blob: 6659d4ac8e012b0697d0e7c327fbb87b88d40b8b [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#undef LOG_TAG
#define LOG_TAG "LibSurfaceFlingerUnittests"
#include <type_traits>
#include <compositionengine/Display.h>
#include <compositionengine/DisplayColorProfile.h>
#include <compositionengine/mock/DisplaySurface.h>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <log/log.h>
#include <renderengine/mock/RenderEngine.h>
#include <ui/DebugUtils.h>
#include "DisplayIdentificationTest.h"
#include "TestableSurfaceFlinger.h"
#include "mock/DisplayHardware/MockComposer.h"
#include "mock/MockDispSync.h"
#include "mock/MockEventControlThread.h"
#include "mock/MockEventThread.h"
#include "mock/MockMessageQueue.h"
#include "mock/MockNativeWindowSurface.h"
#include "mock/MockSurfaceInterceptor.h"
#include "mock/gui/MockGraphicBufferConsumer.h"
#include "mock/gui/MockGraphicBufferProducer.h"
#include "mock/system/window/MockNativeWindow.h"
namespace android {
namespace {
using testing::_;
using testing::DoAll;
using testing::Mock;
using testing::ResultOf;
using testing::Return;
using testing::SetArgPointee;
using android::Hwc2::ColorMode;
using android::Hwc2::Error;
using android::Hwc2::Hdr;
using android::Hwc2::IComposer;
using android::Hwc2::IComposerClient;
using android::Hwc2::PerFrameMetadataKey;
using android::Hwc2::RenderIntent;
using FakeDisplayDeviceInjector = TestableSurfaceFlinger::FakeDisplayDeviceInjector;
using FakeHwcDisplayInjector = TestableSurfaceFlinger::FakeHwcDisplayInjector;
using HotplugEvent = TestableSurfaceFlinger::HotplugEvent;
using HWC2Display = TestableSurfaceFlinger::HWC2Display;
constexpr int32_t DEFAULT_REFRESH_RATE = 16'666'666;
constexpr int32_t DEFAULT_DPI = 320;
constexpr int DEFAULT_VIRTUAL_DISPLAY_SURFACE_FORMAT = HAL_PIXEL_FORMAT_RGB_565;
constexpr int HWC_POWER_MODE_LEET = 1337; // An out of range power mode value
/* ------------------------------------------------------------------------
* Boolean avoidance
*
* To make calls and template instantiations more readable, we define some
* local enums along with an implicit bool conversion.
*/
#define BOOL_SUBSTITUTE(TYPENAME) enum class TYPENAME : bool { FALSE = false, TRUE = true };
BOOL_SUBSTITUTE(Async);
BOOL_SUBSTITUTE(Critical);
BOOL_SUBSTITUTE(Primary);
BOOL_SUBSTITUTE(Secure);
BOOL_SUBSTITUTE(Virtual);
/* ------------------------------------------------------------------------
*
*/
class DisplayTransactionTest : public testing::Test {
public:
DisplayTransactionTest();
~DisplayTransactionTest() override;
// --------------------------------------------------------------------
// Mock/Fake injection
void injectMockComposer(int virtualDisplayCount);
void injectFakeBufferQueueFactory();
void injectFakeNativeWindowSurfaceFactory();
// --------------------------------------------------------------------
// Postcondition helpers
bool hasPhysicalHwcDisplay(hwc2_display_t hwcDisplayId);
bool hasTransactionFlagSet(int flag);
bool hasDisplayDevice(sp<IBinder> displayToken);
sp<DisplayDevice> getDisplayDevice(sp<IBinder> displayToken);
bool hasCurrentDisplayState(sp<IBinder> displayToken);
const DisplayDeviceState& getCurrentDisplayState(sp<IBinder> displayToken);
bool hasDrawingDisplayState(sp<IBinder> displayToken);
const DisplayDeviceState& getDrawingDisplayState(sp<IBinder> displayToken);
// --------------------------------------------------------------------
// Test instances
TestableSurfaceFlinger mFlinger;
mock::EventThread* mEventThread = new mock::EventThread();
mock::EventThread* mSFEventThread = new mock::EventThread();
mock::EventControlThread* mEventControlThread = new mock::EventControlThread();
sp<mock::NativeWindow> mNativeWindow = new mock::NativeWindow();
sp<GraphicBuffer> mBuffer = new GraphicBuffer();
// These mocks are created by the test, but are destroyed by SurfaceFlinger
// by virtue of being stored into a std::unique_ptr. However we still need
// to keep a reference to them for use in setting up call expectations.
renderengine::mock::RenderEngine* mRenderEngine = new renderengine::mock::RenderEngine();
Hwc2::mock::Composer* mComposer = nullptr;
mock::MessageQueue* mMessageQueue = new mock::MessageQueue();
mock::SurfaceInterceptor* mSurfaceInterceptor = new mock::SurfaceInterceptor();
mock::DispSync* mPrimaryDispSync = new mock::DispSync();
// These mocks are created only when expected to be created via a factory.
sp<mock::GraphicBufferConsumer> mConsumer;
sp<mock::GraphicBufferProducer> mProducer;
surfaceflinger::mock::NativeWindowSurface* mNativeWindowSurface = nullptr;
};
DisplayTransactionTest::DisplayTransactionTest() {
const ::testing::TestInfo* const test_info =
::testing::UnitTest::GetInstance()->current_test_info();
ALOGD("**** Setting up for %s.%s\n", test_info->test_case_name(), test_info->name());
// Default to no wide color display support configured
mFlinger.mutableHasWideColorDisplay() = false;
mFlinger.mutableUseColorManagement() = false;
mFlinger.mutableDisplayColorSetting() = DisplayColorSetting::UNMANAGED;
// Default to using HWC virtual displays
mFlinger.mutableUseHwcVirtualDisplays() = true;
mFlinger.setCreateBufferQueueFunction([](auto, auto, auto) {
ADD_FAILURE() << "Unexpected request to create a buffer queue.";
});
mFlinger.setCreateNativeWindowSurface([](auto) {
ADD_FAILURE() << "Unexpected request to create a native window surface.";
return nullptr;
});
mFlinger.mutableEventControlThread().reset(mEventControlThread);
mFlinger.mutableEventThread().reset(mEventThread);
mFlinger.mutableSFEventThread().reset(mSFEventThread);
mFlinger.mutableEventQueue().reset(mMessageQueue);
mFlinger.setupRenderEngine(std::unique_ptr<renderengine::RenderEngine>(mRenderEngine));
mFlinger.mutableInterceptor().reset(mSurfaceInterceptor);
mFlinger.mutablePrimaryDispSync().reset(mPrimaryDispSync);
injectMockComposer(0);
}
DisplayTransactionTest::~DisplayTransactionTest() {
const ::testing::TestInfo* const test_info =
::testing::UnitTest::GetInstance()->current_test_info();
ALOGD("**** Tearing down after %s.%s\n", test_info->test_case_name(), test_info->name());
}
void DisplayTransactionTest::injectMockComposer(int virtualDisplayCount) {
mComposer = new Hwc2::mock::Composer();
EXPECT_CALL(*mComposer, getCapabilities())
.WillOnce(Return(std::vector<IComposer::Capability>()));
EXPECT_CALL(*mComposer, getMaxVirtualDisplayCount()).WillOnce(Return(virtualDisplayCount));
mFlinger.setupComposer(std::unique_ptr<Hwc2::Composer>(mComposer));
Mock::VerifyAndClear(mComposer);
}
void DisplayTransactionTest::injectFakeBufferQueueFactory() {
// This setup is only expected once per test.
ASSERT_TRUE(mConsumer == nullptr && mProducer == nullptr);
mConsumer = new mock::GraphicBufferConsumer();
mProducer = new mock::GraphicBufferProducer();
mFlinger.setCreateBufferQueueFunction([this](auto outProducer, auto outConsumer, bool) {
*outProducer = mProducer;
*outConsumer = mConsumer;
});
}
void DisplayTransactionTest::injectFakeNativeWindowSurfaceFactory() {
// This setup is only expected once per test.
ASSERT_TRUE(mNativeWindowSurface == nullptr);
mNativeWindowSurface = new surfaceflinger::mock::NativeWindowSurface();
mFlinger.setCreateNativeWindowSurface([this](auto) {
return std::unique_ptr<surfaceflinger::NativeWindowSurface>(mNativeWindowSurface);
});
}
bool DisplayTransactionTest::hasPhysicalHwcDisplay(hwc2_display_t hwcDisplayId) {
return mFlinger.mutableHwcPhysicalDisplayIdMap().count(hwcDisplayId) == 1;
}
bool DisplayTransactionTest::hasTransactionFlagSet(int flag) {
return mFlinger.mutableTransactionFlags() & flag;
}
bool DisplayTransactionTest::hasDisplayDevice(sp<IBinder> displayToken) {
return mFlinger.mutableDisplays().count(displayToken) == 1;
}
sp<DisplayDevice> DisplayTransactionTest::getDisplayDevice(sp<IBinder> displayToken) {
return mFlinger.mutableDisplays()[displayToken];
}
bool DisplayTransactionTest::hasCurrentDisplayState(sp<IBinder> displayToken) {
return mFlinger.mutableCurrentState().displays.indexOfKey(displayToken) >= 0;
}
const DisplayDeviceState& DisplayTransactionTest::getCurrentDisplayState(sp<IBinder> displayToken) {
return mFlinger.mutableCurrentState().displays.valueFor(displayToken);
}
bool DisplayTransactionTest::hasDrawingDisplayState(sp<IBinder> displayToken) {
return mFlinger.mutableDrawingState().displays.indexOfKey(displayToken) >= 0;
}
const DisplayDeviceState& DisplayTransactionTest::getDrawingDisplayState(sp<IBinder> displayToken) {
return mFlinger.mutableDrawingState().displays.valueFor(displayToken);
}
/* ------------------------------------------------------------------------
*
*/
template <typename PhysicalDisplay>
struct PhysicalDisplayId {};
template <DisplayId::Type displayId>
using VirtualDisplayId = std::integral_constant<DisplayId::Type, displayId>;
struct NoDisplayId {};
template <typename>
struct IsPhysicalDisplayId : std::bool_constant<false> {};
template <typename PhysicalDisplay>
struct IsPhysicalDisplayId<PhysicalDisplayId<PhysicalDisplay>> : std::bool_constant<true> {};
template <typename>
struct DisplayIdGetter;
template <typename PhysicalDisplay>
struct DisplayIdGetter<PhysicalDisplayId<PhysicalDisplay>> {
static std::optional<DisplayId> get() {
if (!PhysicalDisplay::HAS_IDENTIFICATION_DATA) {
return getFallbackDisplayId(static_cast<bool>(PhysicalDisplay::PRIMARY)
? HWC_DISPLAY_PRIMARY
: HWC_DISPLAY_EXTERNAL);
}
const auto info =
parseDisplayIdentificationData(PhysicalDisplay::PORT,
PhysicalDisplay::GET_IDENTIFICATION_DATA());
return info ? std::make_optional(info->id) : std::nullopt;
}
};
template <DisplayId::Type displayId>
struct DisplayIdGetter<VirtualDisplayId<displayId>> {
static std::optional<DisplayId> get() { return DisplayId{displayId}; }
};
template <>
struct DisplayIdGetter<NoDisplayId> {
static std::optional<DisplayId> get() { return {}; }
};
// DisplayIdType can be:
// 1) PhysicalDisplayId<...> for generated ID of physical display backed by HWC.
// 2) VirtualDisplayId<...> for hard-coded ID of virtual display backed by HWC.
// 3) NoDisplayId for virtual display without HWC backing.
template <typename DisplayIdType, int width, int height, Critical critical, Async async,
Secure secure, Primary primary, int grallocUsage>
struct DisplayVariant {
using DISPLAY_ID = DisplayIdGetter<DisplayIdType>;
// The display width and height
static constexpr int WIDTH = width;
static constexpr int HEIGHT = height;
static constexpr int GRALLOC_USAGE = grallocUsage;
// Whether the display is virtual or physical
static constexpr Virtual VIRTUAL =
IsPhysicalDisplayId<DisplayIdType>{} ? Virtual::FALSE : Virtual::TRUE;
// When creating native window surfaces for the framebuffer, whether those should be critical
static constexpr Critical CRITICAL = critical;
// When creating native window surfaces for the framebuffer, whether those should be async
static constexpr Async ASYNC = async;
// Whether the display should be treated as secure
static constexpr Secure SECURE = secure;
// Whether the display is primary
static constexpr Primary PRIMARY = primary;
static auto makeFakeExistingDisplayInjector(DisplayTransactionTest* test) {
auto injector =
FakeDisplayDeviceInjector(test->mFlinger, DISPLAY_ID::get(),
static_cast<bool>(VIRTUAL), static_cast<bool>(PRIMARY));
injector.setSecure(static_cast<bool>(SECURE));
injector.setNativeWindow(test->mNativeWindow);
// Creating a DisplayDevice requires getting default dimensions from the
// native window along with some other initial setup.
EXPECT_CALL(*test->mNativeWindow, query(NATIVE_WINDOW_WIDTH, _))
.WillRepeatedly(DoAll(SetArgPointee<1>(WIDTH), Return(0)));
EXPECT_CALL(*test->mNativeWindow, query(NATIVE_WINDOW_HEIGHT, _))
.WillRepeatedly(DoAll(SetArgPointee<1>(HEIGHT), Return(0)));
EXPECT_CALL(*test->mNativeWindow, perform(NATIVE_WINDOW_SET_BUFFERS_FORMAT))
.WillRepeatedly(Return(0));
EXPECT_CALL(*test->mNativeWindow, perform(NATIVE_WINDOW_API_CONNECT))
.WillRepeatedly(Return(0));
EXPECT_CALL(*test->mNativeWindow, perform(NATIVE_WINDOW_SET_USAGE64))
.WillRepeatedly(Return(0));
return injector;
}
// Called by tests to set up any native window creation call expectations.
static void setupNativeWindowSurfaceCreationCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mNativeWindowSurface, getNativeWindow())
.WillOnce(Return(test->mNativeWindow));
EXPECT_CALL(*test->mNativeWindow, query(NATIVE_WINDOW_WIDTH, _))
.WillRepeatedly(DoAll(SetArgPointee<1>(WIDTH), Return(0)));
EXPECT_CALL(*test->mNativeWindow, query(NATIVE_WINDOW_HEIGHT, _))
.WillRepeatedly(DoAll(SetArgPointee<1>(HEIGHT), Return(0)));
EXPECT_CALL(*test->mNativeWindow, perform(NATIVE_WINDOW_SET_BUFFERS_FORMAT))
.WillRepeatedly(Return(0));
EXPECT_CALL(*test->mNativeWindow, perform(NATIVE_WINDOW_API_CONNECT))
.WillRepeatedly(Return(0));
EXPECT_CALL(*test->mNativeWindow, perform(NATIVE_WINDOW_SET_USAGE64))
.WillRepeatedly(Return(0));
}
static void setupFramebufferConsumerBufferQueueCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mConsumer, consumerConnect(_, false)).WillOnce(Return(NO_ERROR));
EXPECT_CALL(*test->mConsumer, setConsumerName(_)).WillRepeatedly(Return(NO_ERROR));
EXPECT_CALL(*test->mConsumer, setConsumerUsageBits(GRALLOC_USAGE))
.WillRepeatedly(Return(NO_ERROR));
EXPECT_CALL(*test->mConsumer, setDefaultBufferSize(WIDTH, HEIGHT))
.WillRepeatedly(Return(NO_ERROR));
EXPECT_CALL(*test->mConsumer, setMaxAcquiredBufferCount(_))
.WillRepeatedly(Return(NO_ERROR));
}
static void setupFramebufferProducerBufferQueueCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mProducer, allocateBuffers(0, 0, 0, 0)).WillRepeatedly(Return());
}
};
template <hwc2_display_t hwcDisplayId, HWC2::DisplayType hwcDisplayType, typename DisplayVariant,
typename PhysicalDisplay = void>
struct HwcDisplayVariant {
// The display id supplied by the HWC
static constexpr hwc2_display_t HWC_DISPLAY_ID = hwcDisplayId;
// The HWC display type
static constexpr HWC2::DisplayType HWC_DISPLAY_TYPE = hwcDisplayType;
// The HWC active configuration id
static constexpr int HWC_ACTIVE_CONFIG_ID = 2001;
static void injectPendingHotplugEvent(DisplayTransactionTest* test,
HWC2::Connection connection) {
test->mFlinger.mutablePendingHotplugEvents().emplace_back(
HotplugEvent{HWC_DISPLAY_ID, connection});
}
// Called by tests to inject a HWC display setup
static void injectHwcDisplayWithNoDefaultCapabilities(DisplayTransactionTest* test) {
const auto displayId = DisplayVariant::DISPLAY_ID::get();
ASSERT_TRUE(displayId);
FakeHwcDisplayInjector(*displayId, HWC_DISPLAY_TYPE,
static_cast<bool>(DisplayVariant::PRIMARY))
.setHwcDisplayId(HWC_DISPLAY_ID)
.setWidth(DisplayVariant::WIDTH)
.setHeight(DisplayVariant::HEIGHT)
.setActiveConfig(HWC_ACTIVE_CONFIG_ID)
.inject(&test->mFlinger, test->mComposer);
}
// Called by tests to inject a HWC display setup
static void injectHwcDisplay(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mComposer, getDisplayCapabilities(HWC_DISPLAY_ID, _))
.WillOnce(DoAll(SetArgPointee<1>(std::vector<Hwc2::DisplayCapability>({})),
Return(Error::NONE)));
injectHwcDisplayWithNoDefaultCapabilities(test);
}
static void setupHwcHotplugCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mComposer, getDisplayType(HWC_DISPLAY_ID, _))
.WillOnce(DoAll(SetArgPointee<1>(static_cast<IComposerClient::DisplayType>(
HWC_DISPLAY_TYPE)),
Return(Error::NONE)));
EXPECT_CALL(*test->mComposer, setClientTargetSlotCount(_)).WillOnce(Return(Error::NONE));
EXPECT_CALL(*test->mComposer, getDisplayConfigs(HWC_DISPLAY_ID, _))
.WillOnce(DoAll(SetArgPointee<1>(std::vector<unsigned>{HWC_ACTIVE_CONFIG_ID}),
Return(Error::NONE)));
EXPECT_CALL(*test->mComposer,
getDisplayAttribute(HWC_DISPLAY_ID, HWC_ACTIVE_CONFIG_ID,
IComposerClient::Attribute::WIDTH, _))
.WillOnce(DoAll(SetArgPointee<3>(DisplayVariant::WIDTH), Return(Error::NONE)));
EXPECT_CALL(*test->mComposer,
getDisplayAttribute(HWC_DISPLAY_ID, HWC_ACTIVE_CONFIG_ID,
IComposerClient::Attribute::HEIGHT, _))
.WillOnce(DoAll(SetArgPointee<3>(DisplayVariant::HEIGHT), Return(Error::NONE)));
EXPECT_CALL(*test->mComposer,
getDisplayAttribute(HWC_DISPLAY_ID, HWC_ACTIVE_CONFIG_ID,
IComposerClient::Attribute::VSYNC_PERIOD, _))
.WillOnce(DoAll(SetArgPointee<3>(DEFAULT_REFRESH_RATE), Return(Error::NONE)));
EXPECT_CALL(*test->mComposer,
getDisplayAttribute(HWC_DISPLAY_ID, HWC_ACTIVE_CONFIG_ID,
IComposerClient::Attribute::DPI_X, _))
.WillOnce(DoAll(SetArgPointee<3>(DEFAULT_DPI), Return(Error::NONE)));
EXPECT_CALL(*test->mComposer,
getDisplayAttribute(HWC_DISPLAY_ID, HWC_ACTIVE_CONFIG_ID,
IComposerClient::Attribute::DPI_Y, _))
.WillOnce(DoAll(SetArgPointee<3>(DEFAULT_DPI), Return(Error::NONE)));
EXPECT_CALL(*test->mComposer, getDisplayCapabilities(HWC_DISPLAY_ID, _))
.WillOnce(DoAll(SetArgPointee<1>(std::vector<Hwc2::DisplayCapability>({})),
Return(Error::NONE)));
if (PhysicalDisplay::HAS_IDENTIFICATION_DATA) {
EXPECT_CALL(*test->mComposer, getDisplayIdentificationData(HWC_DISPLAY_ID, _, _))
.WillOnce(DoAll(SetArgPointee<1>(PhysicalDisplay::PORT),
SetArgPointee<2>(PhysicalDisplay::GET_IDENTIFICATION_DATA()),
Return(Error::NONE)));
} else {
EXPECT_CALL(*test->mComposer, getDisplayIdentificationData(HWC_DISPLAY_ID, _, _))
.WillOnce(Return(Error::UNSUPPORTED));
}
}
// Called by tests to set up HWC call expectations
static void setupHwcGetActiveConfigCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mComposer, getActiveConfig(HWC_DISPLAY_ID, _))
.WillRepeatedly(DoAll(SetArgPointee<1>(HWC_ACTIVE_CONFIG_ID), Return(Error::NONE)));
}
};
// Physical displays are expected to be synchronous, secure, and have a HWC display for output.
constexpr uint32_t GRALLOC_USAGE_PHYSICAL_DISPLAY =
GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_COMPOSER | GRALLOC_USAGE_HW_FB;
template <hwc2_display_t hwcDisplayId, typename PhysicalDisplay, int width, int height,
Critical critical>
struct PhysicalDisplayVariant
: DisplayVariant<PhysicalDisplayId<PhysicalDisplay>, width, height, critical, Async::FALSE,
Secure::TRUE, PhysicalDisplay::PRIMARY, GRALLOC_USAGE_PHYSICAL_DISPLAY>,
HwcDisplayVariant<hwcDisplayId, HWC2::DisplayType::Physical,
DisplayVariant<PhysicalDisplayId<PhysicalDisplay>, width, height,
critical, Async::FALSE, Secure::TRUE,
PhysicalDisplay::PRIMARY, GRALLOC_USAGE_PHYSICAL_DISPLAY>,
PhysicalDisplay> {};
template <bool hasIdentificationData>
struct PrimaryDisplay {
static constexpr Primary PRIMARY = Primary::TRUE;
static constexpr uint8_t PORT = 255;
static constexpr bool HAS_IDENTIFICATION_DATA = hasIdentificationData;
static constexpr auto GET_IDENTIFICATION_DATA = getInternalEdid;
};
template <bool hasIdentificationData>
struct ExternalDisplay {
static constexpr Primary PRIMARY = Primary::FALSE;
static constexpr uint8_t PORT = 254;
static constexpr bool HAS_IDENTIFICATION_DATA = hasIdentificationData;
static constexpr auto GET_IDENTIFICATION_DATA = getExternalEdid;
};
struct TertiaryDisplay {
static constexpr Primary PRIMARY = Primary::FALSE;
static constexpr uint8_t PORT = 253;
static constexpr auto GET_IDENTIFICATION_DATA = getExternalEdid;
};
// A primary display is a physical display that is critical
using PrimaryDisplayVariant =
PhysicalDisplayVariant<1001, PrimaryDisplay<false>, 3840, 2160, Critical::TRUE>;
// An external display is physical display that is not critical.
using ExternalDisplayVariant =
PhysicalDisplayVariant<1002, ExternalDisplay<false>, 1920, 1280, Critical::FALSE>;
using TertiaryDisplayVariant =
PhysicalDisplayVariant<1003, TertiaryDisplay, 1600, 1200, Critical::FALSE>;
// A virtual display not supported by the HWC.
constexpr uint32_t GRALLOC_USAGE_NONHWC_VIRTUAL_DISPLAY = 0;
template <int width, int height, Secure secure>
struct NonHwcVirtualDisplayVariant
: DisplayVariant<NoDisplayId, width, height, Critical::FALSE, Async::TRUE, secure,
Primary::FALSE, GRALLOC_USAGE_NONHWC_VIRTUAL_DISPLAY> {
using Base = DisplayVariant<NoDisplayId, width, height, Critical::FALSE, Async::TRUE, secure,
Primary::FALSE, GRALLOC_USAGE_NONHWC_VIRTUAL_DISPLAY>;
static void injectHwcDisplay(DisplayTransactionTest*) {}
static void setupHwcGetActiveConfigCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mComposer, getActiveConfig(_, _)).Times(0);
}
static void setupNativeWindowSurfaceCreationCallExpectations(DisplayTransactionTest* test) {
Base::setupNativeWindowSurfaceCreationCallExpectations(test);
EXPECT_CALL(*test->mNativeWindow, setSwapInterval(0)).Times(1);
}
};
// A virtual display supported by the HWC.
constexpr uint32_t GRALLOC_USAGE_HWC_VIRTUAL_DISPLAY = GRALLOC_USAGE_HW_COMPOSER;
template <int width, int height, Secure secure>
struct HwcVirtualDisplayVariant
: DisplayVariant<VirtualDisplayId<42>, width, height, Critical::FALSE, Async::TRUE, secure,
Primary::FALSE, GRALLOC_USAGE_HWC_VIRTUAL_DISPLAY>,
HwcDisplayVariant<
1010, HWC2::DisplayType::Virtual,
DisplayVariant<VirtualDisplayId<42>, width, height, Critical::FALSE, Async::TRUE,
secure, Primary::FALSE, GRALLOC_USAGE_HWC_VIRTUAL_DISPLAY>> {
using Base = DisplayVariant<VirtualDisplayId<42>, width, height, Critical::FALSE, Async::TRUE,
secure, Primary::FALSE, GRALLOC_USAGE_HW_COMPOSER>;
using Self = HwcVirtualDisplayVariant<width, height, secure>;
static void setupNativeWindowSurfaceCreationCallExpectations(DisplayTransactionTest* test) {
Base::setupNativeWindowSurfaceCreationCallExpectations(test);
EXPECT_CALL(*test->mNativeWindow, setSwapInterval(0)).Times(1);
}
static void setupHwcVirtualDisplayCreationCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mComposer, createVirtualDisplay(Base::WIDTH, Base::HEIGHT, _, _))
.WillOnce(DoAll(SetArgPointee<3>(Self::HWC_DISPLAY_ID), Return(Error::NONE)));
EXPECT_CALL(*test->mComposer, setClientTargetSlotCount(_)).WillOnce(Return(Error::NONE));
}
};
// For this variant, SurfaceFlinger should not configure itself with wide
// display support, so the display should not be configured for wide-color
// support.
struct WideColorSupportNotConfiguredVariant {
static constexpr bool WIDE_COLOR_SUPPORTED = false;
static void injectConfigChange(DisplayTransactionTest* test) {
test->mFlinger.mutableHasWideColorDisplay() = false;
test->mFlinger.mutableUseColorManagement() = false;
test->mFlinger.mutableDisplayColorSetting() = DisplayColorSetting::UNMANAGED;
}
static void setupComposerCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mComposer, getColorModes(_, _)).Times(0);
EXPECT_CALL(*test->mComposer, getRenderIntents(_, _, _)).Times(0);
EXPECT_CALL(*test->mComposer, setColorMode(_, _, _)).Times(0);
}
};
// For this variant, SurfaceFlinger should configure itself with wide display
// support, and the display should respond with an non-empty list of supported
// color modes. Wide-color support should be configured.
template <typename Display>
struct WideColorP3ColorimetricSupportedVariant {
static constexpr bool WIDE_COLOR_SUPPORTED = true;
static void injectConfigChange(DisplayTransactionTest* test) {
test->mFlinger.mutableUseColorManagement() = true;
test->mFlinger.mutableHasWideColorDisplay() = true;
test->mFlinger.mutableDisplayColorSetting() = DisplayColorSetting::UNMANAGED;
}
static void setupComposerCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mNativeWindow, perform(NATIVE_WINDOW_SET_BUFFERS_DATASPACE)).Times(1);
EXPECT_CALL(*test->mComposer, getColorModes(Display::HWC_DISPLAY_ID, _))
.WillOnce(DoAll(SetArgPointee<1>(std::vector<ColorMode>({ColorMode::DISPLAY_P3})),
Return(Error::NONE)));
EXPECT_CALL(*test->mComposer,
getRenderIntents(Display::HWC_DISPLAY_ID, ColorMode::DISPLAY_P3, _))
.WillOnce(DoAll(SetArgPointee<2>(
std::vector<RenderIntent>({RenderIntent::COLORIMETRIC})),
Return(Error::NONE)));
EXPECT_CALL(*test->mComposer,
setColorMode(Display::HWC_DISPLAY_ID, ColorMode::SRGB,
RenderIntent::COLORIMETRIC))
.WillOnce(Return(Error::NONE));
}
};
// For this variant, SurfaceFlinger should configure itself with wide display
// support, but the display should respond with an empty list of supported color
// modes. Wide-color support for the display should not be configured.
template <typename Display>
struct WideColorNotSupportedVariant {
static constexpr bool WIDE_COLOR_SUPPORTED = false;
static void injectConfigChange(DisplayTransactionTest* test) {
test->mFlinger.mutableUseColorManagement() = true;
test->mFlinger.mutableHasWideColorDisplay() = true;
}
static void setupComposerCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mComposer, getColorModes(Display::HWC_DISPLAY_ID, _))
.WillOnce(DoAll(SetArgPointee<1>(std::vector<ColorMode>()), Return(Error::NONE)));
EXPECT_CALL(*test->mComposer, setColorMode(_, _, _)).Times(0);
}
};
// For this variant, the display is not a HWC display, so no HDR support should
// be configured.
struct NonHwcDisplayHdrSupportVariant {
static constexpr bool HDR10_PLUS_SUPPORTED = false;
static constexpr bool HDR10_SUPPORTED = false;
static constexpr bool HDR_HLG_SUPPORTED = false;
static constexpr bool HDR_DOLBY_VISION_SUPPORTED = false;
static void setupComposerCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mComposer, getHdrCapabilities(_, _, _, _, _)).Times(0);
}
};
template <typename Display>
struct Hdr10PlusSupportedVariant {
static constexpr bool HDR10_PLUS_SUPPORTED = true;
static constexpr bool HDR10_SUPPORTED = true;
static constexpr bool HDR_HLG_SUPPORTED = false;
static constexpr bool HDR_DOLBY_VISION_SUPPORTED = false;
static void setupComposerCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mComposer, getHdrCapabilities(_, _, _, _, _))
.WillOnce(DoAll(SetArgPointee<1>(std::vector<Hdr>({
Hdr::HDR10_PLUS,
Hdr::HDR10,
})),
Return(Error::NONE)));
}
};
// For this variant, the composer should respond with a non-empty list of HDR
// modes containing HDR10, so HDR10 support should be configured.
template <typename Display>
struct Hdr10SupportedVariant {
static constexpr bool HDR10_PLUS_SUPPORTED = false;
static constexpr bool HDR10_SUPPORTED = true;
static constexpr bool HDR_HLG_SUPPORTED = false;
static constexpr bool HDR_DOLBY_VISION_SUPPORTED = false;
static void setupComposerCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mComposer, getHdrCapabilities(Display::HWC_DISPLAY_ID, _, _, _, _))
.WillOnce(DoAll(SetArgPointee<1>(std::vector<Hdr>({Hdr::HDR10})),
Return(Error::NONE)));
}
};
// For this variant, the composer should respond with a non-empty list of HDR
// modes containing HLG, so HLG support should be configured.
template <typename Display>
struct HdrHlgSupportedVariant {
static constexpr bool HDR10_PLUS_SUPPORTED = false;
static constexpr bool HDR10_SUPPORTED = false;
static constexpr bool HDR_HLG_SUPPORTED = true;
static constexpr bool HDR_DOLBY_VISION_SUPPORTED = false;
static void setupComposerCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mComposer, getHdrCapabilities(Display::HWC_DISPLAY_ID, _, _, _, _))
.WillOnce(
DoAll(SetArgPointee<1>(std::vector<Hdr>({Hdr::HLG})), Return(Error::NONE)));
}
};
// For this variant, the composer should respond with a non-empty list of HDR
// modes containing DOLBY_VISION, so DOLBY_VISION support should be configured.
template <typename Display>
struct HdrDolbyVisionSupportedVariant {
static constexpr bool HDR10_PLUS_SUPPORTED = false;
static constexpr bool HDR10_SUPPORTED = false;
static constexpr bool HDR_HLG_SUPPORTED = false;
static constexpr bool HDR_DOLBY_VISION_SUPPORTED = true;
static void setupComposerCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mComposer, getHdrCapabilities(Display::HWC_DISPLAY_ID, _, _, _, _))
.WillOnce(DoAll(SetArgPointee<1>(std::vector<Hdr>({Hdr::DOLBY_VISION})),
Return(Error::NONE)));
}
};
// For this variant, the composer should respond with am empty list of HDR
// modes, so no HDR support should be configured.
