blob: 3a11510f7703cd8b427e4373986dca84f38cac21 [file] [log] [blame]
/*
* Copyright 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <aidl/android/hardware/graphics/common/PixelFormat.h>
#include <android/hardware/graphics/common/1.0/types.h>
#include <android/hardware_buffer.h>
#include <grallocusage/GrallocUsageConversion.h>
#include <graphicsenv/GraphicsEnv.h>
#include <hardware/gralloc.h>
#include <hardware/gralloc1.h>
#include <log/log.h>
#include <sync/sync.h>
#include <system/window.h>
#include <ui/BufferQueueDefs.h>
#include <utils/StrongPointer.h>
#include <utils/Timers.h>
#include <utils/Trace.h>
#include <algorithm>
#include <unordered_set>
#include <vector>
#include "driver.h"
using PixelFormat = aidl::android::hardware::graphics::common::PixelFormat;
using android::hardware::graphics::common::V1_0::BufferUsage;
namespace vulkan {
namespace driver {
namespace {
static uint64_t convertGralloc1ToBufferUsage(uint64_t producerUsage,
uint64_t consumerUsage) {
static_assert(uint64_t(GRALLOC1_CONSUMER_USAGE_CPU_READ_OFTEN) ==
uint64_t(GRALLOC1_PRODUCER_USAGE_CPU_READ_OFTEN),
"expected ConsumerUsage and ProducerUsage CPU_READ_OFTEN "
"bits to match");
uint64_t merged = producerUsage | consumerUsage;
if ((merged & (GRALLOC1_CONSUMER_USAGE_CPU_READ_OFTEN)) ==
GRALLOC1_CONSUMER_USAGE_CPU_READ_OFTEN) {
merged &= ~uint64_t(GRALLOC1_CONSUMER_USAGE_CPU_READ_OFTEN);
merged |= BufferUsage::CPU_READ_OFTEN;
}
if ((merged & (GRALLOC1_PRODUCER_USAGE_CPU_WRITE_OFTEN)) ==
GRALLOC1_PRODUCER_USAGE_CPU_WRITE_OFTEN) {
merged &= ~uint64_t(GRALLOC1_PRODUCER_USAGE_CPU_WRITE_OFTEN);
merged |= BufferUsage::CPU_WRITE_OFTEN;
}
return merged;
}
const VkSurfaceTransformFlagsKHR kSupportedTransforms =
VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR |
VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR |
VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR |
VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR |
VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR |
VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR |
VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR |
VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR |
VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR;
VkSurfaceTransformFlagBitsKHR TranslateNativeToVulkanTransform(int native) {
// Native and Vulkan transforms are isomorphic, but are represented
// differently. Vulkan transforms are built up of an optional horizontal
// mirror, followed by a clockwise 0/90/180/270-degree rotation. Native
// transforms are built up from a horizontal flip, vertical flip, and
// 90-degree rotation, all optional but always in that order.
switch (native) {
case 0:
return VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
case NATIVE_WINDOW_TRANSFORM_FLIP_H:
return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR;
case NATIVE_WINDOW_TRANSFORM_FLIP_V:
return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR;
case NATIVE_WINDOW_TRANSFORM_ROT_180:
return VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR;
case NATIVE_WINDOW_TRANSFORM_ROT_90:
return VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR;
case NATIVE_WINDOW_TRANSFORM_FLIP_H | NATIVE_WINDOW_TRANSFORM_ROT_90:
return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR;
case NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_ROT_90:
return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR;
case NATIVE_WINDOW_TRANSFORM_ROT_270:
return VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR;
case NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY:
default:
return VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
}
}
int TranslateVulkanToNativeTransform(VkSurfaceTransformFlagBitsKHR transform) {
switch (transform) {
case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_ROT_90;
case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_ROT_180;
case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_ROT_270;
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_FLIP_H;
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_FLIP_H |
NATIVE_WINDOW_TRANSFORM_ROT_90;
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_FLIP_V;
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_FLIP_V |
NATIVE_WINDOW_TRANSFORM_ROT_90;
case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR:
case VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR:
default:
return 0;
}
}
int InvertTransformToNative(VkSurfaceTransformFlagBitsKHR transform) {
switch (transform) {
case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_ROT_270;
case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_ROT_180;
case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_ROT_90;
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_FLIP_H;
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_FLIP_H |
NATIVE_WINDOW_TRANSFORM_ROT_90;
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_FLIP_V;
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR:
return NATIVE_WINDOW_TRANSFORM_FLIP_V |
NATIVE_WINDOW_TRANSFORM_ROT_90;
case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR:
case VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR:
default:
return 0;
}
}
class TimingInfo {
public:
TimingInfo(const VkPresentTimeGOOGLE* qp, uint64_t nativeFrameId)
: vals_{qp->presentID, qp->desiredPresentTime, 0, 0, 0},
native_frame_id_(nativeFrameId) {}
bool ready() const {
return (timestamp_desired_present_time_ !=
NATIVE_WINDOW_TIMESTAMP_PENDING &&
timestamp_actual_present_time_ !=
NATIVE_WINDOW_TIMESTAMP_PENDING &&
timestamp_render_complete_time_ !=
NATIVE_WINDOW_TIMESTAMP_PENDING &&
timestamp_composition_latch_time_ !=
NATIVE_WINDOW_TIMESTAMP_PENDING);
}
void calculate(int64_t rdur) {
bool anyTimestampInvalid =
(timestamp_actual_present_time_ ==
NATIVE_WINDOW_TIMESTAMP_INVALID) ||
(timestamp_render_complete_time_ ==
NATIVE_WINDOW_TIMESTAMP_INVALID) ||
(timestamp_composition_latch_time_ ==
NATIVE_WINDOW_TIMESTAMP_INVALID);
if (anyTimestampInvalid) {
ALOGE("Unexpectedly received invalid timestamp.");
vals_.actualPresentTime = 0;
vals_.earliestPresentTime = 0;
vals_.presentMargin = 0;
return;
}
vals_.actualPresentTime =
static_cast<uint64_t>(timestamp_actual_present_time_);
int64_t margin = (timestamp_composition_latch_time_ -
timestamp_render_complete_time_);
// Calculate vals_.earliestPresentTime, and potentially adjust
// vals_.presentMargin. The initial value of vals_.earliestPresentTime
// is vals_.actualPresentTime. If we can subtract rdur (the duration
// of a refresh cycle) from vals_.earliestPresentTime (and also from
// vals_.presentMargin) and still leave a positive margin, then we can
// report to the application that it could have presented earlier than
// it did (per the extension specification). If for some reason, we
// can do this subtraction repeatedly, we do, since
// vals_.earliestPresentTime really is supposed to be the "earliest".
int64_t early_time = timestamp_actual_present_time_;
while ((margin > rdur) &&
((early_time - rdur) > timestamp_composition_latch_time_)) {
early_time -= rdur;
margin -= rdur;
}
vals_.earliestPresentTime = static_cast<uint64_t>(early_time);
vals_.presentMargin = static_cast<uint64_t>(margin);
}
void get_values(VkPastPresentationTimingGOOGLE* values) const {
*values = vals_;
}
public:
VkPastPresentationTimingGOOGLE vals_ { 0, 0, 0, 0, 0 };
uint64_t native_frame_id_ { 0 };
int64_t timestamp_desired_present_time_{ NATIVE_WINDOW_TIMESTAMP_PENDING };
int64_t timestamp_actual_present_time_ { NATIVE_WINDOW_TIMESTAMP_PENDING };
int64_t timestamp_render_complete_time_ { NATIVE_WINDOW_TIMESTAMP_PENDING };
int64_t timestamp_composition_latch_time_
{ NATIVE_WINDOW_TIMESTAMP_PENDING };
};
struct Surface {
android::sp<ANativeWindow> window;
VkSwapchainKHR swapchain_handle;
uint64_t consumer_usage;
// Indicate whether this surface has been used by a swapchain, no matter the
// swapchain is still current or has been destroyed.
bool used_by_swapchain;
};
VkSurfaceKHR HandleFromSurface(Surface* surface) {
return VkSurfaceKHR(reinterpret_cast<uint64_t>(surface));
}
Surface* SurfaceFromHandle(VkSurfaceKHR handle) {
return reinterpret_cast<Surface*>(handle);
}
// Maximum number of TimingInfo structs to keep per swapchain:
enum { MAX_TIMING_INFOS = 10 };
// Minimum number of frames to look for in the past (so we don't cause
// syncronous requests to Surface Flinger):
enum { MIN_NUM_FRAMES_AGO = 5 };
bool IsSharedPresentMode(VkPresentModeKHR mode) {
return mode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR ||
mode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR;
}
struct Swapchain {
Swapchain(Surface& surface_,
uint32_t num_images_,
VkPresentModeKHR present_mode,
int pre_transform_,
int64_t refresh_duration_)
: surface(surface_),
num_images(num_images_),
mailbox_mode(present_mode == VK_PRESENT_MODE_MAILBOX_KHR),
pre_transform(pre_transform_),
frame_timestamps_enabled(false),
refresh_duration(refresh_duration_),
acquire_next_image_timeout(-1),
shared(IsSharedPresentMode(present_mode)) {
}
VkResult get_refresh_duration(uint64_t& outRefreshDuration)
{
ANativeWindow* window = surface.window.get();
int err = native_window_get_refresh_cycle_duration(
window,
&refresh_duration);
if (err != android::OK) {
ALOGE("%s:native_window_get_refresh_cycle_duration failed: %s (%d)",
__func__, strerror(-err), err );
return VK_ERROR_SURFACE_LOST_KHR;
}
outRefreshDuration = refresh_duration;
return VK_SUCCESS;
}
Surface& surface;
uint32_t num_images;
bool mailbox_mode;
int pre_transform;
bool frame_timestamps_enabled;
int64_t refresh_duration;
nsecs_t acquire_next_image_timeout;
bool shared;
struct Image {
Image()
: image(VK_NULL_HANDLE),
dequeue_fence(-1),
release_fence(-1),
dequeued(false) {}
VkImage image;
// If the image is bound to memory, an sp to the underlying gralloc buffer.
// Otherwise, nullptr; the image will be bound to memory as part of
// AcquireNextImage.
android::sp<ANativeWindowBuffer> buffer;
// The fence is only valid when the buffer is dequeued, and should be
// -1 any other time. When valid, we own the fd, and must ensure it is
// closed: either by closing it explicitly when queueing the buffer,
// or by passing ownership e.g. to ANativeWindow::cancelBuffer().
int dequeue_fence;
// This fence is a dup of the sync fd returned from the driver via
// vkQueueSignalReleaseImageANDROID upon vkQueuePresentKHR. We must
// ensure it is closed upon re-presenting or releasing the image.
int release_fence;
bool dequeued;
} images[android::BufferQueueDefs::NUM_BUFFER_SLOTS];
std::vector<TimingInfo> timing;
};
VkSwapchainKHR HandleFromSwapchain(Swapchain* swapchain) {
return VkSwapchainKHR(reinterpret_cast<uint64_t>(swapchain));
}
Swapchain* SwapchainFromHandle(VkSwapchainKHR handle) {
return reinterpret_cast<Swapchain*>(handle);
}
static bool IsFencePending(int fd) {
if (fd < 0)
return false;
errno = 0;
return sync_wait(fd, 0 /* timeout */) == -1 && errno == ETIME;
}
void ReleaseSwapchainImage(VkDevice device,
bool shared_present,
ANativeWindow* window,
int release_fence,
Swapchain::Image& image,
bool defer_if_pending) {
ATRACE_CALL();
ALOG_ASSERT(release_fence == -1 || image.dequeued,
"ReleaseSwapchainImage: can't provide a release fence for "
"non-dequeued images");
if (image.dequeued) {
if (release_fence >= 0) {
// We get here from vkQueuePresentKHR. The application is
// responsible for creating an execution dependency chain from
// vkAcquireNextImage (dequeue_fence) to vkQueuePresentKHR
// (release_fence), so we can drop the dequeue_fence here.
if (image.dequeue_fence >= 0)
close(image.dequeue_fence);
} else {
// We get here during swapchain destruction, or various serious
// error cases e.g. when we can't create the release_fence during
// vkQueuePresentKHR. In non-error cases, the dequeue_fence should
// have already signalled, since the swapchain images are supposed
// to be idle before the swapchain is destroyed. In error cases,
// there may be rendering in flight to the image, but since we
// weren't able to create a release_fence, waiting for the
// dequeue_fence is about the best we can do.
