blob: adae009d71bb949449bb175de70fc552e519140f [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "../dispatcher/InputDispatcher.h"
#include "../BlockingQueue.h"
#include "EventBuilders.h"
#include <android-base/properties.h>
#include <android-base/silent_death_test.h>
#include <android-base/stringprintf.h>
#include <android-base/thread_annotations.h>
#include <binder/Binder.h>
#include <fcntl.h>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <input/Input.h>
#include <linux/input.h>
#include <sys/epoll.h>
#include <cinttypes>
#include <compare>
#include <thread>
#include <unordered_set>
#include <vector>
using android::base::StringPrintf;
using android::gui::FocusRequest;
using android::gui::TouchOcclusionMode;
using android::gui::WindowInfo;
using android::gui::WindowInfoHandle;
using android::os::InputEventInjectionResult;
using android::os::InputEventInjectionSync;
namespace android::inputdispatcher {
using namespace ftl::flag_operators;
using testing::AllOf;
// An arbitrary time value.
static constexpr nsecs_t ARBITRARY_TIME = 1234;
// An arbitrary device id.
static constexpr int32_t DEVICE_ID = DEFAULT_DEVICE_ID;
static constexpr int32_t SECOND_DEVICE_ID = 2;
// An arbitrary display id.
static constexpr int32_t DISPLAY_ID = ADISPLAY_ID_DEFAULT;
static constexpr int32_t SECOND_DISPLAY_ID = 1;
// Ensure common actions are interchangeable between keys and motions for convenience.
static_assert(AMOTION_EVENT_ACTION_DOWN == AKEY_EVENT_ACTION_DOWN);
static_assert(AMOTION_EVENT_ACTION_UP == AKEY_EVENT_ACTION_UP);
static constexpr int32_t ACTION_DOWN = AMOTION_EVENT_ACTION_DOWN;
static constexpr int32_t ACTION_MOVE = AMOTION_EVENT_ACTION_MOVE;
static constexpr int32_t ACTION_UP = AMOTION_EVENT_ACTION_UP;
static constexpr int32_t ACTION_HOVER_ENTER = AMOTION_EVENT_ACTION_HOVER_ENTER;
static constexpr int32_t ACTION_HOVER_MOVE = AMOTION_EVENT_ACTION_HOVER_MOVE;
static constexpr int32_t ACTION_HOVER_EXIT = AMOTION_EVENT_ACTION_HOVER_EXIT;
static constexpr int32_t ACTION_OUTSIDE = AMOTION_EVENT_ACTION_OUTSIDE;
static constexpr int32_t ACTION_CANCEL = AMOTION_EVENT_ACTION_CANCEL;
/**
* The POINTER_DOWN(0) is an unusual, but valid, action. It just means that the new pointer in the
* MotionEvent is at the index 0 rather than 1 (or later). That is, the pointer id=0 (which is at
* index 0) is the new pointer going down. The same pointer could have been placed at a different
* index, and the action would become POINTER_1_DOWN, 2, etc..; these would all be valid. In
* general, we try to place pointer id = 0 at the index 0. Of course, this is not possible if
* pointer id=0 leaves but the pointer id=1 remains.
*/
static constexpr int32_t POINTER_0_DOWN =
AMOTION_EVENT_ACTION_POINTER_DOWN | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
static constexpr int32_t POINTER_1_DOWN =
AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
static constexpr int32_t POINTER_2_DOWN =
AMOTION_EVENT_ACTION_POINTER_DOWN | (2 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
static constexpr int32_t POINTER_3_DOWN =
AMOTION_EVENT_ACTION_POINTER_DOWN | (3 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
static constexpr int32_t POINTER_0_UP =
AMOTION_EVENT_ACTION_POINTER_UP | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
static constexpr int32_t POINTER_1_UP =
AMOTION_EVENT_ACTION_POINTER_UP | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
static constexpr int32_t POINTER_2_UP =
AMOTION_EVENT_ACTION_POINTER_UP | (2 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
// The default pid and uid for windows created on the primary display by the test.
static constexpr int32_t WINDOW_PID = 999;
static constexpr int32_t WINDOW_UID = 1001;
// The default pid and uid for the windows created on the secondary display by the test.
static constexpr int32_t SECONDARY_WINDOW_PID = 1010;
static constexpr int32_t SECONDARY_WINDOW_UID = 1012;
// An arbitrary pid of the gesture monitor window
static constexpr int32_t MONITOR_PID = 2001;
static constexpr std::chrono::duration STALE_EVENT_TIMEOUT = 1000ms;
static constexpr int expectedWallpaperFlags =
AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED | AMOTION_EVENT_FLAG_WINDOW_IS_PARTIALLY_OBSCURED;
using ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID;
struct PointF {
float x;
float y;
auto operator<=>(const PointF&) const = default;
};
/**
* Return a DOWN key event with KEYCODE_A.
