blob: 58dc24440270825f6e45589f59c9b538c145dc30 [file] [log] [blame]
/*
* Copyright 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <compositionengine/impl/OutputCompositionState.h>
#include <compositionengine/impl/planner/CachedSet.h>
#include <compositionengine/impl/planner/Flattener.h>
#include <compositionengine/impl/planner/LayerState.h>
#include <compositionengine/mock/LayerFE.h>
#include <compositionengine/mock/OutputLayer.h>
#include <gtest/gtest.h>
#include <renderengine/ExternalTexture.h>
#include <renderengine/LayerSettings.h>
#include <renderengine/impl/ExternalTexture.h>
#include <renderengine/mock/RenderEngine.h>
#include <chrono>
#include "tests/TestUtils.h"
namespace android::compositionengine {
using namespace std::chrono_literals;
using impl::planner::CachedSet;
using impl::planner::Flattener;
using impl::planner::LayerState;
using impl::planner::NonBufferHash;
using testing::_;
using testing::ByMove;
using testing::ByRef;
using testing::DoAll;
using testing::Invoke;
using testing::Return;
using testing::ReturnRef;
using testing::Sequence;
using testing::SetArgPointee;
namespace {
class TestableFlattener : public Flattener {
public:
TestableFlattener(renderengine::RenderEngine& renderEngine, const Tunables& tunables)
: Flattener(renderEngine, tunables) {}
const std::optional<CachedSet>& getNewCachedSetForTesting() const { return mNewCachedSet; }
};
class FlattenerTest : public testing::Test {
public:
FlattenerTest()
: FlattenerTest(Flattener::Tunables{
.mActiveLayerTimeout = 100ms,
.mRenderScheduling = std::nullopt,
.mEnableHolePunch = true,
}) {}
void SetUp() override;
protected:
FlattenerTest(const Flattener::Tunables& tunables)
: mFlattener(std::make_unique<TestableFlattener>(mRenderEngine, tunables)) {}
void initializeOverrideBuffer(const std::vector<const LayerState*>& layers);
void initializeFlattener(const std::vector<const LayerState*>& layers);
void expectAllLayersFlattened(const std::vector<const LayerState*>& layers);
// mRenderEngine is held as a reference in mFlattener, so explicitly destroy mFlattener first.
renderengine::mock::RenderEngine mRenderEngine;
std::unique_ptr<TestableFlattener> mFlattener;
const std::chrono::steady_clock::time_point kStartTime = std::chrono::steady_clock::now();
std::chrono::steady_clock::time_point mTime = kStartTime;
struct TestLayer {
std::string name;
mock::OutputLayer outputLayer;
impl::OutputLayerCompositionState outputLayerCompositionState;
// LayerFE inherits from RefBase and must be held by an sp<>
sp<mock::LayerFE> layerFE;
LayerFECompositionState layerFECompositionState;
std::unique_ptr<LayerState> layerState;
};
static constexpr size_t kNumLayers = 5;
std::vector<std::unique_ptr<TestLayer>> mTestLayers;
impl::OutputCompositionState mOutputState;
};
void FlattenerTest::SetUp() {
mFlattener->setDisplaySize({1, 1});
for (size_t i = 0; i < kNumLayers; i++) {
auto testLayer = std::make_unique<TestLayer>();
auto pos = static_cast<int32_t>(i);
std::stringstream ss;
ss << "testLayer" << i;
testLayer->name = ss.str();
testLayer->outputLayerCompositionState.displayFrame = Rect(pos, pos, pos + 1, pos + 1);
testLayer->outputLayerCompositionState.visibleRegion =
Region(Rect(pos + 1, pos + 1, pos + 2, pos + 2));
testLayer->layerFECompositionState.buffer =
new GraphicBuffer(100, 100, HAL_PIXEL_FORMAT_RGBA_8888, 1,
GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN |
GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE,
"output");
testLayer->layerFE = sp<mock::LayerFE>::make();
EXPECT_CALL(*testLayer->layerFE, getSequence)
.WillRepeatedly(Return(static_cast<int32_t>(i)));
EXPECT_CALL(*testLayer->layerFE, getDebugName)
.WillRepeatedly(Return(testLayer->name.c_str()));
EXPECT_CALL(*testLayer->layerFE, getCompositionState)
.WillRepeatedly(Return(&testLayer->layerFECompositionState));
std::vector<LayerFE::LayerSettings> clientCompositionList = {
LayerFE::LayerSettings{},
};
EXPECT_CALL(*testLayer->layerFE, prepareClientCompositionList)
.WillRepeatedly(Return(clientCompositionList));
EXPECT_CALL(testLayer->outputLayer, getLayerFE)
.WillRepeatedly(ReturnRef(*testLayer->layerFE));
EXPECT_CALL(testLayer->outputLayer, getState)
.WillRepeatedly(ReturnRef(testLayer->outputLayerCompositionState));
EXPECT_CALL(testLayer->outputLayer, editState)
.WillRepeatedly(ReturnRef(testLayer->outputLayerCompositionState));
testLayer->layerState = std::make_unique<LayerState>(&testLayer->outputLayer);
testLayer->layerState->incrementFramesSinceBufferUpdate();
mTestLayers.emplace_back(std::move(testLayer));
// set up minimium params needed for rendering
mOutputState.dataspace = ui::Dataspace::SRGB;
mOutputState.framebufferSpace = ProjectionSpace(ui::Size(10, 20), Rect(10, 5));
mOutputState.framebufferSpace.setOrientation(ui::ROTATION_90);
}
}
void FlattenerTest::initializeOverrideBuffer(const std::vector<const LayerState*>& layers) {
for (const auto layer : layers) {
layer->getOutputLayer()->editState().overrideInfo = {};
}
}
void FlattenerTest::initializeFlattener(const std::vector<const LayerState*>& layers) {
// layer stack is unknown, reset current geomentry
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
// same geometry, update the internal layer stack
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
}
void FlattenerTest::expectAllLayersFlattened(const std::vector<const LayerState*>& layers) {
