blob: 87baf8c8a845739cd688eb1392f78f79e9a0fc31 [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// #define LOG_NDEBUG 0
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <stdint.h>
#include <sys/types.h>
#include <algorithm>
#include <errno.h>
#include <math.h>
#include <mutex>
#include <dlfcn.h>
#include <inttypes.h>
#include <stdatomic.h>
#include <optional>
#include <cutils/properties.h>
#include <log/log.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <binder/PermissionCache.h>
#include <dvr/vr_flinger.h>
#include <ui/DebugUtils.h>
#include <ui/DisplayInfo.h>
#include <ui/DisplayStatInfo.h>
#include <gui/BufferQueue.h>
#include <gui/GuiConfig.h>
#include <gui/IDisplayEventConnection.h>
#include <gui/LayerDebugInfo.h>
#include <gui/Surface.h>
#include <ui/GraphicBufferAllocator.h>
#include <ui/PixelFormat.h>
#include <ui/UiConfig.h>
#include <utils/misc.h>
#include <utils/String8.h>
#include <utils/String16.h>
#include <utils/StopWatch.h>
#include <utils/Timers.h>
#include <utils/Trace.h>
#include <private/android_filesystem_config.h>
#include <private/gui/SyncFeatures.h>
#include "BufferLayer.h"
#include "Client.h"
#include "ColorLayer.h"
#include "Colorizer.h"
#include "ContainerLayer.h"
#include "DdmConnection.h"
#include "DispSync.h"
#include "DisplayDevice.h"
#include "EventControlThread.h"
#include "EventThread.h"
#include "Layer.h"
#include "LayerVector.h"
#include "MonitoredProducer.h"
#include "SurfaceFlinger.h"
#include "clz.h"
#include "DisplayHardware/ComposerHal.h"
#include "DisplayHardware/FramebufferSurface.h"
#include "DisplayHardware/HWComposer.h"
#include "DisplayHardware/VirtualDisplaySurface.h"
#include "Effects/Daltonizer.h"
#include "RenderEngine/RenderEngine.h"
#include <cutils/compiler.h>
#include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
#include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h>
#include <android/hardware/configstore/1.1/types.h>
#include <configstore/Utils.h>
#include <layerproto/LayerProtoParser.h>
#define DISPLAY_COUNT 1
/*
* DEBUG_SCREENSHOTS: set to true to check that screenshots are not all
* black pixels.
*/
#define DEBUG_SCREENSHOTS false
namespace android {
using namespace android::hardware::configstore;
using namespace android::hardware::configstore::V1_0;
using ui::ColorMode;
using ui::Dataspace;
using ui::Hdr;
using ui::RenderIntent;
namespace {
class ConditionalLock {
public:
ConditionalLock(Mutex& mutex, bool lock) : mMutex(mutex), mLocked(lock) {
if (lock) {
mMutex.lock();
}
}
~ConditionalLock() { if (mLocked) mMutex.unlock(); }
private:
Mutex& mMutex;
bool mLocked;
};
} // namespace anonymous
// ---------------------------------------------------------------------------
const String16 sHardwareTest("android.permission.HARDWARE_TEST");
const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
const String16 sDump("android.permission.DUMP");
// ---------------------------------------------------------------------------
int64_t SurfaceFlinger::vsyncPhaseOffsetNs;
int64_t SurfaceFlinger::sfVsyncPhaseOffsetNs;
int64_t SurfaceFlinger::dispSyncPresentTimeOffset;
bool SurfaceFlinger::useHwcForRgbToYuv;
uint64_t SurfaceFlinger::maxVirtualDisplaySize;
bool SurfaceFlinger::hasSyncFramework;
bool SurfaceFlinger::useVrFlinger;
int64_t SurfaceFlinger::maxFrameBufferAcquiredBuffers;
// TODO(courtneygo): Rename hasWideColorDisplay to clarify its actual meaning.
bool SurfaceFlinger::hasWideColorDisplay;
std::string getHwcServiceName() {
char value[PROPERTY_VALUE_MAX] = {};
property_get("debug.sf.hwc_service_name", value, "default");
ALOGI("Using HWComposer service: '%s'", value);
return std::string(value);
}
bool useTrebleTestingOverride() {
char value[PROPERTY_VALUE_MAX] = {};
property_get("debug.sf.treble_testing_override", value, "false");
ALOGI("Treble testing override: '%s'", value);
return std::string(value) == "true";
}
std::string decodeDisplayColorSetting(DisplayColorSetting displayColorSetting) {
switch(displayColorSetting) {
case DisplayColorSetting::MANAGED:
return std::string("Managed");
case DisplayColorSetting::UNMANAGED:
return std::string("Unmanaged");
case DisplayColorSetting::ENHANCED:
return std::string("Enhanced");
default:
return std::string("Unknown ") +
std::to_string(static_cast<int>(displayColorSetting));
}
}
NativeWindowSurface::~NativeWindowSurface() = default;
namespace impl {
class NativeWindowSurface final : public android::NativeWindowSurface {
public:
static std::unique_ptr<android::NativeWindowSurface> create(
const sp<IGraphicBufferProducer>& producer) {
return std::make_unique<NativeWindowSurface>(producer);
}
explicit NativeWindowSurface(const sp<IGraphicBufferProducer>& producer)
: surface(new Surface(producer, false)) {}
~NativeWindowSurface() override = default;
private:
sp<ANativeWindow> getNativeWindow() const override { return surface; }
void preallocateBuffers() override { surface->allocateBuffers(); }
sp<Surface> surface;
};
} // namespace impl
SurfaceFlingerBE::SurfaceFlingerBE()
: mHwcServiceName(getHwcServiceName()),
mRenderEngine(nullptr),
mFrameBuckets(),
mTotalTime(0),
mLastSwapTime(0),
mComposerSequenceId(0) {
}
SurfaceFlinger::SurfaceFlinger(SurfaceFlinger::SkipInitializationTag)
: BnSurfaceComposer(),
mTransactionFlags(0),
mTransactionPending(false),
mAnimTransactionPending(false),
mLayersRemoved(false),
mLayersAdded(false),
mRepaintEverything(0),
mBootTime(systemTime()),
mBuiltinDisplays(),
mVisibleRegionsDirty(false),
mGeometryInvalid(false),
mAnimCompositionPending(false),
mDebugRegion(0),
mDebugDDMS(0),
mDebugDisableHWC(0),
mDebugDisableTransformHint(0),
mDebugInSwapBuffers(0),
mLastSwapBufferTime(0),
mDebugInTransaction(0),
mLastTransactionTime(0),
mBootFinished(false),
mForceFullDamage(false),
mPrimaryDispSync("PrimaryDispSync"),
mPrimaryHWVsyncEnabled(false),
mHWVsyncAvailable(false),
mHasPoweredOff(false),
mNumLayers(0),
mVrFlingerRequestsDisplay(false),
mMainThreadId(std::this_thread::get_id()),
mCreateBufferQueue(&BufferQueue::createBufferQueue),
mCreateNativeWindowSurface(&impl::NativeWindowSurface::create) {}
SurfaceFlinger::SurfaceFlinger() : SurfaceFlinger(SkipInitialization) {
ALOGI("SurfaceFlinger is starting");
vsyncPhaseOffsetNs = getInt64< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::vsyncEventPhaseOffsetNs>(1000000);
sfVsyncPhaseOffsetNs = getInt64< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::vsyncSfEventPhaseOffsetNs>(1000000);
hasSyncFramework = getBool< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::hasSyncFramework>(true);
dispSyncPresentTimeOffset = getInt64< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::presentTimeOffsetFromVSyncNs>(0);
useHwcForRgbToYuv = getBool< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::useHwcForRGBtoYUV>(false);
maxVirtualDisplaySize = getUInt64<ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::maxVirtualDisplaySize>(0);
// Vr flinger is only enabled on Daydream ready devices.
useVrFlinger = getBool< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::useVrFlinger>(false);
maxFrameBufferAcquiredBuffers = getInt64< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::maxFrameBufferAcquiredBuffers>(2);
hasWideColorDisplay =
getBool<ISurfaceFlingerConfigs, &ISurfaceFlingerConfigs::hasWideColorDisplay>(false);
V1_1::DisplayOrientation primaryDisplayOrientation =
getDisplayOrientation< V1_1::ISurfaceFlingerConfigs, &V1_1::ISurfaceFlingerConfigs::primaryDisplayOrientation>(
V1_1::DisplayOrientation::ORIENTATION_0);
switch (primaryDisplayOrientation) {
case V1_1::DisplayOrientation::ORIENTATION_90:
mPrimaryDisplayOrientation = DisplayState::eOrientation90;
break;
case V1_1::DisplayOrientation::ORIENTATION_180:
mPrimaryDisplayOrientation = DisplayState::eOrientation180;
break;
case V1_1::DisplayOrientation::ORIENTATION_270:
mPrimaryDisplayOrientation = DisplayState::eOrientation270;
break;
default:
mPrimaryDisplayOrientation = DisplayState::eOrientationDefault;
break;
}
ALOGV("Primary Display Orientation is set to %2d.", mPrimaryDisplayOrientation);
mPrimaryDispSync.init(SurfaceFlinger::hasSyncFramework, SurfaceFlinger::dispSyncPresentTimeOffset);
// debugging stuff...
char value[PROPERTY_VALUE_MAX];
property_get("ro.bq.gpu_to_cpu_unsupported", value, "0");
mGpuToCpuSupported = !atoi(value);
property_get("debug.sf.showupdates", value, "0");
mDebugRegion = atoi(value);
property_get("debug.sf.ddms", value, "0");
mDebugDDMS = atoi(value);
if (mDebugDDMS) {
if (!startDdmConnection()) {
// start failed, and DDMS debugging not enabled
mDebugDDMS = 0;
}
}
ALOGI_IF(mDebugRegion, "showupdates enabled");
ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
property_get("debug.sf.disable_backpressure", value, "0");
mPropagateBackpressure = !atoi(value);
ALOGI_IF(!mPropagateBackpressure, "Disabling backpressure propagation");
property_get("debug.sf.enable_hwc_vds", value, "0");
mUseHwcVirtualDisplays = atoi(value);
ALOGI_IF(!mUseHwcVirtualDisplays, "Enabling HWC virtual displays");
property_get("ro.sf.disable_triple_buffer", value, "1");
mLayerTripleBufferingDisabled = atoi(value);
ALOGI_IF(mLayerTripleBufferingDisabled, "Disabling Triple Buffering");
const size_t defaultListSize = MAX_LAYERS;
auto listSize = property_get_int32("debug.sf.max_igbp_list_size", int32_t(defaultListSize));
mMaxGraphicBufferProducerListSize = (listSize > 0) ? size_t(listSize) : defaultListSize;
property_get("debug.sf.early_phase_offset_ns", value, "0");
const int earlyWakeupOffsetOffsetNs = atoi(value);
ALOGI_IF(earlyWakeupOffsetOffsetNs != 0, "Enabling separate early offset");
mVsyncModulator.setPhaseOffsets(sfVsyncPhaseOffsetNs - earlyWakeupOffsetOffsetNs,
sfVsyncPhaseOffsetNs);
// We should be reading 'persist.sys.sf.color_saturation' here
// but since /data may be encrypted, we need to wait until after vold
// comes online to attempt to read the property. The property is
// instead read after the boot animation
if (useTrebleTestingOverride()) {
// Without the override SurfaceFlinger cannot connect to HIDL
// services that are not listed in the manifests. Considered
// deriving the setting from the set service name, but it
// would be brittle if the name that's not 'default' is used
// for production purposes later on.
setenv("TREBLE_TESTING_OVERRIDE", "true", true);
}
}
void SurfaceFlinger::onFirstRef()
{
mEventQueue->init(this);
}
SurfaceFlinger::~SurfaceFlinger()
{
}
void SurfaceFlinger::binderDied(const wp<IBinder>& /* who */)
{
// the window manager died on us. prepare its eulogy.
