|  | /* | 
|  | * Copyright 2023 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #define LOG_TAG "MotionPredictorMetricsManager" | 
|  |  | 
|  | #include <input/MotionPredictorMetricsManager.h> | 
|  |  | 
|  | #include <algorithm> | 
|  |  | 
|  | #include <android-base/logging.h> | 
|  |  | 
|  | #include "Eigen/Core" | 
|  | #include "Eigen/Geometry" | 
|  |  | 
|  | #ifdef __ANDROID__ | 
|  | #include <statslog_libinput.h> | 
|  | #endif | 
|  |  | 
|  | namespace android { | 
|  | namespace { | 
|  |  | 
|  | inline constexpr int NANOS_PER_SECOND = 1'000'000'000; // nanoseconds per second | 
|  | inline constexpr int NANOS_PER_MILLIS = 1'000'000;     // nanoseconds per millisecond | 
|  |  | 
|  | // Velocity threshold at which we report "high-velocity" metrics, in pixels per second. | 
|  | // This value was selected from manual experimentation, as a threshold that separates "fast" | 
|  | // (semi-sloppy) handwriting from more careful medium to slow handwriting. | 
|  | inline constexpr float HIGH_VELOCITY_THRESHOLD = 1100.0; | 
|  |  | 
|  | // Small value to add to the path length when computing scale-invariant error to avoid division by | 
|  | // zero. | 
|  | inline constexpr float PATH_LENGTH_EPSILON = 0.001; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | void MotionPredictorMetricsManager::defaultReportAtomFunction( | 
|  | const MotionPredictorMetricsManager::AtomFields& atomFields) { | 
|  | // Call stats_write logging function only on Android targets (not supported on host). | 
|  | #ifdef __ANDROID__ | 
|  | android::stats::libinput:: | 
|  | stats_write(android::stats::libinput::STYLUS_PREDICTION_METRICS_REPORTED, | 
|  | /*stylus_vendor_id=*/0, | 
|  | /*stylus_product_id=*/0, | 
|  | atomFields.deltaTimeBucketMilliseconds, | 
|  | atomFields.alongTrajectoryErrorMeanMillipixels, | 
|  | atomFields.alongTrajectoryErrorStdMillipixels, | 
|  | atomFields.offTrajectoryRmseMillipixels, | 
|  | atomFields.pressureRmseMilliunits, | 
|  | atomFields.highVelocityAlongTrajectoryRmse, | 
|  | atomFields.highVelocityOffTrajectoryRmse, | 
|  | atomFields.scaleInvariantAlongTrajectoryRmse, | 
|  | atomFields.scaleInvariantOffTrajectoryRmse); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | MotionPredictorMetricsManager::MotionPredictorMetricsManager( | 
|  | nsecs_t predictionInterval, | 
|  | size_t maxNumPredictions, | 
|  | ReportAtomFunction reportAtomFunction) | 
|  | : mPredictionInterval(predictionInterval), | 
|  | mMaxNumPredictions(maxNumPredictions), | 
|  | mRecentGroundTruthPoints(maxNumPredictions + 1), | 
|  | mAggregatedMetrics(maxNumPredictions), | 
|  | mAtomFields(maxNumPredictions), | 
|  | mReportAtomFunction(reportAtomFunction ? reportAtomFunction : defaultReportAtomFunction) {} | 
|  |  | 
|  | void MotionPredictorMetricsManager::onRecord(const MotionEvent& inputEvent) { | 
|  | // Convert MotionEvent to GroundTruthPoint. | 
|  | const PointerCoords* coords = inputEvent.getRawPointerCoords(/*pointerIndex=*/0); | 
|  | LOG_ALWAYS_FATAL_IF(coords == nullptr); | 
|  | const GroundTruthPoint groundTruthPoint{{.position = Eigen::Vector2f{coords->getY(), | 
|  | coords->getX()}, | 
|  | .pressure = | 
|  | inputEvent.getPressure(/*pointerIndex=*/0)}, | 
|  | .timestamp = inputEvent.getEventTime()}; | 
|  |  | 
|  | // Handle event based on action type. | 
|  | switch (inputEvent.getActionMasked()) { | 
|  | case AMOTION_EVENT_ACTION_DOWN: { | 
|  | clearStrokeData(); | 
|  | incorporateNewGroundTruth(groundTruthPoint); | 
|  | break; | 
|  | } | 
|  | case AMOTION_EVENT_ACTION_MOVE: { | 
|  | incorporateNewGroundTruth(groundTruthPoint); | 
|  | break; | 
|  | } | 
|  | case AMOTION_EVENT_ACTION_UP: | 
