blob: d6cb508d7fd1daa34c80ef0d53d9dbf93db0bf50 [file] [log] [blame] [edit]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <poll.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <chrono>
#include <fstream>
#include <thread>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android-base/result-gmock.h>
#include <binder/Binder.h>
#include <binder/BpBinder.h>
#include <binder/Functional.h>
#include <binder/IBinder.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <binder/RpcServer.h>
#include <binder/RpcSession.h>
#include <binder/Status.h>
#include <binder/unique_fd.h>
#include <input/BlockingQueue.h>
#include <processgroup/processgroup.h>
#include <utils/Flattenable.h>
#include <utils/SystemClock.h>
#include <linux/sched.h>
#include <sys/epoll.h>
#include <sys/prctl.h>
#include <sys/socket.h>
#include <sys/un.h>
#include "../Utils.h"
#include "../binder_module.h"
using namespace android;
using namespace android::binder::impl;
using namespace std::string_literals;
using namespace std::chrono_literals;
using android::base::testing::HasValue;
using android::binder::Status;
using android::binder::unique_fd;
using std::chrono_literals::operator""ms;
using testing::ExplainMatchResult;
using testing::Matcher;
using testing::Not;
using testing::WithParamInterface;
// e.g. EXPECT_THAT(expr, StatusEq(OK)) << "additional message";
MATCHER_P(StatusEq, expected, (negation ? "not " : "") + statusToString(expected)) {
*result_listener << statusToString(arg);
return expected == arg;
}
static ::testing::AssertionResult IsPageAligned(void *buf) {
if (((unsigned long)buf & ((unsigned long)getpagesize() - 1)) == 0)
return ::testing::AssertionSuccess();
else
return ::testing::AssertionFailure() << buf << " is not page aligned";
}
static testing::Environment* binder_env;
static char *binderservername;
static char *binderserversuffix;
static char binderserverarg[] = "--binderserver";
static constexpr int kSchedPolicy = SCHED_RR;
static constexpr int kSchedPriority = 7;
static constexpr int kSchedPriorityMore = 8;
static constexpr int kKernelThreads = 17; // anything different than the default
static String16 binderLibTestServiceName = String16("test.binderLib");
enum BinderLibTestTranscationCode {
BINDER_LIB_TEST_NOP_TRANSACTION = IBinder::FIRST_CALL_TRANSACTION,
BINDER_LIB_TEST_REGISTER_SERVER,
BINDER_LIB_TEST_ADD_SERVER,
BINDER_LIB_TEST_ADD_POLL_SERVER,
BINDER_LIB_TEST_USE_CALLING_GUARD_TRANSACTION,
BINDER_LIB_TEST_CALL_BACK,
BINDER_LIB_TEST_CALL_BACK_VERIFY_BUF,
BINDER_LIB_TEST_DELAYED_CALL_BACK,
BINDER_LIB_TEST_NOP_CALL_BACK,
BINDER_LIB_TEST_GET_SELF_TRANSACTION,
BINDER_LIB_TEST_GET_ID_TRANSACTION,
BINDER_LIB_TEST_INDIRECT_TRANSACTION,
BINDER_LIB_TEST_SET_ERROR_TRANSACTION,
BINDER_LIB_TEST_GET_STATUS_TRANSACTION,
BINDER_LIB_TEST_ADD_STRONG_REF_TRANSACTION,
BINDER_LIB_TEST_LINK_DEATH_TRANSACTION,
BINDER_LIB_TEST_WRITE_FILE_TRANSACTION,
BINDER_LIB_TEST_WRITE_PARCEL_FILE_DESCRIPTOR_TRANSACTION,
BINDER_LIB_TEST_EXIT_TRANSACTION,
BINDER_LIB_TEST_DELAYED_EXIT_TRANSACTION,
BINDER_LIB_TEST_GET_PTR_SIZE_TRANSACTION,
BINDER_LIB_TEST_CREATE_BINDER_TRANSACTION,
BINDER_LIB_TEST_GET_WORK_SOURCE_TRANSACTION,
BINDER_LIB_TEST_GET_SCHEDULING_POLICY,
BINDER_LIB_TEST_NOP_TRANSACTION_WAIT,
BINDER_LIB_TEST_GETPID,
BINDER_LIB_TEST_GETUID,
BINDER_LIB_TEST_LISTEN_FOR_FROZEN_STATE_CHANGE,
BINDER_LIB_TEST_CONSUME_STATE_CHANGE_EVENTS,
BINDER_LIB_TEST_ECHO_VECTOR,
BINDER_LIB_TEST_GET_NON_BLOCKING_FD,
BINDER_LIB_TEST_REJECT_OBJECTS,
BINDER_LIB_TEST_CAN_GET_SID,
BINDER_LIB_TEST_GET_MAX_THREAD_COUNT,
BINDER_LIB_TEST_SET_MAX_THREAD_COUNT,
BINDER_LIB_TEST_IS_THREADPOOL_STARTED,
BINDER_LIB_TEST_LOCK_UNLOCK,
BINDER_LIB_TEST_PROCESS_LOCK,
BINDER_LIB_TEST_UNLOCK_AFTER_MS,
BINDER_LIB_TEST_PROCESS_TEMPORARY_LOCK
};
pid_t start_server_process(int arg2, bool usePoll = false)
{
int ret;
pid_t pid;
status_t status;
int pipefd[2];
char stri[16];
char strpipefd1[16];
char usepoll[2];
char *childargv[] = {
binderservername,
binderserverarg,
stri,
strpipefd1,
usepoll,
binderserversuffix,
nullptr
};
ret = pipe(pipefd);
if (ret < 0)
return ret;
snprintf(stri, sizeof(stri), "%d", arg2);
snprintf(strpipefd1, sizeof(strpipefd1), "%d", pipefd[1]);
snprintf(usepoll, sizeof(usepoll), "%d", usePoll ? 1 : 0);
pid = fork();
if (pid == -1)
return pid;
if (pid == 0) {
prctl(PR_SET_PDEATHSIG, SIGHUP);
close(pipefd[0]);
execv(binderservername, childargv);
status = -errno;
write(pipefd[1], &status, sizeof(status));
fprintf(stderr, "execv failed, %s\n", strerror(errno));
_exit(EXIT_FAILURE);
}
close(pipefd[1]);
ret = read(pipefd[0], &status, sizeof(status));
//printf("pipe read returned %d, status %d\n", ret, status);
close(pipefd[0]);
if (ret == sizeof(status)) {
ret = status;
} else {
kill(pid, SIGKILL);
if (ret >= 0) {
ret = NO_INIT;
}
}
if (ret < 0) {
wait(nullptr);
return ret;
}
return pid;
}
android::base::Result<int32_t> GetId(sp<IBinder> service) {
using android::base::Error;
Parcel data, reply;
data.markForBinder(service);
const char *prefix = data.isForRpc() ? "On RPC server, " : "On binder server, ";
status_t status = service->transact(BINDER_LIB_TEST_GET_ID_TRANSACTION, data, &reply);
if (status != OK)
return Error(status) << prefix << "transact(GET_ID): " << statusToString(status);
int32_t result = 0;
status = reply.readInt32(&result);
if (status != OK) return Error(status) << prefix << "readInt32: " << statusToString(status);
return result;
}
class BinderLibTestEnv : public ::testing::Environment {
public:
BinderLibTestEnv() {}
sp<IBinder> getServer(void) {
return m_server;
}
private:
virtual void SetUp() {
m_serverpid = start_server_process(0);
//printf("m_serverpid %d\n", m_serverpid);
ASSERT_GT(m_serverpid, 0);
sp<IServiceManager> sm = defaultServiceManager();
// disable caching during addService.
sm->enableAddServiceCache(false);
//printf("%s: pid %d, get service\n", __func__, m_pid);
LIBBINDER_IGNORE("-Wdeprecated-declarations")
m_server = sm->getService(binderLibTestServiceName);
LIBBINDER_IGNORE_END()
ASSERT_TRUE(m_server != nullptr);
//printf("%s: pid %d, get service done\n", __func__, m_pid);
}
virtual void TearDown() {
status_t ret;
Parcel data, reply;
int exitStatus;
pid_t pid;
//printf("%s: pid %d\n", __func__, m_pid);
if (m_server != nullptr) {
ret = m_server->transact(BINDER_LIB_TEST_GET_STATUS_TRANSACTION, data, &reply);
EXPECT_EQ(0, ret);
ret = m_server->transact(BINDER_LIB_TEST_EXIT_TRANSACTION, data, &reply, TF_ONE_WAY);
EXPECT_EQ(0, ret);
}
if (m_serverpid > 0) {
//printf("wait for %d\n", m_pids[i]);
pid = wait(&exitStatus);
EXPECT_EQ(m_serverpid, pid);
EXPECT_TRUE(WIFEXITED(exitStatus));
EXPECT_EQ(0, WEXITSTATUS(exitStatus));
}
}
pid_t m_serverpid;
sp<IBinder> m_server;
};
class TestFrozenStateChangeCallback : public IBinder::FrozenStateChangeCallback {
public:
BlockingQueue<std::pair<const wp<IBinder>, State>> events;
virtual void onStateChanged(const wp<IBinder>& who, State state) {
events.push(std::make_pair(who, state));
}
void ensureFrozenEventReceived() {
auto event = events.popWithTimeout(500ms);
ASSERT_TRUE(event.has_value());
EXPECT_EQ(State::FROZEN, event->second); // isFrozen should be true
EXPECT_EQ(0u, events.size());
}
void ensureUnfrozenEventReceived() {
auto event = events.popWithTimeout(500ms);
ASSERT_TRUE(event.has_value());
EXPECT_EQ(State::UNFROZEN, event->second); // isFrozen should be false
EXPECT_EQ(0u, events.size());
}
std::vector<bool> getAllAndClear() {
std::vector<bool> results;
while (true) {
auto event = events.popWithTimeout(0ms);
if (!event.has_value()) {
break;
}
results.push_back(event->second == State::FROZEN);
}
return results;
}
sp<IBinder> binder;
};
class BinderLibTest : public ::testing::Test {
public:
virtual void SetUp() {
m_server = static_cast<BinderLibTestEnv *>(binder_env)->getServer();
IPCThreadState::self()->restoreCallingWorkSource(0);
sp<IServiceManager> sm = defaultServiceManager();
// disable caching during addService.