*/
static KeyEvent getTestKeyEvent() {
KeyEvent event;
event.initialize(InputEvent::nextId(), DEVICE_ID, AINPUT_SOURCE_KEYBOARD, ADISPLAY_ID_NONE,
INVALID_HMAC, AKEY_EVENT_ACTION_DOWN, 0, AKEYCODE_A, KEY_A, AMETA_NONE, 0,
ARBITRARY_TIME, ARBITRARY_TIME);
return event;
}
static void assertMotionAction(int32_t expectedAction, int32_t receivedAction) {
ASSERT_EQ(expectedAction, receivedAction)
<< "expected " << MotionEvent::actionToString(expectedAction) << ", got "
<< MotionEvent::actionToString(receivedAction);
}
MATCHER_P(WithMotionAction, action, "MotionEvent with specified action") {
bool matches = action == arg.getAction();
if (!matches) {
*result_listener << "expected action " << MotionEvent::actionToString(action)
<< ", but got " << MotionEvent::actionToString(arg.getAction());
}
if (action == AMOTION_EVENT_ACTION_DOWN) {
if (!matches) {
*result_listener << "; ";
}
*result_listener << "downTime should match eventTime for ACTION_DOWN events";
matches &= arg.getDownTime() == arg.getEventTime();
}
if (action == AMOTION_EVENT_ACTION_CANCEL) {
if (!matches) {
*result_listener << "; ";
}
*result_listener << "expected FLAG_CANCELED to be set with ACTION_CANCEL, but was not set";
matches &= (arg.getFlags() & AMOTION_EVENT_FLAG_CANCELED) != 0;
}
return matches;
}
MATCHER_P(WithDownTime, downTime, "InputEvent with specified downTime") {
return arg.getDownTime() == downTime;
}
MATCHER_P(WithDisplayId, displayId, "InputEvent with specified displayId") {
return arg.getDisplayId() == displayId;
}
MATCHER_P(WithDeviceId, deviceId, "InputEvent with specified deviceId") {
return arg.getDeviceId() == deviceId;
}
MATCHER_P(WithSource, source, "InputEvent with specified source") {
*result_listener << "expected source " << inputEventSourceToString(source) << ", but got "
<< inputEventSourceToString(arg.getSource());
return arg.getSource() == source;
}
MATCHER_P(WithFlags, flags, "InputEvent with specified flags") {
return arg.getFlags() == flags;
}
MATCHER_P2(WithCoords, x, y, "MotionEvent with specified coordinates") {
if (arg.getPointerCount() != 1) {
*result_listener << "Expected 1 pointer, got " << arg.getPointerCount();
return false;
}
return arg.getX(/*pointerIndex=*/0) == x && arg.getY(/*pointerIndex=*/0) == y;
}
MATCHER_P(WithPointerCount, pointerCount, "MotionEvent with specified number of pointers") {
return arg.getPointerCount() == pointerCount;
}
MATCHER_P(WithPointers, pointers, "MotionEvent with specified pointers") {
// Build a map for the received pointers, by pointer id
std::map<int32_t /*pointerId*/, PointF> actualPointers;
for (size_t pointerIndex = 0; pointerIndex < arg.getPointerCount(); pointerIndex++) {
const int32_t pointerId = arg.getPointerId(pointerIndex);
actualPointers[pointerId] = {arg.getX(pointerIndex), arg.getY(pointerIndex)};
}
