// the client can't verify the server's identity.
bool handshakeOk = rpcSecurity != RpcSecurity::TLS;
client.run(handshakeOk);
}
TEST_P(RpcTransportTest, UntrustedClient) {
auto [socketType, rpcSecurity, certificateFormat, serverVersion] = GetParam();
(void)serverVersion;
auto server = std::make_unique<Server>();
ASSERT_TRUE(server->setUp(GetParam()));
Client client(server->getConnectToServerFn());
ASSERT_TRUE(client.setUp(GetParam()));
ASSERT_EQ(OK, trust(&client, server));
server->start();
// For TLS, Client should be able to verify server's identity, so client should see
// do_handshake() successfully executed. However, server shouldn't be able to verify client's
// identity and should drop the connection, so client shouldn't be able to read anything.
bool readOk = rpcSecurity != RpcSecurity::TLS;
client.run(true, readOk);
}
TEST_P(RpcTransportTest, MaliciousClient) {
auto [socketType, rpcSecurity, certificateFormat, serverVersion] = GetParam();
(void)serverVersion;
auto server = std::make_unique<Server>();
ASSERT_TRUE(server->setUp(GetParam()));
Client validClient(server->getConnectToServerFn());
ASSERT_TRUE(validClient.setUp(GetParam()));
Client maliciousClient(server->getConnectToServerFn());
ASSERT_TRUE(maliciousClient.setUp(GetParam()));
ASSERT_EQ(OK, trust(&validClient, server));
ASSERT_EQ(OK, trust(&maliciousClient, server));
server->start();
// See UntrustedClient.
bool readOk = rpcSecurity != RpcSecurity::TLS;
maliciousClient.run(true, readOk);
}
TEST_P(RpcTransportTest, Trigger) {
std::string msg2 = ", world!";
std::mutex writeMutex;
std::condition_variable writeCv;
bool shouldContinueWriting = false;
auto serverPostConnect = [&](RpcTransport* serverTransport, FdTrigger* fdTrigger) {
std::string message(RpcTransportTestUtils::kMessage);
iovec messageIov{message.data(), message.size()};
auto status = serverTransport->interruptableWriteFully(fdTrigger, &messageIov, 1,
std::nullopt, nullptr);
if (status != OK) return AssertionFailure() << statusToString(status);
{
std::unique_lock<std::mutex> lock(writeMutex);
if (!writeCv.wait_for(lock, 3s, [&] { return shouldContinueWriting; })) {
return AssertionFailure() << "write barrier not cleared in time!";
}
}
iovec msg2Iov{msg2.data(), msg2.size()};
status = serverTransport->interruptableWriteFully(fdTrigger, &msg2Iov, 1, std::nullopt,
nullptr);
if (status != DEAD_OBJECT)
return AssertionFailure() << "When FdTrigger is shut down, interruptableWriteFully "
"should return DEAD_OBJECT, but it is "
<< statusToString(status);
return AssertionSuccess();
};
auto server = std::make_unique<Server>();
ASSERT_TRUE(server->setUp(GetParam()));
// Set up client
Client client(server->getConnectToServerFn());
ASSERT_TRUE(client.setUp(GetParam()));
// Exchange keys
ASSERT_EQ(OK, trust(&client, server));
ASSERT_EQ(OK, trust(server, &client));
server->setPostConnect(serverPostConnect);
server->start();
// connect() to server and do handshake
ASSERT_TRUE(client.setUpTransport());
// read the first message. This ensures that server has finished handshake and start handling
// client fd. Server thread should pause at writeCv.wait_for().
ASSERT_TRUE(client.readMessage(RpcTransportTestUtils::kMessage));
// Trigger server shutdown after server starts handling client FD. This ensures that the second
// write is on an FdTrigger that has been shut down.
server->shutdown();
// Continues server thread to write the second message.
{
std::lock_guard<std::mutex> lock(writeMutex);
shouldContinueWriting = true;
}
writeCv.notify_all();
// After this line, server thread unblocks and attempts to write the second message, but
// shutdown is triggered, so write should failed with DEAD_OBJECT. See |serverPostConnect|.