|  | case AMOTION_EVENT_ACTION_CANCEL: { | 
|  | // Only expect meaningful predictions when given at least two input points. | 
|  | if (mRecentGroundTruthPoints.size() >= 2) { | 
|  | computeAtomFields(); | 
|  | reportMetrics(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Adds new predictions to mRecentPredictions and maintains the invariant that elements are | 
|  | // sorted in ascending order of targetTimestamp. | 
|  | void MotionPredictorMetricsManager::onPredict(const MotionEvent& predictionEvent) { | 
|  | for (size_t i = 0; i < predictionEvent.getHistorySize() + 1; ++i) { | 
|  | // Convert MotionEvent to PredictionPoint. | 
|  | const PointerCoords* coords = | 
|  | predictionEvent.getHistoricalRawPointerCoords(/*pointerIndex=*/0, i); | 
|  | LOG_ALWAYS_FATAL_IF(coords == nullptr); | 
|  | const nsecs_t targetTimestamp = predictionEvent.getHistoricalEventTime(i); | 
|  | mRecentPredictions.push_back( | 
|  | PredictionPoint{{.position = Eigen::Vector2f{coords->getY(), coords->getX()}, | 
|  | .pressure = | 
|  | predictionEvent.getHistoricalPressure(/*pointerIndex=*/0, | 
|  | i)}, | 
|  | .originTimestamp = mRecentGroundTruthPoints.back().timestamp, | 
|  | .targetTimestamp = targetTimestamp}); | 
|  | } | 
|  |  | 
|  | std::sort(mRecentPredictions.begin(), mRecentPredictions.end()); | 
|  | } | 
|  |  | 
|  | void MotionPredictorMetricsManager::clearStrokeData() { | 
|  | mRecentGroundTruthPoints.clear(); | 
|  | mRecentPredictions.clear(); | 
|  | std::fill(mAggregatedMetrics.begin(), mAggregatedMetrics.end(), AggregatedStrokeMetrics{}); | 
|  | std::fill(mAtomFields.begin(), mAtomFields.end(), AtomFields{}); | 
|  | } | 
|  |  | 
|  | void MotionPredictorMetricsManager::incorporateNewGroundTruth( | 
|  | const GroundTruthPoint& groundTruthPoint) { | 
|  | // Note: this removes the oldest point if `mRecentGroundTruthPoints` is already at capacity. | 
|  | mRecentGroundTruthPoints.pushBack(groundTruthPoint); | 
|  |  | 
|  | // Remove outdated predictions – those that can never be matched with the current or any future | 
|  | // ground truth points. We use fuzzy association for the timestamps here, because ground truth | 
|  | // and prediction timestamps may not be perfectly synchronized. | 
|  | const nsecs_t fuzzy_association_time_delta = mPredictionInterval / 4; | 
|  | const auto firstCurrentIt = | 
|  | std::find_if(mRecentPredictions.begin(), mRecentPredictions.end(), | 
|  | [&groundTruthPoint, | 
|  | fuzzy_association_time_delta](const PredictionPoint& prediction) { | 
|  | return prediction.targetTimestamp > | 
|  | groundTruthPoint.timestamp - fuzzy_association_time_delta; | 
|  | }); | 
|  | mRecentPredictions.erase(mRecentPredictions.begin(), firstCurrentIt); | 
|  |  | 
|  | // Fuzzily match the new ground truth's timestamp to recent predictions' targetTimestamp and | 
|  | // update the corresponding metrics. | 
|  | for (const PredictionPoint& prediction : mRecentPredictions) { | 
|  | if ((prediction.targetTimestamp > | 
|  | groundTruthPoint.timestamp - fuzzy_association_time_delta) && | 
|  | (prediction.targetTimestamp < | 
|  | groundTruthPoint.timestamp + fuzzy_association_time_delta)) { | 
|  | updateAggregatedMetrics(prediction); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void MotionPredictorMetricsManager::updateAggregatedMetrics( | 
|  | const PredictionPoint& predictionPoint) { | 
|  | if (mRecentGroundTruthPoints.size() < 2) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const GroundTruthPoint& latestGroundTruthPoint = mRecentGroundTruthPoints.back(); | 
|  | const GroundTruthPoint& previousGroundTruthPoint = | 
|  | mRecentGroundTruthPoints[mRecentGroundTruthPoints.size() - 2]; | 