release_fence = image.dequeue_fence;
}
image.dequeue_fence = -1;
// It's invalid to call cancelBuffer on a shared buffer
if (window && !shared_present) {
window->cancelBuffer(window, image.buffer.get(), release_fence);
} else {
if (release_fence >= 0) {
sync_wait(release_fence, -1 /* forever */);
close(release_fence);
}
}
release_fence = -1;
image.dequeued = false;
}
if (defer_if_pending && IsFencePending(image.release_fence))
return;
if (image.release_fence >= 0) {
close(image.release_fence);
image.release_fence = -1;
}
if (image.image) {
ATRACE_BEGIN("DestroyImage");
GetData(device).driver.DestroyImage(device, image.image, nullptr);
ATRACE_END();
image.image = VK_NULL_HANDLE;
}
image.buffer.clear();
}
void OrphanSwapchain(VkDevice device, Swapchain* swapchain) {
if (swapchain->surface.swapchain_handle != HandleFromSwapchain(swapchain))
return;
for (uint32_t i = 0; i < swapchain->num_images; i++) {
if (!swapchain->images[i].dequeued) {
ReleaseSwapchainImage(device, swapchain->shared, nullptr, -1,
swapchain->images[i], true);
}
}
swapchain->surface.swapchain_handle = VK_NULL_HANDLE;
swapchain->timing.clear();
}
uint32_t get_num_ready_timings(Swapchain& swapchain) {
if (swapchain.timing.size() < MIN_NUM_FRAMES_AGO) {
return 0;
}
uint32_t num_ready = 0;
const size_t num_timings = swapchain.timing.size() - MIN_NUM_FRAMES_AGO + 1;
for (uint32_t i = 0; i < num_timings; i++) {
TimingInfo& ti = swapchain.timing[i];
if (ti.ready()) {
// This TimingInfo is ready to be reported to the user. Add it
// to the num_ready.
num_ready++;
continue;
}
// This TimingInfo is not yet ready to be reported to the user,
// and so we should look for any available timestamps that
// might make it ready.
int64_t desired_present_time = 0;
int64_t render_complete_time = 0;
int64_t composition_latch_time = 0;
int64_t actual_present_time = 0;
// Obtain timestamps:
int err = native_window_get_frame_timestamps(
swapchain.surface.window.get(), ti.native_frame_id_,
&desired_present_time, &render_complete_time,
&composition_latch_time,
nullptr, //&first_composition_start_time,
nullptr, //&last_composition_start_time,
nullptr, //&composition_finish_time,
&actual_present_time,
nullptr, //&dequeue_ready_time,
nullptr /*&reads_done_time*/);
if (err != android::OK) {
continue;
}
// Record the timestamp(s) we received, and then see if this TimingInfo
// is ready to be reported to the user:
ti.timestamp_desired_present_time_ = desired_present_time;
ti.timestamp_actual_present_time_ = actual_present_time;
ti.timestamp_render_complete_time_ = render_complete_time;
ti.timestamp_composition_latch_time_ = composition_latch_time;
if (ti.ready()) {
// The TimingInfo has received enough timestamps, and should now
// use those timestamps to calculate the info that should be
// reported to the user:
ti.calculate(swapchain.refresh_duration);
num_ready++;
}
}
return num_ready;
}
void copy_ready_timings(Swapchain& swapchain,
uint32_t* count,
VkPastPresentationTimingGOOGLE* timings) {
if (swapchain.timing.empty()) {
*count = 0;
return;
}
size_t last_ready = swapchain.timing.size() - 1;
while (!swapchain.timing[last_ready].ready()) {
if (last_ready == 0) {
*count = 0;
return;
}
last_ready--;
}
uint32_t num_copied = 0;
int32_t num_to_remove = 0;
for (uint32_t i = 0; i <= last_ready && num_copied < *count; i++) {
const TimingInfo& ti = swapchain.timing[i];
if (ti.ready()) {
ti.get_values(&timings[num_copied]);
num_copied++;
}
num_to_remove++;
}
// Discard old frames that aren't ready if newer frames are ready.
// We don't expect to get the timing info for those old frames.
swapchain.timing.erase(swapchain.timing.begin(),
swapchain.timing.begin() + num_to_remove);
*count = num_copied;
}
PixelFormat GetNativePixelFormat(VkFormat format) {
PixelFormat native_format = PixelFormat::RGBA_8888;
switch (format) {
case VK_FORMAT_R8G8B8A8_UNORM:
case VK_FORMAT_R8G8B8A8_SRGB:
native_format = PixelFormat::RGBA_8888;
break;
case VK_FORMAT_R5G6B5_UNORM_PACK16:
native_format = PixelFormat::RGB_565;
break;
case VK_FORMAT_R16G16B16A16_SFLOAT:
native_format = PixelFormat::RGBA_FP16;
break;
case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
native_format = PixelFormat::RGBA_1010102;
break;
case VK_FORMAT_R8_UNORM:
native_format = PixelFormat::R_8;
break;
case VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16:
native_format = PixelFormat::RGBA_10101010;
break;
default:
ALOGV("unsupported swapchain format %d", format);
break;
}
return native_format;
}
android_dataspace GetNativeDataspace(VkColorSpaceKHR colorspace,
PixelFormat pixelFormat) {
switch (colorspace) {
case VK_COLOR_SPACE_SRGB_NONLINEAR_KHR:
return HAL_DATASPACE_V0_SRGB;
case VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT:
return HAL_DATASPACE_DISPLAY_P3;
case VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT:
return HAL_DATASPACE_V0_SCRGB_LINEAR;
case VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT:
return HAL_DATASPACE_V0_SCRGB;
case VK_COLOR_SPACE_DCI_P3_LINEAR_EXT:
return HAL_DATASPACE_DCI_P3_LINEAR;
case VK_COLOR_SPACE_DCI_P3_NONLINEAR_EXT:
return HAL_DATASPACE_DCI_P3;
case VK_COLOR_SPACE_BT709_LINEAR_EXT:
return HAL_DATASPACE_V0_SRGB_LINEAR;
case VK_COLOR_SPACE_BT709_NONLINEAR_EXT:
return HAL_DATASPACE_V0_SRGB;
case VK_COLOR_SPACE_BT2020_LINEAR_EXT:
if (pixelFormat == PixelFormat::RGBA_FP16) {
return static_cast<android_dataspace>(
HAL_DATASPACE_STANDARD_BT2020 |
HAL_DATASPACE_TRANSFER_LINEAR |
HAL_DATASPACE_RANGE_EXTENDED);
} else {
return HAL_DATASPACE_BT2020_LINEAR;
}
case VK_COLOR_SPACE_HDR10_ST2084_EXT:
return static_cast<android_dataspace>(
HAL_DATASPACE_STANDARD_BT2020 | HAL_DATASPACE_TRANSFER_ST2084 |
HAL_DATASPACE_RANGE_FULL);
case VK_COLOR_SPACE_DOLBYVISION_EXT:
return static_cast<android_dataspace>(
HAL_DATASPACE_STANDARD_BT2020 | HAL_DATASPACE_TRANSFER_ST2084 |
HAL_DATASPACE_RANGE_FULL);
case VK_COLOR_SPACE_HDR10_HLG_EXT:
return static_cast<android_dataspace>(HAL_DATASPACE_BT2020_HLG);
case VK_COLOR_SPACE_ADOBERGB_LINEAR_EXT:
return static_cast<android_dataspace>(
HAL_DATASPACE_STANDARD_ADOBE_RGB |
HAL_DATASPACE_TRANSFER_LINEAR | HAL_DATASPACE_RANGE_FULL);
case VK_COLOR_SPACE_ADOBERGB_NONLINEAR_EXT:
return HAL_DATASPACE_ADOBE_RGB;
// Pass through is intended to allow app to provide data that is passed
// to the display system without modification.
case VK_COLOR_SPACE_PASS_THROUGH_EXT:
return HAL_DATASPACE_ARBITRARY;
default:
// This indicates that we don't know about the
// dataspace specified and we should indicate that
// it's unsupported
return HAL_DATASPACE_UNKNOWN;
}
}
} // anonymous namespace
VKAPI_ATTR
VkResult CreateAndroidSurfaceKHR(
VkInstance instance,
const VkAndroidSurfaceCreateInfoKHR* pCreateInfo,
const VkAllocationCallbacks* allocator,
VkSurfaceKHR* out_surface) {
ATRACE_CALL();
if (!allocator)
allocator = &GetData(instance).allocator;
void* mem = allocator->pfnAllocation(allocator->pUserData, sizeof(Surface),
alignof(Surface),
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!mem)
return VK_ERROR_OUT_OF_HOST_MEMORY;
Surface* surface = new (mem) Surface;
surface->window = pCreateInfo->window;
surface->swapchain_handle = VK_NULL_HANDLE;
surface->used_by_swapchain = false;
int err = native_window_get_consumer_usage(surface->window.get(),
&surface->consumer_usage);
if (err != android::OK) {
ALOGE("native_window_get_consumer_usage() failed: %s (%d)",
strerror(-err), err);
surface->~Surface();
allocator->pfnFree(allocator->pUserData, surface);
return VK_ERROR_SURFACE_LOST_KHR;
}
err =
native_window_api_connect(surface->window.get(), NATIVE_WINDOW_API_EGL);
if (err != android::OK) {
ALOGE("native_window_api_connect() failed: %s (%d)", strerror(-err),
err);
surface->~Surface();
allocator->pfnFree(allocator->pUserData, surface);
return VK_ERROR_NATIVE_WINDOW_IN_USE_KHR;
}
*out_surface = HandleFromSurface(surface);
return VK_SUCCESS;
}
VKAPI_ATTR
void DestroySurfaceKHR(VkInstance instance,
VkSurfaceKHR surface_handle,
const VkAllocationCallbacks* allocator) {
ATRACE_CALL();
Surface* surface = SurfaceFromHandle(surface_handle);
if (!surface)
return;
native_window_api_disconnect(surface->window.get(), NATIVE_WINDOW_API_EGL);
ALOGV_IF(surface->swapchain_handle != VK_NULL_HANDLE,
"destroyed VkSurfaceKHR 0x%" PRIx64
" has active VkSwapchainKHR 0x%" PRIx64,
reinterpret_cast<uint64_t>(surface_handle),
reinterpret_cast<uint64_t>(surface->swapchain_handle));
surface->~Surface();
if (!allocator)
allocator = &GetData(instance).allocator;
allocator->pfnFree(allocator->pUserData, surface);
}
VKAPI_ATTR
VkResult GetPhysicalDeviceSurfaceSupportKHR(VkPhysicalDevice /*pdev*/,
uint32_t /*queue_family*/,
VkSurfaceKHR /*surface_handle*/,
VkBool32* supported) {
*supported = VK_TRUE;
return VK_SUCCESS;
}
VKAPI_ATTR
VkResult GetPhysicalDeviceSurfaceCapabilitiesKHR(
VkPhysicalDevice pdev,
VkSurfaceKHR surface,
VkSurfaceCapabilitiesKHR* capabilities) {
ATRACE_CALL();
// Implement in terms of GetPhysicalDeviceSurfaceCapabilities2KHR
VkPhysicalDeviceSurfaceInfo2KHR info2 = {
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR,
nullptr,
surface
};
VkSurfaceCapabilities2KHR caps2 = {
VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR,
nullptr,
{},
};
VkResult result = GetPhysicalDeviceSurfaceCapabilities2KHR(pdev, &info2, &caps2);
*capabilities = caps2.surfaceCapabilities;
return result;
}
// Does the call-twice and VK_INCOMPLETE handling for querying lists
// of things, where we already have the full set built in a vector.
template <typename T>
VkResult CopyWithIncomplete(std::vector<T> const& things,
T* callerPtr, uint32_t* callerCount) {
VkResult result = VK_SUCCESS;
if (callerPtr) {
if (things.size() > *callerCount)
result = VK_INCOMPLETE;
*callerCount = std::min(uint32_t(things.size()), *callerCount);
std::copy(things.begin(), things.begin() + *callerCount, callerPtr);
} else {
*callerCount = things.size();
}
return result;
}
VKAPI_ATTR
VkResult GetPhysicalDeviceSurfaceFormatsKHR(VkPhysicalDevice pdev,
VkSurfaceKHR surface_handle,
uint32_t* count,
VkSurfaceFormatKHR* formats) {
ATRACE_CALL();
const InstanceData& instance_data = GetData(pdev);
uint64_t consumer_usage = 0;
bool colorspace_ext =
instance_data.hook_extensions.test(ProcHook::EXT_swapchain_colorspace);
if (surface_handle == VK_NULL_HANDLE) {
ProcHook::Extension surfaceless = ProcHook::GOOGLE_surfaceless_query;
bool surfaceless_enabled =
instance_data.hook_extensions.test(surfaceless);
if (!surfaceless_enabled) {
return VK_ERROR_SURFACE_LOST_KHR;
}
// Support for VK_GOOGLE_surfaceless_query.