// layers would be flattened but the buffer would not be overridden
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _))
.WillOnce(Return(ByMove(
futureOf<renderengine::RenderEngineResult>({NO_ERROR, base::unique_fd()}))));
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
for (const auto layer : layers) {
EXPECT_EQ(nullptr, layer->getOutputLayer()->getState().overrideInfo.buffer);
}
// the new flattened layer is replaced
initializeOverrideBuffer(layers);
EXPECT_NE(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
const auto buffer = layers[0]->getOutputLayer()->getState().overrideInfo.buffer;
EXPECT_NE(nullptr, buffer);
for (const auto layer : layers) {
EXPECT_EQ(buffer, layer->getOutputLayer()->getState().overrideInfo.buffer);
}
}
TEST_F(FlattenerTest, flattenLayers_NewLayerStack) {
auto& layerState1 = mTestLayers[0]->layerState;
auto& layerState2 = mTestLayers[1]->layerState;
const std::vector<const LayerState*> layers = {
layerState1.get(),
layerState2.get(),
};
initializeFlattener(layers);
}
TEST_F(FlattenerTest, flattenLayers_ActiveLayersAreNotFlattened) {
auto& layerState1 = mTestLayers[0]->layerState;
auto& layerState2 = mTestLayers[1]->layerState;
const std::vector<const LayerState*> layers = {
layerState1.get(),
layerState2.get(),
};
initializeFlattener(layers);
// layers cannot be flattened yet, since they are still active
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
}
TEST_F(FlattenerTest, flattenLayers_ActiveLayersWithLowFpsAreFlattened) {
mTestLayers[0]->layerFECompositionState.fps = Flattener::kFpsActiveThreshold / 2;
mTestLayers[1]->layerFECompositionState.fps = Flattener::kFpsActiveThreshold;
auto& layerState1 = mTestLayers[0]->layerState;
auto& layerState2 = mTestLayers[1]->layerState;
const std::vector<const LayerState*> layers = {
layerState1.get(),
layerState2.get(),
};
initializeFlattener(layers);
expectAllLayersFlattened(layers);
}
TEST_F(FlattenerTest, flattenLayers_basicFlatten) {
auto& layerState1 = mTestLayers[0]->layerState;
auto& layerState2 = mTestLayers[1]->layerState;
auto& layerState3 = mTestLayers[2]->layerState;
const std::vector<const LayerState*> layers = {
layerState1.get(),
layerState2.get(),
layerState3.get(),
};
initializeFlattener(layers);
// make all layers inactive
mTime += 200ms;
expectAllLayersFlattened(layers);
}
TEST_F(FlattenerTest, flattenLayers_FlattenedLayersStayFlattenWhenNoUpdate) {
auto& layerState1 = mTestLayers[0]->layerState;
const auto& overrideBuffer1 = layerState1->getOutputLayer()->getState().overrideInfo.buffer;
auto& layerState2 = mTestLayers[1]->layerState;
const auto& overrideBuffer2 = layerState2->getOutputLayer()->getState().overrideInfo.buffer;
auto& layerState3 = mTestLayers[2]->layerState;
const auto& overrideBuffer3 = layerState3->getOutputLayer()->getState().overrideInfo.buffer;
const std::vector<const LayerState*> layers = {
layerState1.get(),
layerState2.get(),
layerState3.get(),
};
initializeFlattener(layers);
// make all layers inactive
mTime += 200ms;
expectAllLayersFlattened(layers);
initializeOverrideBuffer(layers);
EXPECT_NE(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_NE(nullptr, overrideBuffer1);
EXPECT_EQ(overrideBuffer1, overrideBuffer2);
EXPECT_EQ(overrideBuffer2, overrideBuffer3);
}
TEST_F(FlattenerTest, flattenLayers_FlattenedLayersSetsProjectionSpace) {
auto& layerState1 = mTestLayers[0]->layerState;
const auto& overrideDisplaySpace =
layerState1->getOutputLayer()->getState().overrideInfo.displaySpace;
auto& layerState2 = mTestLayers[1]->layerState;
const std::vector<const LayerState*> layers = {
layerState1.get(),
layerState2.get(),
};
initializeFlattener(layers);
// make all layers inactive
mTime += 200ms;
expectAllLayersFlattened(layers);
EXPECT_EQ(overrideDisplaySpace, mOutputState.framebufferSpace);
}
TEST_F(FlattenerTest, flattenLayers_FlattenedLayersSetsDamageRegions) {
auto& layerState1 = mTestLayers[0]->layerState;
const auto& overrideDamageRegion =
layerState1->getOutputLayer()->getState().overrideInfo.damageRegion;
auto& layerState2 = mTestLayers[1]->layerState;
const std::vector<const LayerState*> layers = {
layerState1.get(),
layerState2.get(),
};
initializeFlattener(layers);
// make all layers inactive
mTime += 200ms;
expectAllLayersFlattened(layers);
EXPECT_TRUE(overrideDamageRegion.isRect() &&
overrideDamageRegion.bounds() == Rect::INVALID_RECT);
initializeOverrideBuffer(layers);
EXPECT_NE(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
EXPECT_TRUE(overrideDamageRegion.isRect() && overrideDamageRegion.bounds() == Rect::EMPTY_RECT);
}
TEST_F(FlattenerTest, flattenLayers_FlattenedLayersSetsVisibleRegion) {
auto& layerState1 = mTestLayers[0]->layerState;
const auto& overrideVisibleRegion =
layerState1->getOutputLayer()->getState().overrideInfo.visibleRegion;
auto& layerState2 = mTestLayers[1]->layerState;
const std::vector<const LayerState*> layers = {
layerState1.get(),
layerState2.get(),
};
initializeFlattener(layers);
// make all layers inactive
mTime += 200ms;
expectAllLayersFlattened(layers);
Region expectedRegion;
expectedRegion.orSelf(Rect(1, 1, 2, 2));
expectedRegion.orSelf(Rect(2, 2, 3, 3));
EXPECT_TRUE(overrideVisibleRegion.hasSameRects(expectedRegion));
}
TEST_F(FlattenerTest, flattenLayers_addLayerToFlattenedCauseReset) {
auto& layerState1 = mTestLayers[0]->layerState;
const auto& overrideBuffer1 = layerState1->getOutputLayer()->getState().overrideInfo.buffer;