return pointers == actualPointers;
}
// --- FakeInputDispatcherPolicy ---
class FakeInputDispatcherPolicy : public InputDispatcherPolicyInterface {
InputDispatcherConfiguration mConfig;
using AnrResult = std::pair<sp<IBinder>, int32_t /*pid*/>;
public:
FakeInputDispatcherPolicy() = default;
virtual ~FakeInputDispatcherPolicy() = default;
void assertFilterInputEventWasCalled(const NotifyKeyArgs& args) {
assertFilterInputEventWasCalledInternal([&args](const InputEvent& event) {
ASSERT_EQ(event.getType(), InputEventType::KEY);
EXPECT_EQ(event.getDisplayId(), args.displayId);
const auto& keyEvent = static_cast<const KeyEvent&>(event);
EXPECT_EQ(keyEvent.getEventTime(), args.eventTime);
EXPECT_EQ(keyEvent.getAction(), args.action);
});
}
void assertFilterInputEventWasCalled(const NotifyMotionArgs& args, vec2 point) {
assertFilterInputEventWasCalledInternal([&](const InputEvent& event) {
ASSERT_EQ(event.getType(), InputEventType::MOTION);
EXPECT_EQ(event.getDisplayId(), args.displayId);
const auto& motionEvent = static_cast<const MotionEvent&>(event);
EXPECT_EQ(motionEvent.getEventTime(), args.eventTime);
EXPECT_EQ(motionEvent.getAction(), args.action);
EXPECT_NEAR(motionEvent.getX(0), point.x, MotionEvent::ROUNDING_PRECISION);
EXPECT_NEAR(motionEvent.getY(0), point.y, MotionEvent::ROUNDING_PRECISION);
EXPECT_NEAR(motionEvent.getRawX(0), point.x, MotionEvent::ROUNDING_PRECISION);
EXPECT_NEAR(motionEvent.getRawY(0), point.y, MotionEvent::ROUNDING_PRECISION);
});
}
void assertFilterInputEventWasNotCalled() {
std::scoped_lock lock(mLock);
ASSERT_EQ(nullptr, mFilteredEvent);
}
void assertNotifyConfigurationChangedWasCalled(nsecs_t when) {
std::scoped_lock lock(mLock);
ASSERT_TRUE(mConfigurationChangedTime)
<< "Timed out waiting for configuration changed call";
ASSERT_EQ(*mConfigurationChangedTime, when);
mConfigurationChangedTime = std::nullopt;
}
void assertNotifySwitchWasCalled(const NotifySwitchArgs& args) {
std::scoped_lock lock(mLock);
ASSERT_TRUE(mLastNotifySwitch);
// We do not check id because it is not exposed to the policy
EXPECT_EQ(args.eventTime, mLastNotifySwitch->eventTime);
EXPECT_EQ(args.policyFlags, mLastNotifySwitch->policyFlags);
EXPECT_EQ(args.switchValues, mLastNotifySwitch->switchValues);
EXPECT_EQ(args.switchMask, mLastNotifySwitch->switchMask);
mLastNotifySwitch = std::nullopt;
}
void assertOnPointerDownEquals(const sp<IBinder>& touchedToken) {
std::scoped_lock lock(mLock);
ASSERT_EQ(touchedToken, mOnPointerDownToken);
mOnPointerDownToken.clear();
}
void assertOnPointerDownWasNotCalled() {
std::scoped_lock lock(mLock);
ASSERT_TRUE(mOnPointerDownToken == nullptr)
<< "Expected onPointerDownOutsideFocus to not have been called";
}
// This function must be called soon after the expected ANR timer starts,
// because we are also checking how much time has passed.