// TODO(b/203826952): research proper value; temporarily use the
// values seen on Pixel
consumer_usage = AHARDWAREBUFFER_USAGE_COMPOSER_OVERLAY;
} else {
Surface& surface = *SurfaceFromHandle(surface_handle);
consumer_usage = surface.consumer_usage;
}
AHardwareBuffer_Desc desc = {};
desc.width = 1;
desc.height = 1;
desc.layers = 1;
desc.usage = consumer_usage | AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE |
AHARDWAREBUFFER_USAGE_GPU_FRAMEBUFFER;
// We must support R8G8B8A8
std::vector<VkSurfaceFormatKHR> all_formats = {
{VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR},
{VK_FORMAT_R8G8B8A8_SRGB, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR},
};
if (colorspace_ext) {
all_formats.emplace_back(VkSurfaceFormatKHR{
VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_PASS_THROUGH_EXT});
all_formats.emplace_back(VkSurfaceFormatKHR{
VK_FORMAT_R8G8B8A8_SRGB, VK_COLOR_SPACE_PASS_THROUGH_EXT});
all_formats.emplace_back(VkSurfaceFormatKHR{
VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_BT709_LINEAR_EXT});
all_formats.emplace_back(VkSurfaceFormatKHR{
VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT});
all_formats.emplace_back(VkSurfaceFormatKHR{
VK_FORMAT_R8G8B8A8_SRGB, VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT});
}
// NOTE: Any new formats that are added must be coordinated across different
// Android users. This includes the ANGLE team (a layered implementation of
// OpenGL-ES).
desc.format = AHARDWAREBUFFER_FORMAT_R5G6B5_UNORM;
if (AHardwareBuffer_isSupported(&desc)) {
all_formats.emplace_back(VkSurfaceFormatKHR{
VK_FORMAT_R5G6B5_UNORM_PACK16, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR});
if (colorspace_ext) {
all_formats.emplace_back(
VkSurfaceFormatKHR{VK_FORMAT_R5G6B5_UNORM_PACK16,
VK_COLOR_SPACE_PASS_THROUGH_EXT});
}
}
desc.format = AHARDWAREBUFFER_FORMAT_R16G16B16A16_FLOAT;
if (AHardwareBuffer_isSupported(&desc)) {
all_formats.emplace_back(VkSurfaceFormatKHR{
VK_FORMAT_R16G16B16A16_SFLOAT, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR});
if (colorspace_ext) {
all_formats.emplace_back(
VkSurfaceFormatKHR{VK_FORMAT_R16G16B16A16_SFLOAT,
VK_COLOR_SPACE_PASS_THROUGH_EXT});
all_formats.emplace_back(
VkSurfaceFormatKHR{VK_FORMAT_R16G16B16A16_SFLOAT,
VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT});
all_formats.emplace_back(
VkSurfaceFormatKHR{VK_FORMAT_R16G16B16A16_SFLOAT,
VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT});
}
}
desc.format = AHARDWAREBUFFER_FORMAT_R10G10B10A2_UNORM;
if (AHardwareBuffer_isSupported(&desc)) {
all_formats.emplace_back(
VkSurfaceFormatKHR{VK_FORMAT_A2B10G10R10_UNORM_PACK32,
VK_COLOR_SPACE_SRGB_NONLINEAR_KHR});
if (colorspace_ext) {
all_formats.emplace_back(
VkSurfaceFormatKHR{VK_FORMAT_A2B10G10R10_UNORM_PACK32,
VK_COLOR_SPACE_PASS_THROUGH_EXT});
all_formats.emplace_back(
VkSurfaceFormatKHR{VK_FORMAT_A2B10G10R10_UNORM_PACK32,
VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT});
}
}
desc.format = AHARDWAREBUFFER_FORMAT_R8_UNORM;
if (AHardwareBuffer_isSupported(&desc)) {
if (colorspace_ext) {
all_formats.emplace_back(VkSurfaceFormatKHR{
VK_FORMAT_R8_UNORM, VK_COLOR_SPACE_PASS_THROUGH_EXT});
}
}
bool rgba10x6_formats_ext = false;
uint32_t exts_count;
const auto& driver = GetData(pdev).driver;
driver.EnumerateDeviceExtensionProperties(pdev, nullptr, &exts_count,
nullptr);
std::vector<VkExtensionProperties> props(exts_count);
driver.EnumerateDeviceExtensionProperties(pdev, nullptr, &exts_count,
props.data());
for (uint32_t i = 0; i < exts_count; i++) {
VkExtensionProperties prop = props[i];
if (strcmp(prop.extensionName,
VK_EXT_RGBA10X6_FORMATS_EXTENSION_NAME) == 0) {
rgba10x6_formats_ext = true;
}
}
desc.format = AHARDWAREBUFFER_FORMAT_R10G10B10A10_UNORM;
if (AHardwareBuffer_isSupported(&desc) && rgba10x6_formats_ext) {
all_formats.emplace_back(
VkSurfaceFormatKHR{VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16,
VK_COLOR_SPACE_SRGB_NONLINEAR_KHR});
if (colorspace_ext) {
all_formats.emplace_back(
VkSurfaceFormatKHR{VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16,
VK_COLOR_SPACE_PASS_THROUGH_EXT});
all_formats.emplace_back(
VkSurfaceFormatKHR{VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16,
VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT});
}
}
// NOTE: Any new formats that are added must be coordinated across different
// Android users. This includes the ANGLE team (a layered implementation of
// OpenGL-ES).
return CopyWithIncomplete(all_formats, formats, count);
}
VKAPI_ATTR
VkResult GetPhysicalDeviceSurfaceCapabilities2KHR(
VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
VkSurfaceCapabilities2KHR* pSurfaceCapabilities) {
ATRACE_CALL();
auto surface = pSurfaceInfo->surface;
auto capabilities = &pSurfaceCapabilities->surfaceCapabilities;
VkSurfacePresentModeEXT const *pPresentMode = nullptr;
for (auto pNext = reinterpret_cast<VkBaseInStructure const *>(pSurfaceInfo->pNext);
pNext; pNext = reinterpret_cast<VkBaseInStructure const *>(pNext->pNext)) {
switch (pNext->sType) {
case VK_STRUCTURE_TYPE_SURFACE_PRESENT_MODE_EXT:
pPresentMode = reinterpret_cast<VkSurfacePresentModeEXT const *>(pNext);
break;
default:
break;
}
}
int err;
int width, height;
int transform_hint;
int max_buffer_count;
int min_undequeued_buffers;
if (surface == VK_NULL_HANDLE) {
const InstanceData& instance_data = GetData(physicalDevice);
ProcHook::Extension surfaceless = ProcHook::GOOGLE_surfaceless_query;
bool surfaceless_enabled =
instance_data.hook_extensions.test(surfaceless);
if (!surfaceless_enabled) {
// It is an error to pass a surface==VK_NULL_HANDLE unless the
// VK_GOOGLE_surfaceless_query extension is enabled
return VK_ERROR_SURFACE_LOST_KHR;
}
// Support for VK_GOOGLE_surfaceless_query. The primary purpose of this
// extension for this function is for
// VkSurfaceProtectedCapabilitiesKHR::supportsProtected. The following
// four values cannot be known without a surface. Default values will
// be supplied anyway, but cannot be relied upon.
width = 0xFFFFFFFF;
height = 0xFFFFFFFF;
transform_hint = VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR;
capabilities->minImageCount = 0xFFFFFFFF;
capabilities->maxImageCount = 0xFFFFFFFF;
} else {
ANativeWindow* window = SurfaceFromHandle(surface)->window.get();
err = window->query(window, NATIVE_WINDOW_DEFAULT_WIDTH, &width);
if (err != android::OK) {
ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
err = window->query(window, NATIVE_WINDOW_DEFAULT_HEIGHT, &height);
if (err != android::OK) {
ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT,
&transform_hint);
if (err != android::OK) {
ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
err = window->query(window, NATIVE_WINDOW_MAX_BUFFER_COUNT,
&max_buffer_count);
if (err != android::OK) {
ALOGE("NATIVE_WINDOW_MAX_BUFFER_COUNT query failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
err = window->query(window, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS,
&min_undequeued_buffers);
if (err != android::OK) {
ALOGE("NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS query failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
if(pPresentMode != nullptr) {
switch (pPresentMode->presentMode) {
case VK_PRESENT_MODE_IMMEDIATE_KHR:
ALOGE("Swapchain present mode VK_PRESENT_MODE_IMMEDIATE_KHR is not supported");
break;
case VK_PRESENT_MODE_MAILBOX_KHR:
case VK_PRESENT_MODE_FIFO_KHR:
capabilities->minImageCount =
std::min(max_buffer_count, min_undequeued_buffers + 2);
capabilities->maxImageCount = static_cast<uint32_t>(max_buffer_count);
break;
case VK_PRESENT_MODE_FIFO_RELAXED_KHR:
ALOGE("Swapchain present mode VK_PRESENT_MODE_FIFO_RELEAXED_KHR "
"is not supported");
break;
case VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR:
case VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR:
capabilities->minImageCount = 1;
capabilities->maxImageCount = 1;
break;
default:
ALOGE("Unrecognized swapchain present mode %u is not supported",
pPresentMode->presentMode);
break;
}
} else {
capabilities->minImageCount = std::min(max_buffer_count, min_undequeued_buffers + 2);
capabilities->maxImageCount = static_cast<uint32_t>(max_buffer_count);
}
}
capabilities->currentExtent =
VkExtent2D{static_cast<uint32_t>(width), static_cast<uint32_t>(height)};
// TODO(http://b/134182502): Figure out what the max extent should be.
capabilities->minImageExtent = VkExtent2D{1, 1};
capabilities->maxImageExtent = VkExtent2D{4096, 4096};
if (capabilities->maxImageExtent.height <
capabilities->currentExtent.height) {
capabilities->maxImageExtent.height =
capabilities->currentExtent.height;
}
if (capabilities->maxImageExtent.width <
capabilities->currentExtent.width) {
capabilities->maxImageExtent.width = capabilities->currentExtent.width;
}
capabilities->maxImageArrayLayers = 1;
capabilities->supportedTransforms = kSupportedTransforms;
capabilities->currentTransform =
TranslateNativeToVulkanTransform(transform_hint);
// On Android, window composition is a WindowManager property, not something
// associated with the bufferqueue. It can't be changed from here.
capabilities->supportedCompositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR;
capabilities->supportedUsageFlags =
VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT |
VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT |
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
for (auto pNext = reinterpret_cast<VkBaseOutStructure*>(pSurfaceCapabilities->pNext);
pNext; pNext = reinterpret_cast<VkBaseOutStructure*>(pNext->pNext)) {
switch (pNext->sType) {
case VK_STRUCTURE_TYPE_SHARED_PRESENT_SURFACE_CAPABILITIES_KHR: {
VkSharedPresentSurfaceCapabilitiesKHR* shared_caps =
reinterpret_cast<VkSharedPresentSurfaceCapabilitiesKHR*>(pNext);
// Claim same set of usage flags are supported for
// shared present modes as for other modes.
shared_caps->sharedPresentSupportedUsageFlags =
pSurfaceCapabilities->surfaceCapabilities
.supportedUsageFlags;
} break;
case VK_STRUCTURE_TYPE_SURFACE_PROTECTED_CAPABILITIES_KHR: {
VkSurfaceProtectedCapabilitiesKHR* protected_caps =
reinterpret_cast<VkSurfaceProtectedCapabilitiesKHR*>(pNext);
protected_caps->supportsProtected = VK_TRUE;
} break;
case VK_STRUCTURE_TYPE_SURFACE_PRESENT_SCALING_CAPABILITIES_EXT: {
VkSurfacePresentScalingCapabilitiesEXT* scaling_caps =
reinterpret_cast<VkSurfacePresentScalingCapabilitiesEXT*>(pNext);
// By default, Android stretches the buffer to fit the window,
// without preserving aspect ratio. Other modes are technically possible
// but consult with CoGS team before exposing them here!
scaling_caps->supportedPresentScaling = VK_PRESENT_SCALING_STRETCH_BIT_EXT;
// Since we always scale, we don't support any gravity.
scaling_caps->supportedPresentGravityX = 0;
scaling_caps->supportedPresentGravityY = 0;
// Scaled image limits are just the basic image limits
scaling_caps->minScaledImageExtent = capabilities->minImageExtent;
scaling_caps->maxScaledImageExtent = capabilities->maxImageExtent;
} break;
case VK_STRUCTURE_TYPE_SURFACE_PRESENT_MODE_COMPATIBILITY_EXT: {
VkSurfacePresentModeCompatibilityEXT* mode_caps =
reinterpret_cast<VkSurfacePresentModeCompatibilityEXT*>(pNext);
ALOG_ASSERT(pPresentMode,
"querying VkSurfacePresentModeCompatibilityEXT "
"requires VkSurfacePresentModeEXT to be provided");
std::vector<VkPresentModeKHR> compatibleModes;
compatibleModes.push_back(pPresentMode->presentMode);
switch (pPresentMode->presentMode) {
// Shared modes are both compatible with each other.
case VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR:
compatibleModes.push_back(VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR);
break;
case VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR:
compatibleModes.push_back(VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR);
break;
default:
// Other modes are only compatible with themselves.