auto& layerState2 = mTestLayers[1]->layerState;
const auto& overrideBuffer2 = layerState2->getOutputLayer()->getState().overrideInfo.buffer;
auto& layerState3 = mTestLayers[2]->layerState;
const auto& overrideBuffer3 = layerState3->getOutputLayer()->getState().overrideInfo.buffer;
std::vector<const LayerState*> layers = {
layerState1.get(),
layerState2.get(),
};
initializeFlattener(layers);
// make all layers inactive
mTime += 200ms;
initializeOverrideBuffer(layers);
expectAllLayersFlattened(layers);
// add a new layer to the stack, this will cause all the flatenner to reset
layers.push_back(layerState3.get());
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_EQ(nullptr, overrideBuffer1);
EXPECT_EQ(nullptr, overrideBuffer2);
EXPECT_EQ(nullptr, overrideBuffer3);
}
TEST_F(FlattenerTest, flattenLayers_BufferUpdateToFlatten) {
auto& layerState1 = mTestLayers[0]->layerState;
const auto& overrideBuffer1 = layerState1->getOutputLayer()->getState().overrideInfo.buffer;
auto& layerState2 = mTestLayers[1]->layerState;
const auto& overrideBuffer2 = layerState2->getOutputLayer()->getState().overrideInfo.buffer;
auto& layerState3 = mTestLayers[2]->layerState;
const auto& overrideBuffer3 = layerState3->getOutputLayer()->getState().overrideInfo.buffer;
const std::vector<const LayerState*> layers = {
layerState1.get(),
layerState2.get(),
layerState3.get(),
};
initializeFlattener(layers);
// make all layers inactive
mTime += 200ms;
expectAllLayersFlattened(layers);
// Layer 1 posted a buffer update, layers would be decomposed, and a new drawFrame would be
// caleed for Layer2 and Layer3
layerState1->resetFramesSinceBufferUpdate();
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _))
.WillOnce(Return(ByMove(
futureOf<renderengine::RenderEngineResult>({NO_ERROR, base::unique_fd()}))));
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_EQ(nullptr, overrideBuffer1);
EXPECT_EQ(nullptr, overrideBuffer2);
EXPECT_EQ(nullptr, overrideBuffer3);
initializeOverrideBuffer(layers);
EXPECT_NE(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_EQ(nullptr, overrideBuffer1);
EXPECT_NE(nullptr, overrideBuffer2);
EXPECT_EQ(overrideBuffer2, overrideBuffer3);
layerState1->incrementFramesSinceBufferUpdate();
mTime += 200ms;
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _))
.WillOnce(Return(ByMove(
futureOf<renderengine::RenderEngineResult>({NO_ERROR, base::unique_fd()}))));
initializeOverrideBuffer(layers);
EXPECT_NE(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_EQ(nullptr, overrideBuffer1);
EXPECT_NE(nullptr, overrideBuffer2);
EXPECT_EQ(overrideBuffer2, overrideBuffer3);
initializeOverrideBuffer(layers);
EXPECT_NE(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_NE(nullptr, overrideBuffer1);
EXPECT_EQ(overrideBuffer1, overrideBuffer2);
EXPECT_EQ(overrideBuffer2, overrideBuffer3);
}
TEST_F(FlattenerTest, flattenLayers_BufferUpdateForMiddleLayer) {
auto& layerState1 = mTestLayers[0]->layerState;
const auto& overrideBuffer1 = layerState1->getOutputLayer()->getState().overrideInfo.buffer;
auto& layerState2 = mTestLayers[1]->layerState;
const auto& overrideBuffer2 = layerState2->getOutputLayer()->getState().overrideInfo.buffer;
auto& layerState3 = mTestLayers[2]->layerState;
const auto& overrideBuffer3 = layerState3->getOutputLayer()->getState().overrideInfo.buffer;
auto& layerState4 = mTestLayers[3]->layerState;
const auto& overrideBuffer4 = layerState4->getOutputLayer()->getState().overrideInfo.buffer;
auto& layerState5 = mTestLayers[4]->layerState;
const auto& overrideBuffer5 = layerState5->getOutputLayer()->getState().overrideInfo.buffer;
const std::vector<const LayerState*> layers = {
layerState1.get(), layerState2.get(), layerState3.get(),
layerState4.get(), layerState5.get(),
};
initializeFlattener(layers);
// make all layers inactive
mTime += 200ms;
expectAllLayersFlattened(layers);
// Layer 3 posted a buffer update, layers would be decomposed, and a new drawFrame would be
// called for Layer1 and Layer2
layerState3->resetFramesSinceBufferUpdate();
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _))
.WillOnce(Return(ByMove(
futureOf<renderengine::RenderEngineResult>({NO_ERROR, base::unique_fd()}))));
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_EQ(nullptr, overrideBuffer1);
EXPECT_EQ(nullptr, overrideBuffer2);
EXPECT_EQ(nullptr, overrideBuffer3);
EXPECT_EQ(nullptr, overrideBuffer4);
EXPECT_EQ(nullptr, overrideBuffer5);
// Layers 1 and 2 will be flattened a new drawFrame would be called for Layer4 and Layer5
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _))
.WillOnce(Return(ByMove(
futureOf<renderengine::RenderEngineResult>({NO_ERROR, base::unique_fd()}))));
initializeOverrideBuffer(layers);
EXPECT_NE(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mOutputState.framebufferSpace.setOrientation(ui::ROTATION_90);
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_NE(nullptr, overrideBuffer1);
EXPECT_EQ(overrideBuffer1, overrideBuffer2);
EXPECT_EQ(nullptr, overrideBuffer3);
EXPECT_EQ(nullptr, overrideBuffer4);
EXPECT_EQ(nullptr, overrideBuffer5);
// Layers 4 and 5 will be flattened
initializeOverrideBuffer(layers);
EXPECT_NE(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mOutputState.framebufferSpace.setOrientation(ui::ROTATION_180);
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_NE(nullptr, overrideBuffer1);