sm->enableAddServiceCache(false);
}
virtual void TearDown() {
}
protected:
sp<IBinder> addServerEtc(int32_t *idPtr, int code)
{
int32_t id;
Parcel data, reply;
EXPECT_THAT(m_server->transact(code, data, &reply), StatusEq(NO_ERROR));
sp<IBinder> binder = reply.readStrongBinder();
EXPECT_NE(nullptr, binder);
EXPECT_THAT(reply.readInt32(&id), StatusEq(NO_ERROR));
if (idPtr)
*idPtr = id;
return binder;
}
sp<IBinder> addServer(int32_t *idPtr = nullptr)
{
return addServerEtc(idPtr, BINDER_LIB_TEST_ADD_SERVER);
}
sp<IBinder> addPollServer(int32_t *idPtr = nullptr)
{
return addServerEtc(idPtr, BINDER_LIB_TEST_ADD_POLL_SERVER);
}
void waitForReadData(int fd, int timeout_ms) {
int ret;
pollfd pfd = pollfd();
pfd.fd = fd;
pfd.events = POLLIN;
ret = poll(&pfd, 1, timeout_ms);
EXPECT_EQ(1, ret);
}
bool checkFreezeSupport() {
std::string path;
if (!CgroupGetAttributePathForTask("FreezerState", getpid(), &path)) {
return false;
}
std::ifstream freezer_file(path);
// Pass test on devices where the cgroup v2 freezer is not supported
if (freezer_file.fail()) {
return false;
}
return IPCThreadState::self()->freeze(getpid(), false, 0) == NO_ERROR;
}
bool checkFreezeAndNotificationSupport() {
if (!checkFreezeSupport()) {
return false;
}
return ProcessState::isDriverFeatureEnabled(
ProcessState::DriverFeature::FREEZE_NOTIFICATION);
}
bool getBinderPid(int32_t* pid, sp<IBinder> server) {
Parcel data, replypid;
if (server->transact(BINDER_LIB_TEST_GETPID, data, &replypid) != NO_ERROR) {
ALOGE("BINDER_LIB_TEST_GETPID failed");
return false;
}
*pid = replypid.readInt32();
if (*pid <= 0) {
ALOGE("pid should be greater than zero");
return false;
}
return true;
}
void freezeProcess(int32_t pid) {
EXPECT_EQ(NO_ERROR, IPCThreadState::self()->freeze(pid, true, 1000));
}
void unfreezeProcess(int32_t pid) {
EXPECT_EQ(NO_ERROR, IPCThreadState::self()->freeze(pid, false, 0));
}
void removeCallbackAndValidateNoEvent(sp<IBinder> binder,
sp<TestFrozenStateChangeCallback> callback) {
EXPECT_THAT(binder->removeFrozenStateChangeCallback(callback), StatusEq(NO_ERROR));
EXPECT_EQ(0u, callback->events.size());
}
sp<IBinder> m_server;
};
class BinderLibTestBundle : public Parcel
{
public:
BinderLibTestBundle(void) {}
explicit BinderLibTestBundle(const Parcel *source) : m_isValid(false) {
int32_t mark;
int32_t bundleLen;
size_t pos;
if (source->readInt32(&mark))
return;
if (mark != MARK_START)
return;
if (source->readInt32(&bundleLen))
return;
pos = source->dataPosition();
if (Parcel::appendFrom(source, pos, bundleLen))
return;
source->setDataPosition(pos + bundleLen);
if (source->readInt32(&mark))
return;
if (mark != MARK_END)
return;
m_isValid = true;
setDataPosition(0);
}
void appendTo(Parcel *dest) {
dest->writeInt32(MARK_START);
dest->writeInt32(dataSize());
dest->appendFrom(this, 0, dataSize());
dest->writeInt32(MARK_END);
};
bool isValid(void) {
return m_isValid;
}
private:
enum {
MARK_START = B_PACK_CHARS('B','T','B','S'),
MARK_END = B_PACK_CHARS('B','T','B','E'),
};
bool m_isValid;
};
class BinderLibTestEvent
{
public:
BinderLibTestEvent(void)
: m_eventTriggered(false)
{
pthread_mutex_init(&m_waitMutex, nullptr);
pthread_cond_init(&m_waitCond, nullptr);
}
int waitEvent(int timeout_s)
{
int ret;
pthread_mutex_lock(&m_waitMutex);
if (!m_eventTriggered) {
struct timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
ts.tv_sec += timeout_s;
pthread_cond_timedwait(&m_waitCond, &m_waitMutex, &ts);
}
ret = m_eventTriggered ? NO_ERROR : TIMED_OUT;
pthread_mutex_unlock(&m_waitMutex);
return ret;
}
pthread_t getTriggeringThread()
{
return m_triggeringThread;
}
protected:
void triggerEvent(void) {
pthread_mutex_lock(&m_waitMutex);
pthread_cond_signal(&m_waitCond);
m_eventTriggered = true;
m_triggeringThread = pthread_self();
pthread_mutex_unlock(&m_waitMutex);
};
private:
pthread_mutex_t m_waitMutex;
pthread_cond_t m_waitCond;
bool m_eventTriggered;
pthread_t m_triggeringThread;
};
class BinderLibTestCallBack : public BBinder, public BinderLibTestEvent
{
public:
BinderLibTestCallBack()
: m_result(NOT_ENOUGH_DATA)
, m_prev_end(nullptr)
{
}
status_t getResult(void)
{
return m_result;
}
private:
virtual status_t onTransact(uint32_t code,
const Parcel& data, Parcel* reply,
uint32_t flags = 0)
{
(void)reply;
(void)flags;
switch(code) {
case BINDER_LIB_TEST_CALL_BACK: {
status_t status = data.readInt32(&m_result);
if (status != NO_ERROR) {
m_result = status;
}
triggerEvent();
return NO_ERROR;
}
case BINDER_LIB_TEST_CALL_BACK_VERIFY_BUF: {
sp<IBinder> server;
int ret;
const uint8_t *buf = data.data();
size_t size = data.dataSize();
if (m_prev_end) {
/* 64-bit kernel needs at most 8 bytes to align buffer end */
EXPECT_LE((size_t)(buf - m_prev_end), (size_t)8);
} else {
EXPECT_TRUE(IsPageAligned((void *)buf));
}
m_prev_end = buf + size + data.objectsCount() * sizeof(binder_size_t);
if (size > 0) {
server = static_cast<BinderLibTestEnv *>(binder_env)->getServer();
ret = server->transact(BINDER_LIB_TEST_INDIRECT_TRANSACTION,
data, reply);
EXPECT_EQ(NO_ERROR, ret);
}
return NO_ERROR;
}
default:
return UNKNOWN_TRANSACTION;
}
}
status_t m_result;
const uint8_t *m_prev_end;
};
class TestDeathRecipient : public IBinder::DeathRecipient, public BinderLibTestEvent
{
private:
virtual void binderDied(const wp<IBinder>& who) {
(void)who;
triggerEvent();
};
};
TEST_F(BinderLibTest, CannotUseBinderAfterFork) {
// EXPECT_DEATH works by forking the process
EXPECT_DEATH({ ProcessState::self(); }, "libbinder ProcessState can not be used after fork");
}
TEST_F(BinderLibTest, AddManagerToManager) {
sp<IServiceManager> sm = defaultServiceManager();
sp<IBinder> binder = IInterface::asBinder(sm);
EXPECT_EQ(NO_ERROR, sm->addService(String16("binderLibTest-manager"), binder));
}
TEST_F(BinderLibTest, RegisterForNotificationsFailure) {
auto sm = defaultServiceManager();
using LocalRegistrationCallback = IServiceManager::LocalRegistrationCallback;
class LocalRegistrationCallbackImpl : public virtual LocalRegistrationCallback {
void onServiceRegistration(const String16&, const sp<IBinder>&) override {}
virtual ~LocalRegistrationCallbackImpl() {}
};
sp<LocalRegistrationCallback> cb = sp<LocalRegistrationCallbackImpl>::make();
EXPECT_EQ(BAD_VALUE, sm->registerForNotifications(String16("ValidName"), nullptr));
EXPECT_EQ(UNKNOWN_ERROR, sm->registerForNotifications(String16("InvalidName!$"), cb));
}
TEST_F(BinderLibTest, UnregisterForNotificationsFailure) {
auto sm = defaultServiceManager();
using LocalRegistrationCallback = IServiceManager::LocalRegistrationCallback;
class LocalRegistrationCallbackImpl : public virtual LocalRegistrationCallback {
void onServiceRegistration(const String16&, const sp<IBinder>&) override {}
virtual ~LocalRegistrationCallbackImpl() {}
};
sp<LocalRegistrationCallback> cb = sp<LocalRegistrationCallbackImpl>::make();
EXPECT_EQ(OK, sm->registerForNotifications(String16("ValidName"), cb));
EXPECT_EQ(BAD_VALUE, sm->unregisterForNotifications(String16("ValidName"), nullptr));
EXPECT_EQ(BAD_VALUE, sm->unregisterForNotifications(String16("AnotherValidName"), cb));
EXPECT_EQ(BAD_VALUE, sm->unregisterForNotifications(String16("InvalidName!!!"), cb));
}
TEST_F(BinderLibTest, WasParceled) {
auto binder = sp<BBinder>::make();
EXPECT_FALSE(binder->wasParceled());
Parcel data;
data.writeStrongBinder(binder);
EXPECT_TRUE(binder->wasParceled());
}
TEST_F(BinderLibTest, NopTransaction) {
Parcel data, reply;
EXPECT_THAT(m_server->transact(BINDER_LIB_TEST_NOP_TRANSACTION, data, &reply),
StatusEq(NO_ERROR));
}
TEST_F(BinderLibTest, NopTransactionOneway) {
Parcel data, reply;
EXPECT_THAT(m_server->transact(BINDER_LIB_TEST_NOP_TRANSACTION, data, &reply, TF_ONE_WAY),
StatusEq(NO_ERROR));
}
TEST_F(BinderLibTest, NopTransactionClear) {
Parcel data, reply;
// make sure it accepts the transaction flag
EXPECT_THAT(m_server->transact(BINDER_LIB_TEST_NOP_TRANSACTION, data, &reply, TF_CLEAR_BUF),
StatusEq(NO_ERROR));
}
TEST_F(BinderLibTest, Freeze) {
if (!checkFreezeSupport()) {
GTEST_SKIP() << "Skipping test for kernels that do not support proceess freezing";
return;
}
Parcel data, reply, replypid;
EXPECT_THAT(m_server->transact(BINDER_LIB_TEST_GETPID, data, &replypid), StatusEq(NO_ERROR));
int32_t pid = replypid.readInt32();
for (int i = 0; i < 10; i++) {
EXPECT_EQ(NO_ERROR, m_server->transact(BINDER_LIB_TEST_NOP_TRANSACTION_WAIT, data, &reply, TF_ONE_WAY));
}
EXPECT_EQ(NO_ERROR, IPCThreadState::self()->freeze(pid, false, 0));
EXPECT_EQ(-EAGAIN, IPCThreadState::self()->freeze(pid, true, 0));
// b/268232063 - succeeds ~0.08% of the time
{
auto ret = IPCThreadState::self()->freeze(pid, true, 0);
EXPECT_TRUE(ret == -EAGAIN || ret == OK);
}
EXPECT_EQ(NO_ERROR, IPCThreadState::self()->freeze(pid, true, 1000));
EXPECT_EQ(FAILED_TRANSACTION, m_server->transact(BINDER_LIB_TEST_NOP_TRANSACTION, data, &reply));
uint32_t sync_received, async_received;
EXPECT_EQ(NO_ERROR, IPCThreadState::self()->getProcessFreezeInfo(pid, &sync_received,
&async_received));
EXPECT_EQ(sync_received, 1u);
EXPECT_EQ(async_received, 0u);
EXPECT_EQ(NO_ERROR, IPCThreadState::self()->freeze(pid, false, 0));
EXPECT_EQ(NO_ERROR, m_server->transact(BINDER_LIB_TEST_NOP_TRANSACTION, data, &reply));
}
TEST_F(BinderLibTest, SetError) {
int32_t testValue[] = { 0, -123, 123 };
for (size_t i = 0; i < countof(testValue); i++) {
Parcel data, reply;
data.writeInt32(testValue[i]);
EXPECT_THAT(m_server->transact(BINDER_LIB_TEST_SET_ERROR_TRANSACTION, data, &reply),
StatusEq(testValue[i]));
}
}
TEST_F(BinderLibTest, GetId) {
EXPECT_THAT(GetId(m_server), HasValue(0));
}
TEST_F(BinderLibTest, PtrSize) {
int32_t ptrsize;
Parcel data, reply;
sp<IBinder> server = addServer();