// restore initial conditions (default device unblank, etc)
initializeDisplays();
// restart the boot-animation
startBootAnim();
}
static sp<ISurfaceComposerClient> initClient(const sp<Client>& client) {
status_t err = client->initCheck();
if (err == NO_ERROR) {
return client;
}
return nullptr;
}
sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() {
return initClient(new Client(this));
}
sp<ISurfaceComposerClient> SurfaceFlinger::createScopedConnection(
const sp<IGraphicBufferProducer>& gbp) {
if (authenticateSurfaceTexture(gbp) == false) {
return nullptr;
}
const auto& layer = (static_cast<MonitoredProducer*>(gbp.get()))->getLayer();
if (layer == nullptr) {
return nullptr;
}
return initClient(new Client(this, layer));
}
sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
bool secure)
{
class DisplayToken : public BBinder {
sp<SurfaceFlinger> flinger;
virtual ~DisplayToken() {
// no more references, this display must be terminated
Mutex::Autolock _l(flinger->mStateLock);
flinger->mCurrentState.displays.removeItem(this);
flinger->setTransactionFlags(eDisplayTransactionNeeded);
}
public:
explicit DisplayToken(const sp<SurfaceFlinger>& flinger)
: flinger(flinger) {
}
};
sp<BBinder> token = new DisplayToken(this);
Mutex::Autolock _l(mStateLock);
DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL, secure);
info.displayName = displayName;
mCurrentState.displays.add(token, info);
mInterceptor->saveDisplayCreation(info);
return token;
}
void SurfaceFlinger::destroyDisplay(const sp<IBinder>& display) {
Mutex::Autolock _l(mStateLock);
ssize_t idx = mCurrentState.displays.indexOfKey(display);
if (idx < 0) {
ALOGW("destroyDisplay: invalid display token");
return;
}
const DisplayDeviceState& info(mCurrentState.displays.valueAt(idx));
if (!info.isVirtualDisplay()) {
ALOGE("destroyDisplay called for non-virtual display");
return;
}
mInterceptor->saveDisplayDeletion(info.displayId);
mCurrentState.displays.removeItemsAt(idx);
setTransactionFlags(eDisplayTransactionNeeded);
}
sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
if (uint32_t(id) >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
return nullptr;
}
return mBuiltinDisplays[id];
}
void SurfaceFlinger::bootFinished()
{
if (mStartPropertySetThread->join() != NO_ERROR) {
ALOGE("Join StartPropertySetThread failed!");
}
const nsecs_t now = systemTime();
const nsecs_t duration = now - mBootTime;
ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
// wait patiently for the window manager death
const String16 name("window");
sp<IBinder> window(defaultServiceManager()->getService(name));
if (window != 0) {
window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
}
if (mVrFlinger) {
mVrFlinger->OnBootFinished();
}
// stop boot animation
// formerly we would just kill the process, but we now ask it to exit so it
// can choose where to stop the animation.
property_set("service.bootanim.exit", "1");
const int LOGTAG_SF_STOP_BOOTANIM = 60110;
LOG_EVENT_LONG(LOGTAG_SF_STOP_BOOTANIM,
ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
sp<LambdaMessage> readProperties = new LambdaMessage([&]() {
readPersistentProperties();
});
postMessageAsync(readProperties);
}
void SurfaceFlinger::deleteTextureAsync(uint32_t texture) {
class MessageDestroyGLTexture : public MessageBase {
RE::RenderEngine& engine;
uint32_t texture;
public:
MessageDestroyGLTexture(RE::RenderEngine& engine, uint32_t texture)
: engine(engine), texture(texture) {}
virtual bool handler() {
engine.deleteTextures(1, &texture);
return true;
}
};
postMessageAsync(new MessageDestroyGLTexture(getRenderEngine(), texture));
}
class DispSyncSource final : public VSyncSource, private DispSync::Callback {
public:
DispSyncSource(DispSync* dispSync, nsecs_t phaseOffset, bool traceVsync,
const char* name) :
mName(name),
mValue(0),
mTraceVsync(traceVsync),
mVsyncOnLabel(String8::format("VsyncOn-%s", name)),
mVsyncEventLabel(String8::format("VSYNC-%s", name)),
mDispSync(dispSync),
mCallbackMutex(),
mVsyncMutex(),
mPhaseOffset(phaseOffset),
mEnabled(false) {}
~DispSyncSource() override = default;
void setVSyncEnabled(bool enable) override {
Mutex::Autolock lock(mVsyncMutex);
if (enable) {
status_t err = mDispSync->addEventListener(mName, mPhaseOffset,
static_cast<DispSync::Callback*>(this));
if (err != NO_ERROR) {
ALOGE("error registering vsync callback: %s (%d)",
strerror(-err), err);
}
//ATRACE_INT(mVsyncOnLabel.string(), 1);
} else {
status_t err = mDispSync->removeEventListener(
static_cast<DispSync::Callback*>(this));
if (err != NO_ERROR) {
ALOGE("error unregistering vsync callback: %s (%d)",
strerror(-err), err);
}
//ATRACE_INT(mVsyncOnLabel.string(), 0);
}
mEnabled = enable;
}
void setCallback(VSyncSource::Callback* callback) override{
Mutex::Autolock lock(mCallbackMutex);
mCallback = callback;
}
void setPhaseOffset(nsecs_t phaseOffset) override {
Mutex::Autolock lock(mVsyncMutex);
// Normalize phaseOffset to [0, period)
auto period = mDispSync->getPeriod();
phaseOffset %= period;
if (phaseOffset < 0) {
// If we're here, then phaseOffset is in (-period, 0). After this
// operation, it will be in (0, period)
phaseOffset += period;
}
mPhaseOffset = phaseOffset;
// If we're not enabled, we don't need to mess with the listeners
if (!mEnabled) {
return;
}
status_t err = mDispSync->changePhaseOffset(static_cast<DispSync::Callback*>(this),
mPhaseOffset);
if (err != NO_ERROR) {
ALOGE("error changing vsync offset: %s (%d)",
strerror(-err), err);
}
}
private:
virtual void onDispSyncEvent(nsecs_t when) {
VSyncSource::Callback* callback;
{
Mutex::Autolock lock(mCallbackMutex);
callback = mCallback;
if (mTraceVsync) {
mValue = (mValue + 1) % 2;
ATRACE_INT(mVsyncEventLabel.string(), mValue);
}
}
if (callback != nullptr) {
callback->onVSyncEvent(when);
}
}
const char* const mName;
int mValue;
const bool mTraceVsync;
const String8 mVsyncOnLabel;
const String8 mVsyncEventLabel;
DispSync* mDispSync;
Mutex mCallbackMutex; // Protects the following
VSyncSource::Callback* mCallback = nullptr;
Mutex mVsyncMutex; // Protects the following
nsecs_t mPhaseOffset;
bool mEnabled;
};
class InjectVSyncSource final : public VSyncSource {
public:
InjectVSyncSource() = default;
~InjectVSyncSource() override = default;
void setCallback(VSyncSource::Callback* callback) override {
std::lock_guard<std::mutex> lock(mCallbackMutex);
mCallback = callback;
}
void onInjectSyncEvent(nsecs_t when) {
std::lock_guard<std::mutex> lock(mCallbackMutex);
if (mCallback) {
mCallback->onVSyncEvent(when);
}
}
void setVSyncEnabled(bool) override {}
void setPhaseOffset(nsecs_t) override {}
private:
std::mutex mCallbackMutex; // Protects the following
VSyncSource::Callback* mCallback = nullptr;
};
// Do not call property_set on main thread which will be blocked by init
// Use StartPropertySetThread instead.
void SurfaceFlinger::init() {
ALOGI( "SurfaceFlinger's main thread ready to run. "
"Initializing graphics H/W...");
ALOGI("Phase offest NS: %" PRId64 "", vsyncPhaseOffsetNs);
Mutex::Autolock _l(mStateLock);
// start the EventThread
mEventThreadSource =
std::make_unique<DispSyncSource>(&mPrimaryDispSync, SurfaceFlinger::vsyncPhaseOffsetNs,
true, "app");
mEventThread = std::make_unique<impl::EventThread>(mEventThreadSource.get(),
[this]() { resyncWithRateLimit(); },
impl::EventThread::InterceptVSyncsCallback(),
"appEventThread");
mSfEventThreadSource =
std::make_unique<DispSyncSource>(&mPrimaryDispSync,
SurfaceFlinger::sfVsyncPhaseOffsetNs, true, "sf");
mSFEventThread =
std::make_unique<impl::EventThread>(mSfEventThreadSource.get(),
[this]() { resyncWithRateLimit(); },
[this](nsecs_t timestamp) {
mInterceptor->saveVSyncEvent(timestamp);
},
"sfEventThread");
mEventQueue->setEventThread(mSFEventThread.get());
mVsyncModulator.setEventThread(mSFEventThread.get());
// Get a RenderEngine for the given display / config (can't fail)
getBE().mRenderEngine =
RE::impl::RenderEngine::create(HAL_PIXEL_FORMAT_RGBA_8888,
hasWideColorDisplay
? RE::RenderEngine::WIDE_COLOR_SUPPORT
: 0);
LOG_ALWAYS_FATAL_IF(getBE().mRenderEngine == nullptr, "couldn't create RenderEngine");
LOG_ALWAYS_FATAL_IF(mVrFlingerRequestsDisplay,
"Starting with vr flinger active is not currently supported.");
getBE().mHwc.reset(
new HWComposer(std::make_unique<Hwc2::impl::Composer>(getBE().mHwcServiceName)));
getBE().mHwc->registerCallback(this, getBE().mComposerSequenceId);
// Process any initial hotplug and resulting display changes.
processDisplayHotplugEventsLocked();
LOG_ALWAYS_FATAL_IF(!getBE().mHwc->isConnected(HWC_DISPLAY_PRIMARY),
"Registered composer callback but didn't create the default primary display");
// make the default display GLContext current so that we can create textures
// when creating Layers (which may happens before we render something)
getDefaultDisplayDeviceLocked()->makeCurrent();
if (useVrFlinger) {
auto vrFlingerRequestDisplayCallback = [this] (bool requestDisplay) {
// This callback is called from the vr flinger dispatch thread. We
// need to call signalTransaction(), which requires holding
// mStateLock when we're not on the main thread. Acquiring
// mStateLock from the vr flinger dispatch thread might trigger a
// deadlock in surface flinger (see b/66916578), so post a message
// to be handled on the main thread instead.