// TODO: consider whether switching between FIFO and MAILBOX is reasonable
break;
}
// Note: this does not generate VK_INCOMPLETE since we're nested inside
// a larger query and there would be no way to determine exactly where it came from.
CopyWithIncomplete(compatibleModes, mode_caps->pPresentModes,
&mode_caps->presentModeCount);
} break;
default:
// Ignore all other extension structs
break;
}
}
return VK_SUCCESS;
}
VKAPI_ATTR
VkResult GetPhysicalDeviceSurfaceFormats2KHR(
VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
uint32_t* pSurfaceFormatCount,
VkSurfaceFormat2KHR* pSurfaceFormats) {
ATRACE_CALL();
if (!pSurfaceFormats) {
return GetPhysicalDeviceSurfaceFormatsKHR(physicalDevice,
pSurfaceInfo->surface,
pSurfaceFormatCount, nullptr);
}
// temp vector for forwarding; we'll marshal it into the pSurfaceFormats
// after the call.
std::vector<VkSurfaceFormatKHR> surface_formats(*pSurfaceFormatCount);
VkResult result = GetPhysicalDeviceSurfaceFormatsKHR(
physicalDevice, pSurfaceInfo->surface, pSurfaceFormatCount,
surface_formats.data());
if (result != VK_SUCCESS && result != VK_INCOMPLETE) {
return result;
}
const auto& driver = GetData(physicalDevice).driver;
// marshal results individually due to stride difference.
uint32_t formats_to_marshal = *pSurfaceFormatCount;
for (uint32_t i = 0u; i < formats_to_marshal; i++) {
pSurfaceFormats[i].surfaceFormat = surface_formats[i];
// Query the compression properties for the surface format
VkSurfaceFormat2KHR* pSurfaceFormat = &pSurfaceFormats[i];
while (pSurfaceFormat->pNext) {
pSurfaceFormat =
reinterpret_cast<VkSurfaceFormat2KHR*>(pSurfaceFormat->pNext);
switch (pSurfaceFormat->sType) {
case VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_PROPERTIES_EXT: {
VkImageCompressionPropertiesEXT* surfaceCompressionProps =
reinterpret_cast<VkImageCompressionPropertiesEXT*>(
pSurfaceFormat);
if (surfaceCompressionProps &&
driver.GetPhysicalDeviceImageFormatProperties2KHR) {
VkPhysicalDeviceImageFormatInfo2 imageFormatInfo = {};
imageFormatInfo.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2;
imageFormatInfo.format =
pSurfaceFormats[i].surfaceFormat.format;
imageFormatInfo.type = VK_IMAGE_TYPE_2D;
imageFormatInfo.usage =
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
imageFormatInfo.pNext = nullptr;
VkImageCompressionControlEXT compressionControl = {};
compressionControl.sType =
VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_CONTROL_EXT;
compressionControl.pNext = imageFormatInfo.pNext;
compressionControl.flags =
VK_IMAGE_COMPRESSION_FIXED_RATE_DEFAULT_EXT;
imageFormatInfo.pNext = &compressionControl;
VkImageCompressionPropertiesEXT compressionProps = {};
compressionProps.sType =
VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_PROPERTIES_EXT;
compressionProps.pNext = nullptr;
VkImageFormatProperties2KHR imageFormatProps = {};
imageFormatProps.sType =
VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2_KHR;
imageFormatProps.pNext = &compressionProps;
VkResult compressionRes =
driver.GetPhysicalDeviceImageFormatProperties2KHR(
physicalDevice, &imageFormatInfo,
&imageFormatProps);
if (compressionRes == VK_SUCCESS) {
surfaceCompressionProps->imageCompressionFlags =
compressionProps.imageCompressionFlags;
surfaceCompressionProps
->imageCompressionFixedRateFlags =
compressionProps.imageCompressionFixedRateFlags;
} else {
return compressionRes;
}
}
} break;
default:
// Ignore all other extension structs
break;
}
}
}
return result;
}
VKAPI_ATTR
VkResult GetPhysicalDeviceSurfacePresentModesKHR(VkPhysicalDevice pdev,
VkSurfaceKHR surface,
uint32_t* count,
VkPresentModeKHR* modes) {
ATRACE_CALL();
int err;
int query_value;
std::vector<VkPresentModeKHR> present_modes;
if (surface == VK_NULL_HANDLE) {
const InstanceData& instance_data = GetData(pdev);
ProcHook::Extension surfaceless = ProcHook::GOOGLE_surfaceless_query;
bool surfaceless_enabled =
instance_data.hook_extensions.test(surfaceless);
if (!surfaceless_enabled) {
return VK_ERROR_SURFACE_LOST_KHR;
}
// Support for VK_GOOGLE_surfaceless_query. The primary purpose of this
// extension for this function is for
// VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR and
// VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR. We technically cannot
// know if VK_PRESENT_MODE_SHARED_MAILBOX_KHR is supported without a
// surface, and that cannot be relied upon. Therefore, don't return it.
present_modes.push_back(VK_PRESENT_MODE_FIFO_KHR);
} else {
ANativeWindow* window = SurfaceFromHandle(surface)->window.get();
err = window->query(window, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS,
&query_value);
if (err != android::OK || query_value < 0) {
ALOGE(
"NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS query failed: %s (%d) "
"value=%d",
strerror(-err), err, query_value);
return VK_ERROR_SURFACE_LOST_KHR;
}
uint32_t min_undequeued_buffers = static_cast<uint32_t>(query_value);
err =
window->query(window, NATIVE_WINDOW_MAX_BUFFER_COUNT, &query_value);
if (err != android::OK || query_value < 0) {
ALOGE(
"NATIVE_WINDOW_MAX_BUFFER_COUNT query failed: %s (%d) value=%d",
strerror(-err), err, query_value);
return VK_ERROR_SURFACE_LOST_KHR;
}
uint32_t max_buffer_count = static_cast<uint32_t>(query_value);
if (min_undequeued_buffers + 1 < max_buffer_count)
present_modes.push_back(VK_PRESENT_MODE_MAILBOX_KHR);
present_modes.push_back(VK_PRESENT_MODE_FIFO_KHR);
}
VkPhysicalDevicePresentationPropertiesANDROID present_properties;
QueryPresentationProperties(pdev, &present_properties);
if (present_properties.sharedImage) {
present_modes.push_back(VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR);
present_modes.push_back(VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR);
}
return CopyWithIncomplete(present_modes, modes, count);
}
VKAPI_ATTR
VkResult GetDeviceGroupPresentCapabilitiesKHR(
VkDevice,
VkDeviceGroupPresentCapabilitiesKHR* pDeviceGroupPresentCapabilities) {
ATRACE_CALL();
ALOGV_IF(pDeviceGroupPresentCapabilities->sType !=
VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_CAPABILITIES_KHR,
"vkGetDeviceGroupPresentCapabilitiesKHR: invalid "
"VkDeviceGroupPresentCapabilitiesKHR structure type %d",
pDeviceGroupPresentCapabilities->sType);
memset(pDeviceGroupPresentCapabilities->presentMask, 0,
sizeof(pDeviceGroupPresentCapabilities->presentMask));
// assume device group of size 1
pDeviceGroupPresentCapabilities->presentMask[0] = 1 << 0;
pDeviceGroupPresentCapabilities->modes =
VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR;
return VK_SUCCESS;
}
VKAPI_ATTR
VkResult GetDeviceGroupSurfacePresentModesKHR(
VkDevice,
VkSurfaceKHR,
VkDeviceGroupPresentModeFlagsKHR* pModes) {
ATRACE_CALL();
*pModes = VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR;
return VK_SUCCESS;
}
VKAPI_ATTR
VkResult GetPhysicalDevicePresentRectanglesKHR(VkPhysicalDevice,
VkSurfaceKHR surface,
uint32_t* pRectCount,
VkRect2D* pRects) {
ATRACE_CALL();
if (!pRects) {
*pRectCount = 1;
} else {
uint32_t count = std::min(*pRectCount, 1u);
bool incomplete = *pRectCount < 1;
*pRectCount = count;
if (incomplete) {
return VK_INCOMPLETE;
}
int err;
ANativeWindow* window = SurfaceFromHandle(surface)->window.get();
int width = 0, height = 0;
err = window->query(window, NATIVE_WINDOW_DEFAULT_WIDTH, &width);
if (err != android::OK) {
ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
strerror(-err), err);
}
err = window->query(window, NATIVE_WINDOW_DEFAULT_HEIGHT, &height);
if (err != android::OK) {
ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
strerror(-err), err);
}
pRects[0].offset.x = 0;
pRects[0].offset.y = 0;
pRects[0].extent = VkExtent2D{static_cast<uint32_t>(width),
static_cast<uint32_t>(height)};
}
return VK_SUCCESS;
}
static void DestroySwapchainInternal(VkDevice device,
VkSwapchainKHR swapchain_handle,
const VkAllocationCallbacks* allocator) {
ATRACE_CALL();
const auto& dispatch = GetData(device).driver;
Swapchain* swapchain = SwapchainFromHandle(swapchain_handle);
if (!swapchain) {
return;
}
bool active = swapchain->surface.swapchain_handle == swapchain_handle;
ANativeWindow* window = active ? swapchain->surface.window.get() : nullptr;
if (window && swapchain->frame_timestamps_enabled) {
native_window_enable_frame_timestamps(window, false);
}
for (uint32_t i = 0; i < swapchain->num_images; i++) {
ReleaseSwapchainImage(device, swapchain->shared, window, -1,
swapchain->images[i], false);
}
if (active) {
swapchain->surface.swapchain_handle = VK_NULL_HANDLE;
}
if (!allocator) {
allocator = &GetData(device).allocator;
}
swapchain->~Swapchain();
allocator->pfnFree(allocator->pUserData, swapchain);
}
static VkResult getProducerUsage(const VkDevice& device,
const VkSwapchainCreateInfoKHR* create_info,
const VkSwapchainImageUsageFlagsANDROID swapchain_image_usage,
bool create_protected_swapchain,
uint64_t* producer_usage) {
// Get the physical device to query the appropriate producer usage
const VkPhysicalDevice& pdev = GetData(device).driver_physical_device;
const InstanceData& instance_data = GetData(pdev);
const InstanceDriverTable& instance_dispatch = instance_data.driver;
if (!instance_dispatch.GetPhysicalDeviceImageFormatProperties2 &&
!instance_dispatch.GetPhysicalDeviceImageFormatProperties2KHR) {
uint64_t native_usage = 0;
void* usage_info_pNext = nullptr;
VkResult result;
VkImageCompressionControlEXT image_compression = {};
const auto& dispatch = GetData(device).driver;
if (dispatch.GetSwapchainGrallocUsage4ANDROID) {
ATRACE_BEGIN("GetSwapchainGrallocUsage4ANDROID");
VkGrallocUsageInfo2ANDROID gralloc_usage_info = {};
gralloc_usage_info.sType =
VK_STRUCTURE_TYPE_GRALLOC_USAGE_INFO_2_ANDROID;
gralloc_usage_info.format = create_info->imageFormat;
gralloc_usage_info.imageUsage = create_info->imageUsage;
gralloc_usage_info.swapchainImageUsage = swapchain_image_usage;
// Look through the pNext chain for an image compression control struct
// if one is found AND the appropriate extensions are enabled,
// append it to be the gralloc usage pNext chain
const VkSwapchainCreateInfoKHR* create_infos = create_info;
while (create_infos->pNext) {
create_infos = reinterpret_cast<const VkSwapchainCreateInfoKHR*>(
create_infos->pNext);
switch (create_infos->sType) {
case VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_CONTROL_EXT: {
const VkImageCompressionControlEXT* compression_infos =
reinterpret_cast<const VkImageCompressionControlEXT*>(
create_infos);
image_compression = *compression_infos;
image_compression.pNext = nullptr;
usage_info_pNext = &image_compression;
} break;
default:
// Ignore all other info structs
break;
}
}
gralloc_usage_info.pNext = usage_info_pNext;
result = dispatch.GetSwapchainGrallocUsage4ANDROID(