ASSERT_TRUE(server != nullptr);
EXPECT_THAT(server->transact(BINDER_LIB_TEST_GET_PTR_SIZE_TRANSACTION, data, &reply),
StatusEq(NO_ERROR));
EXPECT_THAT(reply.readInt32(&ptrsize), StatusEq(NO_ERROR));
RecordProperty("TestPtrSize", sizeof(void *));
RecordProperty("ServerPtrSize", sizeof(void *));
}
TEST_F(BinderLibTest, IndirectGetId2)
{
int32_t id;
int32_t count;
Parcel data, reply;
int32_t serverId[3];
data.writeInt32(countof(serverId));
for (size_t i = 0; i < countof(serverId); i++) {
sp<IBinder> server;
BinderLibTestBundle datai;
server = addServer(&serverId[i]);
ASSERT_TRUE(server != nullptr);
data.writeStrongBinder(server);
data.writeInt32(BINDER_LIB_TEST_GET_ID_TRANSACTION);
datai.appendTo(&data);
}
ASSERT_THAT(m_server->transact(BINDER_LIB_TEST_INDIRECT_TRANSACTION, data, &reply),
StatusEq(NO_ERROR));
ASSERT_THAT(reply.readInt32(&id), StatusEq(NO_ERROR));
EXPECT_EQ(0, id);
ASSERT_THAT(reply.readInt32(&count), StatusEq(NO_ERROR));
EXPECT_EQ(countof(serverId), (size_t)count);
for (size_t i = 0; i < (size_t)count; i++) {
BinderLibTestBundle replyi(&reply);
EXPECT_TRUE(replyi.isValid());
EXPECT_THAT(replyi.readInt32(&id), StatusEq(NO_ERROR));
EXPECT_EQ(serverId[i], id);
EXPECT_EQ(replyi.dataSize(), replyi.dataPosition());
}
EXPECT_EQ(reply.dataSize(), reply.dataPosition());
}
TEST_F(BinderLibTest, IndirectGetId3)
{
int32_t id;
int32_t count;
Parcel data, reply;
int32_t serverId[3];
data.writeInt32(countof(serverId));
for (size_t i = 0; i < countof(serverId); i++) {
sp<IBinder> server;
BinderLibTestBundle datai;
BinderLibTestBundle datai2;
server = addServer(&serverId[i]);
ASSERT_TRUE(server != nullptr);
data.writeStrongBinder(server);
data.writeInt32(BINDER_LIB_TEST_INDIRECT_TRANSACTION);
datai.writeInt32(1);
datai.writeStrongBinder(m_server);
datai.writeInt32(BINDER_LIB_TEST_GET_ID_TRANSACTION);
datai2.appendTo(&datai);
datai.appendTo(&data);
}
ASSERT_THAT(m_server->transact(BINDER_LIB_TEST_INDIRECT_TRANSACTION, data, &reply),
StatusEq(NO_ERROR));
ASSERT_THAT(reply.readInt32(&id), StatusEq(NO_ERROR));
EXPECT_EQ(0, id);
ASSERT_THAT(reply.readInt32(&count), StatusEq(NO_ERROR));
EXPECT_EQ(countof(serverId), (size_t)count);
for (size_t i = 0; i < (size_t)count; i++) {
int32_t counti;
BinderLibTestBundle replyi(&reply);
EXPECT_TRUE(replyi.isValid());
EXPECT_THAT(replyi.readInt32(&id), StatusEq(NO_ERROR));
EXPECT_EQ(serverId[i], id);
ASSERT_THAT(replyi.readInt32(&counti), StatusEq(NO_ERROR));
EXPECT_EQ(1, counti);
BinderLibTestBundle replyi2(&replyi);
EXPECT_TRUE(replyi2.isValid());
EXPECT_THAT(replyi2.readInt32(&id), StatusEq(NO_ERROR));
EXPECT_EQ(0, id);
EXPECT_EQ(replyi2.dataSize(), replyi2.dataPosition());
EXPECT_EQ(replyi.dataSize(), replyi.dataPosition());
}
EXPECT_EQ(reply.dataSize(), reply.dataPosition());
}
TEST_F(BinderLibTest, CallBack)
{
Parcel data, reply;
sp<BinderLibTestCallBack> callBack = new BinderLibTestCallBack();
data.writeStrongBinder(callBack);
EXPECT_THAT(m_server->transact(BINDER_LIB_TEST_NOP_CALL_BACK, data, &reply, TF_ONE_WAY),
StatusEq(NO_ERROR));
EXPECT_THAT(callBack->waitEvent(5), StatusEq(NO_ERROR));
EXPECT_THAT(callBack->getResult(), StatusEq(NO_ERROR));
}
TEST_F(BinderLibTest, BinderCallContextGuard) {
sp<IBinder> binder = addServer();
Parcel data, reply;
EXPECT_THAT(binder->transact(BINDER_LIB_TEST_USE_CALLING_GUARD_TRANSACTION, data, &reply),
StatusEq(DEAD_OBJECT));
}
TEST_F(BinderLibTest, AddServer)
{
sp<IBinder> server = addServer();
ASSERT_TRUE(server != nullptr);
}
TEST_F(BinderLibTest, DeathNotificationStrongRef)
{
sp<IBinder> sbinder;
sp<TestDeathRecipient> testDeathRecipient = new TestDeathRecipient();
{
sp<IBinder> binder = addServer();
ASSERT_TRUE(binder != nullptr);
EXPECT_THAT(binder->linkToDeath(testDeathRecipient), StatusEq(NO_ERROR));
sbinder = binder;
}
{
Parcel data, reply;
EXPECT_THAT(sbinder->transact(BINDER_LIB_TEST_EXIT_TRANSACTION, data, &reply, TF_ONE_WAY),
StatusEq(OK));
}
IPCThreadState::self()->flushCommands();
EXPECT_THAT(testDeathRecipient->waitEvent(5), StatusEq(NO_ERROR));
EXPECT_THAT(sbinder->unlinkToDeath(testDeathRecipient), StatusEq(DEAD_OBJECT));
}
TEST_F(BinderLibTest, DeathNotificationMultiple)
{
status_t ret;
const int clientcount = 2;
sp<IBinder> target;
sp<IBinder> linkedclient[clientcount];
sp<BinderLibTestCallBack> callBack[clientcount];
sp<IBinder> passiveclient[clientcount];
target = addServer();
ASSERT_TRUE(target != nullptr);
for (int i = 0; i < clientcount; i++) {
{
Parcel data, reply;
linkedclient[i] = addServer();
ASSERT_TRUE(linkedclient[i] != nullptr);
callBack[i] = new BinderLibTestCallBack();
data.writeStrongBinder(target);
data.writeStrongBinder(callBack[i]);
EXPECT_THAT(linkedclient[i]->transact(BINDER_LIB_TEST_LINK_DEATH_TRANSACTION, data,
&reply, TF_ONE_WAY),
StatusEq(NO_ERROR));
}
{
Parcel data, reply;
passiveclient[i] = addServer();
ASSERT_TRUE(passiveclient[i] != nullptr);
data.writeStrongBinder(target);
EXPECT_THAT(passiveclient[i]->transact(BINDER_LIB_TEST_ADD_STRONG_REF_TRANSACTION, data,
&reply, TF_ONE_WAY),
StatusEq(NO_ERROR));
}
}
{
Parcel data, reply;
ret = target->transact(BINDER_LIB_TEST_EXIT_TRANSACTION, data, &reply, TF_ONE_WAY);
EXPECT_EQ(0, ret);
}
for (int i = 0; i < clientcount; i++) {
EXPECT_THAT(callBack[i]->waitEvent(5), StatusEq(NO_ERROR));
EXPECT_THAT(callBack[i]->getResult(), StatusEq(NO_ERROR));
}
}
TEST_F(BinderLibTest, DeathNotificationThread)
{
status_t ret;
sp<BinderLibTestCallBack> callback;
sp<IBinder> target = addServer();
ASSERT_TRUE(target != nullptr);
sp<IBinder> client = addServer();
ASSERT_TRUE(client != nullptr);
sp<TestDeathRecipient> testDeathRecipient = new TestDeathRecipient();
EXPECT_THAT(target->linkToDeath(testDeathRecipient), StatusEq(NO_ERROR));
{
Parcel data, reply;
ret = target->transact(BINDER_LIB_TEST_EXIT_TRANSACTION, data, &reply, TF_ONE_WAY);
EXPECT_EQ(0, ret);
}
/* Make sure it's dead */
testDeathRecipient->waitEvent(5);
/* Now, pass the ref to another process and ask that process to
* call linkToDeath() on it, and wait for a response. This tests
* two things:
* 1) You still get death notifications when calling linkToDeath()
* on a ref that is already dead when it was passed to you.
* 2) That death notifications are not directly pushed to the thread
* registering them, but to the threadpool (proc workqueue) instead.
*
* 2) is tested because the thread handling BINDER_LIB_TEST_DEATH_TRANSACTION
* is blocked on a condition variable waiting for the death notification to be
* called; therefore, that thread is not available for handling proc work.
* So, if the death notification was pushed to the thread workqueue, the callback
* would never be called, and the test would timeout and fail.
*
* Note that we can't do this part of the test from this thread itself, because
* the binder driver would only push death notifications to the thread if
* it is a looper thread, which this thread is not.
*
* See b/23525545 for details.
*/
{
Parcel data, reply;
callback = new BinderLibTestCallBack();
data.writeStrongBinder(target);
data.writeStrongBinder(callback);
EXPECT_THAT(client->transact(BINDER_LIB_TEST_LINK_DEATH_TRANSACTION, data, &reply,
TF_ONE_WAY),
StatusEq(NO_ERROR));
}
EXPECT_THAT(callback->waitEvent(5), StatusEq(NO_ERROR));
EXPECT_THAT(callback->getResult(), StatusEq(NO_ERROR));
}
TEST_F(BinderLibTest, ReturnErrorIfKernelDoesNotSupportFreezeNotification) {
if (ProcessState::isDriverFeatureEnabled(ProcessState::DriverFeature::FREEZE_NOTIFICATION)) {
GTEST_SKIP() << "Skipping test for kernels that support FREEZE_NOTIFICATION";
return;
}
sp<TestFrozenStateChangeCallback> callback = sp<TestFrozenStateChangeCallback>::make();
sp<IBinder> binder = addServer();
ASSERT_NE(nullptr, binder);
ASSERT_EQ(nullptr, binder->localBinder());
EXPECT_THAT(binder->addFrozenStateChangeCallback(callback), StatusEq(INVALID_OPERATION));
}
TEST_F(BinderLibTest, FrozenStateChangeNotificatiion) {
if (!checkFreezeAndNotificationSupport()) {
GTEST_SKIP() << "Skipping test for kernels that do not support FREEZE_NOTIFICATION";
return;
}
sp<TestFrozenStateChangeCallback> callback = sp<TestFrozenStateChangeCallback>::make();
sp<IBinder> binder = addServer();
ASSERT_NE(nullptr, binder);
int32_t pid;
ASSERT_TRUE(getBinderPid(&pid, binder));
EXPECT_THAT(binder->addFrozenStateChangeCallback(callback), StatusEq(NO_ERROR));
// Expect current state (unfrozen) to be delivered immediately.
callback->ensureUnfrozenEventReceived();
// Check that the process hasn't died otherwise there's a risk of freezing
// the wrong process.
EXPECT_EQ(OK, binder->pingBinder());
freezeProcess(pid);
callback->ensureFrozenEventReceived();
unfreezeProcess(pid);
callback->ensureUnfrozenEventReceived();
removeCallbackAndValidateNoEvent(binder, callback);
}
TEST_F(BinderLibTest, AddFrozenCallbackWhenFrozen) {
if (!checkFreezeAndNotificationSupport()) {
GTEST_SKIP() << "Skipping test for kernels that do not support FREEZE_NOTIFICATION";
return;
}
sp<TestFrozenStateChangeCallback> callback = sp<TestFrozenStateChangeCallback>::make();
sp<IBinder> binder = addServer();
ASSERT_NE(nullptr, binder);
int32_t pid;
ASSERT_TRUE(getBinderPid(&pid, binder));
// Check that the process hasn't died otherwise there's a risk of freezing
// the wrong process.
EXPECT_EQ(OK, binder->pingBinder());
freezeProcess(pid);
// Add the callback while the target process is frozen.
EXPECT_THAT(binder->addFrozenStateChangeCallback(callback), StatusEq(NO_ERROR));
callback->ensureFrozenEventReceived();
unfreezeProcess(pid);
callback->ensureUnfrozenEventReceived();
removeCallbackAndValidateNoEvent(binder, callback);
// Check that the process hasn't died otherwise there's a risk of freezing
// the wrong process.