EXPECT_EQ(overrideBuffer1, overrideBuffer2);
EXPECT_EQ(nullptr, overrideBuffer3);
EXPECT_NE(nullptr, overrideBuffer4);
EXPECT_EQ(overrideBuffer4, overrideBuffer5);
layerState3->incrementFramesSinceBufferUpdate();
mTime += 200ms;
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _))
.WillOnce(Return(ByMove(
futureOf<renderengine::RenderEngineResult>({NO_ERROR, base::unique_fd()}))));
initializeOverrideBuffer(layers);
EXPECT_NE(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_NE(nullptr, overrideBuffer1);
EXPECT_EQ(overrideBuffer1, overrideBuffer2);
EXPECT_EQ(nullptr, overrideBuffer3);
EXPECT_NE(nullptr, overrideBuffer4);
EXPECT_EQ(overrideBuffer4, overrideBuffer5);
initializeOverrideBuffer(layers);
EXPECT_NE(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mOutputState.framebufferSpace.setOrientation(ui::ROTATION_270);
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_NE(nullptr, overrideBuffer1);
EXPECT_EQ(overrideBuffer1, overrideBuffer2);
EXPECT_EQ(overrideBuffer2, overrideBuffer3);
EXPECT_EQ(overrideBuffer3, overrideBuffer4);
EXPECT_EQ(overrideBuffer4, overrideBuffer5);
}
// Tests for a PIP
TEST_F(FlattenerTest, flattenLayers_pipRequiresRoundedCorners) {
auto& layerState1 = mTestLayers[0]->layerState;
const auto& overrideBuffer1 = layerState1->getOutputLayer()->getState().overrideInfo.buffer;
auto& layerState2 = mTestLayers[1]->layerState;
const auto& overrideBuffer2 = layerState2->getOutputLayer()->getState().overrideInfo.buffer;
auto& layerState3 = mTestLayers[2]->layerState;
const auto& overrideBuffer3 = layerState3->getOutputLayer()->getState().overrideInfo.buffer;
const std::vector<const LayerState*> layers = {
layerState1.get(),
layerState2.get(),
layerState3.get(),
};
initializeFlattener(layers);
// 3 has a buffer update, so it will not be merged, but it has no round
// corners, so it is not a PIP.
mTime += 200ms;
layerState3->resetFramesSinceBufferUpdate();
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
// This will render a CachedSet.
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _))
.WillOnce(Return(ByMove(
futureOf<renderengine::RenderEngineResult>({NO_ERROR, base::unique_fd()}))));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
// We've rendered a CachedSet, but we haven't merged it in.
EXPECT_EQ(nullptr, overrideBuffer1);
EXPECT_EQ(nullptr, overrideBuffer2);
EXPECT_EQ(nullptr, overrideBuffer3);
// This time we merge the CachedSet in, so we have a new hash, and we should
// only have two sets.
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _)).Times(0);
initializeOverrideBuffer(layers);
EXPECT_NE(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_NE(nullptr, overrideBuffer1);
EXPECT_EQ(overrideBuffer1, overrideBuffer2);
EXPECT_EQ(nullptr, overrideBuffer3);
}
TEST_F(FlattenerTest, flattenLayers_pip) {
mTestLayers[0]->outputLayerCompositionState.displayFrame = Rect(0, 0, 5, 5);
auto& layerState1 = mTestLayers[0]->layerState;
const auto& overrideBuffer1 = layerState1->getOutputLayer()->getState().overrideInfo.buffer;
auto& layerState2 = mTestLayers[1]->layerState;
const auto& overrideBuffer2 = layerState2->getOutputLayer()->getState().overrideInfo.buffer;
auto& layerState3 = mTestLayers[2]->layerState;
const auto& overrideBuffer3 = layerState3->getOutputLayer()->getState().overrideInfo.buffer;
EXPECT_CALL(*mTestLayers[2]->layerFE, hasRoundedCorners()).WillRepeatedly(Return(true));
std::vector<LayerFE::LayerSettings> clientCompositionList = {
LayerFE::LayerSettings{},
};
clientCompositionList[0].source.buffer.buffer = std::make_shared<
renderengine::impl::ExternalTexture>(mTestLayers[2]->layerFECompositionState.buffer,
mRenderEngine,
renderengine::impl::ExternalTexture::Usage::
READABLE);
EXPECT_CALL(*mTestLayers[2]->layerFE, prepareClientCompositionList(_))
.WillOnce(Return(clientCompositionList));
const std::vector<const LayerState*> layers = {
layerState1.get(),
layerState2.get(),
layerState3.get(),
};
initializeFlattener(layers);
// 3 has a buffer update, so it will not be merged, and it has round
// corners, so it is a PIP.
mTime += 200ms;
layerState3->resetFramesSinceBufferUpdate();
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
// This will render a CachedSet.
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _))
.WillOnce(Return(ByMove(
futureOf<renderengine::RenderEngineResult>({NO_ERROR, base::unique_fd()}))));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
// We've rendered a CachedSet, but we haven't merged it in.
EXPECT_EQ(nullptr, overrideBuffer1);
EXPECT_EQ(nullptr, overrideBuffer2);
EXPECT_EQ(nullptr, overrideBuffer3);
// This time we merge the CachedSet in, so we have a new hash, and we should
// only have two sets.
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _)).Times(0);
initializeOverrideBuffer(layers);
EXPECT_NE(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_NE(nullptr, overrideBuffer1);
EXPECT_EQ(overrideBuffer1, overrideBuffer2);
EXPECT_EQ(nullptr, overrideBuffer3);
const auto* peekThroughLayer1 =
layerState1->getOutputLayer()->getState().overrideInfo.peekThroughLayer;
const auto* peekThroughLayer2 =
layerState2->getOutputLayer()->getState().overrideInfo.peekThroughLayer;
EXPECT_EQ(&mTestLayers[2]->outputLayer, peekThroughLayer1);
EXPECT_EQ(peekThroughLayer1, peekThroughLayer2);
}
// A test that verifies the hole puch optimization can be done on a single layer.