|  | // Calculate prediction error vector. | 
|  | const Eigen::Vector2f groundTruthTrajectory = | 
|  | latestGroundTruthPoint.position - previousGroundTruthPoint.position; | 
|  | const Eigen::Vector2f predictionTrajectory = | 
|  | predictionPoint.position - previousGroundTruthPoint.position; | 
|  | const Eigen::Vector2f predictionError = predictionTrajectory - groundTruthTrajectory; | 
|  |  | 
|  | // By default, prediction error counts fully as both off-trajectory and along-trajectory error. | 
|  | // This serves as the fallback when the two most recent ground truth points are equal. | 
|  | const float predictionErrorNorm = predictionError.norm(); | 
|  | float alongTrajectoryError = predictionErrorNorm; | 
|  | float offTrajectoryError = predictionErrorNorm; | 
|  | if (groundTruthTrajectory.squaredNorm() > 0) { | 
|  | // Rotate the prediction error vector by the angle of the ground truth trajectory vector. | 
|  | // This yields a vector whose first component is the along-trajectory error and whose | 
|  | // second component is the off-trajectory error. | 
|  | const float theta = std::atan2(groundTruthTrajectory[1], groundTruthTrajectory[0]); | 
|  | const Eigen::Vector2f rotatedPredictionError = Eigen::Rotation2Df(-theta) * predictionError; | 
|  | alongTrajectoryError = rotatedPredictionError[0]; | 
|  | offTrajectoryError = rotatedPredictionError[1]; | 
|  | } | 
|  |  | 
|  | // Compute the multiple of mPredictionInterval nearest to the amount of time into the | 
|  | // future being predicted. This serves as the time bucket index into mAggregatedMetrics. | 
|  | const float timestampDeltaFloat = | 
|  | static_cast<float>(predictionPoint.targetTimestamp - predictionPoint.originTimestamp); | 
|  | const size_t tIndex = | 
|  | static_cast<size_t>(std::round(timestampDeltaFloat / mPredictionInterval - 1)); | 
|  |  | 
|  | // Aggregate values into "general errors". | 
|  | mAggregatedMetrics[tIndex].alongTrajectoryErrorSum += alongTrajectoryError; | 
|  | mAggregatedMetrics[tIndex].alongTrajectorySumSquaredErrors += | 
|  | alongTrajectoryError * alongTrajectoryError; | 
|  | mAggregatedMetrics[tIndex].offTrajectorySumSquaredErrors += | 
|  | offTrajectoryError * offTrajectoryError; | 
|  | const float pressureError = predictionPoint.pressure - latestGroundTruthPoint.pressure; | 
|  | mAggregatedMetrics[tIndex].pressureSumSquaredErrors += pressureError * pressureError; | 
|  | ++mAggregatedMetrics[tIndex].generalErrorsCount; | 
|  |  | 
|  | // Aggregate values into high-velocity metrics, if we are in one of the last two time buckets | 
|  | // and the velocity is above the threshold. Velocity here is measured in pixels per second. | 
|  | const float velocity = groundTruthTrajectory.norm() / | 
|  | (static_cast<float>(latestGroundTruthPoint.timestamp - | 
|  | previousGroundTruthPoint.timestamp) / | 
|  | NANOS_PER_SECOND); | 
|  | if ((tIndex + 2 >= mMaxNumPredictions) && (velocity > HIGH_VELOCITY_THRESHOLD)) { | 
|  | mAggregatedMetrics[tIndex].highVelocityAlongTrajectorySse += | 
|  | alongTrajectoryError * alongTrajectoryError; | 
|  | mAggregatedMetrics[tIndex].highVelocityOffTrajectorySse += | 
|  | offTrajectoryError * offTrajectoryError; | 
|  | ++mAggregatedMetrics[tIndex].highVelocityErrorsCount; | 
|  | } | 
|  |  | 
|  | // Compute path length for scale-invariant errors. | 
|  | float pathLength = 0; | 
|  | for (size_t i = 1; i < mRecentGroundTruthPoints.size(); ++i) { | 
|  | pathLength += | 
|  | (mRecentGroundTruthPoints[i].position - mRecentGroundTruthPoints[i - 1].position) | 
|  | .norm(); | 
|  | } | 
|  | // Avoid overweighting errors at the beginning of a stroke: compute the path length as if there | 