EXPECT_EQ(OK, binder->pingBinder());
freezeProcess(pid);
unfreezeProcess(pid);
// Make sure no callback happens since the listener has been removed.
EXPECT_EQ(0u, callback->events.size());
}
TEST_F(BinderLibTest, NoFrozenNotificationAfterCallbackRemoval) {
if (!checkFreezeAndNotificationSupport()) {
GTEST_SKIP() << "Skipping test for kernels that do not support FREEZE_NOTIFICATION";
return;
}
sp<TestFrozenStateChangeCallback> callback = sp<TestFrozenStateChangeCallback>::make();
sp<IBinder> binder = addServer();
ASSERT_NE(nullptr, binder);
int32_t pid;
ASSERT_TRUE(getBinderPid(&pid, binder));
EXPECT_THAT(binder->addFrozenStateChangeCallback(callback), StatusEq(NO_ERROR));
callback->ensureUnfrozenEventReceived();
removeCallbackAndValidateNoEvent(binder, callback);
// Make sure no callback happens after the listener is removed.
freezeProcess(pid);
unfreezeProcess(pid);
EXPECT_EQ(0u, callback->events.size());
}
TEST_F(BinderLibTest, MultipleFrozenStateChangeCallbacks) {
if (!checkFreezeAndNotificationSupport()) {
GTEST_SKIP() << "Skipping test for kernels that do not support FREEZE_NOTIFICATION";
return;
}
sp<TestFrozenStateChangeCallback> callback1 = sp<TestFrozenStateChangeCallback>::make();
sp<TestFrozenStateChangeCallback> callback2 = sp<TestFrozenStateChangeCallback>::make();
sp<IBinder> binder = addServer();
ASSERT_NE(nullptr, binder);
int32_t pid;
ASSERT_TRUE(getBinderPid(&pid, binder));
EXPECT_THAT(binder->addFrozenStateChangeCallback(callback1), StatusEq(NO_ERROR));
// Expect current state (unfrozen) to be delivered immediately.
callback1->ensureUnfrozenEventReceived();
EXPECT_THAT(binder->addFrozenStateChangeCallback(callback2), StatusEq(NO_ERROR));
// Expect current state (unfrozen) to be delivered immediately.
callback2->ensureUnfrozenEventReceived();
freezeProcess(pid);
callback1->ensureFrozenEventReceived();
callback2->ensureFrozenEventReceived();
removeCallbackAndValidateNoEvent(binder, callback1);
unfreezeProcess(pid);
EXPECT_EQ(0u, callback1->events.size());
callback2->ensureUnfrozenEventReceived();
removeCallbackAndValidateNoEvent(binder, callback2);
freezeProcess(pid);
EXPECT_EQ(0u, callback2->events.size());
}
TEST_F(BinderLibTest, RemoveThenAddFrozenStateChangeCallbacks) {
if (!checkFreezeAndNotificationSupport()) {
GTEST_SKIP() << "Skipping test for kernels that do not support FREEZE_NOTIFICATION";
return;
}
sp<TestFrozenStateChangeCallback> callback = sp<TestFrozenStateChangeCallback>::make();
sp<IBinder> binder = addServer();
ASSERT_NE(nullptr, binder);
int32_t pid;
ASSERT_TRUE(getBinderPid(&pid, binder));
EXPECT_THAT(binder->addFrozenStateChangeCallback(callback), StatusEq(NO_ERROR));
// Expect current state (unfrozen) to be delivered immediately.
callback->ensureUnfrozenEventReceived();
removeCallbackAndValidateNoEvent(binder, callback);
EXPECT_THAT(binder->addFrozenStateChangeCallback(callback), StatusEq(NO_ERROR));
callback->ensureUnfrozenEventReceived();
}
TEST_F(BinderLibTest, CoalesceFreezeCallbacksWhenListenerIsFrozen) {
if (!checkFreezeAndNotificationSupport()) {
GTEST_SKIP() << "Skipping test for kernels that do not support FREEZE_NOTIFICATION";
return;
}
sp<IBinder> binder = addServer();
sp<IBinder> listener = addServer();
ASSERT_NE(nullptr, binder);
ASSERT_NE(nullptr, listener);
int32_t pid, listenerPid;
ASSERT_TRUE(getBinderPid(&pid, binder));
ASSERT_TRUE(getBinderPid(&listenerPid, listener));
// Ask the listener process to register for state change callbacks.
{
Parcel data, reply;
data.writeStrongBinder(binder);
ASSERT_THAT(listener->transact(BINDER_LIB_TEST_LISTEN_FOR_FROZEN_STATE_CHANGE, data,
&reply),
StatusEq(NO_ERROR));
}
// Freeze the listener process.
freezeProcess(listenerPid);
createProcessGroup(getuid(), listenerPid);
ASSERT_TRUE(SetProcessProfiles(getuid(), listenerPid, {"Frozen"}));
// Repeatedly flip the target process between frozen and unfrozen states.
for (int i = 0; i < 1000; i++) {
usleep(50);
unfreezeProcess(pid);
usleep(50);
freezeProcess(pid);
}
// Unfreeze the listener process. Now it should receive the frozen state
// change notifications.
ASSERT_TRUE(SetProcessProfiles(getuid(), listenerPid, {"Unfrozen"}));
unfreezeProcess(listenerPid);
// Wait for 500ms to give the process enough time to wake up and handle
// notifications.
usleep(500 * 1000);
{
std::vector<bool> events;
Parcel data, reply;
ASSERT_THAT(listener->transact(BINDER_LIB_TEST_CONSUME_STATE_CHANGE_EVENTS, data, &reply),
StatusEq(NO_ERROR));
reply.readBoolVector(&events);
// There should only be one single state change notifications delievered.
ASSERT_EQ(1u, events.size());
EXPECT_TRUE(events[0]);
}
}
TEST_F(BinderLibTest, PassFile) {
int ret;
int pipefd[2];
uint8_t buf[1] = { 0 };
uint8_t write_value = 123;
ret = pipe2(pipefd, O_NONBLOCK);
ASSERT_EQ(0, ret);
{
Parcel data, reply;
uint8_t writebuf[1] = { write_value };
EXPECT_THAT(data.writeFileDescriptor(pipefd[1], true), StatusEq(NO_ERROR));
EXPECT_THAT(data.writeInt32(sizeof(writebuf)), StatusEq(NO_ERROR));
EXPECT_THAT(data.write(writebuf, sizeof(writebuf)), StatusEq(NO_ERROR));
EXPECT_THAT(m_server->transact(BINDER_LIB_TEST_WRITE_FILE_TRANSACTION, data, &reply),
StatusEq(NO_ERROR));
}
ret = read(pipefd[0], buf, sizeof(buf));
EXPECT_EQ(sizeof(buf), (size_t)ret);
EXPECT_EQ(write_value, buf[0]);
waitForReadData(pipefd[0], 5000); /* wait for other proccess to close pipe */
ret = read(pipefd[0], buf, sizeof(buf));
EXPECT_EQ(0, ret);
close(pipefd[0]);
}
TEST_F(BinderLibTest, PassParcelFileDescriptor) {
const int datasize = 123;
std::vector<uint8_t> writebuf(datasize);
for (size_t i = 0; i < writebuf.size(); ++i) {
writebuf[i] = i;
}
unique_fd read_end, write_end;
{
int pipefd[2];
ASSERT_EQ(0, pipe2(pipefd, O_NONBLOCK));
read_end.reset(pipefd[0]);
write_end.reset(pipefd[1]);
}
{
Parcel data;
EXPECT_EQ(NO_ERROR, data.writeDupParcelFileDescriptor(write_end.get()));
write_end.reset();
EXPECT_EQ(NO_ERROR, data.writeInt32(datasize));
EXPECT_EQ(NO_ERROR, data.write(writebuf.data(), datasize));
Parcel reply;
EXPECT_EQ(NO_ERROR,
m_server->transact(BINDER_LIB_TEST_WRITE_PARCEL_FILE_DESCRIPTOR_TRANSACTION, data,
&reply));
}
std::vector<uint8_t> readbuf(datasize);
EXPECT_EQ(datasize, read(read_end.get(), readbuf.data(), datasize));
EXPECT_EQ(writebuf, readbuf);
waitForReadData(read_end.get(), 5000); /* wait for other proccess to close pipe */
EXPECT_EQ(0, read(read_end.get(), readbuf.data(), datasize));
}
TEST_F(BinderLibTest, PromoteLocal) {
sp<IBinder> strong = new BBinder();
wp<IBinder> weak = strong;
sp<IBinder> strong_from_weak = weak.promote();
EXPECT_TRUE(strong != nullptr);
EXPECT_EQ(strong, strong_from_weak);
strong = nullptr;
strong_from_weak = nullptr;
strong_from_weak = weak.promote();
EXPECT_TRUE(strong_from_weak == nullptr);
}
TEST_F(BinderLibTest, LocalGetExtension) {
sp<BBinder> binder = new BBinder();
sp<IBinder> ext = new BBinder();
binder->setExtension(ext);
EXPECT_EQ(ext, binder->getExtension());
}
TEST_F(BinderLibTest, RemoteGetExtension) {
sp<IBinder> server = addServer();
ASSERT_TRUE(server != nullptr);
sp<IBinder> extension;
EXPECT_EQ(NO_ERROR, server->getExtension(&extension));
ASSERT_NE(nullptr, extension.get());
EXPECT_EQ(NO_ERROR, extension->pingBinder());
}
TEST_F(BinderLibTest, CheckHandleZeroBinderHighBitsZeroCookie) {
Parcel data, reply;
EXPECT_THAT(m_server->transact(BINDER_LIB_TEST_GET_SELF_TRANSACTION, data, &reply),
StatusEq(NO_ERROR));
const flat_binder_object *fb = reply.readObject(false);
ASSERT_TRUE(fb != nullptr);
EXPECT_EQ(BINDER_TYPE_HANDLE, fb->hdr.type);
EXPECT_EQ(m_server, ProcessState::self()->getStrongProxyForHandle(fb->handle));
EXPECT_EQ((binder_uintptr_t)0, fb->cookie);
EXPECT_EQ((uint64_t)0, (uint64_t)fb->binder >> 32);
}
TEST_F(BinderLibTest, FreedBinder) {
status_t ret;
sp<IBinder> server = addServer();
ASSERT_TRUE(server != nullptr);
__u32 freedHandle;
wp<IBinder> keepFreedBinder;
{
Parcel data, reply;
ASSERT_THAT(server->transact(BINDER_LIB_TEST_CREATE_BINDER_TRANSACTION, data, &reply),
StatusEq(NO_ERROR));
struct flat_binder_object *freed = (struct flat_binder_object *)(reply.data());
freedHandle = freed->handle;
/* Add a weak ref to the freed binder so the driver does not
* delete its reference to it - otherwise the transaction
* fails regardless of whether the driver is fixed.
*/
keepFreedBinder = reply.readStrongBinder();
}
IPCThreadState::self()->flushCommands();
{
Parcel data, reply;
data.writeStrongBinder(server);
/* Replace original handle with handle to the freed binder */
struct flat_binder_object *strong = (struct flat_binder_object *)(data.data());
__u32 oldHandle = strong->handle;
strong->handle = freedHandle;
ret = server->transact(BINDER_LIB_TEST_ADD_STRONG_REF_TRANSACTION, data, &reply);
/* Returns DEAD_OBJECT (-32) if target crashes and
* FAILED_TRANSACTION if the driver rejects the invalid
* object.
*/
EXPECT_EQ((status_t)FAILED_TRANSACTION, ret);
/* Restore original handle so parcel destructor does not use
* the wrong handle.