template <typename Display>
struct HdrNotSupportedVariant {
static constexpr bool HDR10_PLUS_SUPPORTED = false;
static constexpr bool HDR10_SUPPORTED = false;
static constexpr bool HDR_HLG_SUPPORTED = false;
static constexpr bool HDR_DOLBY_VISION_SUPPORTED = false;
static void setupComposerCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mComposer, getHdrCapabilities(Display::HWC_DISPLAY_ID, _, _, _, _))
.WillOnce(DoAll(SetArgPointee<1>(std::vector<Hdr>()), Return(Error::NONE)));
}
};
struct NonHwcPerFrameMetadataSupportVariant {
static constexpr int PER_FRAME_METADATA_KEYS = 0;
static void setupComposerCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mComposer, getPerFrameMetadataKeys(_)).Times(0);
}
};
template <typename Display>
struct NoPerFrameMetadataSupportVariant {
static constexpr int PER_FRAME_METADATA_KEYS = 0;
static void setupComposerCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mComposer, getPerFrameMetadataKeys(Display::HWC_DISPLAY_ID))
.WillOnce(Return(std::vector<PerFrameMetadataKey>()));
}
};
template <typename Display>
struct Smpte2086PerFrameMetadataSupportVariant {
static constexpr int PER_FRAME_METADATA_KEYS = HdrMetadata::Type::SMPTE2086;
static void setupComposerCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mComposer, getPerFrameMetadataKeys(Display::HWC_DISPLAY_ID))
.WillOnce(Return(std::vector<PerFrameMetadataKey>({
PerFrameMetadataKey::DISPLAY_RED_PRIMARY_X,
PerFrameMetadataKey::DISPLAY_RED_PRIMARY_Y,
PerFrameMetadataKey::DISPLAY_GREEN_PRIMARY_X,
PerFrameMetadataKey::DISPLAY_GREEN_PRIMARY_Y,
PerFrameMetadataKey::DISPLAY_BLUE_PRIMARY_X,
PerFrameMetadataKey::DISPLAY_BLUE_PRIMARY_Y,
PerFrameMetadataKey::WHITE_POINT_X,
PerFrameMetadataKey::WHITE_POINT_Y,
PerFrameMetadataKey::MAX_LUMINANCE,
PerFrameMetadataKey::MIN_LUMINANCE,
})));
}
};
template <typename Display>
struct Cta861_3_PerFrameMetadataSupportVariant {
static constexpr int PER_FRAME_METADATA_KEYS = HdrMetadata::Type::CTA861_3;
static void setupComposerCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mComposer, getPerFrameMetadataKeys(Display::HWC_DISPLAY_ID))
.WillOnce(Return(std::vector<PerFrameMetadataKey>({
PerFrameMetadataKey::MAX_CONTENT_LIGHT_LEVEL,
PerFrameMetadataKey::MAX_FRAME_AVERAGE_LIGHT_LEVEL,
})));
}
};
template <typename Display>
struct Hdr10_Plus_PerFrameMetadataSupportVariant {
static constexpr int PER_FRAME_METADATA_KEYS = HdrMetadata::Type::HDR10PLUS;
static void setupComposerCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mComposer, getPerFrameMetadataKeys(Display::HWC_DISPLAY_ID))
.WillOnce(Return(std::vector<PerFrameMetadataKey>({
PerFrameMetadataKey::HDR10_PLUS_SEI,
})));
}
};
/* ------------------------------------------------------------------------
* Typical display configurations to test
*/
template <typename DisplayPolicy, typename WideColorSupportPolicy, typename HdrSupportPolicy,
typename PerFrameMetadataSupportPolicy>
struct Case {
using Display = DisplayPolicy;
using WideColorSupport = WideColorSupportPolicy;
using HdrSupport = HdrSupportPolicy;
using PerFrameMetadataSupport = PerFrameMetadataSupportPolicy;
};
using SimplePrimaryDisplayCase =
Case<PrimaryDisplayVariant, WideColorNotSupportedVariant<PrimaryDisplayVariant>,
HdrNotSupportedVariant<PrimaryDisplayVariant>,
NoPerFrameMetadataSupportVariant<PrimaryDisplayVariant>>;
using SimpleExternalDisplayCase =
Case<ExternalDisplayVariant, WideColorNotSupportedVariant<ExternalDisplayVariant>,
HdrNotSupportedVariant<ExternalDisplayVariant>,
NoPerFrameMetadataSupportVariant<ExternalDisplayVariant>>;
using SimpleTertiaryDisplayCase =
Case<TertiaryDisplayVariant, WideColorNotSupportedVariant<TertiaryDisplayVariant>,
HdrNotSupportedVariant<TertiaryDisplayVariant>,
NoPerFrameMetadataSupportVariant<TertiaryDisplayVariant>>;
using NonHwcVirtualDisplayCase =
Case<NonHwcVirtualDisplayVariant<1024, 768, Secure::FALSE>,
WideColorSupportNotConfiguredVariant, NonHwcDisplayHdrSupportVariant,
NonHwcPerFrameMetadataSupportVariant>;
using SimpleHwcVirtualDisplayVariant = HwcVirtualDisplayVariant<1024, 768, Secure::TRUE>;
using HwcVirtualDisplayCase =
Case<SimpleHwcVirtualDisplayVariant, WideColorSupportNotConfiguredVariant,
HdrNotSupportedVariant<SimpleHwcVirtualDisplayVariant>,
NoPerFrameMetadataSupportVariant<SimpleHwcVirtualDisplayVariant>>;
using WideColorP3ColorimetricDisplayCase =
Case<PrimaryDisplayVariant, WideColorP3ColorimetricSupportedVariant<PrimaryDisplayVariant>,
HdrNotSupportedVariant<PrimaryDisplayVariant>,
NoPerFrameMetadataSupportVariant<PrimaryDisplayVariant>>;
using Hdr10PlusDisplayCase =
Case<PrimaryDisplayVariant, WideColorNotSupportedVariant<PrimaryDisplayVariant>,
Hdr10SupportedVariant<PrimaryDisplayVariant>,
Hdr10_Plus_PerFrameMetadataSupportVariant<PrimaryDisplayVariant>>;
using Hdr10DisplayCase =
Case<PrimaryDisplayVariant, WideColorNotSupportedVariant<PrimaryDisplayVariant>,
Hdr10SupportedVariant<PrimaryDisplayVariant>,
NoPerFrameMetadataSupportVariant<PrimaryDisplayVariant>>;
using HdrHlgDisplayCase =
Case<PrimaryDisplayVariant, WideColorNotSupportedVariant<PrimaryDisplayVariant>,
HdrHlgSupportedVariant<PrimaryDisplayVariant>,
NoPerFrameMetadataSupportVariant<PrimaryDisplayVariant>>;
using HdrDolbyVisionDisplayCase =
Case<PrimaryDisplayVariant, WideColorNotSupportedVariant<PrimaryDisplayVariant>,
HdrDolbyVisionSupportedVariant<PrimaryDisplayVariant>,
NoPerFrameMetadataSupportVariant<PrimaryDisplayVariant>>;
using HdrSmpte2086DisplayCase =
Case<PrimaryDisplayVariant, WideColorNotSupportedVariant<PrimaryDisplayVariant>,
HdrNotSupportedVariant<PrimaryDisplayVariant>,
Smpte2086PerFrameMetadataSupportVariant<PrimaryDisplayVariant>>;
using HdrCta861_3_DisplayCase =
Case<PrimaryDisplayVariant, WideColorNotSupportedVariant<PrimaryDisplayVariant>,
HdrNotSupportedVariant<PrimaryDisplayVariant>,
Cta861_3_PerFrameMetadataSupportVariant<PrimaryDisplayVariant>>;
/* ------------------------------------------------------------------------
*
* SurfaceFlinger::onHotplugReceived
*/
TEST_F(DisplayTransactionTest, hotplugEnqueuesEventsForDisplayTransaction) {
constexpr int currentSequenceId = 123;
constexpr hwc2_display_t hwcDisplayId1 = 456;
constexpr hwc2_display_t hwcDisplayId2 = 654;
// --------------------------------------------------------------------
// Preconditions
// Set the current sequence id for accepted events
mFlinger.mutableComposerSequenceId() = currentSequenceId;
// Set the main thread id so that the current thread does not appear to be
// the main thread.
mFlinger.mutableMainThreadId() = std::thread::id();
// --------------------------------------------------------------------
// Call Expectations
// We expect invalidate() to be invoked once to trigger display transaction
// processing.
EXPECT_CALL(*mMessageQueue, invalidate()).Times(1);
// --------------------------------------------------------------------
// Invocation
// Simulate two hotplug events (a connect and a disconnect)
mFlinger.onHotplugReceived(currentSequenceId, hwcDisplayId1, HWC2::Connection::Connected);
mFlinger.onHotplugReceived(currentSequenceId, hwcDisplayId2, HWC2::Connection::Disconnected);
// --------------------------------------------------------------------
// Postconditions
// The display transaction needed flag should be set.
EXPECT_TRUE(hasTransactionFlagSet(eDisplayTransactionNeeded));
// All events should be in the pending event queue.
const auto& pendingEvents = mFlinger.mutablePendingHotplugEvents();
ASSERT_EQ(2u, pendingEvents.size());
EXPECT_EQ(hwcDisplayId1, pendingEvents[0].hwcDisplayId);
EXPECT_EQ(HWC2::Connection::Connected, pendingEvents[0].connection);
EXPECT_EQ(hwcDisplayId2, pendingEvents[1].hwcDisplayId);
EXPECT_EQ(HWC2::Connection::Disconnected, pendingEvents[1].connection);
}
TEST_F(DisplayTransactionTest, hotplugDiscardsUnexpectedEvents) {
constexpr int currentSequenceId = 123;
constexpr int otherSequenceId = 321;
constexpr hwc2_display_t displayId = 456;
// --------------------------------------------------------------------
// Preconditions
// Set the current sequence id for accepted events
mFlinger.mutableComposerSequenceId() = currentSequenceId;
// Set the main thread id so that the current thread does not appear to be
// the main thread.
mFlinger.mutableMainThreadId() = std::thread::id();
// --------------------------------------------------------------------
// Call Expectations
// We do not expect any calls to invalidate().
EXPECT_CALL(*mMessageQueue, invalidate()).Times(0);
// --------------------------------------------------------------------
// Invocation
// Call with an unexpected sequence id
mFlinger.onHotplugReceived(otherSequenceId, displayId, HWC2::Connection::Invalid);
// --------------------------------------------------------------------
// Postconditions
// The display transaction needed flag should not be set
EXPECT_FALSE(hasTransactionFlagSet(eDisplayTransactionNeeded));
// There should be no pending events
EXPECT_TRUE(mFlinger.mutablePendingHotplugEvents().empty());
}
TEST_F(DisplayTransactionTest, hotplugProcessesEnqueuedEventsIfCalledOnMainThread) {
constexpr int currentSequenceId = 123;
constexpr hwc2_display_t displayId1 = 456;
// --------------------------------------------------------------------
// Note:
// --------------------------------------------------------------------
// This test case is a bit tricky. We want to verify that
// onHotplugReceived() calls processDisplayHotplugEventsLocked(), but we
// don't really want to provide coverage for everything the later function
// does as there are specific tests for it.
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// Preconditions
// Set the current sequence id for accepted events
mFlinger.mutableComposerSequenceId() = currentSequenceId;
// Set the main thread id so that the current thread does appear to be the
// main thread.
mFlinger.mutableMainThreadId() = std::this_thread::get_id();
// --------------------------------------------------------------------
// Call Expectations
// We expect invalidate() to be invoked once to trigger display transaction
// processing.
EXPECT_CALL(*mMessageQueue, invalidate()).Times(1);
// --------------------------------------------------------------------
// Invocation
// Simulate a disconnect on a display id that is not connected. This should
// be enqueued by onHotplugReceived(), and dequeued by
// processDisplayHotplugEventsLocked(), but then ignored as invalid.
mFlinger.onHotplugReceived(currentSequenceId, displayId1, HWC2::Connection::Disconnected);
// --------------------------------------------------------------------
// Postconditions
// The display transaction needed flag should be set.
EXPECT_TRUE(hasTransactionFlagSet(eDisplayTransactionNeeded));
// There should be no event queued on return, as it should have been
// processed.
EXPECT_TRUE(mFlinger.mutablePendingHotplugEvents().empty());
}
/* ------------------------------------------------------------------------
* SurfaceFlinger::createDisplay
*/
TEST_F(DisplayTransactionTest, createDisplaySetsCurrentStateForNonsecureDisplay) {
const String8 name("virtual.test");
// --------------------------------------------------------------------
// Call Expectations
// The call should notify the interceptor that a display was created.
EXPECT_CALL(*mSurfaceInterceptor, saveDisplayCreation(_)).Times(1);
// --------------------------------------------------------------------
// Invocation
sp<IBinder> displayToken = mFlinger.createDisplay(name, false);
// --------------------------------------------------------------------
// Postconditions
// The display should have been added to the current state
ASSERT_TRUE(hasCurrentDisplayState(displayToken));
const auto& display = getCurrentDisplayState(displayToken);
EXPECT_TRUE(display.isVirtual());
EXPECT_FALSE(display.isSecure);
EXPECT_EQ(name.string(), display.displayName);
// --------------------------------------------------------------------
// Cleanup conditions
// Destroying the display invalidates the display state.
EXPECT_CALL(*mMessageQueue, invalidate()).Times(1);
}
TEST_F(DisplayTransactionTest, createDisplaySetsCurrentStateForSecureDisplay) {
const String8 name("virtual.test");
// --------------------------------------------------------------------
// Call Expectations
// The call should notify the interceptor that a display was created.
EXPECT_CALL(*mSurfaceInterceptor, saveDisplayCreation(_)).Times(1);
// --------------------------------------------------------------------
// Invocation
sp<IBinder> displayToken = mFlinger.createDisplay(name, true);
// --------------------------------------------------------------------
// Postconditions
// The display should have been added to the current state
ASSERT_TRUE(hasCurrentDisplayState(displayToken));
const auto& display = getCurrentDisplayState(displayToken);
EXPECT_TRUE(display.isVirtual());
EXPECT_TRUE(display.isSecure);
EXPECT_EQ(name.string(), display.displayName);
// --------------------------------------------------------------------
// Cleanup conditions
// Destroying the display invalidates the display state.
EXPECT_CALL(*mMessageQueue, invalidate()).Times(1);
}
/* ------------------------------------------------------------------------
* SurfaceFlinger::destroyDisplay
*/
TEST_F(DisplayTransactionTest, destroyDisplayClearsCurrentStateForDisplay) {
using Case = NonHwcVirtualDisplayCase;
// --------------------------------------------------------------------
// Preconditions
// A virtual display exists
auto existing = Case::Display::makeFakeExistingDisplayInjector(this);
existing.inject();
// --------------------------------------------------------------------
// Call Expectations
// The call should notify the interceptor that a display was created.
EXPECT_CALL(*mSurfaceInterceptor, saveDisplayDeletion(_)).Times(1);
// Destroying the display invalidates the display state.
EXPECT_CALL(*mMessageQueue, invalidate()).Times(1);
// --------------------------------------------------------------------
// Invocation
mFlinger.destroyDisplay(existing.token());
// --------------------------------------------------------------------
// Postconditions
// The display should have been removed from the current state
EXPECT_FALSE(hasCurrentDisplayState(existing.token()));
// Ths display should still exist in the drawing state
EXPECT_TRUE(hasDrawingDisplayState(existing.token()));
// The display transaction needed flasg should be set
EXPECT_TRUE(hasTransactionFlagSet(eDisplayTransactionNeeded));
}
TEST_F(DisplayTransactionTest, destroyDisplayHandlesUnknownDisplay) {
// --------------------------------------------------------------------
// Preconditions
sp<BBinder> displayToken = new BBinder();
// --------------------------------------------------------------------
// Invocation
mFlinger.destroyDisplay(displayToken);
}
/* ------------------------------------------------------------------------
* SurfaceFlinger::resetDisplayState
*/
TEST_F(DisplayTransactionTest, resetDisplayStateClearsState) {
using Case = NonHwcVirtualDisplayCase;
// --------------------------------------------------------------------
// Preconditions
// vsync is enabled and available
mFlinger.mutablePrimaryHWVsyncEnabled() = true;
mFlinger.mutableHWVsyncAvailable() = true;
// A display exists
auto existing = Case::Display::makeFakeExistingDisplayInjector(this);
existing.inject();
// --------------------------------------------------------------------
// Call Expectations
// The call disable vsyncs
EXPECT_CALL(*mEventControlThread, setVsyncEnabled(false)).Times(1);
// The call ends any display resyncs
EXPECT_CALL(*mPrimaryDispSync, endResync()).Times(1);
// --------------------------------------------------------------------
// Invocation
mFlinger.resetDisplayState();
// --------------------------------------------------------------------
// Postconditions
// vsyncs should be off and not available.