sp<LambdaMessage> message = new LambdaMessage([=]() {
ALOGI("VR request display mode: requestDisplay=%d", requestDisplay);
mVrFlingerRequestsDisplay = requestDisplay;
signalTransaction();
});
postMessageAsync(message);
};
mVrFlinger = dvr::VrFlinger::Create(getBE().mHwc->getComposer(),
getBE().mHwc->getHwcDisplayId(HWC_DISPLAY_PRIMARY).value_or(0),
vrFlingerRequestDisplayCallback);
if (!mVrFlinger) {
ALOGE("Failed to start vrflinger");
}
}
mEventControlThread = std::make_unique<impl::EventControlThread>(
[this](bool enabled) { setVsyncEnabled(HWC_DISPLAY_PRIMARY, enabled); });
// initialize our drawing state
mDrawingState = mCurrentState;
// set initial conditions (e.g. unblank default device)
initializeDisplays();
getBE().mRenderEngine->primeCache();
// Inform native graphics APIs whether the present timestamp is supported:
if (getHwComposer().hasCapability(
HWC2::Capability::PresentFenceIsNotReliable)) {
mStartPropertySetThread = new StartPropertySetThread(false);
} else {
mStartPropertySetThread = new StartPropertySetThread(true);
}
if (mStartPropertySetThread->Start() != NO_ERROR) {
ALOGE("Run StartPropertySetThread failed!");
}
mLegacySrgbSaturationMatrix = getBE().mHwc->getDataspaceSaturationMatrix(HWC_DISPLAY_PRIMARY,
Dataspace::SRGB_LINEAR);
ALOGV("Done initializing");
}
void SurfaceFlinger::readPersistentProperties() {
Mutex::Autolock _l(mStateLock);
char value[PROPERTY_VALUE_MAX];
property_get("persist.sys.sf.color_saturation", value, "1.0");
mGlobalSaturationFactor = atof(value);
updateColorMatrixLocked();
ALOGV("Saturation is set to %.2f", mGlobalSaturationFactor);
property_get("persist.sys.sf.native_mode", value, "0");
mDisplayColorSetting = static_cast<DisplayColorSetting>(atoi(value));
}
void SurfaceFlinger::startBootAnim() {
// Start boot animation service by setting a property mailbox
// if property setting thread is already running, Start() will be just a NOP
mStartPropertySetThread->Start();
// Wait until property was set
if (mStartPropertySetThread->join() != NO_ERROR) {
ALOGE("Join StartPropertySetThread failed!");
}
}
size_t SurfaceFlinger::getMaxTextureSize() const {
return getBE().mRenderEngine->getMaxTextureSize();
}
size_t SurfaceFlinger::getMaxViewportDims() const {
return getBE().mRenderEngine->getMaxViewportDims();
}
// ----------------------------------------------------------------------------
bool SurfaceFlinger::authenticateSurfaceTexture(
const sp<IGraphicBufferProducer>& bufferProducer) const {
Mutex::Autolock _l(mStateLock);
return authenticateSurfaceTextureLocked(bufferProducer);
}
bool SurfaceFlinger::authenticateSurfaceTextureLocked(
const sp<IGraphicBufferProducer>& bufferProducer) const {
sp<IBinder> surfaceTextureBinder(IInterface::asBinder(bufferProducer));
return mGraphicBufferProducerList.count(surfaceTextureBinder.get()) > 0;
}
status_t SurfaceFlinger::getSupportedFrameTimestamps(
std::vector<FrameEvent>* outSupported) const {
*outSupported = {
FrameEvent::REQUESTED_PRESENT,
FrameEvent::ACQUIRE,
FrameEvent::LATCH,
FrameEvent::FIRST_REFRESH_START,
FrameEvent::LAST_REFRESH_START,
FrameEvent::GPU_COMPOSITION_DONE,
FrameEvent::DEQUEUE_READY,
FrameEvent::RELEASE,
};
ConditionalLock _l(mStateLock,
std::this_thread::get_id() != mMainThreadId);
if (!getHwComposer().hasCapability(
HWC2::Capability::PresentFenceIsNotReliable)) {
outSupported->push_back(FrameEvent::DISPLAY_PRESENT);
}
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayConfigs(const sp<IBinder>& display,
Vector<DisplayInfo>* configs) {
if (configs == nullptr || display.get() == nullptr) {
return BAD_VALUE;
}
if (!display.get())
return NAME_NOT_FOUND;
int32_t type = NAME_NOT_FOUND;
for (int i=0 ; i<DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES ; i++) {
if (display == mBuiltinDisplays[i]) {
type = i;
break;
}
}
if (type < 0) {
return type;
}
// TODO: Not sure if display density should handled by SF any longer
class Density {
static int getDensityFromProperty(char const* propName) {
char property[PROPERTY_VALUE_MAX];
int density = 0;
if (property_get(propName, property, nullptr) > 0) {
density = atoi(property);
}
return density;
}
public:
static int getEmuDensity() {
return getDensityFromProperty("qemu.sf.lcd_density"); }
static int getBuildDensity() {
return getDensityFromProperty("ro.sf.lcd_density"); }
};
configs->clear();
ConditionalLock _l(mStateLock,
std::this_thread::get_id() != mMainThreadId);
for (const auto& hwConfig : getHwComposer().getConfigs(type)) {
DisplayInfo info = DisplayInfo();
float xdpi = hwConfig->getDpiX();
float ydpi = hwConfig->getDpiY();
if (type == DisplayDevice::DISPLAY_PRIMARY) {
// The density of the device is provided by a build property
float density = Density::getBuildDensity() / 160.0f;
if (density == 0) {
// the build doesn't provide a density -- this is wrong!
// use xdpi instead
ALOGE("ro.sf.lcd_density must be defined as a build property");
density = xdpi / 160.0f;
}
if (Density::getEmuDensity()) {
// if "qemu.sf.lcd_density" is specified, it overrides everything
xdpi = ydpi = density = Density::getEmuDensity();
density /= 160.0f;
}
info.density = density;
// TODO: this needs to go away (currently needed only by webkit)
sp<const DisplayDevice> hw(getDefaultDisplayDeviceLocked());
info.orientation = hw ? hw->getOrientation() : 0;
} else {
// TODO: where should this value come from?
static const int TV_DENSITY = 213;
info.density = TV_DENSITY / 160.0f;
info.orientation = 0;
}
info.w = hwConfig->getWidth();
info.h = hwConfig->getHeight();
info.xdpi = xdpi;
info.ydpi = ydpi;
info.fps = 1e9 / hwConfig->getVsyncPeriod();
info.appVsyncOffset = vsyncPhaseOffsetNs;
// This is how far in advance a buffer must be queued for
// presentation at a given time. If you want a buffer to appear
// on the screen at time N, you must submit the buffer before
// (N - presentationDeadline).
//
// Normally it's one full refresh period (to give SF a chance to
// latch the buffer), but this can be reduced by configuring a
// DispSync offset. Any additional delays introduced by the hardware
// composer or panel must be accounted for here.
//
// We add an additional 1ms to allow for processing time and
// differences between the ideal and actual refresh rate.
info.presentationDeadline = hwConfig->getVsyncPeriod() -
sfVsyncPhaseOffsetNs + 1000000;
// All non-virtual displays are currently considered secure.
info.secure = true;
if (type == DisplayDevice::DISPLAY_PRIMARY &&
mPrimaryDisplayOrientation & DisplayState::eOrientationSwapMask) {
std::swap(info.w, info.h);
}
configs->push_back(info);
}
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayStats(const sp<IBinder>& /* display */,
DisplayStatInfo* stats) {
if (stats == nullptr) {
return BAD_VALUE;
}
// FIXME for now we always return stats for the primary display
memset(stats, 0, sizeof(*stats));
stats->vsyncTime = mPrimaryDispSync.computeNextRefresh(0);
stats->vsyncPeriod = mPrimaryDispSync.getPeriod();
return NO_ERROR;
}
int SurfaceFlinger::getActiveConfig(const sp<IBinder>& display) {
if (display == nullptr) {
ALOGE("%s : display is nullptr", __func__);
return BAD_VALUE;
}
sp<const DisplayDevice> device(getDisplayDevice(display));
if (device != nullptr) {
return device->getActiveConfig();
}
return BAD_VALUE;
}
void SurfaceFlinger::setActiveConfigInternal(const sp<DisplayDevice>& hw, int mode) {
ALOGD("Set active config mode=%d, type=%d flinger=%p", mode, hw->getDisplayType(),
this);
int32_t type = hw->getDisplayType();
int currentMode = hw->getActiveConfig();
if (mode == currentMode) {
ALOGD("Screen type=%d is already mode=%d", hw->getDisplayType(), mode);
return;
}
if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
ALOGW("Trying to set config for virtual display");
return;
}
hw->setActiveConfig(mode);
getHwComposer().setActiveConfig(type, mode);
}
status_t SurfaceFlinger::setActiveConfig(const sp<IBinder>& display, int mode) {
class MessageSetActiveConfig: public MessageBase {
SurfaceFlinger& mFlinger;
sp<IBinder> mDisplay;
int mMode;
public:
MessageSetActiveConfig(SurfaceFlinger& flinger, const sp<IBinder>& disp,
int mode) :
mFlinger(flinger), mDisplay(disp) { mMode = mode; }
virtual bool handler() {
Vector<DisplayInfo> configs;
mFlinger.getDisplayConfigs(mDisplay, &configs);
if (mMode < 0 || mMode >= static_cast<int>(configs.size())) {
ALOGE("Attempt to set active config = %d for display with %zu configs",
mMode, configs.size());
return true;
}
sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
if (hw == nullptr) {
ALOGE("Attempt to set active config = %d for null display %p",
mMode, mDisplay.get());
} else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
ALOGW("Attempt to set active config = %d for virtual display",
mMode);
} else {
mFlinger.setActiveConfigInternal(hw, mMode);
}
return true;
}
};
sp<MessageBase> msg = new MessageSetActiveConfig(*this, display, mode);
postMessageSync(msg);
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayColorModes(const sp<IBinder>& display,
Vector<ColorMode>* outColorModes) {
if ((outColorModes == nullptr) || (display.get() == nullptr)) {
return BAD_VALUE;
}
if (!display.get()) {
return NAME_NOT_FOUND;
}
int32_t type = NAME_NOT_FOUND;
for (int i=0 ; i<DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES ; i++) {
if (display == mBuiltinDisplays[i]) {
type = i;
break;
}
}
if (type < 0) {
return type;
}
std::vector<ColorMode> modes;
{
ConditionalLock _l(mStateLock,
std::this_thread::get_id() != mMainThreadId);
modes = getHwComposer().getColorModes(type);
}
outColorModes->clear();
std::copy(modes.cbegin(), modes.cend(), std::back_inserter(*outColorModes));
return NO_ERROR;
}
ColorMode SurfaceFlinger::getActiveColorMode(const sp<IBinder>& display) {
sp<const DisplayDevice> device(getDisplayDevice(display));
if (device != nullptr) {
return device->getActiveColorMode();
}
return static_cast<ColorMode>(BAD_VALUE);
}
void SurfaceFlinger::setActiveColorModeInternal(const sp<DisplayDevice>& hw,
ColorMode mode, Dataspace dataSpace,
RenderIntent renderIntent) {
int32_t type = hw->getDisplayType();
ColorMode currentMode = hw->getActiveColorMode();
Dataspace currentDataSpace = hw->getCompositionDataSpace();
RenderIntent currentRenderIntent = hw->getActiveRenderIntent();
if (mode == currentMode && dataSpace == currentDataSpace &&
renderIntent == currentRenderIntent) {
return;
}
if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
ALOGW("Trying to set config for virtual display");
return;
}
hw->setActiveColorMode(mode);
hw->setCompositionDataSpace(dataSpace);
hw->setActiveRenderIntent(renderIntent);
getHwComposer().setActiveColorMode(type, mode, renderIntent);
ALOGV("Set active color mode: %s (%d), active render intent: %s (%d), type=%d",
decodeColorMode(mode).c_str(), mode,
decodeRenderIntent(renderIntent).c_str(), renderIntent,
hw->getDisplayType());
}
status_t SurfaceFlinger::setActiveColorMode(const sp<IBinder>& display,
ColorMode colorMode) {
class MessageSetActiveColorMode: public MessageBase {
SurfaceFlinger& mFlinger;
sp<IBinder> mDisplay;
ColorMode mMode;
public:
MessageSetActiveColorMode(SurfaceFlinger& flinger, const sp<IBinder>& disp,
ColorMode mode) :
mFlinger(flinger), mDisplay(disp) { mMode = mode; }
virtual bool handler() {
Vector<ColorMode> modes;
mFlinger.getDisplayColorModes(mDisplay, &modes);
bool exists = std::find(std::begin(modes), std::end(modes), mMode) != std::end(modes);
if (mMode < ColorMode::NATIVE || !exists) {
ALOGE("Attempt to set invalid active color mode %s (%d) for display %p",
decodeColorMode(mMode).c_str(), mMode, mDisplay.get());
return true;
}
sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
if (hw == nullptr) {
ALOGE("Attempt to set active color mode %s (%d) for null display %p",
decodeColorMode(mMode).c_str(), mMode, mDisplay.get());
} else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
ALOGW("Attempt to set active color mode %s %d for virtual display",
decodeColorMode(mMode).c_str(), mMode);
} else {
mFlinger.setActiveColorModeInternal(hw, mMode, Dataspace::UNKNOWN,
RenderIntent::COLORIMETRIC);
}
return true;
}
};
sp<MessageBase> msg = new MessageSetActiveColorMode(*this, display, colorMode);
postMessageSync(msg);
return NO_ERROR;
}
status_t SurfaceFlinger::clearAnimationFrameStats() {
Mutex::Autolock _l(mStateLock);
mAnimFrameTracker.clearStats();
return NO_ERROR;
}
status_t SurfaceFlinger::getAnimationFrameStats(FrameStats* outStats) const {
Mutex::Autolock _l(mStateLock);
mAnimFrameTracker.getStats(outStats);
return NO_ERROR;
}
status_t SurfaceFlinger::getHdrCapabilities(const sp<IBinder>& display,
HdrCapabilities* outCapabilities) const {
Mutex::Autolock _l(mStateLock);
sp<const DisplayDevice> displayDevice(getDisplayDeviceLocked(display));
if (displayDevice == nullptr) {
ALOGE("getHdrCapabilities: Invalid display %p", displayDevice.get());
return BAD_VALUE;
}
// At this point the DisplayDeivce should already be set up,
// meaning the luminance information is already queried from
// hardware composer and stored properly.