// On the client side, second read fails with DEAD_OBJECT
ASSERT_FALSE(client.readMessage(msg2));
}
TEST_P(RpcTransportTest, CheckWaitingForRead) {
std::mutex readMutex;
std::condition_variable readCv;
bool shouldContinueReading = false;
// Server will write data on transport once its started
auto serverPostConnect = [&](RpcTransport* serverTransport, FdTrigger* fdTrigger) {
std::string message(RpcTransportTestUtils::kMessage);
iovec messageIov{message.data(), message.size()};
auto status = serverTransport->interruptableWriteFully(fdTrigger, &messageIov, 1,
std::nullopt, nullptr);
if (status != OK) return AssertionFailure() << statusToString(status);
{
std::unique_lock<std::mutex> lock(readMutex);
shouldContinueReading = true;
lock.unlock();
readCv.notify_all();
}
return AssertionSuccess();
};
// Setup Server and client
auto server = std::make_unique<Server>();
ASSERT_TRUE(server->setUp(GetParam()));
Client client(server->getConnectToServerFn());
ASSERT_TRUE(client.setUp(GetParam()));
ASSERT_EQ(OK, trust(&client, server));
ASSERT_EQ(OK, trust(server, &client));
server->setPostConnect(serverPostConnect);
server->start();
ASSERT_TRUE(client.setUpTransport());
{
// Wait till server writes data
std::unique_lock<std::mutex> lock(readMutex);
ASSERT_TRUE(readCv.wait_for(lock, 3s, [&] { return shouldContinueReading; }));
}
// Since there is no read polling here, we will get polling count 0
ASSERT_FALSE(client.isTransportWaiting());
ASSERT_TRUE(client.readMessage(RpcTransportTestUtils::kMessage));
// Thread should increment polling count, read and decrement polling count
// Again, polling count should be zero here
ASSERT_FALSE(client.isTransportWaiting());
server->shutdown();
}
INSTANTIATE_TEST_SUITE_P(BinderRpc, RpcTransportTest,
::testing::ValuesIn(RpcTransportTest::getRpcTranportTestParams()),
RpcTransportTest::PrintParamInfo);
class RpcTransportTlsKeyTest
: public testing::TestWithParam<
std::tuple<SocketType, RpcCertificateFormat, RpcKeyFormat, uint32_t>> {
public:
template <typename A, typename B>
status_t trust(const A& a, const B& b) {
auto [socketType, certificateFormat, keyFormat, serverVersion] = GetParam();
(void)serverVersion;
return RpcTransportTestUtils::trust(RpcSecurity::TLS, certificateFormat, a, b);
}
static std::string PrintParamInfo(const testing::TestParamInfo<ParamType>& info) {
auto [socketType, certificateFormat, keyFormat, serverVersion] = info.param;
return PrintToString(socketType) + "_certificate_" + PrintToString(certificateFormat) +
"_key_" + PrintToString(keyFormat) + "_serverV" + std::to_string(serverVersion);
};
};
TEST_P(RpcTransportTlsKeyTest, PreSignedCertificate) {
if constexpr (!kEnableRpcThreads) {
GTEST_SKIP() << "Test skipped because threads were disabled at build time";
}
auto [socketType, certificateFormat, keyFormat, serverVersion] = GetParam();
std::vector<uint8_t> pkeyData, certData;
{
auto pkey = makeKeyPairForSelfSignedCert();
ASSERT_NE(nullptr, pkey);
auto cert = makeSelfSignedCert(pkey.get(), kCertValidSeconds);
ASSERT_NE(nullptr, cert);
pkeyData = serializeUnencryptedPrivatekey(pkey.get(), keyFormat);
certData = serializeCertificate(cert.get(), certificateFormat);
}
auto desPkey = deserializeUnencryptedPrivatekey(pkeyData, keyFormat);
auto desCert = deserializeCertificate(certData, certificateFormat);
auto auth = std::make_unique<RpcAuthPreSigned>(std::move(desPkey), std::move(desCert));
auto utilsParam = std::make_tuple(socketType, RpcSecurity::TLS,
std::make_optional(certificateFormat), serverVersion);
auto server = std::make_unique<RpcTransportTestUtils::Server>();
ASSERT_TRUE(server->setUp(utilsParam, std::move(auth)));
RpcTransportTestUtils::Client client(server->getConnectToServerFn());
ASSERT_TRUE(client.setUp(utilsParam));
ASSERT_EQ(OK, trust(&client, server));
ASSERT_EQ(OK, trust(server, &client));
server->start();
client.run();
}
INSTANTIATE_TEST_SUITE_P(
BinderRpc, RpcTransportTlsKeyTest,
testing::Combine(testing::ValuesIn(testSocketTypes(false /* hasPreconnected*/)),
testing::Values(RpcCertificateFormat::PEM, RpcCertificateFormat::DER),
testing::Values(RpcKeyFormat::PEM, RpcKeyFormat::DER),
testing::ValuesIn(testVersions())),
RpcTransportTlsKeyTest::PrintParamInfo);
#endif // BINDER_RPC_TO_TRUSTY_TEST
} // namespace android
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
__android_log_set_logger(__android_log_stderr_logger);
return RUN_ALL_TESTS();
}