|  | // were a full ground truth history by filling in missing segments with the average length. | 
|  | // Note: the "- 1" is needed to translate from number of endpoints to number of segments. | 
|  | pathLength *= static_cast<float>(mRecentGroundTruthPoints.capacity() - 1) / | 
|  | (mRecentGroundTruthPoints.size() - 1); | 
|  | pathLength += PATH_LENGTH_EPSILON; // Ensure path length is nonzero (>= PATH_LENGTH_EPSILON). | 
|  |  | 
|  | // Compute and aggregate scale-invariant errors. | 
|  | const float scaleInvariantAlongTrajectoryError = alongTrajectoryError / pathLength; | 
|  | const float scaleInvariantOffTrajectoryError = offTrajectoryError / pathLength; | 
|  | mAggregatedMetrics[tIndex].scaleInvariantAlongTrajectorySse += | 
|  | scaleInvariantAlongTrajectoryError * scaleInvariantAlongTrajectoryError; | 
|  | mAggregatedMetrics[tIndex].scaleInvariantOffTrajectorySse += | 
|  | scaleInvariantOffTrajectoryError * scaleInvariantOffTrajectoryError; | 
|  | ++mAggregatedMetrics[tIndex].scaleInvariantErrorsCount; | 
|  | } | 
|  |  | 
|  | void MotionPredictorMetricsManager::computeAtomFields() { | 
|  | for (size_t i = 0; i < mAggregatedMetrics.size(); ++i) { | 
|  | if (mAggregatedMetrics[i].generalErrorsCount == 0) { | 
|  | // We have not received data corresponding to metrics for this time bucket. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | mAtomFields[i].deltaTimeBucketMilliseconds = | 
|  | static_cast<int>(mPredictionInterval / NANOS_PER_MILLIS * (i + 1)); | 
|  |  | 
|  | // Note: we need the "* 1000"s below because we report values in integral milli-units. | 
|  |  | 
|  | { // General errors: reported for every time bucket. | 
|  | const float alongTrajectoryErrorMean = mAggregatedMetrics[i].alongTrajectoryErrorSum / | 
|  | mAggregatedMetrics[i].generalErrorsCount; | 
|  | mAtomFields[i].alongTrajectoryErrorMeanMillipixels = | 
|  | static_cast<int>(alongTrajectoryErrorMean * 1000); | 
|  |  | 
|  | const float alongTrajectoryMse = mAggregatedMetrics[i].alongTrajectorySumSquaredErrors / | 
|  | mAggregatedMetrics[i].generalErrorsCount; | 
|  | // Take the max with 0 to avoid negative values caused by numerical instability. | 
|  | const float alongTrajectoryErrorVariance = | 
|  | std::max(0.0f, | 
|  | alongTrajectoryMse - | 
|  | alongTrajectoryErrorMean * alongTrajectoryErrorMean); | 
|  | const float alongTrajectoryErrorStd = std::sqrt(alongTrajectoryErrorVariance); | 
|  | mAtomFields[i].alongTrajectoryErrorStdMillipixels = | 
|  | static_cast<int>(alongTrajectoryErrorStd * 1000); | 
|  |  | 
|  | LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[i].offTrajectorySumSquaredErrors < 0, | 
|  | "mAggregatedMetrics[%zu].offTrajectorySumSquaredErrors = %f should " | 
|  | "not be negative", | 
|  | i, mAggregatedMetrics[i].offTrajectorySumSquaredErrors); | 
|  | const float offTrajectoryRmse = | 
|  | std::sqrt(mAggregatedMetrics[i].offTrajectorySumSquaredErrors / | 
|  | mAggregatedMetrics[i].generalErrorsCount); | 
|  | mAtomFields[i].offTrajectoryRmseMillipixels = | 
|  | static_cast<int>(offTrajectoryRmse * 1000); | 
|  |  | 
|  | LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[i].pressureSumSquaredErrors < 0, | 
|  | "mAggregatedMetrics[%zu].pressureSumSquaredErrors = %f should not " | 
|  | "be negative", | 
|  | i, mAggregatedMetrics[i].pressureSumSquaredErrors); | 
|  | const float pressureRmse = std::sqrt(mAggregatedMetrics[i].pressureSumSquaredErrors / | 
|  | mAggregatedMetrics[i].generalErrorsCount); | 
|  | mAtomFields[i].pressureRmseMilliunits = static_cast<int>(pressureRmse * 1000); | 
|  | } | 
|  |  | 
|  | // High-velocity errors: reported only for last two time buckets. | 