device, &gralloc_usage_info, &native_usage);
ATRACE_END();
if (result != VK_SUCCESS) {
ALOGE("vkGetSwapchainGrallocUsage4ANDROID failed: %d", result);
return VK_ERROR_SURFACE_LOST_KHR;
}
} else if (dispatch.GetSwapchainGrallocUsage3ANDROID) {
ATRACE_BEGIN("GetSwapchainGrallocUsage3ANDROID");
VkGrallocUsageInfoANDROID gralloc_usage_info = {};
gralloc_usage_info.sType = VK_STRUCTURE_TYPE_GRALLOC_USAGE_INFO_ANDROID;
gralloc_usage_info.format = create_info->imageFormat;
gralloc_usage_info.imageUsage = create_info->imageUsage;
// Look through the pNext chain for an image compression control struct
// if one is found AND the appropriate extensions are enabled,
// append it to be the gralloc usage pNext chain
const VkSwapchainCreateInfoKHR* create_infos = create_info;
while (create_infos->pNext) {
create_infos = reinterpret_cast<const VkSwapchainCreateInfoKHR*>(
create_infos->pNext);
switch (create_infos->sType) {
case VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_CONTROL_EXT: {
const VkImageCompressionControlEXT* compression_infos =
reinterpret_cast<const VkImageCompressionControlEXT*>(
create_infos);
image_compression = *compression_infos;
image_compression.pNext = nullptr;
usage_info_pNext = &image_compression;
} break;
default:
// Ignore all other info structs
break;
}
}
gralloc_usage_info.pNext = usage_info_pNext;
result = dispatch.GetSwapchainGrallocUsage3ANDROID(
device, &gralloc_usage_info, &native_usage);
ATRACE_END();
if (result != VK_SUCCESS) {
ALOGE("vkGetSwapchainGrallocUsage3ANDROID failed: %d", result);
return VK_ERROR_SURFACE_LOST_KHR;
}
} else if (dispatch.GetSwapchainGrallocUsage2ANDROID) {
uint64_t consumer_usage, producer_usage;
ATRACE_BEGIN("GetSwapchainGrallocUsage2ANDROID");
result = dispatch.GetSwapchainGrallocUsage2ANDROID(
device, create_info->imageFormat, create_info->imageUsage,
swapchain_image_usage, &consumer_usage, &producer_usage);
ATRACE_END();
if (result != VK_SUCCESS) {
ALOGE("vkGetSwapchainGrallocUsage2ANDROID failed: %d", result);
return VK_ERROR_SURFACE_LOST_KHR;
}
native_usage =
convertGralloc1ToBufferUsage(producer_usage, consumer_usage);
} else if (dispatch.GetSwapchainGrallocUsageANDROID) {
ATRACE_BEGIN("GetSwapchainGrallocUsageANDROID");
int32_t legacy_usage = 0;
result = dispatch.GetSwapchainGrallocUsageANDROID(
device, create_info->imageFormat, create_info->imageUsage,
&legacy_usage);
ATRACE_END();
if (result != VK_SUCCESS) {
ALOGE("vkGetSwapchainGrallocUsageANDROID failed: %d", result);
return VK_ERROR_SURFACE_LOST_KHR;
}
native_usage = static_cast<uint64_t>(legacy_usage);
}
*producer_usage = native_usage;
return VK_SUCCESS;
}
// call GetPhysicalDeviceImageFormatProperties2KHR
VkPhysicalDeviceExternalImageFormatInfo external_image_format_info = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO,
.pNext = nullptr,
.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID,
};
// AHB does not have an sRGB format so we can't pass it to GPDIFP
// We need to convert the format to unorm if it is srgb
VkFormat format = create_info->imageFormat;
if (format == VK_FORMAT_R8G8B8A8_SRGB) {
format = VK_FORMAT_R8G8B8A8_UNORM;
}
VkPhysicalDeviceImageFormatInfo2 image_format_info = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2,
.pNext = &external_image_format_info,
.format = format,
.type = VK_IMAGE_TYPE_2D,
.tiling = VK_IMAGE_TILING_OPTIMAL,
.usage = create_info->imageUsage,
.flags = create_protected_swapchain ? VK_IMAGE_CREATE_PROTECTED_BIT : 0u,
};
VkAndroidHardwareBufferUsageANDROID ahb_usage;
ahb_usage.sType = VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_USAGE_ANDROID;
ahb_usage.pNext = nullptr;
VkImageFormatProperties2 image_format_properties;
image_format_properties.sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2;
image_format_properties.pNext = &ahb_usage;
if (instance_dispatch.GetPhysicalDeviceImageFormatProperties2) {
VkResult result = instance_dispatch.GetPhysicalDeviceImageFormatProperties2(
pdev, &image_format_info, &image_format_properties);
if (result != VK_SUCCESS) {
ALOGE("VkGetPhysicalDeviceImageFormatProperties2 for AHB usage failed: %d", result);
return VK_ERROR_SURFACE_LOST_KHR;
}
}
else {
VkResult result = instance_dispatch.GetPhysicalDeviceImageFormatProperties2KHR(
pdev, &image_format_info,
&image_format_properties);
if (result != VK_SUCCESS) {
ALOGE("VkGetPhysicalDeviceImageFormatProperties2KHR for AHB usage failed: %d",
result);
return VK_ERROR_SURFACE_LOST_KHR;
}
}
*producer_usage = ahb_usage.androidHardwareBufferUsage;
return VK_SUCCESS;
}
VKAPI_ATTR
VkResult CreateSwapchainKHR(VkDevice device,
const VkSwapchainCreateInfoKHR* create_info,
const VkAllocationCallbacks* allocator,
VkSwapchainKHR* swapchain_handle) {
ATRACE_CALL();
int err;
VkResult result = VK_SUCCESS;
ALOGV("vkCreateSwapchainKHR: surface=0x%" PRIx64
" minImageCount=%u imageFormat=%u imageColorSpace=%u"
" imageExtent=%ux%u imageUsage=%#x preTransform=%u presentMode=%u"
" oldSwapchain=0x%" PRIx64,
reinterpret_cast<uint64_t>(create_info->surface),
create_info->minImageCount, create_info->imageFormat,
create_info->imageColorSpace, create_info->imageExtent.width,
create_info->imageExtent.height, create_info->imageUsage,
create_info->preTransform, create_info->presentMode,
reinterpret_cast<uint64_t>(create_info->oldSwapchain));
if (!allocator)
allocator = &GetData(device).allocator;
PixelFormat native_pixel_format =
GetNativePixelFormat(create_info->imageFormat);
android_dataspace native_dataspace =
GetNativeDataspace(create_info->imageColorSpace, native_pixel_format);
if (native_dataspace == HAL_DATASPACE_UNKNOWN) {
ALOGE(
"CreateSwapchainKHR(VkSwapchainCreateInfoKHR.imageColorSpace = %d) "
"failed: Unsupported color space",
create_info->imageColorSpace);
return VK_ERROR_INITIALIZATION_FAILED;
}
ALOGV_IF(create_info->imageArrayLayers != 1,
"swapchain imageArrayLayers=%u not supported",
create_info->imageArrayLayers);
ALOGV_IF((create_info->preTransform & ~kSupportedTransforms) != 0,
"swapchain preTransform=%#x not supported",
create_info->preTransform);
ALOGV_IF(!(create_info->presentMode == VK_PRESENT_MODE_FIFO_KHR ||
create_info->presentMode == VK_PRESENT_MODE_MAILBOX_KHR ||
create_info->presentMode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR ||
create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR),
"swapchain presentMode=%u not supported",
create_info->presentMode);
Surface& surface = *SurfaceFromHandle(create_info->surface);
if (surface.swapchain_handle != create_info->oldSwapchain) {
ALOGV("Can't create a swapchain for VkSurfaceKHR 0x%" PRIx64
" because it already has active swapchain 0x%" PRIx64
" but VkSwapchainCreateInfo::oldSwapchain=0x%" PRIx64,
reinterpret_cast<uint64_t>(create_info->surface),
reinterpret_cast<uint64_t>(surface.swapchain_handle),
reinterpret_cast<uint64_t>(create_info->oldSwapchain));
return VK_ERROR_NATIVE_WINDOW_IN_USE_KHR;
}
if (create_info->oldSwapchain != VK_NULL_HANDLE)
OrphanSwapchain(device, SwapchainFromHandle(create_info->oldSwapchain));
// -- Reset the native window --
// The native window might have been used previously, and had its properties
// changed from defaults. That will affect the answer we get for queries
// like MIN_UNDEQUED_BUFFERS. Reset to a known/default state before we
// attempt such queries.
// The native window only allows dequeueing all buffers before any have
// been queued, since after that point at least one is assumed to be in
// non-FREE state at any given time. Disconnecting and re-connecting
// orphans the previous buffers, getting us back to the state where we can
// dequeue all buffers.
//
// This is not necessary if the surface was never used previously.
//
// TODO(http://b/134186185) recycle swapchain images more efficiently
ANativeWindow* window = surface.window.get();
if (surface.used_by_swapchain) {
err = native_window_api_disconnect(window, NATIVE_WINDOW_API_EGL);
ALOGW_IF(err != android::OK,
"native_window_api_disconnect failed: %s (%d)", strerror(-err),
err);
err = native_window_api_connect(window, NATIVE_WINDOW_API_EGL);
ALOGW_IF(err != android::OK,
"native_window_api_connect failed: %s (%d)", strerror(-err),
err);
}
err =
window->perform(window, NATIVE_WINDOW_SET_DEQUEUE_TIMEOUT, nsecs_t{-1});
if (err != android::OK) {
ALOGE("window->perform(SET_DEQUEUE_TIMEOUT) failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
int swap_interval =
create_info->presentMode == VK_PRESENT_MODE_MAILBOX_KHR ? 0 : 1;
err = window->setSwapInterval(window, swap_interval);
if (err != android::OK) {
ALOGE("native_window->setSwapInterval(1) failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
err = native_window_set_shared_buffer_mode(window, false);
if (err != android::OK) {
ALOGE("native_window_set_shared_buffer_mode(false) failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
err = native_window_set_auto_refresh(window, false);
if (err != android::OK) {
ALOGE("native_window_set_auto_refresh(false) failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
// -- Configure the native window --
const auto& dispatch = GetData(device).driver;
err = native_window_set_buffers_format(
window, static_cast<int>(native_pixel_format));
if (err != android::OK) {
ALOGE("native_window_set_buffers_format(%s) failed: %s (%d)",
toString(native_pixel_format).c_str(), strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
/* Respect consumer default dataspace upon HAL_DATASPACE_ARBITRARY. */
if (native_dataspace != HAL_DATASPACE_ARBITRARY) {
err = native_window_set_buffers_data_space(window, native_dataspace);
if (err != android::OK) {
ALOGE("native_window_set_buffers_data_space(%d) failed: %s (%d)",
native_dataspace, strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
}
err = native_window_set_buffers_dimensions(
window, static_cast<int>(create_info->imageExtent.width),
static_cast<int>(create_info->imageExtent.height));
if (err != android::OK) {
ALOGE("native_window_set_buffers_dimensions(%d,%d) failed: %s (%d)",
create_info->imageExtent.width, create_info->imageExtent.height,
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
// VkSwapchainCreateInfo::preTransform indicates the transformation the app
// applied during rendering. native_window_set_transform() expects the
// inverse: the transform the app is requesting that the compositor perform
// during composition. With native windows, pre-transform works by rendering
// with the same transform the compositor is applying (as in Vulkan), but
// then requesting the inverse transform, so that when the compositor does
// it's job the two transforms cancel each other out and the compositor ends
// up applying an identity transform to the app's buffer.