*/
strong->handle = oldHandle;
}
}
TEST_F(BinderLibTest, CheckNoHeaderMappedInUser) {
Parcel data, reply;
sp<BinderLibTestCallBack> callBack = new BinderLibTestCallBack();
for (int i = 0; i < 2; i++) {
BinderLibTestBundle datai;
datai.appendFrom(&data, 0, data.dataSize());
data.freeData();
data.writeInt32(1);
data.writeStrongBinder(callBack);
data.writeInt32(BINDER_LIB_TEST_CALL_BACK_VERIFY_BUF);
datai.appendTo(&data);
}
EXPECT_THAT(m_server->transact(BINDER_LIB_TEST_INDIRECT_TRANSACTION, data, &reply),
StatusEq(NO_ERROR));
}
TEST_F(BinderLibTest, OnewayQueueing)
{
Parcel data, data2;
sp<IBinder> pollServer = addPollServer();
sp<BinderLibTestCallBack> callBack = new BinderLibTestCallBack();
data.writeStrongBinder(callBack);
data.writeInt32(500000); // delay in us before calling back
sp<BinderLibTestCallBack> callBack2 = new BinderLibTestCallBack();
data2.writeStrongBinder(callBack2);
data2.writeInt32(0); // delay in us
EXPECT_THAT(pollServer->transact(BINDER_LIB_TEST_DELAYED_CALL_BACK, data, nullptr, TF_ONE_WAY),
StatusEq(NO_ERROR));
// The delay ensures that this second transaction will end up on the async_todo list
// (for a single-threaded server)
EXPECT_THAT(pollServer->transact(BINDER_LIB_TEST_DELAYED_CALL_BACK, data2, nullptr, TF_ONE_WAY),
StatusEq(NO_ERROR));
// The server will ensure that the two transactions are handled in the expected order;
// If the ordering is not as expected, an error will be returned through the callbacks.
EXPECT_THAT(callBack->waitEvent(2), StatusEq(NO_ERROR));
EXPECT_THAT(callBack->getResult(), StatusEq(NO_ERROR));
EXPECT_THAT(callBack2->waitEvent(2), StatusEq(NO_ERROR));
EXPECT_THAT(callBack2->getResult(), StatusEq(NO_ERROR));
}
TEST_F(BinderLibTest, WorkSourceUnsetByDefault)
{
status_t ret;
Parcel data, reply;
data.writeInterfaceToken(binderLibTestServiceName);
ret = m_server->transact(BINDER_LIB_TEST_GET_WORK_SOURCE_TRANSACTION, data, &reply);
EXPECT_EQ(-1, reply.readInt32());
EXPECT_EQ(NO_ERROR, ret);
}
TEST_F(BinderLibTest, WorkSourceSet)
{
status_t ret;
Parcel data, reply;
IPCThreadState::self()->clearCallingWorkSource();
int64_t previousWorkSource = IPCThreadState::self()->setCallingWorkSourceUid(100);
data.writeInterfaceToken(binderLibTestServiceName);
ret = m_server->transact(BINDER_LIB_TEST_GET_WORK_SOURCE_TRANSACTION, data, &reply);
EXPECT_EQ(100, reply.readInt32());
EXPECT_EQ(-1, previousWorkSource);
EXPECT_EQ(true, IPCThreadState::self()->shouldPropagateWorkSource());
EXPECT_EQ(NO_ERROR, ret);
}
TEST_F(BinderLibTest, WorkSourceSetWithoutPropagation)
{
status_t ret;
Parcel data, reply;
IPCThreadState::self()->setCallingWorkSourceUidWithoutPropagation(100);
EXPECT_EQ(false, IPCThreadState::self()->shouldPropagateWorkSource());
data.writeInterfaceToken(binderLibTestServiceName);
ret = m_server->transact(BINDER_LIB_TEST_GET_WORK_SOURCE_TRANSACTION, data, &reply);
EXPECT_EQ(-1, reply.readInt32());
EXPECT_EQ(false, IPCThreadState::self()->shouldPropagateWorkSource());
EXPECT_EQ(NO_ERROR, ret);
}
TEST_F(BinderLibTest, WorkSourceCleared)
{
status_t ret;
Parcel data, reply;
IPCThreadState::self()->setCallingWorkSourceUid(100);
int64_t token = IPCThreadState::self()->clearCallingWorkSource();
int32_t previousWorkSource = (int32_t)token;
data.writeInterfaceToken(binderLibTestServiceName);
ret = m_server->transact(BINDER_LIB_TEST_GET_WORK_SOURCE_TRANSACTION, data, &reply);
EXPECT_EQ(-1, reply.readInt32());
EXPECT_EQ(100, previousWorkSource);
EXPECT_EQ(NO_ERROR, ret);
}
TEST_F(BinderLibTest, WorkSourceRestored)
{
status_t ret;
Parcel data, reply;
IPCThreadState::self()->setCallingWorkSourceUid(100);
int64_t token = IPCThreadState::self()->clearCallingWorkSource();
IPCThreadState::self()->restoreCallingWorkSource(token);
data.writeInterfaceToken(binderLibTestServiceName);
ret = m_server->transact(BINDER_LIB_TEST_GET_WORK_SOURCE_TRANSACTION, data, &reply);
EXPECT_EQ(100, reply.readInt32());
EXPECT_EQ(true, IPCThreadState::self()->shouldPropagateWorkSource());
EXPECT_EQ(NO_ERROR, ret);
}
TEST_F(BinderLibTest, PropagateFlagSet)
{
IPCThreadState::self()->clearPropagateWorkSource();
IPCThreadState::self()->setCallingWorkSourceUid(100);
EXPECT_EQ(true, IPCThreadState::self()->shouldPropagateWorkSource());
}
TEST_F(BinderLibTest, PropagateFlagCleared)
{
IPCThreadState::self()->setCallingWorkSourceUid(100);
IPCThreadState::self()->clearPropagateWorkSource();
EXPECT_EQ(false, IPCThreadState::self()->shouldPropagateWorkSource());
}
TEST_F(BinderLibTest, PropagateFlagRestored)
{
int token = IPCThreadState::self()->setCallingWorkSourceUid(100);
IPCThreadState::self()->restoreCallingWorkSource(token);
EXPECT_EQ(false, IPCThreadState::self()->shouldPropagateWorkSource());
}
TEST_F(BinderLibTest, WorkSourcePropagatedForAllFollowingBinderCalls)
{
IPCThreadState::self()->setCallingWorkSourceUid(100);
Parcel data, reply;
status_t ret;
data.writeInterfaceToken(binderLibTestServiceName);
ret = m_server->transact(BINDER_LIB_TEST_GET_WORK_SOURCE_TRANSACTION, data, &reply);
EXPECT_EQ(NO_ERROR, ret);
Parcel data2, reply2;
status_t ret2;
data2.writeInterfaceToken(binderLibTestServiceName);
ret2 = m_server->transact(BINDER_LIB_TEST_GET_WORK_SOURCE_TRANSACTION, data2, &reply2);
EXPECT_EQ(100, reply2.readInt32());
EXPECT_EQ(NO_ERROR, ret2);
}
TEST_F(BinderLibTest, SchedPolicySet) {
sp<IBinder> server = addServer();
ASSERT_TRUE(server != nullptr);
Parcel data, reply;
EXPECT_THAT(server->transact(BINDER_LIB_TEST_GET_SCHEDULING_POLICY, data, &reply),
StatusEq(NO_ERROR));
int policy = reply.readInt32();
int priority = reply.readInt32();
EXPECT_EQ(kSchedPolicy, policy & (~SCHED_RESET_ON_FORK));
EXPECT_EQ(kSchedPriority, priority);
}
TEST_F(BinderLibTest, InheritRt) {
sp<IBinder> server = addServer();
ASSERT_TRUE(server != nullptr);
const struct sched_param param {
.sched_priority = kSchedPriorityMore,
};
EXPECT_EQ(0, sched_setscheduler(getpid(), SCHED_RR, &param));
Parcel data, reply;
EXPECT_THAT(server->transact(BINDER_LIB_TEST_GET_SCHEDULING_POLICY, data, &reply),
StatusEq(NO_ERROR));
int policy = reply.readInt32();
int priority = reply.readInt32();
EXPECT_EQ(kSchedPolicy, policy & (~SCHED_RESET_ON_FORK));
EXPECT_EQ(kSchedPriorityMore, priority);
}
TEST_F(BinderLibTest, VectorSent) {
Parcel data, reply;
sp<IBinder> server = addServer();
ASSERT_TRUE(server != nullptr);
std::vector<uint64_t> const testValue = { std::numeric_limits<uint64_t>::max(), 0, 200 };
data.writeUint64Vector(testValue);
EXPECT_THAT(server->transact(BINDER_LIB_TEST_ECHO_VECTOR, data, &reply), StatusEq(NO_ERROR));
std::vector<uint64_t> readValue;
EXPECT_THAT(reply.readUint64Vector(&readValue), StatusEq(OK));
EXPECT_EQ(readValue, testValue);
}
TEST_F(BinderLibTest, FileDescriptorRemainsNonBlocking) {
sp<IBinder> server = addServer();
ASSERT_TRUE(server != nullptr);
Parcel reply;
EXPECT_THAT(server->transact(BINDER_LIB_TEST_GET_NON_BLOCKING_FD, {} /*data*/, &reply),
StatusEq(NO_ERROR));
unique_fd fd;
EXPECT_THAT(reply.readUniqueFileDescriptor(&fd), StatusEq(OK));
const int result = fcntl(fd.get(), F_GETFL);
ASSERT_NE(result, -1);
EXPECT_EQ(result & O_NONBLOCK, O_NONBLOCK);
}
// see ProcessState.cpp BINDER_VM_SIZE = 1MB.
// This value is not exposed, but some code in the framework relies on being able to use
// buffers near the cap size.
constexpr size_t kSizeBytesAlmostFull = 950'000;
constexpr size_t kSizeBytesOverFull = 1'050'000;
TEST_F(BinderLibTest, GargantuanVectorSent) {
sp<IBinder> server = addServer();
ASSERT_TRUE(server != nullptr);
for (size_t i = 0; i < 10; i++) {
// a slight variation in size is used to consider certain possible caching implementations
const std::vector<uint64_t> testValue((kSizeBytesAlmostFull + i) / sizeof(uint64_t), 42);
Parcel data, reply;
data.writeUint64Vector(testValue);
EXPECT_THAT(server->transact(BINDER_LIB_TEST_ECHO_VECTOR, data, &reply), StatusEq(NO_ERROR))
<< i;
std::vector<uint64_t> readValue;
EXPECT_THAT(reply.readUint64Vector(&readValue), StatusEq(OK));
EXPECT_EQ(readValue, testValue);
}
}
TEST_F(BinderLibTest, LimitExceededVectorSent) {
sp<IBinder> server = addServer();
ASSERT_TRUE(server != nullptr);
const std::vector<uint64_t> testValue(kSizeBytesOverFull / sizeof(uint64_t), 42);
Parcel data, reply;
data.writeUint64Vector(testValue);
EXPECT_THAT(server->transact(BINDER_LIB_TEST_ECHO_VECTOR, data, &reply),
StatusEq(FAILED_TRANSACTION));
}
TEST_F(BinderLibTest, BufRejected) {
Parcel data, reply;
uint32_t buf;
sp<IBinder> server = addServer();
ASSERT_TRUE(server != nullptr);
binder_buffer_object obj {
.hdr = { .type = BINDER_TYPE_PTR },
.flags = 0,
.buffer = reinterpret_cast<binder_uintptr_t>((void*)&buf),
.length = 4,
};
data.setDataCapacity(1024);
// Write a bogus object at offset 0 to get an entry in the offset table
data.writeFileDescriptor(0);
EXPECT_EQ(data.objectsCount(), 1u);
uint8_t *parcelData = const_cast<uint8_t*>(data.data());
// And now, overwrite it with the buffer object
memcpy(parcelData, &obj, sizeof(obj));
data.setDataSize(sizeof(obj));
EXPECT_EQ(data.objectsCount(), 1u);
// Either the kernel should reject this transaction (if it's correct), but
// if it's not, the server implementation should return an error if it
// finds an object in the received Parcel.