void assertNotifyNoFocusedWindowAnrWasCalled(
std::chrono::nanoseconds timeout,
const std::shared_ptr<InputApplicationHandle>& expectedApplication) {
std::unique_lock lock(mLock);
android::base::ScopedLockAssertion assumeLocked(mLock);
std::shared_ptr<InputApplicationHandle> application;
ASSERT_NO_FATAL_FAILURE(
application = getAnrTokenLockedInterruptible(timeout, mAnrApplications, lock));
ASSERT_EQ(expectedApplication, application);
}
void assertNotifyWindowUnresponsiveWasCalled(std::chrono::nanoseconds timeout,
const sp<WindowInfoHandle>& window) {
LOG_ALWAYS_FATAL_IF(window == nullptr, "window should not be null");
assertNotifyWindowUnresponsiveWasCalled(timeout, window->getToken(),
window->getInfo()->ownerPid);
}
void assertNotifyWindowUnresponsiveWasCalled(std::chrono::nanoseconds timeout,
const sp<IBinder>& expectedToken,
int32_t expectedPid) {
std::unique_lock lock(mLock);
android::base::ScopedLockAssertion assumeLocked(mLock);
AnrResult result;
ASSERT_NO_FATAL_FAILURE(result =
getAnrTokenLockedInterruptible(timeout, mAnrWindows, lock));
const auto& [token, pid] = result;
ASSERT_EQ(expectedToken, token);
ASSERT_EQ(expectedPid, pid);
}
/** Wrap call with ASSERT_NO_FATAL_FAILURE() to ensure the return value is valid. */
sp<IBinder> getUnresponsiveWindowToken(std::chrono::nanoseconds timeout) {
std::unique_lock lock(mLock);
android::base::ScopedLockAssertion assumeLocked(mLock);
AnrResult result = getAnrTokenLockedInterruptible(timeout, mAnrWindows, lock);
const auto& [token, _] = result;
return token;
}
void assertNotifyWindowResponsiveWasCalled(const sp<IBinder>& expectedToken,
int32_t expectedPid) {
std::unique_lock lock(mLock);
android::base::ScopedLockAssertion assumeLocked(mLock);
AnrResult result;
ASSERT_NO_FATAL_FAILURE(
result = getAnrTokenLockedInterruptible(0s, mResponsiveWindows, lock));
const auto& [token, pid] = result;
ASSERT_EQ(expectedToken, token);
ASSERT_EQ(expectedPid, pid);
}
/** Wrap call with ASSERT_NO_FATAL_FAILURE() to ensure the return value is valid. */
sp<IBinder> getResponsiveWindowToken() {
std::unique_lock lock(mLock);
android::base::ScopedLockAssertion assumeLocked(mLock);
AnrResult result = getAnrTokenLockedInterruptible(0s, mResponsiveWindows, lock);
const auto& [token, _] = result;
return token;
}
void assertNotifyAnrWasNotCalled() {
std::scoped_lock lock(mLock);
ASSERT_TRUE(mAnrApplications.empty());
ASSERT_TRUE(mAnrWindows.empty());
ASSERT_TRUE(mResponsiveWindows.empty())
<< "ANR was not called, but please also consume the 'connection is responsive' "
"signal";
}
void setKeyRepeatConfiguration(nsecs_t timeout, nsecs_t delay) {
mConfig.keyRepeatTimeout = timeout;
mConfig.keyRepeatDelay = delay;
}
PointerCaptureRequest assertSetPointerCaptureCalled(bool enabled) {
std::unique_lock lock(mLock);
base::ScopedLockAssertion assumeLocked(mLock);
if (!mPointerCaptureChangedCondition.wait_for(lock, 100ms,
[this, enabled]() REQUIRES(mLock) {
return mPointerCaptureRequest->enable ==
enabled;
})) {
ADD_FAILURE() << "Timed out waiting for setPointerCapture(" << enabled
<< ") to be called.";
return {};
}
auto request = *mPointerCaptureRequest;
mPointerCaptureRequest.reset();
return request;
}
void assertSetPointerCaptureNotCalled() {
std::unique_lock lock(mLock);
base::ScopedLockAssertion assumeLocked(mLock);
if (mPointerCaptureChangedCondition.wait_for(lock, 100ms) != std::cv_status::timeout) {
FAIL() << "Expected setPointerCapture(request) to not be called, but was called. "
"enabled = "
<< std::to_string(mPointerCaptureRequest->enable);
}
mPointerCaptureRequest.reset();
}
void assertDropTargetEquals(const InputDispatcherInterface& dispatcher,
const sp<IBinder>& targetToken) {
dispatcher.waitForIdle();
std::scoped_lock lock(mLock);
ASSERT_TRUE(mNotifyDropWindowWasCalled);
ASSERT_EQ(targetToken, mDropTargetWindowToken);
mNotifyDropWindowWasCalled = false;
}
void assertNotifyInputChannelBrokenWasCalled(const sp<IBinder>& token) {
std::unique_lock lock(mLock);
base::ScopedLockAssertion assumeLocked(mLock);
std::optional<sp<IBinder>> receivedToken =
getItemFromStorageLockedInterruptible(100ms, mBrokenInputChannels, lock,
mNotifyInputChannelBroken);
ASSERT_TRUE(receivedToken.has_value());
ASSERT_EQ(token, *receivedToken);
}
/**
* Set policy timeout. A value of zero means next key will not be intercepted.