const HdrCapabilities& capabilities = displayDevice->getHdrCapabilities();
*outCapabilities = HdrCapabilities(capabilities.getSupportedHdrTypes(),
capabilities.getDesiredMaxLuminance(),
capabilities.getDesiredMaxAverageLuminance(),
capabilities.getDesiredMinLuminance());
return NO_ERROR;
}
status_t SurfaceFlinger::enableVSyncInjections(bool enable) {
sp<LambdaMessage> enableVSyncInjections = new LambdaMessage([&]() {
Mutex::Autolock _l(mStateLock);
if (mInjectVSyncs == enable) {
return;
}
if (enable) {
ALOGV("VSync Injections enabled");
if (mVSyncInjector.get() == nullptr) {
mVSyncInjector = std::make_unique<InjectVSyncSource>();
mInjectorEventThread = std::make_unique<
impl::EventThread>(mVSyncInjector.get(),
[this]() { resyncWithRateLimit(); },
impl::EventThread::InterceptVSyncsCallback(),
"injEventThread");
}
mEventQueue->setEventThread(mInjectorEventThread.get());
} else {
ALOGV("VSync Injections disabled");
mEventQueue->setEventThread(mSFEventThread.get());
}
mInjectVSyncs = enable;
});
postMessageSync(enableVSyncInjections);
return NO_ERROR;
}
status_t SurfaceFlinger::injectVSync(nsecs_t when) {
Mutex::Autolock _l(mStateLock);
if (!mInjectVSyncs) {
ALOGE("VSync Injections not enabled");
return BAD_VALUE;
}
if (mInjectVSyncs && mInjectorEventThread.get() != nullptr) {
ALOGV("Injecting VSync inside SurfaceFlinger");
mVSyncInjector->onInjectSyncEvent(when);
}
return NO_ERROR;
}
status_t SurfaceFlinger::getLayerDebugInfo(std::vector<LayerDebugInfo>* outLayers) const
NO_THREAD_SAFETY_ANALYSIS {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_SHELL) &&
!PermissionCache::checkPermission(sDump, pid, uid)) {
ALOGE("Layer debug info permission denied for pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
// Try to acquire a lock for 1s, fail gracefully
const status_t err = mStateLock.timedLock(s2ns(1));
const bool locked = (err == NO_ERROR);
if (!locked) {
ALOGE("LayerDebugInfo: SurfaceFlinger unresponsive (%s [%d]) - exit", strerror(-err), err);
return TIMED_OUT;
}
outLayers->clear();
mCurrentState.traverseInZOrder([&](Layer* layer) {
outLayers->push_back(layer->getLayerDebugInfo());
});
mStateLock.unlock();
return NO_ERROR;
}
// ----------------------------------------------------------------------------
sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection(
ISurfaceComposer::VsyncSource vsyncSource) {
if (vsyncSource == eVsyncSourceSurfaceFlinger) {
return mSFEventThread->createEventConnection();
} else {
return mEventThread->createEventConnection();
}
}
// ----------------------------------------------------------------------------
void SurfaceFlinger::waitForEvent() {
mEventQueue->waitMessage();
}
void SurfaceFlinger::signalTransaction() {
mEventQueue->invalidate();
}
void SurfaceFlinger::signalLayerUpdate() {
mEventQueue->invalidate();
}
void SurfaceFlinger::signalRefresh() {
mRefreshPending = true;
mEventQueue->refresh();
}
status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
nsecs_t reltime, uint32_t /* flags */) {
return mEventQueue->postMessage(msg, reltime);
}
status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
nsecs_t reltime, uint32_t /* flags */) {
status_t res = mEventQueue->postMessage(msg, reltime);
if (res == NO_ERROR) {
msg->wait();
}
return res;
}
void SurfaceFlinger::run() {
do {
waitForEvent();
} while (true);
}
void SurfaceFlinger::enableHardwareVsync() {
Mutex::Autolock _l(mHWVsyncLock);
if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) {
mPrimaryDispSync.beginResync();
//eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true);
mEventControlThread->setVsyncEnabled(true);
mPrimaryHWVsyncEnabled = true;
}
}
void SurfaceFlinger::resyncToHardwareVsync(bool makeAvailable) {
Mutex::Autolock _l(mHWVsyncLock);
if (makeAvailable) {
mHWVsyncAvailable = true;
} else if (!mHWVsyncAvailable) {
// Hardware vsync is not currently available, so abort the resync
// attempt for now
return;
}
const auto& activeConfig = getBE().mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY);
const nsecs_t period = activeConfig->getVsyncPeriod();
mPrimaryDispSync.reset();
mPrimaryDispSync.setPeriod(period);
if (!mPrimaryHWVsyncEnabled) {
mPrimaryDispSync.beginResync();
//eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true);
mEventControlThread->setVsyncEnabled(true);
mPrimaryHWVsyncEnabled = true;
}
}
void SurfaceFlinger::disableHardwareVsync(bool makeUnavailable) {
Mutex::Autolock _l(mHWVsyncLock);
if (mPrimaryHWVsyncEnabled) {
//eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, false);
mEventControlThread->setVsyncEnabled(false);
mPrimaryDispSync.endResync();
mPrimaryHWVsyncEnabled = false;
}
if (makeUnavailable) {
mHWVsyncAvailable = false;
}
}
void SurfaceFlinger::resyncWithRateLimit() {
static constexpr nsecs_t kIgnoreDelay = ms2ns(500);
// No explicit locking is needed here since EventThread holds a lock while calling this method
static nsecs_t sLastResyncAttempted = 0;
const nsecs_t now = systemTime();
if (now - sLastResyncAttempted > kIgnoreDelay) {
resyncToHardwareVsync(false);
}
sLastResyncAttempted = now;
}
void SurfaceFlinger::onVsyncReceived(int32_t sequenceId,
hwc2_display_t displayId, int64_t timestamp) {
Mutex::Autolock lock(mStateLock);
// Ignore any vsyncs from a previous hardware composer.
if (sequenceId != getBE().mComposerSequenceId) {
return;
}
int32_t type;
if (!getBE().mHwc->onVsync(displayId, timestamp, &type)) {
return;
}
bool needsHwVsync = false;
{ // Scope for the lock
Mutex::Autolock _l(mHWVsyncLock);
if (type == DisplayDevice::DISPLAY_PRIMARY && mPrimaryHWVsyncEnabled) {
needsHwVsync = mPrimaryDispSync.addResyncSample(timestamp);
}
}
if (needsHwVsync) {
enableHardwareVsync();
} else {
disableHardwareVsync(false);
}
}
void SurfaceFlinger::getCompositorTiming(CompositorTiming* compositorTiming) {
std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
*compositorTiming = getBE().mCompositorTiming;
}
void SurfaceFlinger::onHotplugReceived(int32_t sequenceId, hwc2_display_t display,
HWC2::Connection connection) {
ALOGV("onHotplugReceived(%d, %" PRIu64 ", %s)", sequenceId, display,
connection == HWC2::Connection::Connected ? "connected" : "disconnected");
// Ignore events that do not have the right sequenceId.
if (sequenceId != getBE().mComposerSequenceId) {
return;
}
// Only lock if we're not on the main thread. This function is normally
// called on a hwbinder thread, but for the primary display it's called on
// the main thread with the state lock already held, so don't attempt to
// acquire it here.
ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
mPendingHotplugEvents.emplace_back(HotplugEvent{display, connection});
if (std::this_thread::get_id() == mMainThreadId) {
// Process all pending hot plug events immediately if we are on the main thread.
processDisplayHotplugEventsLocked();
}
setTransactionFlags(eDisplayTransactionNeeded);
}
void SurfaceFlinger::onRefreshReceived(int sequenceId,
hwc2_display_t /*display*/) {
Mutex::Autolock lock(mStateLock);
if (sequenceId != getBE().mComposerSequenceId) {
return;
}
repaintEverything();
}
void SurfaceFlinger::setVsyncEnabled(int disp, int enabled) {
ATRACE_CALL();
Mutex::Autolock lock(mStateLock);
getHwComposer().setVsyncEnabled(disp,
enabled ? HWC2::Vsync::Enable : HWC2::Vsync::Disable);
}
// Note: it is assumed the caller holds |mStateLock| when this is called
void SurfaceFlinger::resetDisplayState() {
disableHardwareVsync(true);
// Clear the drawing state so that the logic inside of
// handleTransactionLocked will fire. It will determine the delta between
// mCurrentState and mDrawingState and re-apply all changes when we make the
// transition.
mDrawingState.displays.clear();
getRenderEngine().resetCurrentSurface();
mDisplays.clear();
}
void SurfaceFlinger::updateVrFlinger() {
if (!mVrFlinger)
return;
bool vrFlingerRequestsDisplay = mVrFlingerRequestsDisplay;
if (vrFlingerRequestsDisplay == getBE().mHwc->isUsingVrComposer()) {
return;
}
if (vrFlingerRequestsDisplay && !getBE().mHwc->getComposer()->isRemote()) {
ALOGE("Vr flinger is only supported for remote hardware composer"
" service connections. Ignoring request to transition to vr"
" flinger.");
mVrFlingerRequestsDisplay = false;
return;
}
Mutex::Autolock _l(mStateLock);
int currentDisplayPowerMode = getDisplayDeviceLocked(
mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY])->getPowerMode();
if (!vrFlingerRequestsDisplay) {
mVrFlinger->SeizeDisplayOwnership();
}
resetDisplayState();
getBE().mHwc.reset(); // Delete the current instance before creating the new one
getBE().mHwc.reset(new HWComposer(std::make_unique<Hwc2::impl::Composer>(
vrFlingerRequestsDisplay ? "vr" : getBE().mHwcServiceName)));
getBE().mHwc->registerCallback(this, ++getBE().mComposerSequenceId);
LOG_ALWAYS_FATAL_IF(!getBE().mHwc->getComposer()->isRemote(),
"Switched to non-remote hardware composer");
if (vrFlingerRequestsDisplay) {
mVrFlinger->GrantDisplayOwnership();
} else {
enableHardwareVsync();
}
mVisibleRegionsDirty = true;
invalidateHwcGeometry();
// Re-enable default display.
sp<DisplayDevice> hw(getDisplayDeviceLocked(
mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY]));
setPowerModeInternal(hw, currentDisplayPowerMode, /*stateLockHeld*/ true);
// Reset the timing values to account for the period of the swapped in HWC
const auto& activeConfig = getBE().mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY);
const nsecs_t period = activeConfig->getVsyncPeriod();
mAnimFrameTracker.setDisplayRefreshPeriod(period);
// Use phase of 0 since phase is not known.