err = native_window_set_buffers_transform(
window, InvertTransformToNative(create_info->preTransform));
if (err != android::OK) {
ALOGE("native_window_set_buffers_transform(%d) failed: %s (%d)",
InvertTransformToNative(create_info->preTransform),
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
err = native_window_set_scaling_mode(
window, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW);
if (err != android::OK) {
ALOGE("native_window_set_scaling_mode(SCALE_TO_WINDOW) failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
VkSwapchainImageUsageFlagsANDROID swapchain_image_usage = 0;
if (IsSharedPresentMode(create_info->presentMode)) {
swapchain_image_usage |= VK_SWAPCHAIN_IMAGE_USAGE_SHARED_BIT_ANDROID;
err = native_window_set_shared_buffer_mode(window, true);
if (err != android::OK) {
ALOGE("native_window_set_shared_buffer_mode failed: %s (%d)", strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
}
if (create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR) {
err = native_window_set_auto_refresh(window, true);
if (err != android::OK) {
ALOGE("native_window_set_auto_refresh failed: %s (%d)", strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
}
int query_value;
err = window->query(window, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS,
&query_value);
if (err != android::OK || query_value < 0) {
ALOGE("window->query failed: %s (%d) value=%d", strerror(-err), err,
query_value);
return VK_ERROR_SURFACE_LOST_KHR;
}
const uint32_t min_undequeued_buffers = static_cast<uint32_t>(query_value);
// Lower layer insists that we have at least min_undequeued_buffers + 1
// buffers. This is wasteful and we'd like to relax it in the shared case,
// but not all the pieces are in place for that to work yet. Note we only
// lie to the lower layer--we don't want to give the app back a swapchain
// with extra images (which they can't actually use!).
const uint32_t min_buffer_count = min_undequeued_buffers + 1;
uint32_t num_images;
if (create_info->presentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
num_images = std::max(3u, create_info->minImageCount);
} else {
num_images = create_info->minImageCount;
}
const uint32_t buffer_count = std::max(min_buffer_count, num_images);
err = native_window_set_buffer_count(window, buffer_count);
if (err != android::OK) {
ALOGE("native_window_set_buffer_count(%d) failed: %s (%d)", buffer_count,
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
// In shared mode the num_images must be one regardless of how many
// buffers were allocated for the buffer queue.
if (swapchain_image_usage & VK_SWAPCHAIN_IMAGE_USAGE_SHARED_BIT_ANDROID) {
num_images = 1;
}
// Look through the create_info pNext chain passed to createSwapchainKHR
// for an image compression control struct.
// if one is found AND the appropriate extensions are enabled, create a
// VkImageCompressionControlEXT structure to pass on to VkImageCreateInfo
// TODO check for imageCompressionControlSwapchain feature is enabled
void* usage_info_pNext = nullptr;
VkImageCompressionControlEXT image_compression = {};
const VkSwapchainCreateInfoKHR* create_infos = create_info;
while (create_infos->pNext) {
create_infos = reinterpret_cast<const VkSwapchainCreateInfoKHR*>(create_infos->pNext);
switch (create_infos->sType) {
case VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_CONTROL_EXT: {
const VkImageCompressionControlEXT* compression_infos =
reinterpret_cast<const VkImageCompressionControlEXT*>(create_infos);
image_compression = *compression_infos;
image_compression.pNext = nullptr;
usage_info_pNext = &image_compression;
} break;
default:
// Ignore all other info structs
break;
}
}
// Get the appropriate native_usage for the images
// Get the consumer usage
uint64_t native_usage = surface.consumer_usage;
// Determine if the swapchain is protected
bool create_protected_swapchain = false;
if (create_info->flags & VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR) {
create_protected_swapchain = true;
native_usage |= BufferUsage::PROTECTED;
}
// Get the producer usage
uint64_t producer_usage;
result = getProducerUsage(device, create_info, swapchain_image_usage, create_protected_swapchain, &producer_usage);
if (result != VK_SUCCESS) {
return result;
}
native_usage |= producer_usage;
err = native_window_set_usage(window, native_usage);
if (err != android::OK) {
ALOGE("native_window_set_usage failed: %s (%d)", strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
int transform_hint;
err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT, &transform_hint);
if (err != android::OK) {
ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
int64_t refresh_duration;
err = native_window_get_refresh_cycle_duration(window, &refresh_duration);
if (err != android::OK) {
ALOGE("native_window_get_refresh_cycle_duration query failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
// -- Allocate our Swapchain object --
// After this point, we must deallocate the swapchain on error.
void* mem = allocator->pfnAllocation(allocator->pUserData,
sizeof(Swapchain), alignof(Swapchain),
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!mem)
return VK_ERROR_OUT_OF_HOST_MEMORY;
Swapchain* swapchain = new (mem)
Swapchain(surface, num_images, create_info->presentMode,
TranslateVulkanToNativeTransform(create_info->preTransform),
refresh_duration);
VkSwapchainImageCreateInfoANDROID swapchain_image_create = {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wold-style-cast"
.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_IMAGE_CREATE_INFO_ANDROID,
#pragma clang diagnostic pop
.pNext = usage_info_pNext,
.usage = swapchain_image_usage,
};
VkNativeBufferANDROID image_native_buffer = {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wold-style-cast"
.sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID,
#pragma clang diagnostic pop
.pNext = &swapchain_image_create,
};
VkImageCreateInfo image_create = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = nullptr,
.flags = create_protected_swapchain ? VK_IMAGE_CREATE_PROTECTED_BIT : 0u,
.imageType = VK_IMAGE_TYPE_2D,
.format = create_info->imageFormat,
.extent = {
create_info->imageExtent.width,
create_info->imageExtent.height,
1
},
.mipLevels = 1,
.arrayLayers = 1,
.samples = VK_SAMPLE_COUNT_1_BIT,
.tiling = VK_IMAGE_TILING_OPTIMAL,
.usage = create_info->imageUsage,
.sharingMode = create_info->imageSharingMode,
.queueFamilyIndexCount = create_info->queueFamilyIndexCount,
.pQueueFamilyIndices = create_info->pQueueFamilyIndices,
};
// Note: don't do deferred allocation for shared present modes. There's only one buffer
// involved so very little benefit.
if ((create_info->flags & VK_SWAPCHAIN_CREATE_DEFERRED_MEMORY_ALLOCATION_BIT_EXT) &&
!IsSharedPresentMode(create_info->presentMode)) {
// Don't want to touch the underlying gralloc buffers yet;
// instead just create unbound VkImages which will later be bound to memory inside
// AcquireNextImage.
VkImageSwapchainCreateInfoKHR image_swapchain_create = {
.sType = VK_STRUCTURE_TYPE_IMAGE_SWAPCHAIN_CREATE_INFO_KHR,
.pNext = nullptr,
.swapchain = HandleFromSwapchain(swapchain),
};
image_create.pNext = &image_swapchain_create;
for (uint32_t i = 0; i < num_images; i++) {
Swapchain::Image& img = swapchain->images[i];
img.buffer = nullptr;
img.dequeued = false;
result = dispatch.CreateImage(device, &image_create, nullptr, &img.image);
if (result != VK_SUCCESS) {
ALOGD("vkCreateImage w/ for deferred swapchain image failed: %u", result);
break;
}
}
} else {
// -- Dequeue all buffers and create a VkImage for each --
// Any failures during or after this must cancel the dequeued buffers.
for (uint32_t i = 0; i < num_images; i++) {
Swapchain::Image& img = swapchain->images[i];
ANativeWindowBuffer* buffer;
err = window->dequeueBuffer(window, &buffer, &img.dequeue_fence);
if (err != android::OK) {
ALOGE("dequeueBuffer[%u] failed: %s (%d)", i, strerror(-err), err);
switch (-err) {
case ENOMEM:
result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
break;
default:
result = VK_ERROR_SURFACE_LOST_KHR;
break;
}
break;
}
img.buffer = buffer;
img.dequeued = true;
image_native_buffer.handle = img.buffer->handle;
image_native_buffer.stride = img.buffer->stride;
image_native_buffer.format = img.buffer->format;
image_native_buffer.usage = int(img.buffer->usage);
android_convertGralloc0To1Usage(int(img.buffer->usage),
&image_native_buffer.usage2.producer,
&image_native_buffer.usage2.consumer);
image_native_buffer.usage3 = img.buffer->usage;
image_create.pNext = &image_native_buffer;
ATRACE_BEGIN("CreateImage");
result =
dispatch.CreateImage(device, &image_create, nullptr, &img.image);
ATRACE_END();
if (result != VK_SUCCESS) {
ALOGD("vkCreateImage w/ native buffer failed: %u", result);
break;
}
}
// -- Cancel all buffers, returning them to the queue --
// If an error occurred before, also destroy the VkImage and release the
// buffer reference. Otherwise, we retain a strong reference to the buffer.
for (uint32_t i = 0; i < num_images; i++) {
Swapchain::Image& img = swapchain->images[i];
if (img.dequeued) {
if (!swapchain->shared) {
window->cancelBuffer(window, img.buffer.get(),
img.dequeue_fence);
img.dequeue_fence = -1;
img.dequeued = false;
}
}
}
}
if (result != VK_SUCCESS) {
DestroySwapchainInternal(device, HandleFromSwapchain(swapchain),
allocator);
return result;
}
if (transform_hint != swapchain->pre_transform) {
// Log that the app is not doing pre-rotation.
android::GraphicsEnv::getInstance().setTargetStats(
android::GpuStatsInfo::Stats::FALSE_PREROTATION);
}
// Set stats for creating a Vulkan swapchain
android::GraphicsEnv::getInstance().setTargetStats(
android::GpuStatsInfo::Stats::CREATED_VULKAN_SWAPCHAIN);
surface.used_by_swapchain = true;
surface.swapchain_handle = HandleFromSwapchain(swapchain);
*swapchain_handle = surface.swapchain_handle;
return VK_SUCCESS;
}
VKAPI_ATTR
void DestroySwapchainKHR(VkDevice device,
VkSwapchainKHR swapchain_handle,
const VkAllocationCallbacks* allocator) {
ATRACE_CALL();
DestroySwapchainInternal(device, swapchain_handle, allocator);
}
VKAPI_ATTR
VkResult GetSwapchainImagesKHR(VkDevice,
VkSwapchainKHR swapchain_handle,
uint32_t* count,
VkImage* images) {
ATRACE_CALL();
Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
ALOGW_IF(swapchain.surface.swapchain_handle != swapchain_handle,
"getting images for non-active swapchain 0x%" PRIx64
"; only dequeued image handles are valid",
reinterpret_cast<uint64_t>(swapchain_handle));
VkResult result = VK_SUCCESS;
if (images) {
uint32_t n = swapchain.num_images;
if (*count < swapchain.num_images) {
n = *count;
result = VK_INCOMPLETE;
}
for (uint32_t i = 0; i < n; i++)
images[i] = swapchain.images[i].image;
*count = n;
} else {
*count = swapchain.num_images;
}
return result;
}
VKAPI_ATTR
VkResult AcquireNextImageKHR(VkDevice device,
VkSwapchainKHR swapchain_handle,
uint64_t timeout,
VkSemaphore semaphore,
VkFence vk_fence,
uint32_t* image_index) {
ATRACE_CALL();
Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
ANativeWindow* window = swapchain.surface.window.get();
VkResult result;
int err;
if (swapchain.surface.swapchain_handle != swapchain_handle)
return VK_ERROR_OUT_OF_DATE_KHR;
if (swapchain.shared) {
// In shared mode, we keep the buffer dequeued all the time, so we don't
// want to dequeue a buffer here. Instead, just ask the driver to ensure
// the semaphore and fence passed to us will be signalled.