*/
void setInterceptKeyTimeout(std::chrono::milliseconds timeout) {
mInterceptKeyTimeout = timeout;
}
void assertUserActivityPoked() {
std::scoped_lock lock(mLock);
ASSERT_TRUE(mPokedUserActivity) << "Expected user activity to have been poked";
}
void assertUserActivityNotPoked() {
std::scoped_lock lock(mLock);
ASSERT_FALSE(mPokedUserActivity) << "Expected user activity not to have been poked";
}
void assertNotifyDeviceInteractionWasCalled(int32_t deviceId, std::set<int32_t> uids) {
ASSERT_EQ(std::make_pair(deviceId, uids), mNotifiedInteractions.popWithTimeout(100ms));
}
void assertNotifyDeviceInteractionWasNotCalled() {
ASSERT_FALSE(mNotifiedInteractions.popWithTimeout(10ms));
}
private:
std::mutex mLock;
std::unique_ptr<InputEvent> mFilteredEvent GUARDED_BY(mLock);
std::optional<nsecs_t> mConfigurationChangedTime GUARDED_BY(mLock);
sp<IBinder> mOnPointerDownToken GUARDED_BY(mLock);
std::optional<NotifySwitchArgs> mLastNotifySwitch GUARDED_BY(mLock);
std::condition_variable mPointerCaptureChangedCondition;
std::optional<PointerCaptureRequest> mPointerCaptureRequest GUARDED_BY(mLock);
// ANR handling
std::queue<std::shared_ptr<InputApplicationHandle>> mAnrApplications GUARDED_BY(mLock);
std::queue<AnrResult> mAnrWindows GUARDED_BY(mLock);
std::queue<AnrResult> mResponsiveWindows GUARDED_BY(mLock);
std::condition_variable mNotifyAnr;
std::queue<sp<IBinder>> mBrokenInputChannels GUARDED_BY(mLock);
std::condition_variable mNotifyInputChannelBroken;
sp<IBinder> mDropTargetWindowToken GUARDED_BY(mLock);
bool mNotifyDropWindowWasCalled GUARDED_BY(mLock) = false;
bool mPokedUserActivity GUARDED_BY(mLock) = false;
std::chrono::milliseconds mInterceptKeyTimeout = 0ms;
BlockingQueue<std::pair<int32_t /*deviceId*/, std::set<int32_t /*uid*/>>> mNotifiedInteractions;
// All three ANR-related callbacks behave the same way, so we use this generic function to wait
// for a specific container to become non-empty. When the container is non-empty, return the
// first entry from the container and erase it.
template <class T>
T getAnrTokenLockedInterruptible(std::chrono::nanoseconds timeout, std::queue<T>& storage,
std::unique_lock<std::mutex>& lock) REQUIRES(mLock) {
// If there is an ANR, Dispatcher won't be idle because there are still events
// in the waitQueue that we need to check on. So we can't wait for dispatcher to be idle
// before checking if ANR was called.
// Since dispatcher is not guaranteed to call notifyNoFocusedWindowAnr right away, we need
// to provide it some time to act. 100ms seems reasonable.
std::chrono::duration timeToWait = timeout + 100ms; // provide some slack
const std::chrono::time_point start = std::chrono::steady_clock::now();
std::optional<T> token =
getItemFromStorageLockedInterruptible(timeToWait, storage, lock, mNotifyAnr);
if (!token.has_value()) {
ADD_FAILURE() << "Did not receive the ANR callback";
return {};
}
const std::chrono::duration waited = std::chrono::steady_clock::now() - start;
// Ensure that the ANR didn't get raised too early. We can't be too strict here because
// the dispatcher started counting before this function was called
if (std::chrono::abs(timeout - waited) > 100ms) {
ADD_FAILURE() << "ANR was raised too early or too late. Expected "
<< std::chrono::duration_cast<std::chrono::milliseconds>(timeout).count()
<< "ms, but waited "
<< std::chrono::duration_cast<std::chrono::milliseconds>(waited).count()
<< "ms instead";
}
return *token;
}
template <class T>
std::optional<T> getItemFromStorageLockedInterruptible(std::chrono::nanoseconds timeout,