TEST_F(FlattenerTest, flattenLayers_holePunchSingleLayer) {
mTestLayers[0]->outputLayerCompositionState.displayFrame = Rect(0, 0, 5, 5);
// An opaque static background
auto& layerState0 = mTestLayers[0]->layerState;
const auto& overrideBuffer0 = layerState0->getOutputLayer()->getState().overrideInfo.buffer;
// a rounded updating layer
auto& layerState1 = mTestLayers[1]->layerState;
const auto& overrideBuffer1 = layerState1->getOutputLayer()->getState().overrideInfo.buffer;
EXPECT_CALL(*mTestLayers[1]->layerFE, hasRoundedCorners()).WillRepeatedly(Return(true));
std::vector<LayerFE::LayerSettings> clientCompositionList = {
LayerFE::LayerSettings{},
};
clientCompositionList[0].source.buffer.buffer = std::make_shared<
renderengine::impl::ExternalTexture>(mTestLayers[1]->layerFECompositionState.buffer,
mRenderEngine,
renderengine::impl::ExternalTexture::Usage::
READABLE);
EXPECT_CALL(*mTestLayers[1]->layerFE, prepareClientCompositionList(_))
.WillOnce(Return(clientCompositionList));
const std::vector<const LayerState*> layers = {
layerState0.get(),
layerState1.get(),
};
initializeFlattener(layers);
// layer 1 satisfies every condition in CachedSet::requiresHolePunch()
mTime += 200ms;
layerState1->resetFramesSinceBufferUpdate(); // it is updating
initializeOverrideBuffer(layers);
// Expect no cache invalidation the first time (there's no cache yet)
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
// This will render a CachedSet of layer 0. Though it is just one layer, it satisfies the
// exception that there would be a hole punch above it.
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _))
.WillOnce(Return(ByMove(
futureOf<renderengine::RenderEngineResult>({NO_ERROR, base::unique_fd()}))));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
// We've rendered a CachedSet, but we haven't merged it in.
EXPECT_EQ(nullptr, overrideBuffer0);
// This time we merge the CachedSet in and we should still have only two sets.
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _)).Times(0);
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_NE(nullptr, overrideBuffer0); // got overridden
EXPECT_EQ(nullptr, overrideBuffer1); // did not
// expect 0's peek though layer to be 1's output layer
const auto* peekThroughLayer0 =
layerState0->getOutputLayer()->getState().overrideInfo.peekThroughLayer;
const auto* peekThroughLayer1 =
layerState1->getOutputLayer()->getState().overrideInfo.peekThroughLayer;
EXPECT_EQ(&mTestLayers[1]->outputLayer, peekThroughLayer0);
EXPECT_EQ(nullptr, peekThroughLayer1);
}
TEST_F(FlattenerTest, flattenLayers_holePunchSingleColorLayer) {
mTestLayers[0]->outputLayerCompositionState.displayFrame = Rect(0, 0, 5, 5);
mTestLayers[0]->layerFECompositionState.color = half4(255.f, 0.f, 0.f, 255.f);
mTestLayers[0]->layerFECompositionState.buffer = nullptr;
// An opaque static background
auto& layerState0 = mTestLayers[0]->layerState;
const auto& overrideBuffer0 = layerState0->getOutputLayer()->getState().overrideInfo.buffer;
// a rounded updating layer
auto& layerState1 = mTestLayers[1]->layerState;
const auto& overrideBuffer1 = layerState1->getOutputLayer()->getState().overrideInfo.buffer;
EXPECT_CALL(*mTestLayers[1]->layerFE, hasRoundedCorners()).WillRepeatedly(Return(true));
std::vector<LayerFE::LayerSettings> clientCompositionList = {
LayerFE::LayerSettings{},
};
clientCompositionList[0].source.buffer.buffer = std::make_shared<
renderengine::impl::ExternalTexture>(mTestLayers[1]->layerFECompositionState.buffer,
mRenderEngine,
renderengine::impl::ExternalTexture::Usage::
READABLE);
EXPECT_CALL(*mTestLayers[1]->layerFE, prepareClientCompositionList(_))
.WillOnce(Return(clientCompositionList));
const std::vector<const LayerState*> layers = {
layerState0.get(),
layerState1.get(),
};
initializeFlattener(layers);
// layer 1 satisfies every condition in CachedSet::requiresHolePunch()
mTime += 200ms;
layerState1->resetFramesSinceBufferUpdate(); // it is updating
initializeOverrideBuffer(layers);
// Expect no cache invalidation the first time (there's no cache yet)
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
// This will render a CachedSet of layer 0. Though it is just one layer, it satisfies the
// exception that there would be a hole punch above it.
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _))
.WillOnce(Return(ByMove(
futureOf<renderengine::RenderEngineResult>({NO_ERROR, base::unique_fd()}))));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
// We've rendered a CachedSet, but we haven't merged it in.
EXPECT_EQ(nullptr, overrideBuffer0);
// This time we merge the CachedSet in and we should still have only two sets.