EXPECT_THAT(server->transact(BINDER_LIB_TEST_REJECT_OBJECTS, data, &reply),
Not(StatusEq(NO_ERROR)));
}
TEST_F(BinderLibTest, WeakRejected) {
Parcel data, reply;
sp<IBinder> server = addServer();
ASSERT_TRUE(server != nullptr);
auto binder = sp<BBinder>::make();
wp<BBinder> wpBinder(binder);
flat_binder_object obj{
.hdr = {.type = BINDER_TYPE_WEAK_BINDER},
.flags = 0,
.binder = reinterpret_cast<uintptr_t>(wpBinder.get_refs()),
.cookie = reinterpret_cast<uintptr_t>(wpBinder.unsafe_get()),
};
data.setDataCapacity(1024);
// Write a bogus object at offset 0 to get an entry in the offset table
data.writeFileDescriptor(0);
EXPECT_EQ(data.objectsCount(), 1u);
uint8_t *parcelData = const_cast<uint8_t *>(data.data());
// And now, overwrite it with the weak binder
memcpy(parcelData, &obj, sizeof(obj));
data.setDataSize(sizeof(obj));
// a previous bug caused other objects to be released an extra time, so we
// test with an object that libbinder will actually try to release
EXPECT_EQ(OK, data.writeStrongBinder(sp<BBinder>::make()));
EXPECT_EQ(data.objectsCount(), 2u);
// send it many times, since previous error was memory corruption, make it
// more likely that the server crashes
for (size_t i = 0; i < 100; i++) {
EXPECT_THAT(server->transact(BINDER_LIB_TEST_REJECT_OBJECTS, data, &reply),
StatusEq(BAD_VALUE));
}
EXPECT_THAT(server->pingBinder(), StatusEq(NO_ERROR));
}
TEST_F(BinderLibTest, GotSid) {
sp<IBinder> server = addServer();
Parcel data;
EXPECT_THAT(server->transact(BINDER_LIB_TEST_CAN_GET_SID, data, nullptr), StatusEq(OK));
}
struct TooManyFdsFlattenable : Flattenable<TooManyFdsFlattenable> {
TooManyFdsFlattenable(size_t fdCount) : mFdCount(fdCount) {}
// Flattenable protocol
size_t getFlattenedSize() const {
// Return a valid non-zero size here so we don't get an unintended
// BAD_VALUE from Parcel::write
return 16;
}
size_t getFdCount() const { return mFdCount; }
status_t flatten(void *& /*buffer*/, size_t & /*size*/, int *&fds, size_t &count) const {
for (size_t i = 0; i < count; i++) {
fds[i] = STDIN_FILENO;
}
return NO_ERROR;
}
status_t unflatten(void const *& /*buffer*/, size_t & /*size*/, int const *& /*fds*/,
size_t & /*count*/) {
/* This doesn't get called */
return NO_ERROR;
}
size_t mFdCount;
};
TEST_F(BinderLibTest, TooManyFdsFlattenable) {
rlimit origNofile;
int ret = getrlimit(RLIMIT_NOFILE, &origNofile);
ASSERT_EQ(0, ret);
// Restore the original file limits when the test finishes
auto guardUnguard = make_scope_guard([&]() { setrlimit(RLIMIT_NOFILE, &origNofile); });
rlimit testNofile = {1024, 1024};
ret = setrlimit(RLIMIT_NOFILE, &testNofile);
ASSERT_EQ(0, ret);
Parcel parcel;
// Try to write more file descriptors than supported by the OS
TooManyFdsFlattenable tooManyFds1(1024);
EXPECT_THAT(parcel.write(tooManyFds1), StatusEq(-EMFILE));
// Try to write more file descriptors than the internal limit
TooManyFdsFlattenable tooManyFds2(1025);
EXPECT_THAT(parcel.write(tooManyFds2), StatusEq(BAD_VALUE));
}
TEST(ServiceNotifications, Unregister) {
auto sm = defaultServiceManager();
sm->enableAddServiceCache(false);
using LocalRegistrationCallback = IServiceManager::LocalRegistrationCallback;
class LocalRegistrationCallbackImpl : public virtual LocalRegistrationCallback {
void onServiceRegistration(const String16 &, const sp<IBinder> &) override {}
virtual ~LocalRegistrationCallbackImpl() {}
};
sp<LocalRegistrationCallback> cb = sp<LocalRegistrationCallbackImpl>::make();
EXPECT_EQ(sm->registerForNotifications(String16("RogerRafa"), cb), OK);
EXPECT_EQ(sm->unregisterForNotifications(String16("RogerRafa"), cb), OK);
}
TEST_F(BinderLibTest, ThreadPoolAvailableThreads) {
Parcel data, reply;
sp<IBinder> server = addServer();
ASSERT_TRUE(server != nullptr);
EXPECT_THAT(server->transact(BINDER_LIB_TEST_GET_MAX_THREAD_COUNT, data, &reply),
StatusEq(NO_ERROR));
int32_t replyi = reply.readInt32();
// see getThreadPoolMaxTotalThreadCount for why there is a race
EXPECT_TRUE(replyi == kKernelThreads + 1 || replyi == kKernelThreads + 2) << replyi;
EXPECT_THAT(server->transact(BINDER_LIB_TEST_PROCESS_LOCK, data, &reply), NO_ERROR);
/*
* This will use all threads in the pool but one. There are actually kKernelThreads+2
* available in the other process (startThreadPool, joinThreadPool, + the kernel-
* started threads from setThreadPoolMaxThreadCount
*
* Adding one more will cause it to deadlock.
*/
std::vector<std::thread> ts;
for (size_t i = 0; i < kKernelThreads + 1; i++) {
ts.push_back(std::thread([&] {
Parcel local_reply;
EXPECT_THAT(server->transact(BINDER_LIB_TEST_LOCK_UNLOCK, data, &local_reply),
NO_ERROR);
}));
}
// make sure all of the above calls will be queued in parallel. Otherwise, most of
// the time, the below call will pre-empt them (presumably because we have the
// scheduler timeslice already + scheduler hint).
sleep(1);
data.writeInt32(1000);
// Give a chance for all threads to be used (kKernelThreads + 1 thread in use)
EXPECT_THAT(server->transact(BINDER_LIB_TEST_UNLOCK_AFTER_MS, data, &reply), NO_ERROR);
for (auto &t : ts) {
t.join();
}
EXPECT_THAT(server->transact(BINDER_LIB_TEST_GET_MAX_THREAD_COUNT, data, &reply),
StatusEq(NO_ERROR));
replyi = reply.readInt32();
EXPECT_EQ(replyi, kKernelThreads + 2);
}
TEST_F(BinderLibTest, ThreadPoolStarted) {
Parcel data, reply;
sp<IBinder> server = addServer();
ASSERT_TRUE(server != nullptr);
EXPECT_THAT(server->transact(BINDER_LIB_TEST_IS_THREADPOOL_STARTED, data, &reply), NO_ERROR);
EXPECT_TRUE(reply.readBool());
}
TEST_F(BinderLibTest, HangingServices) {
Parcel data, reply;
sp<IBinder> server = addServer();
ASSERT_TRUE(server != nullptr);
int32_t delay = 1000; // ms
data.writeInt32(delay);
// b/266537959 - must take before taking lock, since countdown is started in the remote
// process there.
int64_t timeBefore = uptimeMillis();
EXPECT_THAT(server->transact(BINDER_LIB_TEST_PROCESS_TEMPORARY_LOCK, data, &reply), NO_ERROR);
std::vector<std::thread> ts;
for (size_t i = 0; i < kKernelThreads + 1; i++) {
ts.push_back(std::thread([&] {
Parcel local_reply;
EXPECT_THAT(server->transact(BINDER_LIB_TEST_LOCK_UNLOCK, data, &local_reply),
NO_ERROR);
}));
}
for (auto &t : ts) {
t.join();
}
int64_t timeAfter = uptimeMillis();
// deadlock occurred and threads only finished after 1s passed.
EXPECT_GE(timeAfter, timeBefore + delay);
}
TEST_F(BinderLibTest, BinderProxyCount) {
Parcel data, reply;
sp<IBinder> server = addServer();
ASSERT_NE(server, nullptr);
uint32_t initialCount = BpBinder::getBinderProxyCount();
size_t iterations = 100;
{
uint32_t count = initialCount;
std::vector<sp<IBinder> > proxies;
sp<IBinder> proxy;
// Create binder proxies and verify the count.
for (size_t i = 0; i < iterations; i++) {
ASSERT_THAT(server->transact(BINDER_LIB_TEST_CREATE_BINDER_TRANSACTION, data, &reply),
StatusEq(NO_ERROR));
proxies.push_back(reply.readStrongBinder());
EXPECT_EQ(BpBinder::getBinderProxyCount(), ++count);
}
// Remove every other one and verify the count.
auto it = proxies.begin();
for (size_t i = 0; it != proxies.end(); i++) {
if (i % 2 == 0) {
it = proxies.erase(it);
EXPECT_EQ(BpBinder::getBinderProxyCount(), --count);
}
}
}
EXPECT_EQ(BpBinder::getBinderProxyCount(), initialCount);
}
static constexpr int kBpCountHighWatermark = 20;
static constexpr int kBpCountLowWatermark = 10;
static constexpr int kBpCountWarningWatermark = 15;
static constexpr int kInvalidUid = -1;
TEST_F(BinderLibTest, BinderProxyCountCallback) {
Parcel data, reply;
sp<IBinder> server = addServer();
ASSERT_NE(server, nullptr);
BpBinder::enableCountByUid();
EXPECT_THAT(m_server->transact(BINDER_LIB_TEST_GETUID, data, &reply), StatusEq(NO_ERROR));
int32_t uid = reply.readInt32();
ASSERT_NE(uid, kInvalidUid);
uint32_t initialCount = BpBinder::getBinderProxyCount();
{
uint32_t count = initialCount;
BpBinder::setBinderProxyCountWatermarks(kBpCountHighWatermark,
kBpCountLowWatermark,
kBpCountWarningWatermark);
int limitCallbackUid = kInvalidUid;
int warningCallbackUid = kInvalidUid;
BpBinder::setBinderProxyCountEventCallback([&](int uid) { limitCallbackUid = uid; },
[&](int uid) { warningCallbackUid = uid; });
std::vector<sp<IBinder> > proxies;
auto createProxyOnce = [&](int expectedWarningCallbackUid, int expectedLimitCallbackUid) {
warningCallbackUid = limitCallbackUid = kInvalidUid;
ASSERT_THAT(server->transact(BINDER_LIB_TEST_CREATE_BINDER_TRANSACTION, data, &reply),
StatusEq(NO_ERROR));
proxies.push_back(reply.readStrongBinder());
EXPECT_EQ(BpBinder::getBinderProxyCount(), ++count);
EXPECT_EQ(warningCallbackUid, expectedWarningCallbackUid);
EXPECT_EQ(limitCallbackUid, expectedLimitCallbackUid);
};
auto removeProxyOnce = [&](int expectedWarningCallbackUid, int expectedLimitCallbackUid) {
warningCallbackUid = limitCallbackUid = kInvalidUid;
proxies.pop_back();
EXPECT_EQ(BpBinder::getBinderProxyCount(), --count);
EXPECT_EQ(warningCallbackUid, expectedWarningCallbackUid);
EXPECT_EQ(limitCallbackUid, expectedLimitCallbackUid);
};
// Test the increment/decrement of the binder proxies.
for (int i = 1; i <= kBpCountWarningWatermark; i++) {
createProxyOnce(kInvalidUid, kInvalidUid);
}
createProxyOnce(uid, kInvalidUid); // Warning callback should have been triggered.
for (int i = kBpCountWarningWatermark + 2; i <= kBpCountHighWatermark; i++) {
createProxyOnce(kInvalidUid, kInvalidUid);
}
createProxyOnce(kInvalidUid, uid); // Limit callback should have been triggered.