*image_index = 0;
result = GetData(device).driver.AcquireImageANDROID(
device, swapchain.images[*image_index].image, -1, semaphore, vk_fence);
return result;
}
const nsecs_t acquire_next_image_timeout =
timeout > (uint64_t)std::numeric_limits<nsecs_t>::max() ? -1 : timeout;
if (acquire_next_image_timeout != swapchain.acquire_next_image_timeout) {
// Cache the timeout to avoid the duplicate binder cost.
err = window->perform(window, NATIVE_WINDOW_SET_DEQUEUE_TIMEOUT,
acquire_next_image_timeout);
if (err != android::OK) {
ALOGE("window->perform(SET_DEQUEUE_TIMEOUT) failed: %s (%d)",
strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
swapchain.acquire_next_image_timeout = acquire_next_image_timeout;
}
ANativeWindowBuffer* buffer;
int fence_fd;
err = window->dequeueBuffer(window, &buffer, &fence_fd);
if (err == android::TIMED_OUT || err == android::INVALID_OPERATION) {
ALOGW("dequeueBuffer timed out: %s (%d)", strerror(-err), err);
return timeout ? VK_TIMEOUT : VK_NOT_READY;
} else if (err != android::OK) {
ALOGE("dequeueBuffer failed: %s (%d)", strerror(-err), err);
return VK_ERROR_SURFACE_LOST_KHR;
}
uint32_t idx;
for (idx = 0; idx < swapchain.num_images; idx++) {
if (swapchain.images[idx].buffer.get() == buffer) {
swapchain.images[idx].dequeued = true;
swapchain.images[idx].dequeue_fence = fence_fd;
break;
}
}
// If this is a deferred alloc swapchain, this may be the first time we've
// seen a particular buffer. If so, there should be an empty slot. Find it,
// and bind the gralloc buffer to the VkImage for that slot. If there is no
// empty slot, then we dequeued an unexpected buffer. Non-deferred swapchains
// will also take this path, but will never have an empty slot since we
// populated them all upfront.
if (idx == swapchain.num_images) {
for (idx = 0; idx < swapchain.num_images; idx++) {
if (!swapchain.images[idx].buffer) {
// Note: this structure is technically required for
// Vulkan correctness, even though the driver is probably going
// to use everything from the VkNativeBufferANDROID below.
// This is kindof silly, but it's how we did the ANB
// side of VK_KHR_swapchain v69, so we're stuck with it unless
// we want to go tinkering with the ANB spec some more.
VkBindImageMemorySwapchainInfoKHR bimsi = {
.sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR,
.pNext = nullptr,
.swapchain = swapchain_handle,
.imageIndex = idx,
};
VkNativeBufferANDROID nb = {
.sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID,
.pNext = &bimsi,
.handle = buffer->handle,
.stride = buffer->stride,
.format = buffer->format,
.usage = int(buffer->usage),
};
VkBindImageMemoryInfo bimi = {
.sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO,
.pNext = &nb,
.image = swapchain.images[idx].image,
.memory = VK_NULL_HANDLE,
.memoryOffset = 0,
};
result = GetData(device).driver.BindImageMemory2(device, 1, &bimi);
if (result != VK_SUCCESS) {
// This shouldn't really happen. If it does, something is probably
// unrecoverably wrong with the swapchain and its images. Cancel
// the buffer and declare the swapchain broken.
ALOGE("failed to do deferred gralloc buffer bind");
window->cancelBuffer(window, buffer, fence_fd);
return VK_ERROR_OUT_OF_DATE_KHR;
}
swapchain.images[idx].dequeued = true;
swapchain.images[idx].dequeue_fence = fence_fd;
swapchain.images[idx].buffer = buffer;
break;
}
}
}
// The buffer doesn't match any slot. This shouldn't normally happen, but is
// possible if the bufferqueue is reconfigured behind libvulkan's back. If this
// happens, just declare the swapchain to be broken and the app will recreate it.
if (idx == swapchain.num_images) {
ALOGE("dequeueBuffer returned unrecognized buffer");
window->cancelBuffer(window, buffer, fence_fd);
return VK_ERROR_OUT_OF_DATE_KHR;
}
int fence_clone = -1;
if (fence_fd != -1) {
fence_clone = dup(fence_fd);
if (fence_clone == -1) {
ALOGE("dup(fence) failed, stalling until signalled: %s (%d)",
strerror(errno), errno);
sync_wait(fence_fd, -1 /* forever */);
}
}
result = GetData(device).driver.AcquireImageANDROID(
device, swapchain.images[idx].image, fence_clone, semaphore, vk_fence);
if (result != VK_SUCCESS) {
// NOTE: we're relying on AcquireImageANDROID to close fence_clone,
// even if the call fails. We could close it ourselves on failure, but
// that would create a race condition if the driver closes it on a
// failure path: some other thread might create an fd with the same
// number between the time the driver closes it and the time we close
// it. We must assume one of: the driver *always* closes it even on
// failure, or *never* closes it on failure.
window->cancelBuffer(window, buffer, fence_fd);
swapchain.images[idx].dequeued = false;
swapchain.images[idx].dequeue_fence = -1;
return result;
}
*image_index = idx;
return VK_SUCCESS;
}
VKAPI_ATTR
VkResult AcquireNextImage2KHR(VkDevice device,
const VkAcquireNextImageInfoKHR* pAcquireInfo,
uint32_t* pImageIndex) {
ATRACE_CALL();
return AcquireNextImageKHR(device, pAcquireInfo->swapchain,
pAcquireInfo->timeout, pAcquireInfo->semaphore,
pAcquireInfo->fence, pImageIndex);
}
static VkResult WorstPresentResult(VkResult a, VkResult b) {
// See the error ranking for vkQueuePresentKHR at the end of section 29.6
// (in spec version 1.0.14).
static const VkResult kWorstToBest[] = {
VK_ERROR_DEVICE_LOST,
VK_ERROR_SURFACE_LOST_KHR,
VK_ERROR_OUT_OF_DATE_KHR,
VK_ERROR_OUT_OF_DEVICE_MEMORY,
VK_ERROR_OUT_OF_HOST_MEMORY,
VK_SUBOPTIMAL_KHR,
};
for (auto result : kWorstToBest) {
if (a == result || b == result)
return result;
}
ALOG_ASSERT(a == VK_SUCCESS, "invalid vkQueuePresentKHR result %d", a);
ALOG_ASSERT(b == VK_SUCCESS, "invalid vkQueuePresentKHR result %d", b);
return a != VK_SUCCESS ? a : b;
}
// KHR_incremental_present aspect of QueuePresentKHR
static void SetSwapchainSurfaceDamage(ANativeWindow *window, const VkPresentRegionKHR *pRegion) {
std::vector<android_native_rect_t> rects(pRegion->rectangleCount);
for (auto i = 0u; i < pRegion->rectangleCount; i++) {
auto const& rect = pRegion->pRectangles[i];
if (rect.layer > 0) {
ALOGV("vkQueuePresentKHR ignoring invalid layer (%u); using layer 0 instead",
rect.layer);
}
rects[i].left = rect.offset.x;
rects[i].bottom = rect.offset.y;
rects[i].right = rect.offset.x + rect.extent.width;
rects[i].top = rect.offset.y + rect.extent.height;
}
native_window_set_surface_damage(window, rects.data(), rects.size());
}
// GOOGLE_display_timing aspect of QueuePresentKHR
static void SetSwapchainFrameTimestamp(Swapchain &swapchain, const VkPresentTimeGOOGLE *pTime) {
ANativeWindow *window = swapchain.surface.window.get();
// We don't know whether the app will actually use GOOGLE_display_timing
// with a particular swapchain until QueuePresent; enable it on the BQ
// now if needed
if (!swapchain.frame_timestamps_enabled) {
ALOGV("Calling native_window_enable_frame_timestamps(true)");
native_window_enable_frame_timestamps(window, true);
swapchain.frame_timestamps_enabled = true;
}
// Record the nativeFrameId so it can be later correlated to
// this present.
uint64_t nativeFrameId = 0;
int err = native_window_get_next_frame_id(
window, &nativeFrameId);
if (err != android::OK) {
ALOGE("Failed to get next native frame ID.");
}
// Add a new timing record with the user's presentID and
// the nativeFrameId.
swapchain.timing.emplace_back(pTime, nativeFrameId);
if (swapchain.timing.size() > MAX_TIMING_INFOS) {
swapchain.timing.erase(
swapchain.timing.begin(),
swapchain.timing.begin() + swapchain.timing.size() - MAX_TIMING_INFOS);
}
if (pTime->desiredPresentTime) {
ALOGV(
"Calling native_window_set_buffers_timestamp(%" PRId64 ")",
pTime->desiredPresentTime);
native_window_set_buffers_timestamp(
window,
static_cast<int64_t>(pTime->desiredPresentTime));
}
}
// EXT_swapchain_maintenance1 present mode change
static bool SetSwapchainPresentMode(ANativeWindow *window, VkPresentModeKHR mode) {
// There is no dynamic switching between non-shared present modes.
// All we support is switching between demand and continuous refresh.
if (!IsSharedPresentMode(mode))
return true;
int err = native_window_set_auto_refresh(window,
mode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR);
if (err != android::OK) {
ALOGE("native_window_set_auto_refresh() failed: %s (%d)",
strerror(-err), err);
return false;
}
return true;
}
static VkResult PresentOneSwapchain(
VkQueue queue,
Swapchain& swapchain,
uint32_t imageIndex,
const VkPresentRegionKHR *pRegion,
const VkPresentTimeGOOGLE *pTime,
VkFence presentFence,
const VkPresentModeKHR *pPresentMode,
uint32_t waitSemaphoreCount,
const VkSemaphore *pWaitSemaphores) {
VkDevice device = GetData(queue).driver_device;
const auto& dispatch = GetData(queue).driver;
Swapchain::Image& img = swapchain.images[imageIndex];
VkResult swapchain_result = VK_SUCCESS;
VkResult result;
int err;
// XXX: long standing issue: QueueSignalReleaseImageANDROID consumes the
// wait semaphores, so this doesn't actually work for the multiple swapchain
// case.
int fence = -1;
result = dispatch.QueueSignalReleaseImageANDROID(
queue, waitSemaphoreCount,
pWaitSemaphores, img.image, &fence);
if (result != VK_SUCCESS) {
ALOGE("QueueSignalReleaseImageANDROID failed: %d", result);
swapchain_result = result;
}
if (img.release_fence >= 0)
close(img.release_fence);
img.release_fence = fence < 0 ? -1 : dup(fence);
if (swapchain.surface.swapchain_handle == HandleFromSwapchain(&swapchain)) {
ANativeWindow* window = swapchain.surface.window.get();
if (swapchain_result == VK_SUCCESS) {
if (presentFence != VK_NULL_HANDLE) {
int fence_copy = fence < 0 ? -1 : dup(fence);
VkImportFenceFdInfoKHR iffi = {
VK_STRUCTURE_TYPE_IMPORT_FENCE_FD_INFO_KHR,
nullptr,
presentFence,
VK_FENCE_IMPORT_TEMPORARY_BIT,
VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT,
fence_copy,
};
if (VK_SUCCESS != dispatch.ImportFenceFdKHR(device, &iffi) && fence_copy >= 0) {
// ImportFenceFdKHR takes ownership only if it succeeds
close(fence_copy);
}
}
if (pRegion) {
SetSwapchainSurfaceDamage(window, pRegion);
}
if (pTime) {
SetSwapchainFrameTimestamp(swapchain, pTime);
}
if (pPresentMode) {
if (!SetSwapchainPresentMode(window, *pPresentMode))
swapchain_result = WorstPresentResult(swapchain_result,
VK_ERROR_SURFACE_LOST_KHR);
}
err = window->queueBuffer(window, img.buffer.get(), fence);
// queueBuffer always closes fence, even on error
if (err != android::OK) {
ALOGE("queueBuffer failed: %s (%d)", strerror(-err), err);
swapchain_result = WorstPresentResult(
swapchain_result, VK_ERROR_SURFACE_LOST_KHR);
} else {
if (img.dequeue_fence >= 0) {
close(img.dequeue_fence);
img.dequeue_fence = -1;
}
img.dequeued = false;
}
// If the swapchain is in shared mode, immediately dequeue the
// buffer so it can be presented again without an intervening
// call to AcquireNextImageKHR. We expect to get the same buffer
// back from every call to dequeueBuffer in this mode.
if (swapchain.shared && swapchain_result == VK_SUCCESS) {
ANativeWindowBuffer* buffer;
int fence_fd;
err = window->dequeueBuffer(window, &buffer, &fence_fd);
if (err != android::OK) {
ALOGE("dequeueBuffer failed: %s (%d)", strerror(-err), err);
swapchain_result = WorstPresentResult(swapchain_result,
VK_ERROR_SURFACE_LOST_KHR);
} else if (img.buffer != buffer) {
ALOGE("got wrong image back for shared swapchain");
swapchain_result = WorstPresentResult(swapchain_result,
VK_ERROR_SURFACE_LOST_KHR);
} else {
img.dequeue_fence = fence_fd;
img.dequeued = true;
}
}
}
if (swapchain_result != VK_SUCCESS) {
OrphanSwapchain(device, &swapchain);
}
// Android will only return VK_SUBOPTIMAL_KHR for vkQueuePresentKHR,
// and only when the window's transform/rotation changes. Extent
// changes will not cause VK_SUBOPTIMAL_KHR because of the
// application issues that were caused when the following transform
// change was added.