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _)).Times(0);
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_NE(nullptr, overrideBuffer0); // got overridden
EXPECT_EQ(nullptr, overrideBuffer1); // did not
// expect 0's peek though layer to be 1's output layer
const auto* peekThroughLayer0 =
layerState0->getOutputLayer()->getState().overrideInfo.peekThroughLayer;
const auto* peekThroughLayer1 =
layerState1->getOutputLayer()->getState().overrideInfo.peekThroughLayer;
EXPECT_EQ(&mTestLayers[1]->outputLayer, peekThroughLayer0);
EXPECT_EQ(nullptr, peekThroughLayer1);
}
TEST_F(FlattenerTest, flattenLayers_flattensBlurBehindRunIfFirstRun) {
auto& layerState1 = mTestLayers[0]->layerState;
auto& layerState2 = mTestLayers[1]->layerState;
mTestLayers[1]->layerFECompositionState.backgroundBlurRadius = 1;
layerState2->update(&mTestLayers[1]->outputLayer);
auto& layerState3 = mTestLayers[2]->layerState;
const auto& overrideBuffer1 = layerState1->getOutputLayer()->getState().overrideInfo.buffer;
const auto& overrideBuffer2 = layerState2->getOutputLayer()->getState().overrideInfo.buffer;
const auto& overrideBuffer3 = layerState3->getOutputLayer()->getState().overrideInfo.buffer;
const std::vector<const LayerState*> layers = {
layerState1.get(),
layerState2.get(),
layerState3.get(),
};
initializeFlattener(layers);
// Mark the first two layers inactive, which contain the blur behind
mTime += 200ms;
layerState3->resetFramesSinceBufferUpdate();
// layers would be flattened but the buffer would not be overridden
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _))
.WillOnce(Return(ByMove(
futureOf<renderengine::RenderEngineResult>({NO_ERROR, base::unique_fd()}))));
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
for (const auto layer : layers) {
EXPECT_EQ(nullptr, layer->getOutputLayer()->getState().overrideInfo.buffer);
}
// the new flattened layer is replaced
initializeOverrideBuffer(layers);
EXPECT_NE(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_NE(nullptr, overrideBuffer1);
EXPECT_EQ(overrideBuffer1, overrideBuffer2);
EXPECT_EQ(nullptr, overrideBuffer3);
}
TEST_F(FlattenerTest, flattenLayers_doesNotFlattenBlurBehindRun) {
auto& layerState1 = mTestLayers[0]->layerState;
auto& layerState2 = mTestLayers[1]->layerState;
mTestLayers[1]->layerFECompositionState.backgroundBlurRadius = 1;
layerState2->update(&mTestLayers[1]->outputLayer);
auto& layerState3 = mTestLayers[2]->layerState;
const std::vector<const LayerState*> layers = {
layerState1.get(),
layerState2.get(),
layerState3.get(),
};
initializeFlattener(layers);
// Mark the last two layers inactive, which contains the blur layer, but does not contain the
// first layer
mTime += 200ms;
layerState1->resetFramesSinceBufferUpdate();
// layers would be flattened but the buffer would not be overridden
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _))
.WillRepeatedly(Return(ByMove(
futureOf<renderengine::RenderEngineResult>({NO_ERROR, base::unique_fd()}))));
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
for (const auto layer : layers) {
EXPECT_EQ(nullptr, layer->getOutputLayer()->getState().overrideInfo.buffer);
}
// nothing is flattened because the last two frames cannot be cached due to containing a blur
// layer
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
for (const auto layer : layers) {
EXPECT_EQ(nullptr, layer->getOutputLayer()->getState().overrideInfo.buffer);
}
}
TEST_F(FlattenerTest, flattenLayers_flattenSkipsLayerWithBlurBehind) {
auto& layerState1 = mTestLayers[0]->layerState;
auto& layerStateWithBlurBehind = mTestLayers[1]->layerState;
mTestLayers[1]->layerFECompositionState.backgroundBlurRadius = 1;
layerStateWithBlurBehind->update(&mTestLayers[1]->outputLayer);
auto& layerState3 = mTestLayers[2]->layerState;
auto& layerState4 = mTestLayers[3]->layerState;
const auto& overrideBuffer1 = layerState1->getOutputLayer()->getState().overrideInfo.buffer;
const auto& blurOverrideBuffer =
layerStateWithBlurBehind->getOutputLayer()->getState().overrideInfo.buffer;
const auto& overrideBuffer3 = layerState3->getOutputLayer()->getState().overrideInfo.buffer;
const auto& overrideBuffer4 = layerState4->getOutputLayer()->getState().overrideInfo.buffer;
const std::vector<const LayerState*> layers = {
layerState1.get(),
layerStateWithBlurBehind.get(),
layerState3.get(),
layerState4.get(),
};
initializeFlattener(layers);
// Mark the last three layers inactive, which contains the blur layer, but does not contain the
// first layer
mTime += 200ms;
layerState1->resetFramesSinceBufferUpdate();
// layers would be flattened but the buffer would not be overridden
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _))
.WillOnce(Return(ByMove(
futureOf<renderengine::RenderEngineResult>({NO_ERROR, base::unique_fd()}))));
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
for (const auto layer : layers) {
EXPECT_EQ(nullptr, layer->getOutputLayer()->getState().overrideInfo.buffer);
}
// the new flattened layer is replaced
initializeOverrideBuffer(layers);
EXPECT_NE(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_EQ(nullptr, overrideBuffer1);
EXPECT_EQ(nullptr, blurOverrideBuffer);
EXPECT_NE(nullptr, overrideBuffer3);
EXPECT_EQ(overrideBuffer3, overrideBuffer4);
}
TEST_F(FlattenerTest, flattenLayers_whenBlurLayerIsChanging_appliesBlurToInactiveBehindLayers) {
auto& layerState1 = mTestLayers[0]->layerState;
auto& layerState2 = mTestLayers[1]->layerState;
auto& layerStateWithBlurBehind = mTestLayers[2]->layerState;
mTestLayers[2]->layerFECompositionState.backgroundBlurRadius = 1;
layerStateWithBlurBehind->update(&mTestLayers[2]->outputLayer);