std::queue<T>& storage,
std::unique_lock<std::mutex>& lock,
std::condition_variable& condition)
REQUIRES(mLock) {
condition.wait_for(lock, timeout,
[&storage]() REQUIRES(mLock) { return !storage.empty(); });
if (storage.empty()) {
ADD_FAILURE() << "Did not receive the expected callback";
return std::nullopt;
}
T item = storage.front();
storage.pop();
return std::make_optional(item);
}
void notifyConfigurationChanged(nsecs_t when) override {
std::scoped_lock lock(mLock);
mConfigurationChangedTime = when;
}
void notifyWindowUnresponsive(const sp<IBinder>& connectionToken, std::optional<int32_t> pid,
const std::string&) override {
std::scoped_lock lock(mLock);
ASSERT_TRUE(pid.has_value());
mAnrWindows.push({connectionToken, *pid});
mNotifyAnr.notify_all();
}
void notifyWindowResponsive(const sp<IBinder>& connectionToken,
std::optional<int32_t> pid) override {
std::scoped_lock lock(mLock);
ASSERT_TRUE(pid.has_value());
mResponsiveWindows.push({connectionToken, *pid});
mNotifyAnr.notify_all();
}
void notifyNoFocusedWindowAnr(
const std::shared_ptr<InputApplicationHandle>& applicationHandle) override {
std::scoped_lock lock(mLock);
mAnrApplications.push(applicationHandle);
mNotifyAnr.notify_all();
}
void notifyInputChannelBroken(const sp<IBinder>& connectionToken) override {
std::scoped_lock lock(mLock);
mBrokenInputChannels.push(connectionToken);
mNotifyInputChannelBroken.notify_all();
}
void notifyFocusChanged(const sp<IBinder>&, const sp<IBinder>&) override {}
void notifySensorEvent(int32_t deviceId, InputDeviceSensorType sensorType,
InputDeviceSensorAccuracy accuracy, nsecs_t timestamp,
const std::vector<float>& values) override {}
void notifySensorAccuracy(int deviceId, InputDeviceSensorType sensorType,
InputDeviceSensorAccuracy accuracy) override {}
void notifyVibratorState(int32_t deviceId, bool isOn) override {}
InputDispatcherConfiguration getDispatcherConfiguration() override { return mConfig; }
bool filterInputEvent(const InputEvent& inputEvent, uint32_t policyFlags) override {
std::scoped_lock lock(mLock);
switch (inputEvent.getType()) {
case InputEventType::KEY: {
const KeyEvent& keyEvent = static_cast<const KeyEvent&>(inputEvent);
mFilteredEvent = std::make_unique<KeyEvent>(keyEvent);
break;
}
case InputEventType::MOTION: {
const MotionEvent& motionEvent = static_cast<const MotionEvent&>(inputEvent);
mFilteredEvent = std::make_unique<MotionEvent>(motionEvent);
break;
}
default: {
ADD_FAILURE() << "Should only filter keys or motions";
break;
}
}
return true;
}
void interceptKeyBeforeQueueing(const KeyEvent& inputEvent, uint32_t&) override {
if (inputEvent.getAction() == AKEY_EVENT_ACTION_UP) {
// Clear intercept state when we handled the event.
mInterceptKeyTimeout = 0ms;
}
}
void interceptMotionBeforeQueueing(int32_t, nsecs_t, uint32_t&) override {}
nsecs_t interceptKeyBeforeDispatching(const sp<IBinder>&, const KeyEvent&, uint32_t) override {
nsecs_t delay = std::chrono::nanoseconds(mInterceptKeyTimeout).count();
// Clear intercept state so we could dispatch the event in next wake.
mInterceptKeyTimeout = 0ms;
return delay;
}
std::optional<KeyEvent> dispatchUnhandledKey(const sp<IBinder>&, const KeyEvent&,
uint32_t) override {
return {};
}
void notifySwitch(nsecs_t when, uint32_t switchValues, uint32_t switchMask,
uint32_t policyFlags) override {
std::scoped_lock lock(mLock);
/** We simply reconstruct NotifySwitchArgs in policy because InputDispatcher is
* essentially a passthrough for notifySwitch.