int window_transform_hint;
err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT,
&window_transform_hint);
if (err != android::OK) {
ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)",
strerror(-err), err);
swapchain_result = WorstPresentResult(
swapchain_result, VK_ERROR_SURFACE_LOST_KHR);
}
if (swapchain.pre_transform != window_transform_hint) {
swapchain_result =
WorstPresentResult(swapchain_result, VK_SUBOPTIMAL_KHR);
}
} else {
ReleaseSwapchainImage(device, swapchain.shared, nullptr, fence,
img, true);
swapchain_result = VK_ERROR_OUT_OF_DATE_KHR;
}
return swapchain_result;
}
VKAPI_ATTR
VkResult QueuePresentKHR(VkQueue queue, const VkPresentInfoKHR* present_info) {
ATRACE_CALL();
ALOGV_IF(present_info->sType != VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
"vkQueuePresentKHR: invalid VkPresentInfoKHR structure type %d",
present_info->sType);
VkResult final_result = VK_SUCCESS;
// Look at the pNext chain for supported extension structs:
const VkPresentRegionsKHR* present_regions = nullptr;
const VkPresentTimesInfoGOOGLE* present_times = nullptr;
const VkSwapchainPresentFenceInfoEXT* present_fences = nullptr;
const VkSwapchainPresentModeInfoEXT* present_modes = nullptr;
const VkPresentRegionsKHR* next =
reinterpret_cast<const VkPresentRegionsKHR*>(present_info->pNext);
while (next) {
switch (next->sType) {
case VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR:
present_regions = next;
break;
case VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE:
present_times =
reinterpret_cast<const VkPresentTimesInfoGOOGLE*>(next);
break;
case VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_FENCE_INFO_EXT:
present_fences =
reinterpret_cast<const VkSwapchainPresentFenceInfoEXT*>(next);
break;
case VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_MODE_INFO_EXT:
present_modes =
reinterpret_cast<const VkSwapchainPresentModeInfoEXT*>(next);
break;
default:
ALOGV("QueuePresentKHR ignoring unrecognized pNext->sType = %x",
next->sType);
break;
}
next = reinterpret_cast<const VkPresentRegionsKHR*>(next->pNext);
}
ALOGV_IF(
present_regions &&
present_regions->swapchainCount != present_info->swapchainCount,
"VkPresentRegions::swapchainCount != VkPresentInfo::swapchainCount");
ALOGV_IF(present_times &&
present_times->swapchainCount != present_info->swapchainCount,
"VkPresentTimesInfoGOOGLE::swapchainCount != "
"VkPresentInfo::swapchainCount");
ALOGV_IF(present_fences &&
present_fences->swapchainCount != present_info->swapchainCount,
"VkSwapchainPresentFenceInfoEXT::swapchainCount != "
"VkPresentInfo::swapchainCount");
ALOGV_IF(present_modes &&
present_modes->swapchainCount != present_info->swapchainCount,
"VkSwapchainPresentModeInfoEXT::swapchainCount != "
"VkPresentInfo::swapchainCount");
const VkPresentRegionKHR* regions =
(present_regions) ? present_regions->pRegions : nullptr;
const VkPresentTimeGOOGLE* times =
(present_times) ? present_times->pTimes : nullptr;
for (uint32_t sc = 0; sc < present_info->swapchainCount; sc++) {
Swapchain& swapchain =
*SwapchainFromHandle(present_info->pSwapchains[sc]);
VkResult swapchain_result = PresentOneSwapchain(
queue,
swapchain,
present_info->pImageIndices[sc],
(regions && !swapchain.mailbox_mode) ? &regions[sc] : nullptr,
times ? &times[sc] : nullptr,
present_fences ? present_fences->pFences[sc] : VK_NULL_HANDLE,
present_modes ? &present_modes->pPresentModes[sc] : nullptr,
present_info->waitSemaphoreCount,
present_info->pWaitSemaphores);
if (present_info->pResults)
present_info->pResults[sc] = swapchain_result;
if (swapchain_result != final_result)
final_result = WorstPresentResult(final_result, swapchain_result);
}
return final_result;
}
VKAPI_ATTR
VkResult GetRefreshCycleDurationGOOGLE(
VkDevice,
VkSwapchainKHR swapchain_handle,
VkRefreshCycleDurationGOOGLE* pDisplayTimingProperties) {
ATRACE_CALL();
Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
VkResult result = swapchain.get_refresh_duration(pDisplayTimingProperties->refreshDuration);
return result;
}
VKAPI_ATTR
VkResult GetPastPresentationTimingGOOGLE(
VkDevice,
VkSwapchainKHR swapchain_handle,
uint32_t* count,
VkPastPresentationTimingGOOGLE* timings) {
ATRACE_CALL();
Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
if (swapchain.surface.swapchain_handle != swapchain_handle) {
return VK_ERROR_OUT_OF_DATE_KHR;
}
ANativeWindow* window = swapchain.surface.window.get();
VkResult result = VK_SUCCESS;
if (!swapchain.frame_timestamps_enabled) {
ALOGV("Calling native_window_enable_frame_timestamps(true)");
native_window_enable_frame_timestamps(window, true);
swapchain.frame_timestamps_enabled = true;
}
if (timings) {
// Get the latest ready timing count before copying, since the copied
// timing info will be erased in copy_ready_timings function.
uint32_t n = get_num_ready_timings(swapchain);
copy_ready_timings(swapchain, count, timings);
// Check the *count here against the recorded ready timing count, since
// *count can be overwritten per spec describes.
if (*count < n) {
result = VK_INCOMPLETE;
}
} else {
*count = get_num_ready_timings(swapchain);
}
return result;
}
VKAPI_ATTR
VkResult GetSwapchainStatusKHR(
VkDevice,
VkSwapchainKHR swapchain_handle) {
ATRACE_CALL();
Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
VkResult result = VK_SUCCESS;
if (swapchain.surface.swapchain_handle != swapchain_handle) {
return VK_ERROR_OUT_OF_DATE_KHR;
}
// TODO(b/143296009): Implement this function properly
return result;
}
VKAPI_ATTR void SetHdrMetadataEXT(
VkDevice,
uint32_t swapchainCount,
const VkSwapchainKHR* pSwapchains,
const VkHdrMetadataEXT* pHdrMetadataEXTs) {
ATRACE_CALL();
for (uint32_t idx = 0; idx < swapchainCount; idx++) {
Swapchain* swapchain = SwapchainFromHandle(pSwapchains[idx]);
if (!swapchain)
continue;
if (swapchain->surface.swapchain_handle != pSwapchains[idx]) continue;
ANativeWindow* window = swapchain->surface.window.get();
VkHdrMetadataEXT vulkanMetadata = pHdrMetadataEXTs[idx];
const android_smpte2086_metadata smpteMetdata = {
{vulkanMetadata.displayPrimaryRed.x,
vulkanMetadata.displayPrimaryRed.y},
{vulkanMetadata.displayPrimaryGreen.x,
vulkanMetadata.displayPrimaryGreen.y},
{vulkanMetadata.displayPrimaryBlue.x,
vulkanMetadata.displayPrimaryBlue.y},
{vulkanMetadata.whitePoint.x, vulkanMetadata.whitePoint.y},
vulkanMetadata.maxLuminance,
vulkanMetadata.minLuminance};
native_window_set_buffers_smpte2086_metadata(window, &smpteMetdata);
const android_cta861_3_metadata cta8613Metadata = {
vulkanMetadata.maxContentLightLevel,
vulkanMetadata.maxFrameAverageLightLevel};
native_window_set_buffers_cta861_3_metadata(window, &cta8613Metadata);
}
return;
}
static void InterceptBindImageMemory2(
uint32_t bind_info_count,
const VkBindImageMemoryInfo* bind_infos,
std::vector<VkNativeBufferANDROID>* out_native_buffers,
std::vector<VkBindImageMemoryInfo>* out_bind_infos) {
out_native_buffers->clear();
out_bind_infos->clear();
if (!bind_info_count)
return;
std::unordered_set<uint32_t> intercepted_indexes;
for (uint32_t idx = 0; idx < bind_info_count; idx++) {
auto info = reinterpret_cast<const VkBindImageMemorySwapchainInfoKHR*>(
bind_infos[idx].pNext);
while (info &&
info->sType !=
VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR) {
info = reinterpret_cast<const VkBindImageMemorySwapchainInfoKHR*>(
info->pNext);
}
if (!info)
continue;
ALOG_ASSERT(info->swapchain != VK_NULL_HANDLE,
"swapchain handle must not be NULL");
const Swapchain* swapchain = SwapchainFromHandle(info->swapchain);
ALOG_ASSERT(
info->imageIndex < swapchain->num_images,
"imageIndex must be less than the number of images in swapchain");
ANativeWindowBuffer* buffer =
swapchain->images[info->imageIndex].buffer.get();
VkNativeBufferANDROID native_buffer = {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wold-style-cast"
.sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID,
#pragma clang diagnostic pop
.pNext = bind_infos[idx].pNext,
.handle = buffer->handle,
.stride = buffer->stride,
.format = buffer->format,
.usage = int(buffer->usage),
};
// Reserve enough space to avoid letting re-allocation invalidate the
// addresses of the elements inside.
out_native_buffers->reserve(bind_info_count);
out_native_buffers->emplace_back(native_buffer);
// Reserve the space now since we know how much is needed now.
out_bind_infos->reserve(bind_info_count);
out_bind_infos->emplace_back(bind_infos[idx]);
out_bind_infos->back().pNext = &out_native_buffers->back();
intercepted_indexes.insert(idx);
}
if (intercepted_indexes.empty())
return;
for (uint32_t idx = 0; idx < bind_info_count; idx++) {
if (intercepted_indexes.count(idx))
continue;
out_bind_infos->emplace_back(bind_infos[idx]);
}
}
VKAPI_ATTR
VkResult BindImageMemory2(VkDevice device,
uint32_t bindInfoCount,
const VkBindImageMemoryInfo* pBindInfos) {
ATRACE_CALL();
// out_native_buffers is for maintaining the lifecycle of the constructed
// VkNativeBufferANDROID objects inside InterceptBindImageMemory2.
std::vector<VkNativeBufferANDROID> out_native_buffers;
std::vector<VkBindImageMemoryInfo> out_bind_infos;
InterceptBindImageMemory2(bindInfoCount, pBindInfos, &out_native_buffers,
&out_bind_infos);
return GetData(device).driver.BindImageMemory2(
device, bindInfoCount,
out_bind_infos.empty() ? pBindInfos : out_bind_infos.data());
}
VKAPI_ATTR
VkResult BindImageMemory2KHR(VkDevice device,
uint32_t bindInfoCount,
const VkBindImageMemoryInfo* pBindInfos) {
ATRACE_CALL();
std::vector<VkNativeBufferANDROID> out_native_buffers;
std::vector<VkBindImageMemoryInfo> out_bind_infos;
InterceptBindImageMemory2(bindInfoCount, pBindInfos, &out_native_buffers,
&out_bind_infos);
return GetData(device).driver.BindImageMemory2KHR(
device, bindInfoCount,
out_bind_infos.empty() ? pBindInfos : out_bind_infos.data());
}
VKAPI_ATTR
VkResult ReleaseSwapchainImagesEXT(VkDevice /*device*/,
const VkReleaseSwapchainImagesInfoEXT* pReleaseInfo) {
ATRACE_CALL();
Swapchain& swapchain = *SwapchainFromHandle(pReleaseInfo->swapchain);
ANativeWindow* window = swapchain.surface.window.get();
// If in shared present mode, don't actually release the image back to the BQ.
// Both sides share it forever.
if (swapchain.shared)
return VK_SUCCESS;
for (uint32_t i = 0; i < pReleaseInfo->imageIndexCount; i++) {
Swapchain::Image& img = swapchain.images[pReleaseInfo->pImageIndices[i]];
window->cancelBuffer(window, img.buffer.get(), img.dequeue_fence);
// cancelBuffer has taken ownership of the dequeue fence
img.dequeue_fence = -1;
// if we're still holding a release fence, get rid of it now
if (img.release_fence >= 0) {
close(img.release_fence);
img.release_fence = -1;
}
img.dequeued = false;
}
return VK_SUCCESS;
}
} // namespace driver
} // namespace vulkan