const auto& overrideBuffer1 = layerState1->getOutputLayer()->getState().overrideInfo.buffer;
const auto& overrideBuffer2 = layerState2->getOutputLayer()->getState().overrideInfo.buffer;
const auto& blurOverrideBuffer =
layerStateWithBlurBehind->getOutputLayer()->getState().overrideInfo.buffer;
const std::vector<const LayerState*> layers = {
layerState1.get(),
layerState2.get(),
layerStateWithBlurBehind.get(),
};
initializeFlattener(layers);
// Mark the first two layers inactive, but update the blur layer
mTime += 200ms;
layerStateWithBlurBehind->resetFramesSinceBufferUpdate();
// layers would be flattened but the buffer would not be overridden
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _))
.WillOnce(Return(ByMove(
futureOf<renderengine::RenderEngineResult>({NO_ERROR, base::unique_fd()}))));
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
const auto& cachedSet = mFlattener->getNewCachedSetForTesting();
ASSERT_NE(std::nullopt, cachedSet);
EXPECT_EQ(&mTestLayers[2]->outputLayer, cachedSet->getBlurLayer());
for (const auto layer : layers) {
EXPECT_EQ(nullptr, layer->getOutputLayer()->getState().overrideInfo.buffer);
}
// the new flattened layer is replaced
initializeOverrideBuffer(layers);
EXPECT_NE(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_NE(nullptr, overrideBuffer1);
EXPECT_EQ(overrideBuffer2, overrideBuffer1);
EXPECT_EQ(nullptr, blurOverrideBuffer);
}
TEST_F(FlattenerTest, flattenLayers_renderCachedSets_doesNotRenderTwice) {
auto& layerState1 = mTestLayers[0]->layerState;
auto& layerState2 = mTestLayers[1]->layerState;
const auto& overrideBuffer1 = layerState1->getOutputLayer()->getState().overrideInfo.buffer;
const auto& overrideBuffer2 = layerState2->getOutputLayer()->getState().overrideInfo.buffer;
const std::vector<const LayerState*> layers = {
layerState1.get(),
layerState2.get(),
};
initializeFlattener(layers);
// Mark the layers inactive
mTime += 200ms;
// layers would be flattened but the buffer would not be overridden
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _))
.WillOnce(Return(ByMove(
futureOf<renderengine::RenderEngineResult>({NO_ERROR, base::unique_fd()}))));
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_EQ(nullptr, overrideBuffer1);
EXPECT_EQ(nullptr, overrideBuffer2);
// Simulate attempting to render prior to merging the new cached set with the layer stack.
// Here we should not try to re-render.
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _)).Times(0);
mFlattener->renderCachedSets(mOutputState, std::nullopt);
// We provide the override buffer now that it's rendered
EXPECT_NE(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_NE(nullptr, overrideBuffer1);
EXPECT_EQ(overrideBuffer2, overrideBuffer1);
}
const constexpr std::chrono::nanoseconds kCachedSetRenderDuration = 0ms;
const constexpr size_t kMaxDeferRenderAttempts = 2;
class FlattenerRenderSchedulingTest : public FlattenerTest {
public:
FlattenerRenderSchedulingTest()
: FlattenerTest(
Flattener::Tunables{.mActiveLayerTimeout = 100ms,
.mRenderScheduling = Flattener::Tunables::
RenderScheduling{.cachedSetRenderDuration =
kCachedSetRenderDuration,
.maxDeferRenderAttempts =
kMaxDeferRenderAttempts},
.mEnableHolePunch = true}) {}
};
TEST_F(FlattenerRenderSchedulingTest, flattenLayers_renderCachedSets_defersUpToMaxAttempts) {
auto& layerState1 = mTestLayers[0]->layerState;
auto& layerState2 = mTestLayers[1]->layerState;
const std::vector<const LayerState*> layers = {
layerState1.get(),
layerState2.get(),
};
initializeFlattener(layers);
// Mark the layers inactive
mTime += 200ms;
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
for (size_t i = 0; i < kMaxDeferRenderAttempts; i++) {
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _)).Times(0);
mFlattener->renderCachedSets(mOutputState,
std::chrono::steady_clock::now() -
(kCachedSetRenderDuration + 10ms));
}
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _))
.WillOnce(Return(ByMove(
futureOf<renderengine::RenderEngineResult>({NO_ERROR, base::unique_fd()}))));
mFlattener->renderCachedSets(mOutputState,
std::chrono::steady_clock::now() -
(kCachedSetRenderDuration + 10ms));
}
TEST_F(FlattenerTest, flattenLayers_skipsBT601_625) {
auto& layerState1 = mTestLayers[0]->layerState;
const auto& overrideBuffer1 = layerState1->getOutputLayer()->getState().overrideInfo.buffer;
auto& layerState2 = mTestLayers[1]->layerState;
const auto& overrideBuffer2 = layerState2->getOutputLayer()->getState().overrideInfo.buffer;
// The third layer uses a dataspace that will not be flattened due to
// possible mismatch with DPU rendering.
auto& layerState3 = mTestLayers[2]->layerState;
const auto& overrideBuffer3 = layerState3->getOutputLayer()->getState().overrideInfo.buffer;
mTestLayers[2]->outputLayerCompositionState.dataspace = ui::Dataspace::STANDARD_BT601_625;
mTestLayers[2]->layerState->update(&mTestLayers[2]->outputLayer);
const std::vector<const LayerState*> layers = {
layerState1.get(),
layerState2.get(),
layerState3.get(),
};
initializeFlattener(layers);
mTime += 200ms;
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
// This will render a CachedSet.
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _))
.WillOnce(Return(ByMove(
futureOf<renderengine::RenderEngineResult>({NO_ERROR, base::unique_fd()}))));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
// We've rendered a CachedSet, but we haven't merged it in.
EXPECT_EQ(nullptr, overrideBuffer1);
EXPECT_EQ(nullptr, overrideBuffer2);
EXPECT_EQ(nullptr, overrideBuffer3);
// This time we merge the CachedSet in, so we have a new hash, and we should
// only have two sets.