// Use latency of 0, which will snap to the ideal latency.
setCompositorTimingSnapped(0, period, 0);
android_atomic_or(1, &mRepaintEverything);
setTransactionFlags(eDisplayTransactionNeeded);
}
void SurfaceFlinger::onMessageReceived(int32_t what) {
ATRACE_CALL();
switch (what) {
case MessageQueue::INVALIDATE: {
bool frameMissed = !mHadClientComposition &&
mPreviousPresentFence != Fence::NO_FENCE &&
(mPreviousPresentFence->getSignalTime() ==
Fence::SIGNAL_TIME_PENDING);
ATRACE_INT("FrameMissed", static_cast<int>(frameMissed));
if (frameMissed) {
mTimeStats.incrementMissedFrames();
if (mPropagateBackpressure) {
signalLayerUpdate();
break;
}
}
// Now that we're going to make it to the handleMessageTransaction()
// call below it's safe to call updateVrFlinger(), which will
// potentially trigger a display handoff.
updateVrFlinger();
bool refreshNeeded = handleMessageTransaction();
refreshNeeded |= handleMessageInvalidate();
refreshNeeded |= mRepaintEverything;
if (refreshNeeded) {
// Signal a refresh if a transaction modified the window state,
// a new buffer was latched, or if HWC has requested a full
// repaint
signalRefresh();
}
break;
}
case MessageQueue::REFRESH: {
handleMessageRefresh();
break;
}
}
}
bool SurfaceFlinger::handleMessageTransaction() {
uint32_t transactionFlags = peekTransactionFlags();
if (transactionFlags) {
handleTransaction(transactionFlags);
return true;
}
return false;
}
bool SurfaceFlinger::handleMessageInvalidate() {
ATRACE_CALL();
return handlePageFlip();
}
void SurfaceFlinger::handleMessageRefresh() {
ATRACE_CALL();
mRefreshPending = false;
nsecs_t refreshStartTime = systemTime(SYSTEM_TIME_MONOTONIC);
preComposition(refreshStartTime);
rebuildLayerStacks();
setUpHWComposer();
doDebugFlashRegions();
doTracing("handleRefresh");
logLayerStats();
doComposition();
postComposition(refreshStartTime);
mPreviousPresentFence = getBE().mHwc->getPresentFence(HWC_DISPLAY_PRIMARY);
mHadClientComposition = false;
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
const sp<DisplayDevice>& displayDevice = mDisplays[displayId];
mHadClientComposition = mHadClientComposition ||
getBE().mHwc->hasClientComposition(displayDevice->getHwcDisplayId());
}
mVsyncModulator.onRefreshed(mHadClientComposition);
mLayersWithQueuedFrames.clear();
}
void SurfaceFlinger::doDebugFlashRegions()
{
// is debugging enabled
if (CC_LIKELY(!mDebugRegion))
return;
const bool repaintEverything = mRepaintEverything;
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<DisplayDevice>& hw(mDisplays[dpy]);
if (hw->isDisplayOn()) {
// transform the dirty region into this screen's coordinate space
const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
if (!dirtyRegion.isEmpty()) {
// redraw the whole screen
doComposeSurfaces(hw);
// and draw the dirty region
const int32_t height = hw->getHeight();
auto& engine(getRenderEngine());
engine.fillRegionWithColor(dirtyRegion, height, 1, 0, 1, 1);
hw->swapBuffers(getHwComposer());
}
}
}
postFramebuffer();
if (mDebugRegion > 1) {
usleep(mDebugRegion * 1000);
}
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
auto& displayDevice = mDisplays[displayId];
if (!displayDevice->isDisplayOn()) {
continue;
}
status_t result = displayDevice->prepareFrame(*getBE().mHwc);
ALOGE_IF(result != NO_ERROR,
"prepareFrame for display %zd failed:"
" %d (%s)",
displayId, result, strerror(-result));
}
}
void SurfaceFlinger::doTracing(const char* where) {
ATRACE_CALL();
ATRACE_NAME(where);
if (CC_UNLIKELY(mTracing.isEnabled())) {
mTracing.traceLayers(where, dumpProtoInfo(LayerVector::StateSet::Drawing));
}
}
void SurfaceFlinger::logLayerStats() {
ATRACE_CALL();
if (CC_UNLIKELY(mLayerStats.isEnabled())) {
int32_t hwcId = -1;
for (size_t dpy = 0; dpy < mDisplays.size(); ++dpy) {
const sp<const DisplayDevice>& displayDevice(mDisplays[dpy]);
if (displayDevice->isPrimary()) {
hwcId = displayDevice->getHwcDisplayId();
break;
}
}
if (hwcId < 0) {
ALOGE("LayerStats: Hmmm, no primary display?");
return;
}
mLayerStats.logLayerStats(dumpVisibleLayersProtoInfo(hwcId));
}
}
void SurfaceFlinger::preComposition(nsecs_t refreshStartTime)
{
ATRACE_CALL();
ALOGV("preComposition");
bool needExtraInvalidate = false;
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (layer->onPreComposition(refreshStartTime)) {
needExtraInvalidate = true;
}
});
if (needExtraInvalidate) {
signalLayerUpdate();
}
}
void SurfaceFlinger::updateCompositorTiming(
nsecs_t vsyncPhase, nsecs_t vsyncInterval, nsecs_t compositeTime,
std::shared_ptr<FenceTime>& presentFenceTime) {
// Update queue of past composite+present times and determine the
// most recently known composite to present latency.
getBE().mCompositePresentTimes.push({compositeTime, presentFenceTime});
nsecs_t compositeToPresentLatency = -1;
while (!getBE().mCompositePresentTimes.empty()) {
SurfaceFlingerBE::CompositePresentTime& cpt = getBE().mCompositePresentTimes.front();
// Cached values should have been updated before calling this method,
// which helps avoid duplicate syscalls.
nsecs_t displayTime = cpt.display->getCachedSignalTime();
if (displayTime == Fence::SIGNAL_TIME_PENDING) {
break;
}
compositeToPresentLatency = displayTime - cpt.composite;
getBE().mCompositePresentTimes.pop();
}
// Don't let mCompositePresentTimes grow unbounded, just in case.
while (getBE().mCompositePresentTimes.size() > 16) {
getBE().mCompositePresentTimes.pop();
}
setCompositorTimingSnapped(
vsyncPhase, vsyncInterval, compositeToPresentLatency);
}
void SurfaceFlinger::setCompositorTimingSnapped(nsecs_t vsyncPhase,
nsecs_t vsyncInterval, nsecs_t compositeToPresentLatency) {
// Integer division and modulo round toward 0 not -inf, so we need to
// treat negative and positive offsets differently.
nsecs_t idealLatency = (sfVsyncPhaseOffsetNs > 0) ?
(vsyncInterval - (sfVsyncPhaseOffsetNs % vsyncInterval)) :
((-sfVsyncPhaseOffsetNs) % vsyncInterval);
// Just in case sfVsyncPhaseOffsetNs == -vsyncInterval.
if (idealLatency <= 0) {
idealLatency = vsyncInterval;
}
// Snap the latency to a value that removes scheduling jitter from the
// composition and present times, which often have >1ms of jitter.
// Reducing jitter is important if an app attempts to extrapolate
// something (such as user input) to an accurate diasplay time.
// Snapping also allows an app to precisely calculate sfVsyncPhaseOffsetNs
// with (presentLatency % interval).
nsecs_t bias = vsyncInterval / 2;
int64_t extraVsyncs =
(compositeToPresentLatency - idealLatency + bias) / vsyncInterval;
nsecs_t snappedCompositeToPresentLatency = (extraVsyncs > 0) ?
idealLatency + (extraVsyncs * vsyncInterval) : idealLatency;
std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
getBE().mCompositorTiming.deadline = vsyncPhase - idealLatency;
getBE().mCompositorTiming.interval = vsyncInterval;
getBE().mCompositorTiming.presentLatency = snappedCompositeToPresentLatency;
}
void SurfaceFlinger::postComposition(nsecs_t refreshStartTime)
{
ATRACE_CALL();
ALOGV("postComposition");
// Release any buffers which were replaced this frame
nsecs_t dequeueReadyTime = systemTime();
for (auto& layer : mLayersWithQueuedFrames) {
layer->releasePendingBuffer(dequeueReadyTime);
}
// |mStateLock| not needed as we are on the main thread
const sp<const DisplayDevice> hw(getDefaultDisplayDeviceLocked());
getBE().mGlCompositionDoneTimeline.updateSignalTimes();
std::shared_ptr<FenceTime> glCompositionDoneFenceTime;
if (hw && getBE().mHwc->hasClientComposition(HWC_DISPLAY_PRIMARY)) {
glCompositionDoneFenceTime =
std::make_shared<FenceTime>(hw->getClientTargetAcquireFence());
getBE().mGlCompositionDoneTimeline.push(glCompositionDoneFenceTime);
} else {
glCompositionDoneFenceTime = FenceTime::NO_FENCE;
}
getBE().mDisplayTimeline.updateSignalTimes();
sp<Fence> presentFence = getBE().mHwc->getPresentFence(HWC_DISPLAY_PRIMARY);
auto presentFenceTime = std::make_shared<FenceTime>(presentFence);
getBE().mDisplayTimeline.push(presentFenceTime);
nsecs_t vsyncPhase = mPrimaryDispSync.computeNextRefresh(0);
nsecs_t vsyncInterval = mPrimaryDispSync.getPeriod();
// We use the refreshStartTime which might be sampled a little later than
// when we started doing work for this frame, but that should be okay
// since updateCompositorTiming has snapping logic.
updateCompositorTiming(
vsyncPhase, vsyncInterval, refreshStartTime, presentFenceTime);
CompositorTiming compositorTiming;
{
std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
compositorTiming = getBE().mCompositorTiming;
}
mDrawingState.traverseInZOrder([&](Layer* layer) {
bool frameLatched = layer->onPostComposition(glCompositionDoneFenceTime,
presentFenceTime, compositorTiming);
if (frameLatched) {
recordBufferingStats(layer->getName().string(),
layer->getOccupancyHistory(false));
}
});
if (presentFenceTime->isValid()) {
if (mPrimaryDispSync.addPresentFence(presentFenceTime)) {
enableHardwareVsync();
} else {
disableHardwareVsync(false);
}
}
if (!hasSyncFramework) {
if (getBE().mHwc->isConnected(HWC_DISPLAY_PRIMARY) && hw->isDisplayOn()) {
enableHardwareVsync();
}
}
if (mAnimCompositionPending) {
mAnimCompositionPending = false;
if (presentFenceTime->isValid()) {
mAnimFrameTracker.setActualPresentFence(
std::move(presentFenceTime));
} else if (getBE().mHwc->isConnected(HWC_DISPLAY_PRIMARY)) {
// The HWC doesn't support present fences, so use the refresh
// timestamp instead.
nsecs_t presentTime =
getBE().mHwc->getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
mAnimFrameTracker.setActualPresentTime(presentTime);
}
mAnimFrameTracker.advanceFrame();
}
mTimeStats.incrementTotalFrames();
if (mHadClientComposition) {
mTimeStats.incrementClientCompositionFrames();
}
if (getBE().mHwc->isConnected(HWC_DISPLAY_PRIMARY) &&
hw->getPowerMode() == HWC_POWER_MODE_OFF) {
return;
}
nsecs_t currentTime = systemTime();
if (mHasPoweredOff) {
mHasPoweredOff = false;
} else {
nsecs_t elapsedTime = currentTime - getBE().mLastSwapTime;
size_t numPeriods = static_cast<size_t>(elapsedTime / vsyncInterval);
if (numPeriods < SurfaceFlingerBE::NUM_BUCKETS - 1) {
getBE().mFrameBuckets[numPeriods] += elapsedTime;
} else {
getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] += elapsedTime;
}
getBE().mTotalTime += elapsedTime;
}
getBE().mLastSwapTime = currentTime;
}
void SurfaceFlinger::rebuildLayerStacks() {
ATRACE_CALL();
ALOGV("rebuildLayerStacks");
// rebuild the visible layer list per screen
if (CC_UNLIKELY(mVisibleRegionsDirty)) {
ATRACE_NAME("rebuildLayerStacks VR Dirty");
mVisibleRegionsDirty = false;
invalidateHwcGeometry();
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
Region opaqueRegion;
Region dirtyRegion;
Vector<sp<Layer>> layersSortedByZ;
Vector<sp<Layer>> layersNeedingFences;
const sp<DisplayDevice>& displayDevice(mDisplays[dpy]);
const Transform& tr(displayDevice->getTransform());
const Rect bounds(displayDevice->getBounds());
if (displayDevice->isDisplayOn()) {
computeVisibleRegions(displayDevice, dirtyRegion, opaqueRegion);
mDrawingState.traverseInZOrder([&](Layer* layer) {
bool hwcLayerDestroyed = false;
if (layer->belongsToDisplay(displayDevice->getLayerStack(),
displayDevice->isPrimary())) {
Region drawRegion(tr.transform(
layer->visibleNonTransparentRegion));
drawRegion.andSelf(bounds);
if (!drawRegion.isEmpty()) {
layersSortedByZ.add(layer);
} else {
// Clear out the HWC layer if this layer was
// previously visible, but no longer is
hwcLayerDestroyed = layer->destroyHwcLayer(
displayDevice->getHwcDisplayId());
}
} else {
// WM changes displayDevice->layerStack upon sleep/awake.