EXPECT_FALSE(mFlinger.mutablePrimaryHWVsyncEnabled());
EXPECT_FALSE(mFlinger.mutableHWVsyncAvailable());
// The display should have been removed from the display map.
EXPECT_FALSE(hasDisplayDevice(existing.token()));
// The display should still exist in the current state
EXPECT_TRUE(hasCurrentDisplayState(existing.token()));
// The display should have been removed from the drawing state
EXPECT_FALSE(hasDrawingDisplayState(existing.token()));
}
/* ------------------------------------------------------------------------
* DisplayDevice::GetBestColorMode
*/
class GetBestColorModeTest : public DisplayTransactionTest {
public:
static constexpr DisplayId DEFAULT_DISPLAY_ID = DisplayId{777};
GetBestColorModeTest()
: DisplayTransactionTest(),
mInjector(FakeDisplayDeviceInjector(mFlinger, DEFAULT_DISPLAY_ID, false /* isVirtual */,
true /* isPrimary */)) {}
void setHasWideColorGamut(bool hasWideColorGamut) { mHasWideColorGamut = hasWideColorGamut; }
void addHwcColorModesMapping(ui::ColorMode colorMode,
std::vector<ui::RenderIntent> renderIntents) {
mHwcColorModes[colorMode] = renderIntents;
}
void setInputDataspace(ui::Dataspace dataspace) { mInputDataspace = dataspace; }
void setInputRenderIntent(ui::RenderIntent renderIntent) { mInputRenderIntent = renderIntent; }
void getBestColorMode() {
mInjector.setHwcColorModes(mHwcColorModes);
mInjector.setHasWideColorGamut(mHasWideColorGamut);
mInjector.setNativeWindow(mNativeWindow);
// Creating a DisplayDevice requires getting default dimensions from the
// native window.
EXPECT_CALL(*mNativeWindow, query(NATIVE_WINDOW_WIDTH, _))
.WillRepeatedly(DoAll(SetArgPointee<1>(1080 /* arbitrary */), Return(0)));
EXPECT_CALL(*mNativeWindow, query(NATIVE_WINDOW_HEIGHT, _))
.WillRepeatedly(DoAll(SetArgPointee<1>(1920 /* arbitrary */), Return(0)));
EXPECT_CALL(*mNativeWindow, perform(NATIVE_WINDOW_SET_BUFFERS_FORMAT)).Times(1);
EXPECT_CALL(*mNativeWindow, perform(NATIVE_WINDOW_API_CONNECT)).Times(1);
EXPECT_CALL(*mNativeWindow, perform(NATIVE_WINDOW_SET_USAGE64)).Times(1);
auto displayDevice = mInjector.inject();
displayDevice->getCompositionDisplay()
->getDisplayColorProfile()
->getBestColorMode(mInputDataspace, mInputRenderIntent, &mOutDataspace,
&mOutColorMode, &mOutRenderIntent);
}
ui::Dataspace mOutDataspace;
ui::ColorMode mOutColorMode;
ui::RenderIntent mOutRenderIntent;
private:
ui::Dataspace mInputDataspace;
ui::RenderIntent mInputRenderIntent;
bool mHasWideColorGamut = false;
std::unordered_map<ui::ColorMode, std::vector<ui::RenderIntent>> mHwcColorModes;
FakeDisplayDeviceInjector mInjector;
};
TEST_F(GetBestColorModeTest, DataspaceDisplayP3_ColorModeSRGB) {
addHwcColorModesMapping(ui::ColorMode::SRGB,
std::vector<ui::RenderIntent>(1, RenderIntent::COLORIMETRIC));
setInputDataspace(ui::Dataspace::DISPLAY_P3);
setInputRenderIntent(ui::RenderIntent::COLORIMETRIC);
setHasWideColorGamut(true);
getBestColorMode();
ASSERT_EQ(ui::Dataspace::V0_SRGB, mOutDataspace);
ASSERT_EQ(ui::ColorMode::SRGB, mOutColorMode);
ASSERT_EQ(ui::RenderIntent::COLORIMETRIC, mOutRenderIntent);
}
TEST_F(GetBestColorModeTest, DataspaceDisplayP3_ColorModeDisplayP3) {
addHwcColorModesMapping(ui::ColorMode::DISPLAY_P3,
std::vector<ui::RenderIntent>(1, RenderIntent::COLORIMETRIC));
addHwcColorModesMapping(ui::ColorMode::SRGB,
std::vector<ui::RenderIntent>(1, RenderIntent::COLORIMETRIC));
addHwcColorModesMapping(ui::ColorMode::DISPLAY_BT2020,
std::vector<ui::RenderIntent>(1, RenderIntent::COLORIMETRIC));
setInputDataspace(ui::Dataspace::DISPLAY_P3);
setInputRenderIntent(ui::RenderIntent::COLORIMETRIC);
setHasWideColorGamut(true);
getBestColorMode();
ASSERT_EQ(ui::Dataspace::DISPLAY_P3, mOutDataspace);
ASSERT_EQ(ui::ColorMode::DISPLAY_P3, mOutColorMode);
ASSERT_EQ(ui::RenderIntent::COLORIMETRIC, mOutRenderIntent);
}
TEST_F(GetBestColorModeTest, DataspaceDisplayP3_ColorModeDISPLAY_BT2020) {
addHwcColorModesMapping(ui::ColorMode::DISPLAY_BT2020,
std::vector<ui::RenderIntent>(1, RenderIntent::COLORIMETRIC));
setInputDataspace(ui::Dataspace::DISPLAY_P3);
setInputRenderIntent(ui::RenderIntent::COLORIMETRIC);
setHasWideColorGamut(true);
getBestColorMode();
ASSERT_EQ(ui::Dataspace::DISPLAY_BT2020, mOutDataspace);
ASSERT_EQ(ui::ColorMode::DISPLAY_BT2020, mOutColorMode);
ASSERT_EQ(ui::RenderIntent::COLORIMETRIC, mOutRenderIntent);
}
/* ------------------------------------------------------------------------
* SurfaceFlinger::getDisplayNativePrimaries
*/
class GetDisplayNativePrimaries : public DisplayTransactionTest {
public:
GetDisplayNativePrimaries();
void populateDummyDisplayNativePrimaries(ui::DisplayPrimaries& primaries);
void checkDummyDisplayNativePrimaries(const ui::DisplayPrimaries& primaries);
private:
static constexpr float mStartingTestValue = 1.0f;
};
GetDisplayNativePrimaries::GetDisplayNativePrimaries() {
SimplePrimaryDisplayCase::Display::injectHwcDisplay(this);
injectFakeNativeWindowSurfaceFactory();
}
void GetDisplayNativePrimaries::populateDummyDisplayNativePrimaries(
ui::DisplayPrimaries& primaries) {
float startingVal = mStartingTestValue;
primaries.red.X = startingVal++;
primaries.red.Y = startingVal++;
primaries.red.Z = startingVal++;
primaries.green.X = startingVal++;
primaries.green.Y = startingVal++;
primaries.green.Z = startingVal++;
primaries.blue.X = startingVal++;
primaries.blue.Y = startingVal++;
primaries.blue.Z = startingVal++;
primaries.white.X = startingVal++;
primaries.white.Y = startingVal++;
primaries.white.Z = startingVal++;
}
void GetDisplayNativePrimaries::checkDummyDisplayNativePrimaries(
const ui::DisplayPrimaries& primaries) {
float startingVal = mStartingTestValue;
EXPECT_EQ(primaries.red.X, startingVal++);
EXPECT_EQ(primaries.red.Y, startingVal++);
EXPECT_EQ(primaries.red.Z, startingVal++);
EXPECT_EQ(primaries.green.X, startingVal++);
EXPECT_EQ(primaries.green.Y, startingVal++);
EXPECT_EQ(primaries.green.Z, startingVal++);
EXPECT_EQ(primaries.blue.X, startingVal++);
EXPECT_EQ(primaries.blue.Y, startingVal++);
EXPECT_EQ(primaries.blue.Z, startingVal++);
EXPECT_EQ(primaries.white.X, startingVal++);
EXPECT_EQ(primaries.white.Y, startingVal++);
EXPECT_EQ(primaries.white.Z, startingVal++);
}
TEST_F(GetDisplayNativePrimaries, nullDisplayToken) {
ui::DisplayPrimaries primaries;
EXPECT_EQ(BAD_VALUE, mFlinger.getDisplayNativePrimaries(nullptr, primaries));
}
TEST_F(GetDisplayNativePrimaries, internalDisplayWithDefaultPrimariesData) {
auto injector = SimplePrimaryDisplayCase::Display::makeFakeExistingDisplayInjector(this);
injector.inject();
auto internalDisplayToken = injector.token();
// A nullptr would trigger a different execution path than what's being tested here
EXPECT_NE(nullptr, internalDisplayToken.get());
mFlinger.initDefaultDisplayNativePrimaries();
ui::DisplayPrimaries primaries;
// Expecting sRGB primaries
EXPECT_EQ(NO_ERROR, mFlinger.getDisplayNativePrimaries(internalDisplayToken, primaries));
EXPECT_EQ(primaries.red.X, 0.4123f);
EXPECT_EQ(primaries.red.Y, 0.2126f);
EXPECT_EQ(primaries.red.Z, 0.0193f);
EXPECT_EQ(primaries.green.X, 0.3576f);
EXPECT_EQ(primaries.green.Y, 0.7152f);
EXPECT_EQ(primaries.green.Z, 0.1192f);
EXPECT_EQ(primaries.blue.X, 0.1805f);
EXPECT_EQ(primaries.blue.Y, 0.0722f);
EXPECT_EQ(primaries.blue.Z, 0.9506f);
EXPECT_EQ(primaries.white.X, 0.9505f);
EXPECT_EQ(primaries.white.Y, 1.0000f);
EXPECT_EQ(primaries.white.Z, 1.0891f);
}
TEST_F(GetDisplayNativePrimaries, internalDisplayWithPrimariesData) {
auto injector = SimplePrimaryDisplayCase::Display::makeFakeExistingDisplayInjector(this);
injector.inject();
auto internalDisplayToken = injector.token();
ui::DisplayPrimaries expectedPrimaries;
populateDummyDisplayNativePrimaries(expectedPrimaries);
mFlinger.setInternalDisplayPrimaries(expectedPrimaries);
ui::DisplayPrimaries primaries;
EXPECT_EQ(NO_ERROR, mFlinger.getDisplayNativePrimaries(internalDisplayToken, primaries));
checkDummyDisplayNativePrimaries(primaries);
}
TEST_F(GetDisplayNativePrimaries, notInternalDisplayToken) {
sp<BBinder> notInternalDisplayToken = new BBinder();
ui::DisplayPrimaries primaries;
populateDummyDisplayNativePrimaries(primaries);
EXPECT_EQ(BAD_VALUE, mFlinger.getDisplayNativePrimaries(notInternalDisplayToken, primaries));
// Check primaries argument wasn't modified in case of failure
checkDummyDisplayNativePrimaries(primaries);
}
/* ------------------------------------------------------------------------
* SurfaceFlinger::setupNewDisplayDeviceInternal
*/
class SetupNewDisplayDeviceInternalTest : public DisplayTransactionTest {
public:
template <typename T>
void setupNewDisplayDeviceInternalTest();
};
template <typename Case>
void SetupNewDisplayDeviceInternalTest::setupNewDisplayDeviceInternalTest() {
const sp<BBinder> displayToken = new BBinder();
const sp<compositionengine::mock::DisplaySurface> displaySurface =
new compositionengine::mock::DisplaySurface();
const sp<mock::GraphicBufferProducer> producer = new mock::GraphicBufferProducer();
// --------------------------------------------------------------------
// Preconditions
// Wide color displays support is configured appropriately
Case::WideColorSupport::injectConfigChange(this);
// The display is setup with the HWC.
Case::Display::injectHwcDisplay(this);
// SurfaceFlinger will use a test-controlled factory for native window
// surfaces.
injectFakeNativeWindowSurfaceFactory();
// --------------------------------------------------------------------
// Call Expectations
// Various native window calls will be made.
Case::Display::setupNativeWindowSurfaceCreationCallExpectations(this);
Case::Display::setupHwcGetActiveConfigCallExpectations(this);
Case::WideColorSupport::setupComposerCallExpectations(this);
Case::HdrSupport::setupComposerCallExpectations(this);
Case::PerFrameMetadataSupport::setupComposerCallExpectations(this);
// --------------------------------------------------------------------
// Invocation
DisplayDeviceState state;
state.displayId = static_cast<bool>(Case::Display::VIRTUAL) ? std::nullopt
: Case::Display::DISPLAY_ID::get();
state.isSecure = static_cast<bool>(Case::Display::SECURE);
auto device =
mFlinger.setupNewDisplayDeviceInternal(displayToken, Case::Display::DISPLAY_ID::get(),
state, displaySurface, producer);
// --------------------------------------------------------------------
// Postconditions
ASSERT_TRUE(device != nullptr);
EXPECT_EQ(Case::Display::DISPLAY_ID::get(), device->getId());
EXPECT_EQ(static_cast<bool>(Case::Display::VIRTUAL), device->isVirtual());
EXPECT_EQ(static_cast<bool>(Case::Display::SECURE), device->isSecure());
EXPECT_EQ(static_cast<bool>(Case::Display::PRIMARY), device->isPrimary());
EXPECT_EQ(Case::Display::WIDTH, device->getWidth());
EXPECT_EQ(Case::Display::HEIGHT, device->getHeight());
EXPECT_EQ(Case::WideColorSupport::WIDE_COLOR_SUPPORTED, device->hasWideColorGamut());
EXPECT_EQ(Case::HdrSupport::HDR10_PLUS_SUPPORTED, device->hasHDR10PlusSupport());
EXPECT_EQ(Case::HdrSupport::HDR10_SUPPORTED, device->hasHDR10Support());
EXPECT_EQ(Case::HdrSupport::HDR_HLG_SUPPORTED, device->hasHLGSupport());
EXPECT_EQ(Case::HdrSupport::HDR_DOLBY_VISION_SUPPORTED, device->hasDolbyVisionSupport());
// Note: This is not Case::Display::HWC_ACTIVE_CONFIG_ID as the ids are
// remapped, and the test only ever sets up one config. If there were an error
// looking up the remapped index, device->getActiveConfig() would be -1 instead.