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _)).Times(0);
initializeOverrideBuffer(layers);
EXPECT_NE(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_NE(nullptr, overrideBuffer1);
EXPECT_EQ(overrideBuffer1, overrideBuffer2);
EXPECT_EQ(nullptr, overrideBuffer3);
}
TEST_F(FlattenerTest, flattenLayers_skipsHDR) {
auto& layerState1 = mTestLayers[0]->layerState;
const auto& overrideBuffer1 = layerState1->getOutputLayer()->getState().overrideInfo.buffer;
auto& layerState2 = mTestLayers[1]->layerState;
const auto& overrideBuffer2 = layerState2->getOutputLayer()->getState().overrideInfo.buffer;
// The third layer uses a dataspace that will not be flattened due to
// possible mismatch with DPU rendering.
auto& layerState3 = mTestLayers[2]->layerState;
const auto& overrideBuffer3 = layerState3->getOutputLayer()->getState().overrideInfo.buffer;
mTestLayers[2]->outputLayerCompositionState.dataspace = ui::Dataspace::BT2020_ITU_HLG;
mTestLayers[2]->layerState->update(&mTestLayers[2]->outputLayer);
const std::vector<const LayerState*> layers = {
layerState1.get(),
layerState2.get(),
layerState3.get(),
};
initializeFlattener(layers);
mTime += 200ms;
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
// This will render a CachedSet.
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _))
.WillOnce(Return(ByMove(
futureOf<renderengine::RenderEngineResult>({NO_ERROR, base::unique_fd()}))));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
// We've rendered a CachedSet, but we haven't merged it in.
EXPECT_EQ(nullptr, overrideBuffer1);
EXPECT_EQ(nullptr, overrideBuffer2);
EXPECT_EQ(nullptr, overrideBuffer3);
// This time we merge the CachedSet in, so we have a new hash, and we should
// only have two sets.
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _)).Times(0);
initializeOverrideBuffer(layers);
EXPECT_NE(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_NE(nullptr, overrideBuffer1);
EXPECT_EQ(overrideBuffer1, overrideBuffer2);
EXPECT_EQ(nullptr, overrideBuffer3);
}
TEST_F(FlattenerTest, flattenLayers_skipsHDR2) {
auto& layerState1 = mTestLayers[0]->layerState;
const auto& overrideBuffer1 = layerState1->getOutputLayer()->getState().overrideInfo.buffer;
auto& layerState2 = mTestLayers[1]->layerState;
const auto& overrideBuffer2 = layerState2->getOutputLayer()->getState().overrideInfo.buffer;
// The third layer uses a dataspace that will not be flattened due to
// possible mismatch with DPU rendering.
auto& layerState3 = mTestLayers[2]->layerState;
const auto& overrideBuffer3 = layerState3->getOutputLayer()->getState().overrideInfo.buffer;
mTestLayers[2]->outputLayerCompositionState.dataspace = ui::Dataspace::BT2020_PQ;
mTestLayers[2]->layerState->update(&mTestLayers[2]->outputLayer);
const std::vector<const LayerState*> layers = {
layerState1.get(),
layerState2.get(),
layerState3.get(),
};
initializeFlattener(layers);
mTime += 200ms;
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
// This will render a CachedSet.
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _))
.WillOnce(Return(ByMove(
futureOf<renderengine::RenderEngineResult>({NO_ERROR, base::unique_fd()}))));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
// We've rendered a CachedSet, but we haven't merged it in.
EXPECT_EQ(nullptr, overrideBuffer1);
EXPECT_EQ(nullptr, overrideBuffer2);
EXPECT_EQ(nullptr, overrideBuffer3);
// This time we merge the CachedSet in, so we have a new hash, and we should
// only have two sets.
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _)).Times(0);
initializeOverrideBuffer(layers);
EXPECT_NE(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_NE(nullptr, overrideBuffer1);
EXPECT_EQ(overrideBuffer1, overrideBuffer2);
EXPECT_EQ(nullptr, overrideBuffer3);
}
TEST_F(FlattenerTest, flattenLayers_skipsColorLayers) {
auto& layerState1 = mTestLayers[0]->layerState;
const auto& overrideBuffer1 = layerState1->getOutputLayer()->getState().overrideInfo.buffer;
auto& layerState2 = mTestLayers[1]->layerState;
const auto& overrideBuffer2 = layerState2->getOutputLayer()->getState().overrideInfo.buffer;
auto& layerState3 = mTestLayers[2]->layerState;
const auto& overrideBuffer3 = layerState3->getOutputLayer()->getState().overrideInfo.buffer;
auto& layerState4 = mTestLayers[3]->layerState;
const auto& overrideBuffer4 = layerState4->getOutputLayer()->getState().overrideInfo.buffer;
// Rewrite the first two layers to just be a solid color.
mTestLayers[0]->layerFECompositionState.color = half4(255.f, 0.f, 0.f, 255.f);
mTestLayers[0]->layerFECompositionState.buffer = nullptr;
mTestLayers[1]->layerFECompositionState.color = half4(0.f, 255.f, 0.f, 255.f);
mTestLayers[1]->layerFECompositionState.buffer = nullptr;
const std::vector<const LayerState*> layers = {
layerState1.get(),
layerState2.get(),
layerState3.get(),
layerState4.get(),
};
initializeFlattener(layers);
mTime += 200ms;
initializeOverrideBuffer(layers);
EXPECT_EQ(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
// This will render a CachedSet.
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _))
.WillOnce(Return(ByMove(
futureOf<renderengine::RenderEngineResult>({NO_ERROR, base::unique_fd()}))));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
// We've rendered a CachedSet, but we haven't merged it in.
EXPECT_EQ(nullptr, overrideBuffer1);
EXPECT_EQ(nullptr, overrideBuffer2);
EXPECT_EQ(nullptr, overrideBuffer3);
EXPECT_EQ(nullptr, overrideBuffer4);
// This time we merge the CachedSet in, so we have a new hash, and we should
// only have two sets.
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _, _)).Times(0);
initializeOverrideBuffer(layers);
EXPECT_NE(getNonBufferHash(layers),
mFlattener->flattenLayers(layers, getNonBufferHash(layers), mTime));
mFlattener->renderCachedSets(mOutputState, std::nullopt);
EXPECT_EQ(nullptr, overrideBuffer1);
EXPECT_EQ(nullptr, overrideBuffer2);
EXPECT_EQ(overrideBuffer3, overrideBuffer4);
EXPECT_NE(nullptr, overrideBuffer4);
}
} // namespace
} // namespace android::compositionengine