createProxyOnce(kInvalidUid, kInvalidUid);
for (int i = kBpCountHighWatermark + 2; i >= kBpCountHighWatermark; i--) {
removeProxyOnce(kInvalidUid, kInvalidUid);
}
createProxyOnce(kInvalidUid, kInvalidUid);
// Go down below the low watermark.
for (int i = kBpCountHighWatermark; i >= kBpCountLowWatermark; i--) {
removeProxyOnce(kInvalidUid, kInvalidUid);
}
for (int i = kBpCountLowWatermark; i <= kBpCountWarningWatermark; i++) {
createProxyOnce(kInvalidUid, kInvalidUid);
}
createProxyOnce(uid, kInvalidUid); // Warning callback should have been triggered.
for (int i = kBpCountWarningWatermark + 2; i <= kBpCountHighWatermark; i++) {
createProxyOnce(kInvalidUid, kInvalidUid);
}
createProxyOnce(kInvalidUid, uid); // Limit callback should have been triggered.
createProxyOnce(kInvalidUid, kInvalidUid);
for (int i = kBpCountHighWatermark + 2; i >= kBpCountHighWatermark; i--) {
removeProxyOnce(kInvalidUid, kInvalidUid);
}
createProxyOnce(kInvalidUid, kInvalidUid);
}
EXPECT_EQ(BpBinder::getBinderProxyCount(), initialCount);
}
class BinderLibRpcTestBase : public BinderLibTest {
public:
void SetUp() override {
if (!base::GetBoolProperty("ro.debuggable", false)) {
GTEST_SKIP() << "Binder RPC is only enabled on debuggable builds, skipping test on "
"non-debuggable builds.";
}
BinderLibTest::SetUp();
}
std::tuple<unique_fd, unsigned int> CreateSocket() {
auto rpcServer = RpcServer::make();
EXPECT_NE(nullptr, rpcServer);
if (rpcServer == nullptr) return {};
unsigned int port;
if (status_t status = rpcServer->setupInetServer("127.0.0.1", 0, &port); status != OK) {
ADD_FAILURE() << "setupInetServer failed" << statusToString(status);
return {};
}
return {rpcServer->releaseServer(), port};
}
};
class BinderLibRpcTest : public BinderLibRpcTestBase {};
// e.g. EXPECT_THAT(expr, Debuggable(StatusEq(...))
// If device is debuggable AND not on user builds, expects matcher.
// Otherwise expects INVALID_OPERATION.
// Debuggable + non user builds is necessary but not sufficient for setRpcClientDebug to work.
static Matcher<status_t> Debuggable(const Matcher<status_t> &matcher) {
bool isDebuggable = android::base::GetBoolProperty("ro.debuggable", false) &&
android::base::GetProperty("ro.build.type", "") != "user";
return isDebuggable ? matcher : StatusEq(INVALID_OPERATION);
}
TEST_F(BinderLibRpcTest, SetRpcClientDebug) {
auto binder = addServer();
ASSERT_TRUE(binder != nullptr);
auto [socket, port] = CreateSocket();
ASSERT_TRUE(socket.ok());
EXPECT_THAT(binder->setRpcClientDebug(std::move(socket), sp<BBinder>::make()),
Debuggable(StatusEq(OK)));
}
// Tests for multiple RpcServer's on the same binder object.
TEST_F(BinderLibRpcTest, SetRpcClientDebugTwice) {
auto binder = addServer();
ASSERT_TRUE(binder != nullptr);
auto [socket1, port1] = CreateSocket();
ASSERT_TRUE(socket1.ok());
auto keepAliveBinder1 = sp<BBinder>::make();
EXPECT_THAT(binder->setRpcClientDebug(std::move(socket1), keepAliveBinder1),
Debuggable(StatusEq(OK)));
auto [socket2, port2] = CreateSocket();
ASSERT_TRUE(socket2.ok());
auto keepAliveBinder2 = sp<BBinder>::make();
EXPECT_THAT(binder->setRpcClientDebug(std::move(socket2), keepAliveBinder2),
Debuggable(StatusEq(OK)));
}
// Negative tests for RPC APIs on IBinder. Call should fail in the same way on both remote and
// local binders.
class BinderLibRpcTestP : public BinderLibRpcTestBase, public WithParamInterface<bool> {
public:
sp<IBinder> GetService() {
return GetParam() ? sp<IBinder>(addServer()) : sp<IBinder>(sp<BBinder>::make());
}
static std::string ParamToString(const testing::TestParamInfo<ParamType> &info) {
return info.param ? "remote" : "local";
}
};
TEST_P(BinderLibRpcTestP, SetRpcClientDebugNoFd) {
auto binder = GetService();
ASSERT_TRUE(binder != nullptr);
EXPECT_THAT(binder->setRpcClientDebug(unique_fd(), sp<BBinder>::make()),
Debuggable(StatusEq(BAD_VALUE)));
}
TEST_P(BinderLibRpcTestP, SetRpcClientDebugNoKeepAliveBinder) {
auto binder = GetService();
ASSERT_TRUE(binder != nullptr);
auto [socket, port] = CreateSocket();
ASSERT_TRUE(socket.ok());
EXPECT_THAT(binder->setRpcClientDebug(std::move(socket), nullptr),
Debuggable(StatusEq(UNEXPECTED_NULL)));
}
INSTANTIATE_TEST_SUITE_P(BinderLibTest, BinderLibRpcTestP, testing::Bool(),
BinderLibRpcTestP::ParamToString);
class BinderLibTestService : public BBinder {
public:
explicit BinderLibTestService(int32_t id, bool exitOnDestroy = true)
: m_id(id),
m_nextServerId(id + 1),
m_serverStartRequested(false),
m_callback(nullptr),
m_exitOnDestroy(exitOnDestroy) {
pthread_mutex_init(&m_serverWaitMutex, nullptr);
pthread_cond_init(&m_serverWaitCond, nullptr);
}
~BinderLibTestService() {
if (m_exitOnDestroy) exit(EXIT_SUCCESS);
}
void processPendingCall() {
if (m_callback != nullptr) {
Parcel data;
data.writeInt32(NO_ERROR);
m_callback->transact(BINDER_LIB_TEST_CALL_BACK, data, nullptr, TF_ONE_WAY);
m_callback = nullptr;
}
}
virtual status_t onTransact(uint32_t code, const Parcel &data, Parcel *reply,
uint32_t flags = 0) {
// TODO(b/182914638): also checks getCallingUid() for RPC
if (!data.isForRpc() && getuid() != (uid_t)IPCThreadState::self()->getCallingUid()) {
return PERMISSION_DENIED;
}
switch (code) {
case BINDER_LIB_TEST_REGISTER_SERVER: {
sp<IBinder> binder;
/*id =*/data.readInt32();
binder = data.readStrongBinder();
if (binder == nullptr) {
return BAD_VALUE;
}
if (m_id != 0) return INVALID_OPERATION;
pthread_mutex_lock(&m_serverWaitMutex);
if (m_serverStartRequested) {
m_serverStartRequested = false;
m_serverStarted = binder;
pthread_cond_signal(&m_serverWaitCond);
}
pthread_mutex_unlock(&m_serverWaitMutex);
return NO_ERROR;
}
case BINDER_LIB_TEST_ADD_POLL_SERVER:
case BINDER_LIB_TEST_ADD_SERVER: {
int ret;
int serverid;
if (m_id != 0) {
return INVALID_OPERATION;
}
pthread_mutex_lock(&m_serverWaitMutex);
if (m_serverStartRequested) {
ret = -EBUSY;
} else {
serverid = m_nextServerId++;
m_serverStartRequested = true;
bool usePoll = code == BINDER_LIB_TEST_ADD_POLL_SERVER;
pthread_mutex_unlock(&m_serverWaitMutex);
ret = start_server_process(serverid, usePoll);
pthread_mutex_lock(&m_serverWaitMutex);
}
if (ret > 0) {
if (m_serverStartRequested) {
struct timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
ts.tv_sec += 5;
ret = pthread_cond_timedwait(&m_serverWaitCond, &m_serverWaitMutex, &ts);
}
if (m_serverStartRequested) {
m_serverStartRequested = false;
ret = -ETIMEDOUT;
} else {
reply->writeStrongBinder(m_serverStarted);
reply->writeInt32(serverid);
m_serverStarted = nullptr;
ret = NO_ERROR;
}
} else if (ret >= 0) {
m_serverStartRequested = false;
ret = UNKNOWN_ERROR;
}
pthread_mutex_unlock(&m_serverWaitMutex);
return ret;
}
case BINDER_LIB_TEST_USE_CALLING_GUARD_TRANSACTION: {
IPCThreadState::SpGuard spGuard{
.address = __builtin_frame_address(0),
.context = "GuardInBinderTransaction",
};
const IPCThreadState::SpGuard *origGuard =
IPCThreadState::self()->pushGetCallingSpGuard(&spGuard);
// if the guard works, this should abort
(void)IPCThreadState::self()->getCallingPid();
IPCThreadState::self()->restoreGetCallingSpGuard(origGuard);
return NO_ERROR;
}
case BINDER_LIB_TEST_GETPID:
reply->writeInt32(getpid());
return NO_ERROR;
case BINDER_LIB_TEST_GETUID:
reply->writeInt32(getuid());
return NO_ERROR;
case BINDER_LIB_TEST_NOP_TRANSACTION_WAIT:
usleep(5000);
[[fallthrough]];
case BINDER_LIB_TEST_NOP_TRANSACTION:
// oneway error codes should be ignored
if (flags & TF_ONE_WAY) {
return UNKNOWN_ERROR;
}
return NO_ERROR;
case BINDER_LIB_TEST_DELAYED_CALL_BACK: {
// Note: this transaction is only designed for use with a
// poll() server. See comments around epoll_wait().
if (m_callback != nullptr) {
// A callback was already pending; this means that
// we received a second call while still processing
// the first one. Fail the test.
sp<IBinder> callback = data.readStrongBinder();
Parcel data2;
data2.writeInt32(UNKNOWN_ERROR);
callback->transact(BINDER_LIB_TEST_CALL_BACK, data2, nullptr, TF_ONE_WAY);
} else {
m_callback = data.readStrongBinder();
int32_t delayUs = data.readInt32();
/*
* It's necessary that we sleep here, so the next
* transaction the caller makes will be queued to
* the async queue.
*/
usleep(delayUs);
/*
* Now when we return, libbinder will tell the kernel
* we are done with this transaction, and the kernel
* can move the queued transaction to either the
* thread todo worklist (for kernels without the fix),
* or the proc todo worklist. In case of the former,
* the next outbound call will pick up the pending
* transaction, which leads to undesired reentrant
* behavior. This is caught in the if() branch above.