EXPECT_EQ(0, device->getActiveConfig());
EXPECT_EQ(Case::PerFrameMetadataSupport::PER_FRAME_METADATA_KEYS,
device->getSupportedPerFrameMetadata());
}
TEST_F(SetupNewDisplayDeviceInternalTest, createSimplePrimaryDisplay) {
setupNewDisplayDeviceInternalTest<SimplePrimaryDisplayCase>();
}
TEST_F(SetupNewDisplayDeviceInternalTest, createSimpleExternalDisplay) {
setupNewDisplayDeviceInternalTest<SimpleExternalDisplayCase>();
}
TEST_F(SetupNewDisplayDeviceInternalTest, createNonHwcVirtualDisplay) {
setupNewDisplayDeviceInternalTest<NonHwcVirtualDisplayCase>();
}
TEST_F(SetupNewDisplayDeviceInternalTest, createHwcVirtualDisplay) {
using Case = HwcVirtualDisplayCase;
// Insert display data so that the HWC thinks it created the virtual display.
const auto displayId = Case::Display::DISPLAY_ID::get();
ASSERT_TRUE(displayId);
mFlinger.mutableHwcDisplayData().try_emplace(*displayId);
setupNewDisplayDeviceInternalTest<Case>();
}
TEST_F(SetupNewDisplayDeviceInternalTest, createWideColorP3Display) {
setupNewDisplayDeviceInternalTest<WideColorP3ColorimetricDisplayCase>();
}
TEST_F(SetupNewDisplayDeviceInternalTest, createHdr10PlusDisplay) {
setupNewDisplayDeviceInternalTest<Hdr10PlusDisplayCase>();
}
TEST_F(SetupNewDisplayDeviceInternalTest, createHdr10Display) {
setupNewDisplayDeviceInternalTest<Hdr10DisplayCase>();
}
TEST_F(SetupNewDisplayDeviceInternalTest, createHdrHlgDisplay) {
setupNewDisplayDeviceInternalTest<HdrHlgDisplayCase>();
}
TEST_F(SetupNewDisplayDeviceInternalTest, createHdrDolbyVisionDisplay) {
setupNewDisplayDeviceInternalTest<HdrDolbyVisionDisplayCase>();
}
TEST_F(SetupNewDisplayDeviceInternalTest, createHdrSmpte2086DisplayCase) {
setupNewDisplayDeviceInternalTest<HdrSmpte2086DisplayCase>();
}
TEST_F(SetupNewDisplayDeviceInternalTest, createHdrCta816_3_DisplayCase) {
setupNewDisplayDeviceInternalTest<HdrCta861_3_DisplayCase>();
}
/* ------------------------------------------------------------------------
* SurfaceFlinger::handleTransactionLocked(eDisplayTransactionNeeded)
*/
class HandleTransactionLockedTest : public DisplayTransactionTest {
public:
template <typename Case>
void setupCommonPreconditions();
template <typename Case, bool connected>
static void expectHotplugReceived(mock::EventThread*);
template <typename Case>
void setupCommonCallExpectationsForConnectProcessing();
template <typename Case>
void setupCommonCallExpectationsForDisconnectProcessing();
template <typename Case>
void processesHotplugConnectCommon();
template <typename Case>
void ignoresHotplugConnectCommon();
template <typename Case>
void processesHotplugDisconnectCommon();
template <typename Case>
void verifyDisplayIsConnected(const sp<IBinder>& displayToken);
template <typename Case>
void verifyPhysicalDisplayIsConnected();
void verifyDisplayIsNotConnected(const sp<IBinder>& displayToken);
};
template <typename Case>
void HandleTransactionLockedTest::setupCommonPreconditions() {
// Wide color displays support is configured appropriately
Case::WideColorSupport::injectConfigChange(this);
// SurfaceFlinger will use a test-controlled factory for BufferQueues
injectFakeBufferQueueFactory();
// SurfaceFlinger will use a test-controlled factory for native window
// surfaces.
injectFakeNativeWindowSurfaceFactory();
}
template <typename Case, bool connected>
void HandleTransactionLockedTest::expectHotplugReceived(mock::EventThread* eventThread) {
const auto convert = [](auto physicalDisplayId) {
return std::make_optional(DisplayId{physicalDisplayId});
};
EXPECT_CALL(*eventThread,
onHotplugReceived(ResultOf(convert, Case::Display::DISPLAY_ID::get()), connected))
.Times(1);
}
template <typename Case>
void HandleTransactionLockedTest::setupCommonCallExpectationsForConnectProcessing() {
Case::Display::setupHwcHotplugCallExpectations(this);
Case::Display::setupFramebufferConsumerBufferQueueCallExpectations(this);
Case::Display::setupFramebufferProducerBufferQueueCallExpectations(this);
Case::Display::setupNativeWindowSurfaceCreationCallExpectations(this);
Case::Display::setupHwcGetActiveConfigCallExpectations(this);
Case::WideColorSupport::setupComposerCallExpectations(this);
Case::HdrSupport::setupComposerCallExpectations(this);
Case::PerFrameMetadataSupport::setupComposerCallExpectations(this);
EXPECT_CALL(*mSurfaceInterceptor, saveDisplayCreation(_)).Times(1);
expectHotplugReceived<Case, true>(mEventThread);
expectHotplugReceived<Case, true>(mSFEventThread);
}
template <typename Case>
void HandleTransactionLockedTest::setupCommonCallExpectationsForDisconnectProcessing() {
EXPECT_CALL(*mSurfaceInterceptor, saveDisplayDeletion(_)).Times(1);
expectHotplugReceived<Case, false>(mEventThread);
expectHotplugReceived<Case, false>(mSFEventThread);
}
template <typename Case>
void HandleTransactionLockedTest::verifyDisplayIsConnected(const sp<IBinder>& displayToken) {
// The display device should have been set up in the list of displays.
ASSERT_TRUE(hasDisplayDevice(displayToken));
const auto& device = getDisplayDevice(displayToken);
EXPECT_EQ(static_cast<bool>(Case::Display::SECURE), device->isSecure());
EXPECT_EQ(static_cast<bool>(Case::Display::PRIMARY), device->isPrimary());
// The display should have been set up in the current display state
ASSERT_TRUE(hasCurrentDisplayState(displayToken));
const auto& current = getCurrentDisplayState(displayToken);
EXPECT_EQ(static_cast<bool>(Case::Display::VIRTUAL), current.isVirtual());
EXPECT_EQ(static_cast<bool>(Case::Display::VIRTUAL) ? std::nullopt
: Case::Display::DISPLAY_ID::get(),
current.displayId);
// The display should have been set up in the drawing display state
ASSERT_TRUE(hasDrawingDisplayState(displayToken));
const auto& draw = getDrawingDisplayState(displayToken);
EXPECT_EQ(static_cast<bool>(Case::Display::VIRTUAL), draw.isVirtual());
EXPECT_EQ(static_cast<bool>(Case::Display::VIRTUAL) ? std::nullopt
: Case::Display::DISPLAY_ID::get(),
draw.displayId);
}
template <typename Case>
void HandleTransactionLockedTest::verifyPhysicalDisplayIsConnected() {
// HWComposer should have an entry for the display
EXPECT_TRUE(hasPhysicalHwcDisplay(Case::Display::HWC_DISPLAY_ID));
// SF should have a display token.
const auto displayId = Case::Display::DISPLAY_ID::get();
ASSERT_TRUE(displayId);
ASSERT_TRUE(mFlinger.mutablePhysicalDisplayTokens().count(*displayId) == 1);
auto& displayToken = mFlinger.mutablePhysicalDisplayTokens()[*displayId];
verifyDisplayIsConnected<Case>(displayToken);
}
void HandleTransactionLockedTest::verifyDisplayIsNotConnected(const sp<IBinder>& displayToken) {
EXPECT_FALSE(hasDisplayDevice(displayToken));
EXPECT_FALSE(hasCurrentDisplayState(displayToken));
EXPECT_FALSE(hasDrawingDisplayState(displayToken));
}
template <typename Case>
void HandleTransactionLockedTest::processesHotplugConnectCommon() {
// --------------------------------------------------------------------
// Preconditions
setupCommonPreconditions<Case>();
// A hotplug connect event is enqueued for a display
Case::Display::injectPendingHotplugEvent(this, HWC2::Connection::Connected);
// --------------------------------------------------------------------
// Call Expectations
EXPECT_CALL(*mComposer, isUsingVrComposer()).WillOnce(Return(false));
setupCommonCallExpectationsForConnectProcessing<Case>();
// --------------------------------------------------------------------
// Invocation
mFlinger.handleTransactionLocked(eDisplayTransactionNeeded);
// --------------------------------------------------------------------
// Postconditions
verifyPhysicalDisplayIsConnected<Case>();
// --------------------------------------------------------------------
// Cleanup conditions
EXPECT_CALL(*mComposer,
setVsyncEnabled(Case::Display::HWC_DISPLAY_ID, IComposerClient::Vsync::DISABLE))
.WillOnce(Return(Error::NONE));
EXPECT_CALL(*mConsumer, consumerDisconnect()).WillOnce(Return(NO_ERROR));
}
template <typename Case>
void HandleTransactionLockedTest::ignoresHotplugConnectCommon() {
// --------------------------------------------------------------------
// Preconditions
setupCommonPreconditions<Case>();
// A hotplug connect event is enqueued for a display
Case::Display::injectPendingHotplugEvent(this, HWC2::Connection::Connected);
// --------------------------------------------------------------------
// Invocation
mFlinger.handleTransactionLocked(eDisplayTransactionNeeded);
// --------------------------------------------------------------------
// Postconditions
// HWComposer should not have an entry for the display
EXPECT_FALSE(hasPhysicalHwcDisplay(Case::Display::HWC_DISPLAY_ID));
}
template <typename Case>
void HandleTransactionLockedTest::processesHotplugDisconnectCommon() {
// --------------------------------------------------------------------
// Preconditions
setupCommonPreconditions<Case>();
// A hotplug disconnect event is enqueued for a display
Case::Display::injectPendingHotplugEvent(this, HWC2::Connection::Disconnected);
// The display is already completely set up.
Case::Display::injectHwcDisplay(this);
auto existing = Case::Display::makeFakeExistingDisplayInjector(this);
existing.inject();
// --------------------------------------------------------------------
// Call Expectations
EXPECT_CALL(*mComposer, isUsingVrComposer()).WillRepeatedly(Return(false));
EXPECT_CALL(*mComposer, getDisplayIdentificationData(Case::Display::HWC_DISPLAY_ID, _, _))
.Times(0);
setupCommonCallExpectationsForDisconnectProcessing<Case>();
// --------------------------------------------------------------------
// Invocation
mFlinger.handleTransactionLocked(eDisplayTransactionNeeded);
// --------------------------------------------------------------------
// Postconditions
// HWComposer should not have an entry for the display
EXPECT_FALSE(hasPhysicalHwcDisplay(Case::Display::HWC_DISPLAY_ID));
// SF should not have a display token.
const auto displayId = Case::Display::DISPLAY_ID::get();
ASSERT_TRUE(displayId);
ASSERT_TRUE(mFlinger.mutablePhysicalDisplayTokens().count(*displayId) == 0);
// The existing token should have been removed
verifyDisplayIsNotConnected(existing.token());
}
TEST_F(HandleTransactionLockedTest, processesHotplugConnectPrimaryDisplay) {
processesHotplugConnectCommon<SimplePrimaryDisplayCase>();
}
TEST_F(HandleTransactionLockedTest,
processesHotplugConnectPrimaryDisplayWithExternalAlreadyConnected) {
// Inject an external display.
ExternalDisplayVariant::injectHwcDisplay(this);
processesHotplugConnectCommon<SimplePrimaryDisplayCase>();
}
TEST_F(HandleTransactionLockedTest, processesHotplugConnectExternalDisplay) {
// Inject a primary display.
PrimaryDisplayVariant::injectHwcDisplay(this);
processesHotplugConnectCommon<SimpleExternalDisplayCase>();
}
TEST_F(HandleTransactionLockedTest, ignoresHotplugConnectIfPrimaryAndExternalAlreadyConnected) {
// Inject both a primary and external display.
PrimaryDisplayVariant::injectHwcDisplay(this);
ExternalDisplayVariant::injectHwcDisplay(this);
// TODO: This is an unnecessary call.
EXPECT_CALL(*mComposer,
getDisplayIdentificationData(TertiaryDisplayVariant::HWC_DISPLAY_ID, _, _))
.WillOnce(DoAll(SetArgPointee<1>(TertiaryDisplay::PORT),
SetArgPointee<2>(TertiaryDisplay::GET_IDENTIFICATION_DATA()),
Return(Error::NONE)));
EXPECT_CALL(*mComposer, isUsingVrComposer()).WillRepeatedly(Return(false));
ignoresHotplugConnectCommon<SimpleTertiaryDisplayCase>();
}
TEST_F(HandleTransactionLockedTest, ignoresHotplugConnectIfExternalForVrComposer) {
// Inject a primary display.
PrimaryDisplayVariant::injectHwcDisplay(this);
EXPECT_CALL(*mComposer, isUsingVrComposer()).WillRepeatedly(Return(true));
ignoresHotplugConnectCommon<SimpleExternalDisplayCase>();
}
TEST_F(HandleTransactionLockedTest, processHotplugDisconnectPrimaryDisplay) {
processesHotplugDisconnectCommon<SimplePrimaryDisplayCase>();
}
TEST_F(HandleTransactionLockedTest, processHotplugDisconnectExternalDisplay) {
processesHotplugDisconnectCommon<SimpleExternalDisplayCase>();
}
TEST_F(HandleTransactionLockedTest, processesHotplugConnectThenDisconnectPrimary) {
using Case = SimplePrimaryDisplayCase;
// --------------------------------------------------------------------
// Preconditions
setupCommonPreconditions<Case>();
// A hotplug connect event is enqueued for a display
Case::Display::injectPendingHotplugEvent(this, HWC2::Connection::Connected);
// A hotplug disconnect event is also enqueued for the same display
Case::Display::injectPendingHotplugEvent(this, HWC2::Connection::Disconnected);
// --------------------------------------------------------------------
// Call Expectations
EXPECT_CALL(*mComposer, isUsingVrComposer()).WillRepeatedly(Return(false));
setupCommonCallExpectationsForConnectProcessing<Case>();
setupCommonCallExpectationsForDisconnectProcessing<Case>();
EXPECT_CALL(*mComposer,
setVsyncEnabled(Case::Display::HWC_DISPLAY_ID, IComposerClient::Vsync::DISABLE))
.WillOnce(Return(Error::NONE));
EXPECT_CALL(*mConsumer, consumerDisconnect()).WillOnce(Return(NO_ERROR));
// --------------------------------------------------------------------
// Invocation
mFlinger.handleTransactionLocked(eDisplayTransactionNeeded);
// --------------------------------------------------------------------
// Postconditions
// HWComposer should not have an entry for the display
EXPECT_FALSE(hasPhysicalHwcDisplay(Case::Display::HWC_DISPLAY_ID));
// SF should not have a display token.
const auto displayId = Case::Display::DISPLAY_ID::get();
ASSERT_TRUE(displayId);
ASSERT_TRUE(mFlinger.mutablePhysicalDisplayTokens().count(*displayId) == 0);
}
TEST_F(HandleTransactionLockedTest, processesHotplugDisconnectThenConnectPrimary) {
using Case = SimplePrimaryDisplayCase;
// --------------------------------------------------------------------
// Preconditions
setupCommonPreconditions<Case>();
// The display is already completely set up.
Case::Display::injectHwcDisplay(this);
auto existing = Case::Display::makeFakeExistingDisplayInjector(this);
existing.inject();
// A hotplug disconnect event is enqueued for a display
Case::Display::injectPendingHotplugEvent(this, HWC2::Connection::Disconnected);
// A hotplug connect event is also enqueued for the same display
Case::Display::injectPendingHotplugEvent(this, HWC2::Connection::Connected);
// --------------------------------------------------------------------
// Call Expectations
EXPECT_CALL(*mComposer, isUsingVrComposer()).WillRepeatedly(Return(false));
setupCommonCallExpectationsForConnectProcessing<Case>();
setupCommonCallExpectationsForDisconnectProcessing<Case>();
// --------------------------------------------------------------------
// Invocation
mFlinger.handleTransactionLocked(eDisplayTransactionNeeded);
// --------------------------------------------------------------------
// Postconditions
// The existing token should have been removed
verifyDisplayIsNotConnected(existing.token());
const auto displayId = Case::Display::DISPLAY_ID::get();
ASSERT_TRUE(displayId);
ASSERT_TRUE(mFlinger.mutablePhysicalDisplayTokens().count(*displayId) == 1);
EXPECT_NE(existing.token(), mFlinger.mutablePhysicalDisplayTokens()[*displayId]);
// A new display should be connected in its place
verifyPhysicalDisplayIsConnected<Case>();
// --------------------------------------------------------------------
// Cleanup conditions
EXPECT_CALL(*mComposer,
setVsyncEnabled(Case::Display::HWC_DISPLAY_ID, IComposerClient::Vsync::DISABLE))
.WillOnce(Return(Error::NONE));
EXPECT_CALL(*mConsumer, consumerDisconnect()).WillOnce(Return(NO_ERROR));
}
TEST_F(HandleTransactionLockedTest, processesVirtualDisplayAdded) {
using Case = HwcVirtualDisplayCase;
// --------------------------------------------------------------------
// Preconditions
// The HWC supports at least one virtual display
injectMockComposer(1);
setupCommonPreconditions<Case>();
// A virtual display was added to the current state, and it has a
// surface(producer)
sp<BBinder> displayToken = new BBinder();
DisplayDeviceState state;
state.isSecure = static_cast<bool>(Case::Display::SECURE);
sp<mock::GraphicBufferProducer> surface{new mock::GraphicBufferProducer()};
state.surface = surface;
mFlinger.mutableCurrentState().displays.add(displayToken, state);
// --------------------------------------------------------------------
// Call Expectations
Case::Display::setupFramebufferConsumerBufferQueueCallExpectations(this);
Case::Display::setupNativeWindowSurfaceCreationCallExpectations(this);
EXPECT_CALL(*mComposer, getDisplayCapabilities(Case::Display::HWC_DISPLAY_ID, _))
.WillOnce(DoAll(SetArgPointee<1>(std::vector<Hwc2::DisplayCapability>({})),
Return(Error::NONE)));
EXPECT_CALL(*surface, query(NATIVE_WINDOW_WIDTH, _))
.WillRepeatedly(DoAll(SetArgPointee<1>(Case::Display::WIDTH), Return(NO_ERROR)));
EXPECT_CALL(*surface, query(NATIVE_WINDOW_HEIGHT, _))
.WillRepeatedly(DoAll(SetArgPointee<1>(Case::Display::HEIGHT), Return(NO_ERROR)));
EXPECT_CALL(*surface, query(NATIVE_WINDOW_FORMAT, _))
.WillRepeatedly(DoAll(SetArgPointee<1>(DEFAULT_VIRTUAL_DISPLAY_SURFACE_FORMAT),
Return(NO_ERROR)));
EXPECT_CALL(*surface, query(NATIVE_WINDOW_CONSUMER_USAGE_BITS, _))
.WillRepeatedly(DoAll(SetArgPointee<1>(0), Return(NO_ERROR)));
EXPECT_CALL(*surface, setAsyncMode(true)).Times(1);
EXPECT_CALL(*mProducer, connect(_, NATIVE_WINDOW_API_EGL, false, _)).Times(1);
EXPECT_CALL(*mProducer, disconnect(_, _)).Times(1);
Case::Display::setupHwcVirtualDisplayCreationCallExpectations(this);
Case::WideColorSupport::setupComposerCallExpectations(this);
Case::HdrSupport::setupComposerCallExpectations(this);
Case::PerFrameMetadataSupport::setupComposerCallExpectations(this);
// --------------------------------------------------------------------
// Invocation
mFlinger.handleTransactionLocked(eDisplayTransactionNeeded);
// --------------------------------------------------------------------
// Postconditions
// The display device should have been set up in the list of displays.