// Here we make sure we delete the HWC layers even if
// WM changed their layer stack.
hwcLayerDestroyed = layer->destroyHwcLayer(
displayDevice->getHwcDisplayId());
}
// If a layer is not going to get a release fence because
// it is invisible, but it is also going to release its
// old buffer, add it to the list of layers needing
// fences.
if (hwcLayerDestroyed) {
auto found = std::find(mLayersWithQueuedFrames.cbegin(),
mLayersWithQueuedFrames.cend(), layer);
if (found != mLayersWithQueuedFrames.cend()) {
layersNeedingFences.add(layer);
}
}
});
}
displayDevice->setVisibleLayersSortedByZ(layersSortedByZ);
displayDevice->setLayersNeedingFences(layersNeedingFences);
displayDevice->undefinedRegion.set(bounds);
displayDevice->undefinedRegion.subtractSelf(
tr.transform(opaqueRegion));
displayDevice->dirtyRegion.orSelf(dirtyRegion);
}
}
}
// Returns a data space that fits all visible layers. The returned data space
// can only be one of
// - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced)
// - Dataspace::DISPLAY_P3
// The returned HDR data space is one of
// - Dataspace::UNKNOWN
// - Dataspace::BT2020_HLG
// - Dataspace::BT2020_PQ
Dataspace SurfaceFlinger::getBestDataspace(
const sp<const DisplayDevice>& displayDevice, Dataspace* outHdrDataSpace) const {
Dataspace bestDataSpace = Dataspace::SRGB;
*outHdrDataSpace = Dataspace::UNKNOWN;
for (const auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
switch (layer->getDataSpace()) {
case Dataspace::V0_SCRGB:
case Dataspace::V0_SCRGB_LINEAR:
case Dataspace::DISPLAY_P3:
bestDataSpace = Dataspace::DISPLAY_P3;
break;
case Dataspace::BT2020_PQ:
case Dataspace::BT2020_ITU_PQ:
*outHdrDataSpace = Dataspace::BT2020_PQ;
break;
case Dataspace::BT2020_HLG:
case Dataspace::BT2020_ITU_HLG:
// When there's mixed PQ content and HLG content, we set the HDR
// data space to be BT2020_PQ and convert HLG to PQ.
if (*outHdrDataSpace == Dataspace::UNKNOWN) {
*outHdrDataSpace = Dataspace::BT2020_HLG;
}
break;
default:
break;
}
}
return bestDataSpace;
}
// Pick the ColorMode / Dataspace for the display device.
void SurfaceFlinger::pickColorMode(const sp<DisplayDevice>& displayDevice,
ColorMode* outMode, Dataspace* outDataSpace,
RenderIntent* outRenderIntent) const {
if (mDisplayColorSetting == DisplayColorSetting::UNMANAGED) {
*outMode = ColorMode::NATIVE;
*outDataSpace = Dataspace::UNKNOWN;
*outRenderIntent = RenderIntent::COLORIMETRIC;
return;
}
Dataspace hdrDataSpace;
Dataspace bestDataSpace = getBestDataspace(displayDevice, &hdrDataSpace);
// respect hdrDataSpace only when there is no legacy HDR support
const bool isHdr = hdrDataSpace != Dataspace::UNKNOWN &&
!displayDevice->hasLegacyHdrSupport(hdrDataSpace);
if (isHdr) {
bestDataSpace = hdrDataSpace;
}
RenderIntent intent;
switch (mDisplayColorSetting) {
case DisplayColorSetting::MANAGED:
case DisplayColorSetting::UNMANAGED:
intent = isHdr ? RenderIntent::TONE_MAP_COLORIMETRIC : RenderIntent::COLORIMETRIC;
break;
case DisplayColorSetting::ENHANCED:
intent = isHdr ? RenderIntent::TONE_MAP_ENHANCE : RenderIntent::ENHANCE;
break;
default: // vendor display color setting
intent = static_cast<RenderIntent>(mDisplayColorSetting);
break;
}
displayDevice->getBestColorMode(bestDataSpace, intent, outDataSpace, outMode, outRenderIntent);
}
void SurfaceFlinger::setUpHWComposer() {
ATRACE_CALL();
ALOGV("setUpHWComposer");
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
bool dirty = !mDisplays[dpy]->getDirtyRegion(mRepaintEverything).isEmpty();
bool empty = mDisplays[dpy]->getVisibleLayersSortedByZ().size() == 0;
bool wasEmpty = !mDisplays[dpy]->lastCompositionHadVisibleLayers;
// If nothing has changed (!dirty), don't recompose.
// If something changed, but we don't currently have any visible layers,
// and didn't when we last did a composition, then skip it this time.
// The second rule does two things:
// - When all layers are removed from a display, we'll emit one black
// frame, then nothing more until we get new layers.
// - When a display is created with a private layer stack, we won't
// emit any black frames until a layer is added to the layer stack.
bool mustRecompose = dirty && !(empty && wasEmpty);
ALOGV_IF(mDisplays[dpy]->getDisplayType() == DisplayDevice::DISPLAY_VIRTUAL,
"dpy[%zu]: %s composition (%sdirty %sempty %swasEmpty)", dpy,
mustRecompose ? "doing" : "skipping",
dirty ? "+" : "-",
empty ? "+" : "-",
wasEmpty ? "+" : "-");
mDisplays[dpy]->beginFrame(mustRecompose);
if (mustRecompose) {
mDisplays[dpy]->lastCompositionHadVisibleLayers = !empty;
}
}
// build the h/w work list
if (CC_UNLIKELY(mGeometryInvalid)) {
mGeometryInvalid = false;
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> displayDevice(mDisplays[dpy]);
const auto hwcId = displayDevice->getHwcDisplayId();
if (hwcId >= 0) {
const Vector<sp<Layer>>& currentLayers(
displayDevice->getVisibleLayersSortedByZ());
for (size_t i = 0; i < currentLayers.size(); i++) {
const auto& layer = currentLayers[i];
if (!layer->hasHwcLayer(hwcId)) {
if (!layer->createHwcLayer(getBE().mHwc.get(), hwcId)) {
layer->forceClientComposition(hwcId);
continue;
}
}
layer->setGeometry(displayDevice, i);
if (mDebugDisableHWC || mDebugRegion) {
layer->forceClientComposition(hwcId);
}
}
}
}
}
// Set the per-frame data
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
auto& displayDevice = mDisplays[displayId];
const auto hwcId = displayDevice->getHwcDisplayId();
if (hwcId < 0) {
continue;
}
if (mDrawingState.colorMatrixChanged) {
displayDevice->setColorTransform(mDrawingState.colorMatrix);
status_t result = getBE().mHwc->setColorTransform(hwcId, mDrawingState.colorMatrix);
ALOGE_IF(result != NO_ERROR, "Failed to set color transform on "
"display %zd: %d", displayId, result);
}
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
if (layer->isHdrY410()) {
layer->forceClientComposition(hwcId);
} else if ((layer->getDataSpace() == Dataspace::BT2020_PQ ||
layer->getDataSpace() == Dataspace::BT2020_ITU_PQ) &&
!displayDevice->hasHDR10Support()) {
layer->forceClientComposition(hwcId);
} else if ((layer->getDataSpace() == Dataspace::BT2020_HLG ||
layer->getDataSpace() == Dataspace::BT2020_ITU_HLG) &&
!displayDevice->hasHLGSupport()) {
layer->forceClientComposition(hwcId);
}
if (layer->getForceClientComposition(hwcId)) {
ALOGV("[%s] Requesting Client composition", layer->getName().string());
layer->setCompositionType(hwcId, HWC2::Composition::Client);
continue;
}
layer->setPerFrameData(displayDevice);
}
if (hasWideColorDisplay) {
ColorMode colorMode;
Dataspace dataSpace;
RenderIntent renderIntent;
pickColorMode(displayDevice, &colorMode, &dataSpace, &renderIntent);
setActiveColorModeInternal(displayDevice, colorMode, dataSpace, renderIntent);
}
}
mDrawingState.colorMatrixChanged = false;
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
auto& displayDevice = mDisplays[displayId];
if (!displayDevice->isDisplayOn()) {
continue;
}
status_t result = displayDevice->prepareFrame(*getBE().mHwc);
ALOGE_IF(result != NO_ERROR, "prepareFrame for display %zd failed:"
" %d (%s)", displayId, result, strerror(-result));
}
}
void SurfaceFlinger::doComposition() {
ATRACE_CALL();
ALOGV("doComposition");
const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<DisplayDevice>& hw(mDisplays[dpy]);
if (hw->isDisplayOn()) {
// transform the dirty region into this screen's coordinate space
const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
// repaint the framebuffer (if needed)
doDisplayComposition(hw, dirtyRegion);
hw->dirtyRegion.clear();
hw->flip();
}
}
postFramebuffer();
}
void SurfaceFlinger::postFramebuffer()
{
ATRACE_CALL();
ALOGV("postFramebuffer");
const nsecs_t now = systemTime();
mDebugInSwapBuffers = now;
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
auto& displayDevice = mDisplays[displayId];
if (!displayDevice->isDisplayOn()) {
continue;
}
const auto hwcId = displayDevice->getHwcDisplayId();
if (hwcId >= 0) {
getBE().mHwc->presentAndGetReleaseFences(hwcId);
}
displayDevice->onSwapBuffersCompleted();
displayDevice->makeCurrent();
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
// The layer buffer from the previous frame (if any) is released
// by HWC only when the release fence from this frame (if any) is
// signaled. Always get the release fence from HWC first.
auto hwcLayer = layer->getHwcLayer(hwcId);
sp<Fence> releaseFence = getBE().mHwc->getLayerReleaseFence(hwcId, hwcLayer);
// If the layer was client composited in the previous frame, we
// need to merge with the previous client target acquire fence.
// Since we do not track that, always merge with the current
// client target acquire fence when it is available, even though
// this is suboptimal.
if (layer->getCompositionType(hwcId) == HWC2::Composition::Client) {
releaseFence = Fence::merge("LayerRelease", releaseFence,
displayDevice->getClientTargetAcquireFence());
}
layer->onLayerDisplayed(releaseFence);
}
// We've got a list of layers needing fences, that are disjoint with
// displayDevice->getVisibleLayersSortedByZ. The best we can do is to
// supply them with the present fence.
if (!displayDevice->getLayersNeedingFences().isEmpty()) {
sp<Fence> presentFence = getBE().mHwc->getPresentFence(hwcId);
for (auto& layer : displayDevice->getLayersNeedingFences()) {
layer->onLayerDisplayed(presentFence);
}
}
if (hwcId >= 0) {
getBE().mHwc->clearReleaseFences(hwcId);
}
}
mLastSwapBufferTime = systemTime() - now;
mDebugInSwapBuffers = 0;
// |mStateLock| not needed as we are on the main thread
if (getBE().mHwc->isConnected(HWC_DISPLAY_PRIMARY)) {
uint32_t flipCount = getDefaultDisplayDeviceLocked()->getPageFlipCount();
if (flipCount % LOG_FRAME_STATS_PERIOD == 0) {
logFrameStats();
}
}
}
void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
{
ATRACE_CALL();
// here we keep a copy of the drawing state (that is the state that's
// going to be overwritten by handleTransactionLocked()) outside of
// mStateLock so that the side-effects of the State assignment
// don't happen with mStateLock held (which can cause deadlocks).
State drawingState(mDrawingState);
Mutex::Autolock _l(mStateLock);
const nsecs_t now = systemTime();
mDebugInTransaction = now;
// Here we're guaranteed that some transaction flags are set
// so we can call handleTransactionLocked() unconditionally.