*/
}
return NO_ERROR;
}
case BINDER_LIB_TEST_NOP_CALL_BACK: {
Parcel data2, reply2;
sp<IBinder> binder;
binder = data.readStrongBinder();
if (binder == nullptr) {
return BAD_VALUE;
}
data2.writeInt32(NO_ERROR);
binder->transact(BINDER_LIB_TEST_CALL_BACK, data2, &reply2);
return NO_ERROR;
}
case BINDER_LIB_TEST_GET_SELF_TRANSACTION:
reply->writeStrongBinder(this);
return NO_ERROR;
case BINDER_LIB_TEST_GET_ID_TRANSACTION:
reply->writeInt32(m_id);
return NO_ERROR;
case BINDER_LIB_TEST_INDIRECT_TRANSACTION: {
int32_t count;
uint32_t indirect_code;
sp<IBinder> binder;
count = data.readInt32();
reply->writeInt32(m_id);
reply->writeInt32(count);
for (int i = 0; i < count; i++) {
binder = data.readStrongBinder();
if (binder == nullptr) {
return BAD_VALUE;
}
indirect_code = data.readInt32();
BinderLibTestBundle data2(&data);
if (!data2.isValid()) {
return BAD_VALUE;
}
BinderLibTestBundle reply2;
binder->transact(indirect_code, data2, &reply2);
reply2.appendTo(reply);
}
return NO_ERROR;
}
case BINDER_LIB_TEST_SET_ERROR_TRANSACTION:
reply->setError(data.readInt32());
return NO_ERROR;
case BINDER_LIB_TEST_GET_PTR_SIZE_TRANSACTION:
reply->writeInt32(sizeof(void *));
return NO_ERROR;
case BINDER_LIB_TEST_GET_STATUS_TRANSACTION:
return NO_ERROR;
case BINDER_LIB_TEST_ADD_STRONG_REF_TRANSACTION:
m_strongRef = data.readStrongBinder();
return NO_ERROR;
case BINDER_LIB_TEST_LINK_DEATH_TRANSACTION: {
int ret;
Parcel data2, reply2;
sp<TestDeathRecipient> testDeathRecipient = new TestDeathRecipient();
sp<IBinder> target;
sp<IBinder> callback;
target = data.readStrongBinder();
if (target == nullptr) {
return BAD_VALUE;
}
callback = data.readStrongBinder();
if (callback == nullptr) {
return BAD_VALUE;
}
ret = target->linkToDeath(testDeathRecipient);
if (ret == NO_ERROR) ret = testDeathRecipient->waitEvent(5);
data2.writeInt32(ret);
callback->transact(BINDER_LIB_TEST_CALL_BACK, data2, &reply2);
return NO_ERROR;
}
case BINDER_LIB_TEST_WRITE_FILE_TRANSACTION: {
int ret;
int32_t size;
const void *buf;
int fd;
fd = data.readFileDescriptor();
if (fd < 0) {
return BAD_VALUE;
}
ret = data.readInt32(&size);
if (ret != NO_ERROR) {
return ret;
}
buf = data.readInplace(size);
if (buf == nullptr) {
return BAD_VALUE;
}
ret = write(fd, buf, size);
if (ret != size) return UNKNOWN_ERROR;
return NO_ERROR;
}
case BINDER_LIB_TEST_WRITE_PARCEL_FILE_DESCRIPTOR_TRANSACTION: {
int ret;
int32_t size;
const void *buf;
unique_fd fd;
ret = data.readUniqueParcelFileDescriptor(&fd);
if (ret != NO_ERROR) {
return ret;
}
ret = data.readInt32(&size);
if (ret != NO_ERROR) {
return ret;
}
buf = data.readInplace(size);
if (buf == nullptr) {
return BAD_VALUE;
}
ret = write(fd.get(), buf, size);
if (ret != size) return UNKNOWN_ERROR;
return NO_ERROR;
}
case BINDER_LIB_TEST_DELAYED_EXIT_TRANSACTION:
alarm(10);
return NO_ERROR;
case BINDER_LIB_TEST_EXIT_TRANSACTION:
while (wait(nullptr) != -1 || errno != ECHILD)
;
exit(EXIT_SUCCESS);
case BINDER_LIB_TEST_CREATE_BINDER_TRANSACTION: {
sp<IBinder> binder = new BBinder();
reply->writeStrongBinder(binder);
return NO_ERROR;
}
case BINDER_LIB_TEST_GET_WORK_SOURCE_TRANSACTION: {
data.enforceInterface(binderLibTestServiceName);
reply->writeInt32(IPCThreadState::self()->getCallingWorkSourceUid());
return NO_ERROR;
}
case BINDER_LIB_TEST_GET_SCHEDULING_POLICY: {
int policy = 0;
sched_param param;
if (0 != pthread_getschedparam(pthread_self(), &policy, &param)) {
return UNKNOWN_ERROR;
}
reply->writeInt32(policy);
reply->writeInt32(param.sched_priority);
return NO_ERROR;
}
case BINDER_LIB_TEST_LISTEN_FOR_FROZEN_STATE_CHANGE: {
sp<IBinder> binder = data.readStrongBinder();
frozenStateChangeCallback = sp<TestFrozenStateChangeCallback>::make();
// Hold an strong pointer to the binder object so it doesn't go
// away.
frozenStateChangeCallback->binder = binder;
int ret = binder->addFrozenStateChangeCallback(frozenStateChangeCallback);
if (ret != NO_ERROR) {
return ret;
}
auto event = frozenStateChangeCallback->events.popWithTimeout(1000ms);
if (!event.has_value()) {
return NOT_ENOUGH_DATA;
}
return NO_ERROR;
}
case BINDER_LIB_TEST_CONSUME_STATE_CHANGE_EVENTS: {
reply->writeBoolVector(frozenStateChangeCallback->getAllAndClear());
return NO_ERROR;
}
case BINDER_LIB_TEST_ECHO_VECTOR: {
std::vector<uint64_t> vector;
auto err = data.readUint64Vector(&vector);
if (err != NO_ERROR) return err;
reply->writeUint64Vector(vector);
return NO_ERROR;
}
case BINDER_LIB_TEST_GET_NON_BLOCKING_FD: {
std::array<int, 2> sockets;
const bool created = socketpair(AF_UNIX, SOCK_SEQPACKET, 0, sockets.data()) == 0;
if (!created) {
ALOGE("Could not create socket pair");
return UNKNOWN_ERROR;
}
const int result = fcntl(sockets[0], F_SETFL, O_NONBLOCK);
if (result != 0) {
ALOGE("Could not make socket non-blocking: %s", strerror(errno));
return UNKNOWN_ERROR;
}
unique_fd out(sockets[0]);
status_t writeResult = reply->writeUniqueFileDescriptor(out);
if (writeResult != NO_ERROR) {
ALOGE("Could not write unique_fd");
return writeResult;
}
close(sockets[1]); // we don't need the other side of the fd
return NO_ERROR;
}
case BINDER_LIB_TEST_REJECT_OBJECTS: {
return data.objectsCount() == 0 ? BAD_VALUE : NO_ERROR;
}
case BINDER_LIB_TEST_CAN_GET_SID: {
return IPCThreadState::self()->getCallingSid() == nullptr ? BAD_VALUE : NO_ERROR;
}
case BINDER_LIB_TEST_GET_MAX_THREAD_COUNT: {
reply->writeInt32(ProcessState::self()->getThreadPoolMaxTotalThreadCount());
return NO_ERROR;
}
case BINDER_LIB_TEST_IS_THREADPOOL_STARTED: {
reply->writeBool(ProcessState::self()->isThreadPoolStarted());
return NO_ERROR;
}
case BINDER_LIB_TEST_PROCESS_LOCK: {
m_blockMutex.lock();
return NO_ERROR;
}
case BINDER_LIB_TEST_LOCK_UNLOCK: {
std::lock_guard<std::mutex> _l(m_blockMutex);
return NO_ERROR;
}
case BINDER_LIB_TEST_UNLOCK_AFTER_MS: {
int32_t ms = data.readInt32();
return unlockInMs(ms);
}
case BINDER_LIB_TEST_PROCESS_TEMPORARY_LOCK: {
m_blockMutex.lock();
sp<BinderLibTestService> thisService = this;
int32_t value = data.readInt32();
// start local thread to unlock in 1s
std::thread t([=] { thisService->unlockInMs(value); });
t.detach();
return NO_ERROR;
}
default:
return UNKNOWN_TRANSACTION;
};
}
status_t unlockInMs(int32_t ms) {
usleep(ms * 1000);
m_blockMutex.unlock();
return NO_ERROR;
}
private:
int32_t m_id;
int32_t m_nextServerId;
pthread_mutex_t m_serverWaitMutex;
pthread_cond_t m_serverWaitCond;
bool m_serverStartRequested;
sp<IBinder> m_serverStarted;
sp<IBinder> m_strongRef;
sp<IBinder> m_callback;
bool m_exitOnDestroy;
std::mutex m_blockMutex;
sp<TestFrozenStateChangeCallback> frozenStateChangeCallback;
};
int run_server(int index, int readypipefd, bool usePoll)
{
binderLibTestServiceName += String16(binderserversuffix);
// Testing to make sure that calls that we are serving can use getCallin*
// even though we don't here.
IPCThreadState::SpGuard spGuard{
.address = __builtin_frame_address(0),
.context = "main server thread",
};
(void)IPCThreadState::self()->pushGetCallingSpGuard(&spGuard);
status_t ret;
sp<IServiceManager> sm = defaultServiceManager();
sm->enableAddServiceCache(false);
BinderLibTestService* testServicePtr;
{
sp<BinderLibTestService> testService = new BinderLibTestService(index);
testService->setMinSchedulerPolicy(kSchedPolicy, kSchedPriority);
testService->setInheritRt(true);
/*
* Normally would also contain functionality as well, but we are only
* testing the extension mechanism.
*/
testService->setExtension(new BBinder());
// Required for test "BufRejected'
testService->setRequestingSid(true);
/*
* We need this below, but can't hold a sp<> because it prevents the
* node from being cleaned up automatically. It's safe in this case
* because of how the tests are written.
*/
testServicePtr = testService.get();
if (index == 0) {
ret = sm->addService(binderLibTestServiceName, testService);
} else {
LIBBINDER_IGNORE("-Wdeprecated-declarations")
sp<IBinder> server = sm->getService(binderLibTestServiceName);
LIBBINDER_IGNORE_END()
Parcel data, reply;
data.writeInt32(index);
data.writeStrongBinder(testService);
ret = server->transact(BINDER_LIB_TEST_REGISTER_SERVER, data, &reply);
}
}
write(readypipefd, &ret, sizeof(ret));
close(readypipefd);
//printf("%s: ret %d\n", __func__, ret);
if (ret)
return 1;
//printf("%s: joinThreadPool\n", __func__);
if (usePoll) {
int fd;
struct epoll_event ev;
int epoll_fd;
IPCThreadState::self()->setupPolling(&fd);
if (fd < 0) {
return 1;
}
IPCThreadState::self()->flushCommands(); // flush BC_ENTER_LOOPER
epoll_fd = epoll_create1(EPOLL_CLOEXEC);
if (epoll_fd == -1) {
return 1;
}
ev.events = EPOLLIN;
if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, fd, &ev) == -1) {
return 1;
}
while (1) {
/*
* We simulate a single-threaded process using the binder poll
* interface; besides handling binder commands, it can also
* issue outgoing transactions, by storing a callback in
* m_callback.
*
* processPendingCall() will then issue that transaction.
*/
struct epoll_event events[1];
int numEvents = epoll_wait(epoll_fd, events, 1, 1000);
if (numEvents < 0) {
if (errno == EINTR) {
continue;
}
return 1;
}
if (numEvents > 0) {
IPCThreadState::self()->handlePolledCommands();
IPCThreadState::self()->flushCommands(); // flush BC_FREE_BUFFER
testServicePtr->processPendingCall();
}
}
} else {
ProcessState::self()->setThreadPoolMaxThreadCount(kKernelThreads);
ProcessState::self()->startThreadPool();
IPCThreadState::self()->joinThreadPool();
}
//printf("%s: joinThreadPool returned\n", __func__);
return 1; /* joinThreadPool should not return */
}
int main(int argc, char** argv) {
if (argc == 4 && !strcmp(argv[1], "--servername")) {
binderservername = argv[2];
} else {
binderservername = argv[0];
}
if (argc == 6 && !strcmp(argv[1], binderserverarg)) {
binderserversuffix = argv[5];
return run_server(atoi(argv[2]), atoi(argv[3]), atoi(argv[4]) == 1);
}
binderserversuffix = new char[16];
snprintf(binderserversuffix, 16, "%d", getpid());
binderLibTestServiceName += String16(binderserversuffix);
::testing::InitGoogleTest(&argc, argv);
binder_env = AddGlobalTestEnvironment(new BinderLibTestEnv());
ProcessState::self()->startThreadPool();
return RUN_ALL_TESTS();
}