verifyDisplayIsConnected<Case>(displayToken);
// --------------------------------------------------------------------
// Cleanup conditions
EXPECT_CALL(*mComposer, destroyVirtualDisplay(Case::Display::HWC_DISPLAY_ID))
.WillOnce(Return(Error::NONE));
EXPECT_CALL(*mConsumer, consumerDisconnect()).WillOnce(Return(NO_ERROR));
}
TEST_F(HandleTransactionLockedTest, processesVirtualDisplayAddedWithNoSurface) {
using Case = HwcVirtualDisplayCase;
// --------------------------------------------------------------------
// Preconditions
// The HWC supports at least one virtual display
injectMockComposer(1);
setupCommonPreconditions<Case>();
// A virtual display was added to the current state, but it does not have a
// surface.
sp<BBinder> displayToken = new BBinder();
DisplayDeviceState state;
state.isSecure = static_cast<bool>(Case::Display::SECURE);
mFlinger.mutableCurrentState().displays.add(displayToken, state);
// --------------------------------------------------------------------
// Call Expectations
// --------------------------------------------------------------------
// Invocation
mFlinger.handleTransactionLocked(eDisplayTransactionNeeded);
// --------------------------------------------------------------------
// Postconditions
// There will not be a display device set up.
EXPECT_FALSE(hasDisplayDevice(displayToken));
// The drawing display state will be set from the current display state.
ASSERT_TRUE(hasDrawingDisplayState(displayToken));
const auto& draw = getDrawingDisplayState(displayToken);
EXPECT_EQ(static_cast<bool>(Case::Display::VIRTUAL), draw.isVirtual());
}
TEST_F(HandleTransactionLockedTest, processesVirtualDisplayRemoval) {
using Case = HwcVirtualDisplayCase;
// --------------------------------------------------------------------
// Preconditions
// A virtual display is set up but is removed from the current state.
const auto displayId = Case::Display::DISPLAY_ID::get();
ASSERT_TRUE(displayId);
mFlinger.mutableHwcDisplayData().try_emplace(*displayId);
Case::Display::injectHwcDisplay(this);
auto existing = Case::Display::makeFakeExistingDisplayInjector(this);
existing.inject();
mFlinger.mutableCurrentState().displays.removeItem(existing.token());
// --------------------------------------------------------------------
// Call Expectations
EXPECT_CALL(*mComposer, isUsingVrComposer()).WillRepeatedly(Return(false));
// --------------------------------------------------------------------
// Invocation
mFlinger.handleTransactionLocked(eDisplayTransactionNeeded);
// --------------------------------------------------------------------
// Postconditions
// The existing token should have been removed
verifyDisplayIsNotConnected(existing.token());
}
TEST_F(HandleTransactionLockedTest, processesDisplayLayerStackChanges) {
using Case = NonHwcVirtualDisplayCase;
constexpr uint32_t oldLayerStack = 0u;
constexpr uint32_t newLayerStack = 123u;
// --------------------------------------------------------------------
// Preconditions
// A display is set up
auto display = Case::Display::makeFakeExistingDisplayInjector(this);
display.inject();
// There is a change to the layerStack state
display.mutableDrawingDisplayState().layerStack = oldLayerStack;
display.mutableCurrentDisplayState().layerStack = newLayerStack;
// --------------------------------------------------------------------
// Invocation
mFlinger.handleTransactionLocked(eDisplayTransactionNeeded);
// --------------------------------------------------------------------
// Postconditions
EXPECT_EQ(newLayerStack, display.mutableDisplayDevice()->getLayerStack());
}
TEST_F(HandleTransactionLockedTest, processesDisplayTransformChanges) {
using Case = NonHwcVirtualDisplayCase;
constexpr int oldTransform = 0;
constexpr int newTransform = 2;
// --------------------------------------------------------------------
// Preconditions
// A display is set up
auto display = Case::Display::makeFakeExistingDisplayInjector(this);
display.inject();
// There is a change to the orientation state
display.mutableDrawingDisplayState().orientation = oldTransform;
display.mutableCurrentDisplayState().orientation = newTransform;
// --------------------------------------------------------------------
// Invocation
mFlinger.handleTransactionLocked(eDisplayTransactionNeeded);
// --------------------------------------------------------------------
// Postconditions
EXPECT_EQ(newTransform, display.mutableDisplayDevice()->getOrientation());
}
TEST_F(HandleTransactionLockedTest, processesDisplayViewportChanges) {
using Case = NonHwcVirtualDisplayCase;
const Rect oldViewport(0, 0, 0, 0);
const Rect newViewport(0, 0, 123, 456);
// --------------------------------------------------------------------
// Preconditions
// A display is set up
auto display = Case::Display::makeFakeExistingDisplayInjector(this);
display.inject();
// There is a change to the viewport state
display.mutableDrawingDisplayState().viewport = oldViewport;
display.mutableCurrentDisplayState().viewport = newViewport;
// --------------------------------------------------------------------
// Invocation
mFlinger.handleTransactionLocked(eDisplayTransactionNeeded);
// --------------------------------------------------------------------
// Postconditions
EXPECT_EQ(newViewport, display.mutableDisplayDevice()->getViewport());
}
TEST_F(HandleTransactionLockedTest, processesDisplayFrameChanges) {
using Case = NonHwcVirtualDisplayCase;
const Rect oldFrame(0, 0, 0, 0);
const Rect newFrame(0, 0, 123, 456);
// --------------------------------------------------------------------
// Preconditions
// A display is set up
auto display = Case::Display::makeFakeExistingDisplayInjector(this);
display.inject();
// There is a change to the viewport state
display.mutableDrawingDisplayState().frame = oldFrame;
display.mutableCurrentDisplayState().frame = newFrame;
// --------------------------------------------------------------------
// Invocation
mFlinger.handleTransactionLocked(eDisplayTransactionNeeded);
// --------------------------------------------------------------------
// Postconditions
EXPECT_EQ(newFrame, display.mutableDisplayDevice()->getFrame());
}
TEST_F(HandleTransactionLockedTest, processesDisplayWidthChanges) {
using Case = NonHwcVirtualDisplayCase;
constexpr int oldWidth = 0;
constexpr int oldHeight = 10;
constexpr int newWidth = 123;
// --------------------------------------------------------------------
// Preconditions
// A display is set up
auto nativeWindow = new mock::NativeWindow();
auto displaySurface = new compositionengine::mock::DisplaySurface();
sp<GraphicBuffer> buf = new GraphicBuffer();
auto display = Case::Display::makeFakeExistingDisplayInjector(this);
display.setNativeWindow(nativeWindow);
display.setDisplaySurface(displaySurface);
// Setup injection expections
EXPECT_CALL(*nativeWindow, query(NATIVE_WINDOW_WIDTH, _))
.WillOnce(DoAll(SetArgPointee<1>(oldWidth), Return(0)));
EXPECT_CALL(*nativeWindow, query(NATIVE_WINDOW_HEIGHT, _))
.WillOnce(DoAll(SetArgPointee<1>(oldHeight), Return(0)));
EXPECT_CALL(*nativeWindow, perform(NATIVE_WINDOW_SET_BUFFERS_FORMAT)).Times(1);
EXPECT_CALL(*nativeWindow, perform(NATIVE_WINDOW_API_CONNECT)).Times(1);
EXPECT_CALL(*nativeWindow, perform(NATIVE_WINDOW_SET_USAGE64)).Times(1);
display.inject();
// There is a change to the viewport state
display.mutableDrawingDisplayState().width = oldWidth;
display.mutableDrawingDisplayState().height = oldHeight;
display.mutableCurrentDisplayState().width = newWidth;
display.mutableCurrentDisplayState().height = oldHeight;
// --------------------------------------------------------------------
// Call Expectations
EXPECT_CALL(*displaySurface, resizeBuffers(newWidth, oldHeight)).Times(1);
// --------------------------------------------------------------------
// Invocation
mFlinger.handleTransactionLocked(eDisplayTransactionNeeded);
}
TEST_F(HandleTransactionLockedTest, processesDisplayHeightChanges) {
using Case = NonHwcVirtualDisplayCase;
constexpr int oldWidth = 0;
constexpr int oldHeight = 10;
constexpr int newHeight = 123;
// --------------------------------------------------------------------
// Preconditions
// A display is set up
auto nativeWindow = new mock::NativeWindow();
auto displaySurface = new compositionengine::mock::DisplaySurface();
sp<GraphicBuffer> buf = new GraphicBuffer();
auto display = Case::Display::makeFakeExistingDisplayInjector(this);
display.setNativeWindow(nativeWindow);
display.setDisplaySurface(displaySurface);
// Setup injection expections
EXPECT_CALL(*nativeWindow, query(NATIVE_WINDOW_WIDTH, _))
.WillOnce(DoAll(SetArgPointee<1>(oldWidth), Return(0)));
EXPECT_CALL(*nativeWindow, query(NATIVE_WINDOW_HEIGHT, _))
.WillOnce(DoAll(SetArgPointee<1>(oldHeight), Return(0)));
EXPECT_CALL(*nativeWindow, perform(NATIVE_WINDOW_SET_BUFFERS_FORMAT)).Times(1);
EXPECT_CALL(*nativeWindow, perform(NATIVE_WINDOW_API_CONNECT)).Times(1);
EXPECT_CALL(*nativeWindow, perform(NATIVE_WINDOW_SET_USAGE64)).Times(1);
display.inject();
// There is a change to the viewport state
display.mutableDrawingDisplayState().width = oldWidth;
display.mutableDrawingDisplayState().height = oldHeight;
display.mutableCurrentDisplayState().width = oldWidth;
display.mutableCurrentDisplayState().height = newHeight;
// --------------------------------------------------------------------
// Call Expectations
EXPECT_CALL(*displaySurface, resizeBuffers(oldWidth, newHeight)).Times(1);
// --------------------------------------------------------------------
// Invocation
mFlinger.handleTransactionLocked(eDisplayTransactionNeeded);
}
/* ------------------------------------------------------------------------
* SurfaceFlinger::setDisplayStateLocked
*/
TEST_F(DisplayTransactionTest, setDisplayStateLockedDoesNothingWithUnknownDisplay) {
// --------------------------------------------------------------------
// Preconditions
// We have an unknown display token not associated with a known display
sp<BBinder> displayToken = new BBinder();
// The requested display state references the unknown display.
DisplayState state;
state.what = DisplayState::eLayerStackChanged;
state.token = displayToken;
state.layerStack = 456;
// --------------------------------------------------------------------
// Invocation
uint32_t flags = mFlinger.setDisplayStateLocked(state);
// --------------------------------------------------------------------
// Postconditions
// The returned flags are empty
EXPECT_EQ(0u, flags);
// The display token still doesn't match anything known.
EXPECT_FALSE(hasCurrentDisplayState(displayToken));
}
TEST_F(DisplayTransactionTest, setDisplayStateLockedDoesNothingWhenNoChanges) {
using Case = SimplePrimaryDisplayCase;
// --------------------------------------------------------------------
// Preconditions
// A display is already set up
auto display = Case::Display::makeFakeExistingDisplayInjector(this);
display.inject();
// No changes are made to the display
DisplayState state;
state.what = 0;
state.token = display.token();
// --------------------------------------------------------------------
// Invocation
uint32_t flags = mFlinger.setDisplayStateLocked(state);
// --------------------------------------------------------------------
// Postconditions
// The returned flags are empty
EXPECT_EQ(0u, flags);
}
TEST_F(DisplayTransactionTest, setDisplayStateLockedDoesNothingIfSurfaceDidNotChange) {
using Case = SimplePrimaryDisplayCase;
// --------------------------------------------------------------------
// Preconditions
// A display is already set up
auto display = Case::Display::makeFakeExistingDisplayInjector(this);
display.inject();
// There is a surface that can be set.
sp<mock::GraphicBufferProducer> surface = new mock::GraphicBufferProducer();
// The current display state has the surface set
display.mutableCurrentDisplayState().surface = surface;
// The incoming request sets the same surface
DisplayState state;
state.what = DisplayState::eSurfaceChanged;
state.token = display.token();
state.surface = surface;
// --------------------------------------------------------------------
// Invocation
uint32_t flags = mFlinger.setDisplayStateLocked(state);
// --------------------------------------------------------------------
// Postconditions
// The returned flags are empty
EXPECT_EQ(0u, flags);
// The current display state is unchanged.
EXPECT_EQ(surface.get(), display.getCurrentDisplayState().surface.get());
}
TEST_F(DisplayTransactionTest, setDisplayStateLockedRequestsUpdateIfSurfaceChanged) {
using Case = SimplePrimaryDisplayCase;
// --------------------------------------------------------------------
// Preconditions
// A display is already set up
auto display = Case::Display::makeFakeExistingDisplayInjector(this);
display.inject();
// There is a surface that can be set.
sp<mock::GraphicBufferProducer> surface = new mock::GraphicBufferProducer();
// The current display state does not have a surface
display.mutableCurrentDisplayState().surface = nullptr;
// The incoming request sets a surface
DisplayState state;
state.what = DisplayState::eSurfaceChanged;
state.token = display.token();
state.surface = surface;
// --------------------------------------------------------------------
// Invocation
uint32_t flags = mFlinger.setDisplayStateLocked(state);
// --------------------------------------------------------------------
// Postconditions
// The returned flags indicate a transaction is needed
EXPECT_EQ(eDisplayTransactionNeeded, flags);
// The current display layer stack state is set to the new value
EXPECT_EQ(surface.get(), display.getCurrentDisplayState().surface.get());
}
TEST_F(DisplayTransactionTest, setDisplayStateLockedDoesNothingIfLayerStackDidNotChange) {
using Case = SimplePrimaryDisplayCase;
// --------------------------------------------------------------------
// Preconditions
// A display is already set up
auto display = Case::Display::makeFakeExistingDisplayInjector(this);
display.inject();
// The display has a layer stack set
display.mutableCurrentDisplayState().layerStack = 456u;
// The incoming request sets the same layer stack
DisplayState state;
state.what = DisplayState::eLayerStackChanged;
state.token = display.token();
state.layerStack = 456u;
// --------------------------------------------------------------------
// Invocation
uint32_t flags = mFlinger.setDisplayStateLocked(state);
// --------------------------------------------------------------------
// Postconditions
// The returned flags are empty
EXPECT_EQ(0u, flags);
// The current display state is unchanged
EXPECT_EQ(456u, display.getCurrentDisplayState().layerStack);
}
TEST_F(DisplayTransactionTest, setDisplayStateLockedRequestsUpdateIfLayerStackChanged) {
using Case = SimplePrimaryDisplayCase;
// --------------------------------------------------------------------
// Preconditions
// A display is set up
auto display = Case::Display::makeFakeExistingDisplayInjector(this);
display.inject();
// The display has a layer stack set
display.mutableCurrentDisplayState().layerStack = 654u;
// The incoming request sets a different layer stack
DisplayState state;
state.what = DisplayState::eLayerStackChanged;
state.token = display.token();
state.layerStack = 456u;
// --------------------------------------------------------------------
// Invocation
uint32_t flags = mFlinger.setDisplayStateLocked(state);
// --------------------------------------------------------------------
// Postconditions
// The returned flags indicate a transaction is needed
EXPECT_EQ(eDisplayTransactionNeeded, flags);
// The desired display state has been set to the new value.