// We call getTransactionFlags(), which will also clear the flags,
// with mStateLock held to guarantee that mCurrentState won't change
// until the transaction is committed.
mVsyncModulator.onTransactionHandled();
transactionFlags = getTransactionFlags(eTransactionMask);
handleTransactionLocked(transactionFlags);
mLastTransactionTime = systemTime() - now;
mDebugInTransaction = 0;
invalidateHwcGeometry();
// here the transaction has been committed
}
DisplayDevice::DisplayType SurfaceFlinger::determineDisplayType(hwc2_display_t display,
HWC2::Connection connection) const {
// Figure out whether the event is for the primary display or an
// external display by matching the Hwc display id against one for a
// connected display. If we did not find a match, we then check what
// displays are not already connected to determine the type. If we don't
// have a connected primary display, we assume the new display is meant to
// be the primary display, and then if we don't have an external display,
// we assume it is that.
const auto primaryDisplayId =
getBE().mHwc->getHwcDisplayId(DisplayDevice::DISPLAY_PRIMARY);
const auto externalDisplayId =
getBE().mHwc->getHwcDisplayId(DisplayDevice::DISPLAY_EXTERNAL);
if (primaryDisplayId && primaryDisplayId == display) {
return DisplayDevice::DISPLAY_PRIMARY;
} else if (externalDisplayId && externalDisplayId == display) {
return DisplayDevice::DISPLAY_EXTERNAL;
} else if (connection == HWC2::Connection::Connected && !primaryDisplayId) {
return DisplayDevice::DISPLAY_PRIMARY;
} else if (connection == HWC2::Connection::Connected && !externalDisplayId) {
return DisplayDevice::DISPLAY_EXTERNAL;
}
return DisplayDevice::DISPLAY_ID_INVALID;
}
void SurfaceFlinger::processDisplayHotplugEventsLocked() {
for (const auto& event : mPendingHotplugEvents) {
auto displayType = determineDisplayType(event.display, event.connection);
if (displayType == DisplayDevice::DISPLAY_ID_INVALID) {
ALOGW("Unable to determine the display type for display %" PRIu64, event.display);
continue;
}
if (getBE().mHwc->isUsingVrComposer() && displayType == DisplayDevice::DISPLAY_EXTERNAL) {
ALOGE("External displays are not supported by the vr hardware composer.");
continue;
}
getBE().mHwc->onHotplug(event.display, displayType, event.connection);
if (event.connection == HWC2::Connection::Connected) {
if (!mBuiltinDisplays[displayType].get()) {
ALOGV("Creating built in display %d", displayType);
mBuiltinDisplays[displayType] = new BBinder();
// All non-virtual displays are currently considered secure.
DisplayDeviceState info(displayType, true);
info.displayName = displayType == DisplayDevice::DISPLAY_PRIMARY ?
"Built-in Screen" : "External Screen";
mCurrentState.displays.add(mBuiltinDisplays[displayType], info);
mInterceptor->saveDisplayCreation(info);
}
} else {
ALOGV("Removing built in display %d", displayType);
ssize_t idx = mCurrentState.displays.indexOfKey(mBuiltinDisplays[displayType]);
if (idx >= 0) {
const DisplayDeviceState& info(mCurrentState.displays.valueAt(idx));
mInterceptor->saveDisplayDeletion(info.displayId);
mCurrentState.displays.removeItemsAt(idx);
}
mBuiltinDisplays[displayType].clear();
}
processDisplayChangesLocked();
}
mPendingHotplugEvents.clear();
}
sp<DisplayDevice> SurfaceFlinger::setupNewDisplayDeviceInternal(
const wp<IBinder>& display, int hwcId, const DisplayDeviceState& state,
const sp<DisplaySurface>& dispSurface, const sp<IGraphicBufferProducer>& producer) {
bool hasWideColorGamut = false;
std::unordered_map<ColorMode, std::vector<RenderIntent>> hwcColorModes;
if (hasWideColorDisplay) {
std::vector<ColorMode> modes = getHwComposer().getColorModes(hwcId);
for (ColorMode colorMode : modes) {
switch (colorMode) {
case ColorMode::DISPLAY_P3:
case ColorMode::ADOBE_RGB:
case ColorMode::DCI_P3:
hasWideColorGamut = true;
break;
default:
break;
}
std::vector<RenderIntent> renderIntents = getHwComposer().getRenderIntents(hwcId,
colorMode);
hwcColorModes.emplace(colorMode, renderIntents);
}
}
HdrCapabilities hdrCapabilities;
getHwComposer().getHdrCapabilities(hwcId, &hdrCapabilities);
auto nativeWindowSurface = mCreateNativeWindowSurface(producer);
auto nativeWindow = nativeWindowSurface->getNativeWindow();
/*
* Create our display's surface
*/
std::unique_ptr<RE::Surface> renderSurface = getRenderEngine().createSurface();
renderSurface->setCritical(state.type == DisplayDevice::DISPLAY_PRIMARY);
renderSurface->setAsync(state.type >= DisplayDevice::DISPLAY_VIRTUAL);
renderSurface->setNativeWindow(nativeWindow.get());
const int displayWidth = renderSurface->queryWidth();
const int displayHeight = renderSurface->queryHeight();
// Make sure that composition can never be stalled by a virtual display
// consumer that isn't processing buffers fast enough. We have to do this
// in two places:
// * Here, in case the display is composed entirely by HWC.
// * In makeCurrent(), using eglSwapInterval. Some EGL drivers set the
// window's swap interval in eglMakeCurrent, so they'll override the
// interval we set here.
if (state.type >= DisplayDevice::DISPLAY_VIRTUAL) {
nativeWindow->setSwapInterval(nativeWindow.get(), 0);
}
// virtual displays are always considered enabled
auto initialPowerMode = (state.type >= DisplayDevice::DISPLAY_VIRTUAL) ? HWC_POWER_MODE_NORMAL
: HWC_POWER_MODE_OFF;
sp<DisplayDevice> hw =
new DisplayDevice(this, state.type, hwcId, state.isSecure, display, nativeWindow,
dispSurface, std::move(renderSurface), displayWidth, displayHeight,
hasWideColorGamut, hdrCapabilities,
getHwComposer().getSupportedPerFrameMetadata(hwcId),
hwcColorModes, initialPowerMode);
if (maxFrameBufferAcquiredBuffers >= 3) {
nativeWindowSurface->preallocateBuffers();
}
ColorMode defaultColorMode = ColorMode::NATIVE;
Dataspace defaultDataSpace = Dataspace::UNKNOWN;
if (hasWideColorGamut) {
defaultColorMode = ColorMode::SRGB;
defaultDataSpace = Dataspace::SRGB;
}
setActiveColorModeInternal(hw, defaultColorMode, defaultDataSpace,
RenderIntent::COLORIMETRIC);
if (state.type < DisplayDevice::DISPLAY_VIRTUAL) {
hw->setActiveConfig(getHwComposer().getActiveConfigIndex(state.type));
}
hw->setLayerStack(state.layerStack);
hw->setProjection(state.orientation, state.viewport, state.frame);
hw->setDisplayName(state.displayName);
return hw;
}
void SurfaceFlinger::processDisplayChangesLocked() {
// here we take advantage of Vector's copy-on-write semantics to
// improve performance by skipping the transaction entirely when
// know that the lists are identical
const KeyedVector<wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
const KeyedVector<wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
if (!curr.isIdenticalTo(draw)) {
mVisibleRegionsDirty = true;
const size_t cc = curr.size();
size_t dc = draw.size();
// find the displays that were removed
// (ie: in drawing state but not in current state)
// also handle displays that changed
// (ie: displays that are in both lists)
for (size_t i = 0; i < dc;) {
const ssize_t j = curr.indexOfKey(draw.keyAt(i));
if (j < 0) {
// in drawing state but not in current state
// Call makeCurrent() on the primary display so we can
// be sure that nothing associated with this display
// is current.
const sp<const DisplayDevice> defaultDisplay(getDefaultDisplayDeviceLocked());
if (defaultDisplay != nullptr) defaultDisplay->makeCurrent();
sp<DisplayDevice> hw(getDisplayDeviceLocked(draw.keyAt(i)));
if (hw != nullptr) hw->disconnect(getHwComposer());
if (draw[i].type < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES)
mEventThread->onHotplugReceived(draw[i].type, false);
mDisplays.removeItem(draw.keyAt(i));
} else {
// this display is in both lists. see if something changed.
const DisplayDeviceState& state(curr[j]);
const wp<IBinder>& display(curr.keyAt(j));
const sp<IBinder> state_binder = IInterface::asBinder(state.surface);
const sp<IBinder> draw_binder = IInterface::asBinder(draw[i].surface);
if (state_binder != draw_binder) {
// changing the surface is like destroying and
// recreating the DisplayDevice, so we just remove it
// from the drawing state, so that it get re-added
// below.
sp<DisplayDevice> hw(getDisplayDeviceLocked(display));
if (hw != nullptr) hw->disconnect(getHwComposer());
mDisplays.removeItem(display);
mDrawingState.displays.removeItemsAt(i);
dc--;
// at this point we must loop to the next item
continue;
}
const sp<DisplayDevice> disp(getDisplayDeviceLocked(display));
if (disp != nullptr) {
if (state.layerStack != draw[i].layerStack) {
disp->setLayerStack(state.layerStack);
}
if ((state.orientation != draw[i].orientation) ||
(state.viewport != draw[i].viewport) || (state.frame != draw[i].frame)) {
disp->setProjection(state.orientation, state.viewport, state.frame);
}
if (state.width != draw[i].width || state.height != draw[i].height) {
disp->setDisplaySize(state.width, state.height);
}
}
}
++i;
}
// find displays that were added
// (ie: in current state but not in drawing state)
for (size_t i = 0; i < cc; i++) {
if (draw.indexOfKey(curr.keyAt(i)) < 0) {
const DisplayDeviceState& state(curr[i]);
sp<DisplaySurface> dispSurface;
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferProducer> bqProducer;
sp<IGraphicBufferConsumer> bqConsumer;
mCreateBufferQueue(&bqProducer, &bqConsumer, false);
int32_t hwcId = -1;
if (state.isVirtualDisplay()) {
// Virtual displays without a surface are dormant:
// they have external state (layer stack, projection,
// etc.) but no internal state (i.e. a DisplayDevice).
if (state.surface != nullptr) {
// Allow VR composer to use virtual displays.
if (mUseHwcVirtualDisplays || getBE().mHwc->isUsingVrComposer()) {
int width = 0;
int status = state.surface->query(NATIVE_WINDOW_WIDTH, &width);
ALOGE_IF(status != NO_ERROR, "Unable to query width (%d)", status);
int height = 0;
status = state.surface->query(NATIVE_WINDOW_HEIGHT, &height);
ALOGE_IF(status != NO_ERROR, "Unable to query height (%d)", status);
int intFormat = 0;
status = state.surface->query(NATIVE_WINDOW_FORMAT, &intFormat);
ALOGE_IF(status != NO_ERROR, "Unable to query format (%d)", status);
auto format = static_cast<ui::PixelFormat>(intFormat);
getBE().mHwc->allocateVirtualDisplay(width, height, &format, &hwcId);
}
// TODO: Plumb requested format back up to consumer
sp<VirtualDisplaySurface> vds =
new VirtualDisplaySurface(*getBE().mHwc, hwcId, state.surface,
bqProducer, bqConsumer,
state.displayName);
dispSurface = vds;
producer = vds;
}
} else {
ALOGE_IF(state.surface != nullptr,
"adding a supported display, but rendering "
"surface is provided (%p), ignoring it",
state.surface.get());
hwcId = state.type;
dispSurface = new FramebufferSurface(*getBE().mHwc, hwcId, bqConsumer);
producer = bqProducer;
}
const wp<IBinder>& display(curr.keyAt(i));
if (dispSurface != nullptr) {
mDisplays.add(display,
setupNewDisplayDeviceInternal(display, hwcId, state, dispSurface,
producer));
if (!state.isVirtualDisplay()) {
mEventThread->onHotplugReceived(state.type, true);
}
}
}
}
}
mDrawingState.displays = mCurrentState.displays;
}
void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
{
// Notify all layers of available frames
mCurrentState.traverseInZOrder([](Layer* layer) {
layer->notifyAvailableFrames();
});
/*
* Traversal of the children
* (perform the transaction for each of them if needed)
*/
if (transactionFlags & eTraversalNeeded) {
mCurrentState.traverseInZOrder([&](Layer* layer) {
uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
if (!trFlags) return;
const uint32_t flags = layer->doTransaction(0);
if (flags & Layer::eVisibleRegion)
mVisibleRegionsDirty = true;
});
}
/*
* Perform display own transactions if needed
*/
if (transactionFlags & eDisplayTransactionNeeded) {
processDisplayChangesLocked();
processDisplayHotplugEventsLocked();
}
if (transactionFlags & (eDisplayLayerStackChanged|eDisplayTransactionNeeded)) {
// The transform hint might have changed for some layers
// (either because a display has changed, or because a layer
// as changed).
//
// Walk through all the layers in currentLayers,
// and update their transform hint.
//
// If a layer is visible only on a single display, then that
// display is used to calculate the hint, otherwise we use the
// default display.