|  | // Check if we are in one of the last two time buckets, and there is high-velocity data. | 
|  | if ((i + 2 >= mMaxNumPredictions) && (mAggregatedMetrics[i].highVelocityErrorsCount > 0)) { | 
|  | LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[i].highVelocityAlongTrajectorySse < 0, | 
|  | "mAggregatedMetrics[%zu].highVelocityAlongTrajectorySse = %f " | 
|  | "should not be negative", | 
|  | i, mAggregatedMetrics[i].highVelocityAlongTrajectorySse); | 
|  | const float alongTrajectoryRmse = | 
|  | std::sqrt(mAggregatedMetrics[i].highVelocityAlongTrajectorySse / | 
|  | mAggregatedMetrics[i].highVelocityErrorsCount); | 
|  | mAtomFields[i].highVelocityAlongTrajectoryRmse = | 
|  | static_cast<int>(alongTrajectoryRmse * 1000); | 
|  |  | 
|  | LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[i].highVelocityOffTrajectorySse < 0, | 
|  | "mAggregatedMetrics[%zu].highVelocityOffTrajectorySse = %f should " | 
|  | "not be negative", | 
|  | i, mAggregatedMetrics[i].highVelocityOffTrajectorySse); | 
|  | const float offTrajectoryRmse = | 
|  | std::sqrt(mAggregatedMetrics[i].highVelocityOffTrajectorySse / | 
|  | mAggregatedMetrics[i].highVelocityErrorsCount); | 
|  | mAtomFields[i].highVelocityOffTrajectoryRmse = | 
|  | static_cast<int>(offTrajectoryRmse * 1000); | 
|  | } | 
|  |  | 
|  | // Scale-invariant errors: reported only for the last time bucket, where the values | 
|  | // represent an average across all time buckets. | 
|  | if (i + 1 == mMaxNumPredictions) { | 
|  | // Compute error averages. | 
|  | float alongTrajectoryRmseSum = 0; | 
|  | float offTrajectoryRmseSum = 0; | 
|  | for (size_t j = 0; j < mAggregatedMetrics.size(); ++j) { | 
|  | // If we have general errors (checked above), we should always also have | 
|  | // scale-invariant errors. | 
|  | LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[j].scaleInvariantErrorsCount == 0, | 
|  | "mAggregatedMetrics[%zu].scaleInvariantErrorsCount is 0", j); | 
|  |  | 
|  | LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[j].scaleInvariantAlongTrajectorySse < 0, | 
|  | "mAggregatedMetrics[%zu].scaleInvariantAlongTrajectorySse = %f " | 
|  | "should not be negative", | 
|  | j, mAggregatedMetrics[j].scaleInvariantAlongTrajectorySse); | 
|  | alongTrajectoryRmseSum += | 
|  | std::sqrt(mAggregatedMetrics[j].scaleInvariantAlongTrajectorySse / | 
|  | mAggregatedMetrics[j].scaleInvariantErrorsCount); | 
|  |  | 
|  | LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[j].scaleInvariantOffTrajectorySse < 0, | 
|  | "mAggregatedMetrics[%zu].scaleInvariantOffTrajectorySse = %f " | 
|  | "should not be negative", | 
|  | j, mAggregatedMetrics[j].scaleInvariantOffTrajectorySse); | 
|  | offTrajectoryRmseSum += | 
|  | std::sqrt(mAggregatedMetrics[j].scaleInvariantOffTrajectorySse / | 
|  | mAggregatedMetrics[j].scaleInvariantErrorsCount); | 
|  | } | 
|  |  | 
|  | const float averageAlongTrajectoryRmse = | 
|  | alongTrajectoryRmseSum / mAggregatedMetrics.size(); | 
|  | mAtomFields.back().scaleInvariantAlongTrajectoryRmse = | 
|  | static_cast<int>(averageAlongTrajectoryRmse * 1000); | 
|  |  | 
|  | const float averageOffTrajectoryRmse = offTrajectoryRmseSum / mAggregatedMetrics.size(); | 
|  | mAtomFields.back().scaleInvariantOffTrajectoryRmse = | 
|  | static_cast<int>(averageOffTrajectoryRmse * 1000); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void MotionPredictorMetricsManager::reportMetrics() { | 
|  | LOG_ALWAYS_FATAL_IF(!mReportAtomFunction); | 
|  | // Report one atom for each prediction time bucket. | 
|  | for (size_t i = 0; i < mAtomFields.size(); ++i) { | 
|  | mReportAtomFunction(mAtomFields[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | } // namespace android |