EXPECT_EQ(456u, display.getCurrentDisplayState().layerStack);
}
TEST_F(DisplayTransactionTest, setDisplayStateLockedDoesNothingIfProjectionDidNotChange) {
using Case = SimplePrimaryDisplayCase;
constexpr int initialOrientation = 180;
const Rect initialFrame = {1, 2, 3, 4};
const Rect initialViewport = {5, 6, 7, 8};
// --------------------------------------------------------------------
// Preconditions
// A display is set up
auto display = Case::Display::makeFakeExistingDisplayInjector(this);
display.inject();
// The current display state projection state is all set
display.mutableCurrentDisplayState().orientation = initialOrientation;
display.mutableCurrentDisplayState().frame = initialFrame;
display.mutableCurrentDisplayState().viewport = initialViewport;
// The incoming request sets the same projection state
DisplayState state;
state.what = DisplayState::eDisplayProjectionChanged;
state.token = display.token();
state.orientation = initialOrientation;
state.frame = initialFrame;
state.viewport = initialViewport;
// --------------------------------------------------------------------
// Invocation
uint32_t flags = mFlinger.setDisplayStateLocked(state);
// --------------------------------------------------------------------
// Postconditions
// The returned flags are empty
EXPECT_EQ(0u, flags);
// The current display state is unchanged
EXPECT_EQ(initialOrientation, display.getCurrentDisplayState().orientation);
EXPECT_EQ(initialFrame, display.getCurrentDisplayState().frame);
EXPECT_EQ(initialViewport, display.getCurrentDisplayState().viewport);
}
TEST_F(DisplayTransactionTest, setDisplayStateLockedRequestsUpdateIfOrientationChanged) {
using Case = SimplePrimaryDisplayCase;
constexpr int initialOrientation = 90;
constexpr int desiredOrientation = 180;
// --------------------------------------------------------------------
// Preconditions
// A display is set up
auto display = Case::Display::makeFakeExistingDisplayInjector(this);
display.inject();
// The current display state has an orientation set
display.mutableCurrentDisplayState().orientation = initialOrientation;
// The incoming request sets a different orientation
DisplayState state;
state.what = DisplayState::eDisplayProjectionChanged;
state.token = display.token();
state.orientation = desiredOrientation;
// --------------------------------------------------------------------
// Invocation
uint32_t flags = mFlinger.setDisplayStateLocked(state);
// --------------------------------------------------------------------
// Postconditions
// The returned flags indicate a transaction is needed
EXPECT_EQ(eDisplayTransactionNeeded, flags);
// The current display state has the new value.
EXPECT_EQ(desiredOrientation, display.getCurrentDisplayState().orientation);
}
TEST_F(DisplayTransactionTest, setDisplayStateLockedRequestsUpdateIfFrameChanged) {
using Case = SimplePrimaryDisplayCase;
const Rect initialFrame = {0, 0, 0, 0};
const Rect desiredFrame = {5, 6, 7, 8};
// --------------------------------------------------------------------
// Preconditions
// A display is set up
auto display = Case::Display::makeFakeExistingDisplayInjector(this);
display.inject();
// The current display state does not have a frame
display.mutableCurrentDisplayState().frame = initialFrame;
// The incoming request sets a frame
DisplayState state;
state.what = DisplayState::eDisplayProjectionChanged;
state.token = display.token();
state.frame = desiredFrame;
// --------------------------------------------------------------------
// Invocation
uint32_t flags = mFlinger.setDisplayStateLocked(state);
// --------------------------------------------------------------------
// Postconditions
// The returned flags indicate a transaction is needed
EXPECT_EQ(eDisplayTransactionNeeded, flags);
// The current display state has the new value.
EXPECT_EQ(desiredFrame, display.getCurrentDisplayState().frame);
}
TEST_F(DisplayTransactionTest, setDisplayStateLockedRequestsUpdateIfViewportChanged) {
using Case = SimplePrimaryDisplayCase;
const Rect initialViewport = {0, 0, 0, 0};
const Rect desiredViewport = {5, 6, 7, 8};
// --------------------------------------------------------------------
// Preconditions
// A display is set up
auto display = Case::Display::makeFakeExistingDisplayInjector(this);
display.inject();
// The current display state does not have a viewport
display.mutableCurrentDisplayState().viewport = initialViewport;
// The incoming request sets a viewport
DisplayState state;
state.what = DisplayState::eDisplayProjectionChanged;
state.token = display.token();
state.viewport = desiredViewport;
// --------------------------------------------------------------------
// Invocation
uint32_t flags = mFlinger.setDisplayStateLocked(state);
// --------------------------------------------------------------------
// Postconditions
// The returned flags indicate a transaction is needed
EXPECT_EQ(eDisplayTransactionNeeded, flags);
// The current display state has the new value.
EXPECT_EQ(desiredViewport, display.getCurrentDisplayState().viewport);
}
TEST_F(DisplayTransactionTest, setDisplayStateLockedDoesNothingIfSizeDidNotChange) {
using Case = SimplePrimaryDisplayCase;
constexpr uint32_t initialWidth = 1024;
constexpr uint32_t initialHeight = 768;
// --------------------------------------------------------------------
// Preconditions
// A display is set up
auto display = Case::Display::makeFakeExistingDisplayInjector(this);
display.inject();
// The current display state has a size set
display.mutableCurrentDisplayState().width = initialWidth;
display.mutableCurrentDisplayState().height = initialHeight;
// The incoming request sets the same display size
DisplayState state;
state.what = DisplayState::eDisplaySizeChanged;
state.token = display.token();
state.width = initialWidth;
state.height = initialHeight;
// --------------------------------------------------------------------
// Invocation
uint32_t flags = mFlinger.setDisplayStateLocked(state);
// --------------------------------------------------------------------
// Postconditions
// The returned flags are empty
EXPECT_EQ(0u, flags);
// The current display state is unchanged
EXPECT_EQ(initialWidth, display.getCurrentDisplayState().width);
EXPECT_EQ(initialHeight, display.getCurrentDisplayState().height);
}
TEST_F(DisplayTransactionTest, setDisplayStateLockedRequestsUpdateIfWidthChanged) {
using Case = SimplePrimaryDisplayCase;
constexpr uint32_t initialWidth = 0;
constexpr uint32_t desiredWidth = 1024;
// --------------------------------------------------------------------
// Preconditions
// A display is set up
auto display = Case::Display::makeFakeExistingDisplayInjector(this);
display.inject();
// The display does not yet have a width
display.mutableCurrentDisplayState().width = initialWidth;
// The incoming request sets a display width
DisplayState state;
state.what = DisplayState::eDisplaySizeChanged;
state.token = display.token();
state.width = desiredWidth;
// --------------------------------------------------------------------
// Invocation
uint32_t flags = mFlinger.setDisplayStateLocked(state);
// --------------------------------------------------------------------
// Postconditions
// The returned flags indicate a transaction is needed
EXPECT_EQ(eDisplayTransactionNeeded, flags);
// The current display state has the new value.
EXPECT_EQ(desiredWidth, display.getCurrentDisplayState().width);
}
TEST_F(DisplayTransactionTest, setDisplayStateLockedRequestsUpdateIfHeightChanged) {
using Case = SimplePrimaryDisplayCase;
constexpr uint32_t initialHeight = 0;
constexpr uint32_t desiredHeight = 768;
// --------------------------------------------------------------------
// Preconditions
// A display is set up
auto display = Case::Display::makeFakeExistingDisplayInjector(this);
display.inject();
// The display does not yet have a height
display.mutableCurrentDisplayState().height = initialHeight;
// The incoming request sets a display height
DisplayState state;
state.what = DisplayState::eDisplaySizeChanged;
state.token = display.token();
state.height = desiredHeight;
// --------------------------------------------------------------------
// Invocation
uint32_t flags = mFlinger.setDisplayStateLocked(state);
// --------------------------------------------------------------------
// Postconditions
// The returned flags indicate a transaction is needed
EXPECT_EQ(eDisplayTransactionNeeded, flags);
// The current display state has the new value.
EXPECT_EQ(desiredHeight, display.getCurrentDisplayState().height);
}
/* ------------------------------------------------------------------------
* SurfaceFlinger::onInitializeDisplays
*/
TEST_F(DisplayTransactionTest, onInitializeDisplaysSetsUpPrimaryDisplay) {
using Case = SimplePrimaryDisplayCase;
// --------------------------------------------------------------------
// Preconditions
// A primary display is set up
Case::Display::injectHwcDisplay(this);
auto primaryDisplay = Case::Display::makeFakeExistingDisplayInjector(this);
primaryDisplay.inject();
// --------------------------------------------------------------------
// Call Expectations
// We expect the surface interceptor to possibly be used, but we treat it as
// disabled since it is called as a side effect rather than directly by this
// function.
EXPECT_CALL(*mSurfaceInterceptor, isEnabled()).WillOnce(Return(false));
// We expect a call to get the active display config.
Case::Display::setupHwcGetActiveConfigCallExpectations(this);
// We expect invalidate() to be invoked once to trigger display transaction
// processing.
EXPECT_CALL(*mMessageQueue, invalidate()).Times(1);
EXPECT_CALL(*mPrimaryDispSync, expectedPresentTime()).WillRepeatedly(Return(0));
// --------------------------------------------------------------------
// Invocation
mFlinger.onInitializeDisplays();
// --------------------------------------------------------------------
// Postconditions
// The primary display should have a current state
ASSERT_TRUE(hasCurrentDisplayState(primaryDisplay.token()));
const auto& primaryDisplayState = getCurrentDisplayState(primaryDisplay.token());
// The layer stack state should be set to zero
EXPECT_EQ(0u, primaryDisplayState.layerStack);
// The orientation state should be set to zero
EXPECT_EQ(0, primaryDisplayState.orientation);
// The frame state should be set to INVALID
EXPECT_EQ(Rect::INVALID_RECT, primaryDisplayState.frame);
// The viewport state should be set to INVALID
EXPECT_EQ(Rect::INVALID_RECT, primaryDisplayState.viewport);
// The width and height should both be zero
EXPECT_EQ(0u, primaryDisplayState.width);
EXPECT_EQ(0u, primaryDisplayState.height);
// The display should be set to HWC_POWER_MODE_NORMAL
ASSERT_TRUE(hasDisplayDevice(primaryDisplay.token()));
auto displayDevice = primaryDisplay.mutableDisplayDevice();
EXPECT_EQ(HWC_POWER_MODE_NORMAL, displayDevice->getPowerMode());
// The display refresh period should be set in the frame tracker.
FrameStats stats;
mFlinger.getAnimFrameTracker().getStats(&stats);
EXPECT_EQ(DEFAULT_REFRESH_RATE, stats.refreshPeriodNano);
// The display transaction needed flag should be set.
EXPECT_TRUE(hasTransactionFlagSet(eDisplayTransactionNeeded));
// The compositor timing should be set to default values
const auto& compositorTiming = mFlinger.getCompositorTiming();
EXPECT_EQ(-DEFAULT_REFRESH_RATE, compositorTiming.deadline);
EXPECT_EQ(DEFAULT_REFRESH_RATE, compositorTiming.interval);
EXPECT_EQ(DEFAULT_REFRESH_RATE, compositorTiming.presentLatency);
}
/* ------------------------------------------------------------------------
* SurfaceFlinger::setPowerModeInternal
*/
// Used when we simulate a display that supports doze.
template <typename Display>
struct DozeIsSupportedVariant {
static constexpr bool DOZE_SUPPORTED = true;
static constexpr IComposerClient::PowerMode ACTUAL_POWER_MODE_FOR_DOZE =
IComposerClient::PowerMode::DOZE;
static constexpr IComposerClient::PowerMode ACTUAL_POWER_MODE_FOR_DOZE_SUSPEND =
IComposerClient::PowerMode::DOZE_SUSPEND;
static void setupComposerCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mComposer, getDisplayCapabilities(Display::HWC_DISPLAY_ID, _))
.WillOnce(DoAll(SetArgPointee<1>(std::vector<Hwc2::DisplayCapability>(
{Hwc2::DisplayCapability::DOZE})),
Return(Error::NONE)));
}
};
template <typename Display>
// Used when we simulate a display that does not support doze.
struct DozeNotSupportedVariant {
static constexpr bool DOZE_SUPPORTED = false;
static constexpr IComposerClient::PowerMode ACTUAL_POWER_MODE_FOR_DOZE =
IComposerClient::PowerMode::ON;
static constexpr IComposerClient::PowerMode ACTUAL_POWER_MODE_FOR_DOZE_SUSPEND =
IComposerClient::PowerMode::ON;
static void setupComposerCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mComposer, getDisplayCapabilities(Display::HWC_DISPLAY_ID, _))
.WillOnce(DoAll(SetArgPointee<1>(std::vector<Hwc2::DisplayCapability>({})),
Return(Error::NONE)));
}
};
struct EventThreadBaseSupportedVariant {
static void setupEventAndEventControlThreadNoCallExpectations(DisplayTransactionTest* test) {
// The event control thread should not be notified.
EXPECT_CALL(*test->mEventControlThread, setVsyncEnabled(_)).Times(0);
// The event thread should not be notified.
EXPECT_CALL(*test->mEventThread, onScreenReleased()).Times(0);
EXPECT_CALL(*test->mEventThread, onScreenAcquired()).Times(0);
}
};
struct EventThreadNotSupportedVariant : public EventThreadBaseSupportedVariant {
static void setupAcquireAndEnableVsyncCallExpectations(DisplayTransactionTest* test) {
// These calls are only expected for the primary display.
// Instead expect no calls.
setupEventAndEventControlThreadNoCallExpectations(test);
}
static void setupReleaseAndDisableVsyncCallExpectations(DisplayTransactionTest* test) {
// These calls are only expected for the primary display.
// Instead expect no calls.
setupEventAndEventControlThreadNoCallExpectations(test);
}
};
struct EventThreadIsSupportedVariant : public EventThreadBaseSupportedVariant {
static void setupAcquireAndEnableVsyncCallExpectations(DisplayTransactionTest* test) {
// The event control thread should be notified to enable vsyncs
EXPECT_CALL(*test->mEventControlThread, setVsyncEnabled(true)).Times(1);
// The event thread should be notified that the screen was acquired.
EXPECT_CALL(*test->mEventThread, onScreenAcquired()).Times(1);
}
static void setupReleaseAndDisableVsyncCallExpectations(DisplayTransactionTest* test) {
// There should be a call to setVsyncEnabled(false)
EXPECT_CALL(*test->mEventControlThread, setVsyncEnabled(false)).Times(1);
// The event thread should not be notified that the screen was released.
EXPECT_CALL(*test->mEventThread, onScreenReleased()).Times(1);
}
};
struct DispSyncIsSupportedVariant {
static void setupBeginResyncCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mPrimaryDispSync, reset()).Times(1);
EXPECT_CALL(*test->mPrimaryDispSync, setPeriod(DEFAULT_REFRESH_RATE)).Times(1);
EXPECT_CALL(*test->mPrimaryDispSync, beginResync()).Times(1);
}
static void setupEndResyncCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mPrimaryDispSync, endResync()).Times(1);
}
};
struct DispSyncNotSupportedVariant {
static void setupBeginResyncCallExpectations(DisplayTransactionTest* /* test */) {}
static void setupEndResyncCallExpectations(DisplayTransactionTest* /* test */) {}
};
// --------------------------------------------------------------------
// Note:
//
// There are a large number of transitions we could test, however we only test a
// selected subset which provides complete test coverage of the implementation.