//
// NOTE: we do this here, rather than in rebuildLayerStacks() so that
// the hint is set before we acquire a buffer from the surface texture.
//
// NOTE: layer transactions have taken place already, so we use their
// drawing state. However, SurfaceFlinger's own transaction has not
// happened yet, so we must use the current state layer list
// (soon to become the drawing state list).
//
sp<const DisplayDevice> disp;
uint32_t currentlayerStack = 0;
bool first = true;
mCurrentState.traverseInZOrder([&](Layer* layer) {
// NOTE: we rely on the fact that layers are sorted by
// layerStack first (so we don't have to traverse the list
// of displays for every layer).
uint32_t layerStack = layer->getLayerStack();
if (first || currentlayerStack != layerStack) {
currentlayerStack = layerStack;
// figure out if this layerstack is mirrored
// (more than one display) if so, pick the default display,
// if not, pick the only display it's on.
disp.clear();
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> hw(mDisplays[dpy]);
if (layer->belongsToDisplay(hw->getLayerStack(), hw->isPrimary())) {
if (disp == nullptr) {
disp = std::move(hw);
} else {
disp = nullptr;
break;
}
}
}
}
if (disp == nullptr) {
// NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to
// redraw after transform hint changes. See bug 8508397.
// could be null when this layer is using a layerStack
// that is not visible on any display. Also can occur at
// screen off/on times.
disp = getDefaultDisplayDeviceLocked();
}
// disp can be null if there is no display available at all to get
// the transform hint from.
if (disp != nullptr) {
layer->updateTransformHint(disp);
}
first = false;
});
}
/*
* Perform our own transaction if needed
*/
if (mLayersAdded) {
mLayersAdded = false;
// Layers have been added.
mVisibleRegionsDirty = true;
}
// some layers might have been removed, so
// we need to update the regions they're exposing.
if (mLayersRemoved) {
mLayersRemoved = false;
mVisibleRegionsDirty = true;
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (mLayersPendingRemoval.indexOf(layer) >= 0) {
// this layer is not visible anymore
// TODO: we could traverse the tree from front to back and
// compute the actual visible region
// TODO: we could cache the transformed region
Region visibleReg;
visibleReg.set(layer->computeScreenBounds());
invalidateLayerStack(layer, visibleReg);
}
});
}
commitTransaction();
updateCursorAsync();
}
void SurfaceFlinger::updateCursorAsync()
{
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
auto& displayDevice = mDisplays[displayId];
if (displayDevice->getHwcDisplayId() < 0) {
continue;
}
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
layer->updateCursorPosition(displayDevice);
}
}
}
void SurfaceFlinger::commitTransaction()
{
if (!mLayersPendingRemoval.isEmpty()) {
// Notify removed layers now that they can't be drawn from
for (const auto& l : mLayersPendingRemoval) {
recordBufferingStats(l->getName().string(),
l->getOccupancyHistory(true));
l->onRemoved();
}
mLayersPendingRemoval.clear();
}
// If this transaction is part of a window animation then the next frame
// we composite should be considered an animation as well.
mAnimCompositionPending = mAnimTransactionPending;
mDrawingState = mCurrentState;
// clear the "changed" flags in current state
mCurrentState.colorMatrixChanged = false;
mDrawingState.traverseInZOrder([](Layer* layer) {
layer->commitChildList();
});
mTransactionPending = false;
mAnimTransactionPending = false;
mTransactionCV.broadcast();
}
void SurfaceFlinger::computeVisibleRegions(const sp<const DisplayDevice>& displayDevice,
Region& outDirtyRegion, Region& outOpaqueRegion)
{
ATRACE_CALL();
ALOGV("computeVisibleRegions");
Region aboveOpaqueLayers;
Region aboveCoveredLayers;
Region dirty;
outDirtyRegion.clear();
mDrawingState.traverseInReverseZOrder([&](Layer* layer) {
// start with the whole surface at its current location
const Layer::State& s(layer->getDrawingState());
// only consider the layers on the given layer stack
if (!layer->belongsToDisplay(displayDevice->getLayerStack(), displayDevice->isPrimary()))
return;
/*
* opaqueRegion: area of a surface that is fully opaque.
*/
Region opaqueRegion;
/*
* visibleRegion: area of a surface that is visible on screen
* and not fully transparent. This is essentially the layer's
* footprint minus the opaque regions above it.
* Areas covered by a translucent surface are considered visible.
*/
Region visibleRegion;
/*
* coveredRegion: area of a surface that is covered by all
* visible regions above it (which includes the translucent areas).
*/
Region coveredRegion;
/*
* transparentRegion: area of a surface that is hinted to be completely
* transparent. This is only used to tell when the layer has no visible
* non-transparent regions and can be removed from the layer list. It
* does not affect the visibleRegion of this layer or any layers
* beneath it. The hint may not be correct if apps don't respect the
* SurfaceView restrictions (which, sadly, some don't).
*/
Region transparentRegion;
// handle hidden surfaces by setting the visible region to empty
if (CC_LIKELY(layer->isVisible())) {
const bool translucent = !layer->isOpaque(s);
Rect bounds(layer->computeScreenBounds());
visibleRegion.set(bounds);
Transform tr = layer->getTransform();
if (!visibleRegion.isEmpty()) {
// Remove the transparent area from the visible region
if (translucent) {
if (tr.preserveRects()) {
// transform the transparent region
transparentRegion = tr.transform(s.activeTransparentRegion);
} else {
// transformation too complex, can't do the
// transparent region optimization.
transparentRegion.clear();
}
}
// compute the opaque region
const int32_t layerOrientation = tr.getOrientation();
if (layer->getAlpha() == 1.0f && !translucent &&
((layerOrientation & Transform::ROT_INVALID) == false)) {
// the opaque region is the layer's footprint
opaqueRegion = visibleRegion;
}
}
}
if (visibleRegion.isEmpty()) {
layer->clearVisibilityRegions();
return;
}
// Clip the covered region to the visible region
coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
// Update aboveCoveredLayers for next (lower) layer
aboveCoveredLayers.orSelf(visibleRegion);
// subtract the opaque region covered by the layers above us
visibleRegion.subtractSelf(aboveOpaqueLayers);
// compute this layer's dirty region
if (layer->contentDirty) {
// we need to invalidate the whole region
dirty = visibleRegion;
// as well, as the old visible region
dirty.orSelf(layer->visibleRegion);
layer->contentDirty = false;
} else {
/* compute the exposed region:
* the exposed region consists of two components:
* 1) what's VISIBLE now and was COVERED before
* 2) what's EXPOSED now less what was EXPOSED before
*
* note that (1) is conservative, we start with the whole
* visible region but only keep what used to be covered by
* something -- which mean it may have been exposed.
*
* (2) handles areas that were not covered by anything but got
* exposed because of a resize.
*/
const Region newExposed = visibleRegion - coveredRegion;
const Region oldVisibleRegion = layer->visibleRegion;
const Region oldCoveredRegion = layer->coveredRegion;
const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
}
dirty.subtractSelf(aboveOpaqueLayers);
// accumulate to the screen dirty region
outDirtyRegion.orSelf(dirty);
// Update aboveOpaqueLayers for next (lower) layer
aboveOpaqueLayers.orSelf(opaqueRegion);
// Store the visible region in screen space
layer->setVisibleRegion(visibleRegion);
layer->setCoveredRegion(coveredRegion);
layer->setVisibleNonTransparentRegion(
visibleRegion.subtract(transparentRegion));
});
outOpaqueRegion = aboveOpaqueLayers;
}
void SurfaceFlinger::invalidateLayerStack(const sp<const Layer>& layer, const Region& dirty) {
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<DisplayDevice>& hw(mDisplays[dpy]);
if (layer->belongsToDisplay(hw->getLayerStack(), hw->isPrimary())) {
hw->dirtyRegion.orSelf(dirty);
}
}
}
bool SurfaceFlinger::handlePageFlip()
{
ALOGV("handlePageFlip");
nsecs_t latchTime = systemTime();
bool visibleRegions = false;
bool frameQueued = false;
bool newDataLatched = false;
// Store the set of layers that need updates. This set must not change as
// buffers are being latched, as this could result in a deadlock.
// Example: Two producers share the same command stream and:
// 1.) Layer 0 is latched
// 2.) Layer 0 gets a new frame
// 2.) Layer 1 gets a new frame
// 3.) Layer 1 is latched.
// Display is now waiting on Layer 1's frame, which is behind layer 0's
// second frame. But layer 0's second frame could be waiting on display.
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (layer->hasQueuedFrame()) {
frameQueued = true;
if (layer->shouldPresentNow(mPrimaryDispSync)) {
mLayersWithQueuedFrames.push_back(layer);
} else {
layer->useEmptyDamage();
}
} else {
layer->useEmptyDamage();
}
});
for (auto& layer : mLayersWithQueuedFrames) {
const Region dirty(layer->latchBuffer(visibleRegions, latchTime));
layer->useSurfaceDamage();
invalidateLayerStack(layer, dirty);
if (layer->isBufferLatched()) {
newDataLatched = true;
}
}
mVisibleRegionsDirty |= visibleRegions;
// If we will need to wake up at some time in the future to deal with a
// queued frame that shouldn't be displayed during this vsync period, wake
// up during the next vsync period to check again.
if (frameQueued && (mLayersWithQueuedFrames.empty() || !newDataLatched)) {
signalLayerUpdate();
}
// Only continue with the refresh if there is actually new work to do
return !mLayersWithQueuedFrames.empty() && newDataLatched;
}
void SurfaceFlinger::invalidateHwcGeometry()
{
mGeometryInvalid = true;
}
void SurfaceFlinger::doDisplayComposition(
const sp<const DisplayDevice>& displayDevice,
const Region& inDirtyRegion)
{
// We only need to actually compose the display if:
// 1) It is being handled by hardware composer, which may need this to
// keep its virtual display state machine in sync, or
// 2) There is work to be done (the dirty region isn't empty)
bool isHwcDisplay = displayDevice->getHwcDisplayId() >= 0;
if (!isHwcDisplay && inDirtyRegion.isEmpty()) {
ALOGV("Skipping display composition");
return;
}
ALOGV("doDisplayComposition");
if (!doComposeSurfaces(displayDevice)) return;
// swap buffers (presentation)
displayDevice->swapBuffers(getHwComposer());
}
bool SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& displayDevice)
{
ALOGV("doComposeSurfaces");
const Region bounds(displayDevice->bounds());
const DisplayRenderArea renderArea(displayDevice);
const auto hwcId = displayDevice->getHwcDisplayId();
const bool hasClientComposition = getBE().mHwc->hasClientComposition(hwcId);
ATRACE_INT("hasClientComposition", hasClientComposition);
bool applyColorMatrix = false;
bool needsLegacyColorMatrix = false;
bool legacyColorMatrixApplied = false;
if (hasClientComposition) {
ALOGV("hasClientComposition");
Dataspace outputDataspace = Dataspace::UNKNOWN;
if (displayDevice->hasWideColorGamut()) {
outputDataspace = displayDevice->getCompositionDataSpace();
}
getBE().mRenderEngine->setOutputDataSpace(outputDataspace);
getBE().mRenderEngine->setDisplayMaxLuminance(
displayDevice->getHdrCapabilities().getDesiredMaxLuminance());
const bool hasDeviceComposition = getBE().mHwc->hasDeviceComposition(hwcId);
const bool skipClientColorTransform = getBE().mHwc->hasCapability(
HWC2::Capability::SkipClientColorTransform);
applyColorMatrix = !hasDeviceComposition && !skipClientColorTransform;
if (applyColorMatrix) {
getRenderEngine().setupColorTransform(mDrawingState.colorMatrix);
}
needsLegacyColorMatrix =
(displayDevice->getActiveRenderIntent() >= RenderIntent::ENHANCE &&
outputDataspace != Dataspace::UNKNOWN &&
outputDataspace != Dataspace::SRGB);
if (!displayDevice->makeCurrent()) {
ALOGW("DisplayDevice::makeCurrent failed. Aborting surface composition for display %s",
displayDevice->getDisplayName().string());
getRenderEngine().resetCurrentSurface();
// |mStateLock| not needed as we are on the main thread
if(!getDefaultDisplayDeviceLocked()->makeCurrent()) {
ALOGE("DisplayDevice::makeCurrent on default display failed. Aborting.");