// --------------------------------------------------------------------
template <int initialPowerMode, int targetPowerMode>
struct TransitionVariantCommon {
static constexpr auto INITIAL_POWER_MODE = initialPowerMode;
static constexpr auto TARGET_POWER_MODE = targetPowerMode;
static void verifyPostconditions(DisplayTransactionTest*) {}
};
struct TransitionOffToOnVariant
: public TransitionVariantCommon<HWC_POWER_MODE_OFF, HWC_POWER_MODE_NORMAL> {
template <typename Case>
static void setupCallExpectations(DisplayTransactionTest* test) {
Case::setupComposerCallExpectations(test, IComposerClient::PowerMode::ON);
Case::EventThread::setupAcquireAndEnableVsyncCallExpectations(test);
Case::DispSync::setupBeginResyncCallExpectations(test);
Case::setupRepaintEverythingCallExpectations(test);
}
static void verifyPostconditions(DisplayTransactionTest* test) {
EXPECT_TRUE(test->mFlinger.getVisibleRegionsDirty());
EXPECT_TRUE(test->mFlinger.getHasPoweredOff());
}
};
struct TransitionOffToDozeSuspendVariant
: public TransitionVariantCommon<HWC_POWER_MODE_OFF, HWC_POWER_MODE_DOZE_SUSPEND> {
template <typename Case>
static void setupCallExpectations(DisplayTransactionTest* test) {
Case::setupComposerCallExpectations(test, Case::Doze::ACTUAL_POWER_MODE_FOR_DOZE_SUSPEND);
Case::EventThread::setupEventAndEventControlThreadNoCallExpectations(test);
Case::setupRepaintEverythingCallExpectations(test);
}
static void verifyPostconditions(DisplayTransactionTest* test) {
EXPECT_TRUE(test->mFlinger.getVisibleRegionsDirty());
EXPECT_TRUE(test->mFlinger.getHasPoweredOff());
}
};
struct TransitionOnToOffVariant
: public TransitionVariantCommon<HWC_POWER_MODE_NORMAL, HWC_POWER_MODE_OFF> {
template <typename Case>
static void setupCallExpectations(DisplayTransactionTest* test) {
Case::EventThread::setupReleaseAndDisableVsyncCallExpectations(test);
Case::DispSync::setupEndResyncCallExpectations(test);
Case::setupComposerCallExpectations(test, IComposerClient::PowerMode::OFF);
}
static void verifyPostconditions(DisplayTransactionTest* test) {
EXPECT_TRUE(test->mFlinger.getVisibleRegionsDirty());
}
};
struct TransitionDozeSuspendToOffVariant
: public TransitionVariantCommon<HWC_POWER_MODE_DOZE_SUSPEND, HWC_POWER_MODE_OFF> {
template <typename Case>
static void setupCallExpectations(DisplayTransactionTest* test) {
Case::EventThread::setupEventAndEventControlThreadNoCallExpectations(test);
Case::setupComposerCallExpectations(test, IComposerClient::PowerMode::OFF);
}
static void verifyPostconditions(DisplayTransactionTest* test) {
EXPECT_TRUE(test->mFlinger.getVisibleRegionsDirty());
}
};
struct TransitionOnToDozeVariant
: public TransitionVariantCommon<HWC_POWER_MODE_NORMAL, HWC_POWER_MODE_DOZE> {
template <typename Case>
static void setupCallExpectations(DisplayTransactionTest* test) {
Case::EventThread::setupEventAndEventControlThreadNoCallExpectations(test);
Case::setupComposerCallExpectations(test, Case::Doze::ACTUAL_POWER_MODE_FOR_DOZE);
}
};
struct TransitionDozeSuspendToDozeVariant
: public TransitionVariantCommon<HWC_POWER_MODE_DOZE_SUSPEND, HWC_POWER_MODE_DOZE> {
template <typename Case>
static void setupCallExpectations(DisplayTransactionTest* test) {
Case::EventThread::setupAcquireAndEnableVsyncCallExpectations(test);
Case::DispSync::setupBeginResyncCallExpectations(test);
Case::setupComposerCallExpectations(test, Case::Doze::ACTUAL_POWER_MODE_FOR_DOZE);
}
};
struct TransitionDozeToOnVariant
: public TransitionVariantCommon<HWC_POWER_MODE_DOZE, HWC_POWER_MODE_NORMAL> {
template <typename Case>
static void setupCallExpectations(DisplayTransactionTest* test) {
Case::EventThread::setupEventAndEventControlThreadNoCallExpectations(test);
Case::setupComposerCallExpectations(test, IComposerClient::PowerMode::ON);
}
};
struct TransitionDozeSuspendToOnVariant
: public TransitionVariantCommon<HWC_POWER_MODE_DOZE_SUSPEND, HWC_POWER_MODE_NORMAL> {
template <typename Case>
static void setupCallExpectations(DisplayTransactionTest* test) {
Case::EventThread::setupAcquireAndEnableVsyncCallExpectations(test);
Case::DispSync::setupBeginResyncCallExpectations(test);
Case::setupComposerCallExpectations(test, IComposerClient::PowerMode::ON);
}
};
struct TransitionOnToDozeSuspendVariant
: public TransitionVariantCommon<HWC_POWER_MODE_NORMAL, HWC_POWER_MODE_DOZE_SUSPEND> {
template <typename Case>
static void setupCallExpectations(DisplayTransactionTest* test) {
Case::EventThread::setupReleaseAndDisableVsyncCallExpectations(test);
Case::DispSync::setupEndResyncCallExpectations(test);
Case::setupComposerCallExpectations(test, Case::Doze::ACTUAL_POWER_MODE_FOR_DOZE_SUSPEND);
}
};
struct TransitionOnToUnknownVariant
: public TransitionVariantCommon<HWC_POWER_MODE_NORMAL, HWC_POWER_MODE_LEET> {
template <typename Case>
static void setupCallExpectations(DisplayTransactionTest* test) {
Case::EventThread::setupEventAndEventControlThreadNoCallExpectations(test);
Case::setupNoComposerPowerModeCallExpectations(test);
}
};
// --------------------------------------------------------------------
// Note:
//
// Rather than testing the cartesian product of of
// DozeIsSupported/DozeNotSupported with all other options, we use one for one
// display type, and the other for another display type.
// --------------------------------------------------------------------
template <typename DisplayVariant, typename DozeVariant, typename EventThreadVariant,
typename DispSyncVariant, typename TransitionVariant>
struct DisplayPowerCase {
using Display = DisplayVariant;
using Doze = DozeVariant;
using EventThread = EventThreadVariant;
using DispSync = DispSyncVariant;
using Transition = TransitionVariant;
static auto injectDisplayWithInitialPowerMode(DisplayTransactionTest* test, int mode) {
Display::injectHwcDisplayWithNoDefaultCapabilities(test);
auto display = Display::makeFakeExistingDisplayInjector(test);
display.inject();
display.mutableDisplayDevice()->setPowerMode(mode);
return display;
}
static void setInitialPrimaryHWVsyncEnabled(DisplayTransactionTest* test, bool enabled) {
test->mFlinger.mutablePrimaryHWVsyncEnabled() = enabled;
}
static void setupRepaintEverythingCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mMessageQueue, invalidate()).Times(1);
}
static void setupSurfaceInterceptorCallExpectations(DisplayTransactionTest* test, int mode) {
EXPECT_CALL(*test->mSurfaceInterceptor, isEnabled()).WillOnce(Return(true));
EXPECT_CALL(*test->mSurfaceInterceptor, savePowerModeUpdate(_, mode)).Times(1);
}
static void setupComposerCallExpectations(DisplayTransactionTest* test,
IComposerClient::PowerMode mode) {
// Any calls to get the active config will return a default value.
EXPECT_CALL(*test->mComposer, getActiveConfig(Display::HWC_DISPLAY_ID, _))
.WillRepeatedly(DoAll(SetArgPointee<1>(Display::HWC_ACTIVE_CONFIG_ID),
Return(Error::NONE)));
// Any calls to get whether the display supports dozing will return the value set by the
// policy variant.
EXPECT_CALL(*test->mComposer, getDozeSupport(Display::HWC_DISPLAY_ID, _))
.WillRepeatedly(DoAll(SetArgPointee<1>(Doze::DOZE_SUPPORTED), Return(Error::NONE)));
EXPECT_CALL(*test->mComposer, setPowerMode(Display::HWC_DISPLAY_ID, mode)).Times(1);
}
static void setupNoComposerPowerModeCallExpectations(DisplayTransactionTest* test) {
EXPECT_CALL(*test->mComposer, setPowerMode(Display::HWC_DISPLAY_ID, _)).Times(0);
}
};
// A sample configuration for the primary display.
// In addition to having event thread support, we emulate doze support.
template <typename TransitionVariant>
using PrimaryDisplayPowerCase =
DisplayPowerCase<PrimaryDisplayVariant, DozeIsSupportedVariant<PrimaryDisplayVariant>,
EventThreadIsSupportedVariant, DispSyncIsSupportedVariant,
TransitionVariant>;
// A sample configuration for the external display.
// In addition to not having event thread support, we emulate not having doze
// support.
template <typename TransitionVariant>
using ExternalDisplayPowerCase =
DisplayPowerCase<ExternalDisplayVariant, DozeNotSupportedVariant<ExternalDisplayVariant>,
EventThreadNotSupportedVariant, DispSyncNotSupportedVariant,
TransitionVariant>;
class SetPowerModeInternalTest : public DisplayTransactionTest {
public:
template <typename Case>
void transitionDisplayCommon();
};
template <int PowerMode>
struct PowerModeInitialVSyncEnabled : public std::false_type {};
template <>
struct PowerModeInitialVSyncEnabled<HWC_POWER_MODE_NORMAL> : public std::true_type {};
template <>
struct PowerModeInitialVSyncEnabled<HWC_POWER_MODE_DOZE> : public std::true_type {};
template <typename Case>
void SetPowerModeInternalTest::transitionDisplayCommon() {
// --------------------------------------------------------------------
// Preconditions
Case::Doze::setupComposerCallExpectations(this);
auto display =
Case::injectDisplayWithInitialPowerMode(this, Case::Transition::INITIAL_POWER_MODE);
Case::setInitialPrimaryHWVsyncEnabled(this,
PowerModeInitialVSyncEnabled<
Case::Transition::INITIAL_POWER_MODE>::value);
// --------------------------------------------------------------------
// Call Expectations
Case::setupSurfaceInterceptorCallExpectations(this, Case::Transition::TARGET_POWER_MODE);
Case::Transition::template setupCallExpectations<Case>(this);
// --------------------------------------------------------------------
// Invocation
mFlinger.setPowerModeInternal(display.mutableDisplayDevice(),
Case::Transition::TARGET_POWER_MODE);
// --------------------------------------------------------------------
// Postconditions
Case::Transition::verifyPostconditions(this);
}
TEST_F(SetPowerModeInternalTest, setPowerModeInternalDoesNothingIfNoChange) {
using Case = SimplePrimaryDisplayCase;
// --------------------------------------------------------------------
// Preconditions
// A primary display device is set up
Case::Display::injectHwcDisplay(this);
auto display = Case::Display::makeFakeExistingDisplayInjector(this);
display.inject();
// The display is already set to HWC_POWER_MODE_NORMAL
display.mutableDisplayDevice()->setPowerMode(HWC_POWER_MODE_NORMAL);
// --------------------------------------------------------------------
// Invocation
mFlinger.setPowerModeInternal(display.mutableDisplayDevice(), HWC_POWER_MODE_NORMAL);
// --------------------------------------------------------------------
// Postconditions
EXPECT_EQ(HWC_POWER_MODE_NORMAL, display.mutableDisplayDevice()->getPowerMode());
}
TEST_F(SetPowerModeInternalTest, setPowerModeInternalDoesNothingIfVirtualDisplay) {
using Case = HwcVirtualDisplayCase;
// --------------------------------------------------------------------
// Preconditions
// Insert display data so that the HWC thinks it created the virtual display.
const auto displayId = Case::Display::DISPLAY_ID::get();
ASSERT_TRUE(displayId);
mFlinger.mutableHwcDisplayData().try_emplace(*displayId);
// A virtual display device is set up
Case::Display::injectHwcDisplay(this);
auto display = Case::Display::makeFakeExistingDisplayInjector(this);
display.inject();
// The display is set to HWC_POWER_MODE_NORMAL
getDisplayDevice(display.token())->setPowerMode(HWC_POWER_MODE_NORMAL);
// --------------------------------------------------------------------
// Invocation
mFlinger.setPowerModeInternal(display.mutableDisplayDevice(), HWC_POWER_MODE_OFF);
// --------------------------------------------------------------------
// Postconditions
EXPECT_EQ(HWC_POWER_MODE_NORMAL, display.mutableDisplayDevice()->getPowerMode());
}
TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOffToOnPrimaryDisplay) {
transitionDisplayCommon<PrimaryDisplayPowerCase<TransitionOffToOnVariant>>();
}
TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOffToDozeSuspendPrimaryDisplay) {
transitionDisplayCommon<PrimaryDisplayPowerCase<TransitionOffToDozeSuspendVariant>>();
}
TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOnToOffPrimaryDisplay) {
transitionDisplayCommon<PrimaryDisplayPowerCase<TransitionOnToOffVariant>>();
}
TEST_F(SetPowerModeInternalTest, transitionsDisplayFromDozeSuspendToOffPrimaryDisplay) {
transitionDisplayCommon<PrimaryDisplayPowerCase<TransitionDozeSuspendToOffVariant>>();
}
TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOnToDozePrimaryDisplay) {
transitionDisplayCommon<PrimaryDisplayPowerCase<TransitionOnToDozeVariant>>();
}
TEST_F(SetPowerModeInternalTest, transitionsDisplayFromDozeSuspendToDozePrimaryDisplay) {
transitionDisplayCommon<PrimaryDisplayPowerCase<TransitionDozeSuspendToDozeVariant>>();
}
TEST_F(SetPowerModeInternalTest, transitionsDisplayFromDozeToOnPrimaryDisplay) {
transitionDisplayCommon<PrimaryDisplayPowerCase<TransitionDozeToOnVariant>>();
}
TEST_F(SetPowerModeInternalTest, transitionsDisplayFromDozeSuspendToOnPrimaryDisplay) {
transitionDisplayCommon<PrimaryDisplayPowerCase<TransitionDozeSuspendToOnVariant>>();
}
TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOnToDozeSuspendPrimaryDisplay) {
transitionDisplayCommon<PrimaryDisplayPowerCase<TransitionOnToDozeSuspendVariant>>();
}
TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOnToUnknownPrimaryDisplay) {
transitionDisplayCommon<PrimaryDisplayPowerCase<TransitionOnToUnknownVariant>>();
}
TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOffToOnExternalDisplay) {
transitionDisplayCommon<ExternalDisplayPowerCase<TransitionOffToOnVariant>>();
}
TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOffToDozeSuspendExternalDisplay) {
transitionDisplayCommon<ExternalDisplayPowerCase<TransitionOffToDozeSuspendVariant>>();
}
TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOnToOffExternalDisplay) {
transitionDisplayCommon<ExternalDisplayPowerCase<TransitionOnToOffVariant>>();
}
TEST_F(SetPowerModeInternalTest, transitionsDisplayFromDozeSuspendToOffExternalDisplay) {
transitionDisplayCommon<ExternalDisplayPowerCase<TransitionDozeSuspendToOffVariant>>();
}
TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOnToDozeExternalDisplay) {
transitionDisplayCommon<ExternalDisplayPowerCase<TransitionOnToDozeVariant>>();
}
TEST_F(SetPowerModeInternalTest, transitionsDisplayFromDozeSuspendToDozeExternalDisplay) {
transitionDisplayCommon<ExternalDisplayPowerCase<TransitionDozeSuspendToDozeVariant>>();
}
TEST_F(SetPowerModeInternalTest, transitionsDisplayFromDozeToOnExternalDisplay) {
transitionDisplayCommon<ExternalDisplayPowerCase<TransitionDozeToOnVariant>>();
}
TEST_F(SetPowerModeInternalTest, transitionsDisplayFromDozeSuspendToOnExternalDisplay) {
transitionDisplayCommon<ExternalDisplayPowerCase<TransitionDozeSuspendToOnVariant>>();
}
TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOnToDozeSuspendExternalDisplay) {
transitionDisplayCommon<ExternalDisplayPowerCase<TransitionOnToDozeSuspendVariant>>();
}
TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOnToUnknownExternalDisplay) {
transitionDisplayCommon<ExternalDisplayPowerCase<TransitionOnToUnknownVariant>>();
}
} // namespace
} // namespace android