*/
mLastNotifySwitch = NotifySwitchArgs(/*id=*/1, when, policyFlags, switchValues, switchMask);
}
void pokeUserActivity(nsecs_t, int32_t, int32_t) override {
std::scoped_lock lock(mLock);
mPokedUserActivity = true;
}
void onPointerDownOutsideFocus(const sp<IBinder>& newToken) override {
std::scoped_lock lock(mLock);
mOnPointerDownToken = newToken;
}
void setPointerCapture(const PointerCaptureRequest& request) override {
std::scoped_lock lock(mLock);
mPointerCaptureRequest = {request};
mPointerCaptureChangedCondition.notify_all();
}
void notifyDropWindow(const sp<IBinder>& token, float x, float y) override {
std::scoped_lock lock(mLock);
mNotifyDropWindowWasCalled = true;
mDropTargetWindowToken = token;
}
void notifyDeviceInteraction(int32_t deviceId, nsecs_t timestamp,
const std::set<int32_t>& uids) override {
ASSERT_TRUE(mNotifiedInteractions.emplace(deviceId, uids));
}
void assertFilterInputEventWasCalledInternal(
const std::function<void(const InputEvent&)>& verify) {
std::scoped_lock lock(mLock);
ASSERT_NE(nullptr, mFilteredEvent) << "Expected filterInputEvent() to have been called.";
verify(*mFilteredEvent);
mFilteredEvent = nullptr;
}
};
// --- InputDispatcherTest ---
class InputDispatcherTest : public testing::Test {
protected:
std::unique_ptr<FakeInputDispatcherPolicy> mFakePolicy;
std::unique_ptr<InputDispatcher> mDispatcher;
void SetUp() override {
mFakePolicy = std::make_unique<FakeInputDispatcherPolicy>();
mDispatcher = std::make_unique<InputDispatcher>(*mFakePolicy, STALE_EVENT_TIMEOUT);
mDispatcher->setInputDispatchMode(/*enabled*/ true, /*frozen*/ false);
// Start InputDispatcher thread
ASSERT_EQ(OK, mDispatcher->start());
}
void TearDown() override {
ASSERT_EQ(OK, mDispatcher->stop());
mFakePolicy.reset();
mDispatcher.reset();
}
/**
* Used for debugging when writing the test
*/
void dumpDispatcherState() {
std::string dump;
mDispatcher->dump(dump);
std::stringstream ss(dump);
std::string to;
while (std::getline(ss, to, '\n')) {
ALOGE("%s", to.c_str());
}
}
void setFocusedWindow(const sp<WindowInfoHandle>& window) {
FocusRequest request;
request.token = window->getToken();
request.windowName = window->getName();
request.timestamp = systemTime(SYSTEM_TIME_MONOTONIC);
request.displayId = window->getInfo()->displayId;
mDispatcher->setFocusedWindow(request);
}
};
TEST_F(InputDispatcherTest, InjectInputEvent_ValidatesKeyEvents) {
KeyEvent event;
// Rejects undefined key actions.
event.initialize(InputEvent::nextId(), DEVICE_ID, AINPUT_SOURCE_KEYBOARD, ADISPLAY_ID_NONE,
INVALID_HMAC,
/*action*/ -1, 0, AKEYCODE_A, KEY_A, AMETA_NONE, 0, ARBITRARY_TIME,
ARBITRARY_TIME);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, /*targetUid=*/{}, InputEventInjectionSync::NONE,
0ms, 0))
<< "Should reject key events with undefined action.";
// Rejects ACTION_MULTIPLE since it is not supported despite being defined in the API.
event.initialize(InputEvent::nextId(), DEVICE_ID, AINPUT_SOURCE_KEYBOARD, ADISPLAY_ID_NONE,
INVALID_HMAC, AKEY_EVENT_ACTION_MULTIPLE, 0, AKEYCODE_A, KEY_A, AMETA_NONE, 0,
ARBITRARY_TIME, ARBITRARY_TIME);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, /*targetUid=*/{}, InputEventInjectionSync::NONE,
0ms, 0))
<< "Should reject key events with ACTION_MULTIPLE.";
}
TEST_F(InputDispatcherTest, InjectInputEvent_ValidatesMotionEvents) {
MotionEvent event;
PointerProperties pointerProperties[MAX_POINTERS + 1];
PointerCoords pointerCoords[MAX_POINTERS + 1];
for (size_t i = 0; i <= MAX_POINTERS; i++) {
pointerProperties[i].clear();
pointerProperties[i].id = i;
pointerCoords[i].clear();
}
// Some constants commonly used below
constexpr int32_t source = AINPUT_SOURCE_TOUCHSCREEN;
constexpr int32_t edgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE;
constexpr int32_t metaState = AMETA_NONE;
constexpr MotionClassification classification = MotionClassification::NONE;
ui::Transform identityTransform;
// Rejects undefined motion actions.
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
/*action*/ -1, 0, 0, edgeFlags, metaState, 0, classification,
identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform, ARBITRARY_TIME,
ARBITRARY_TIME,
/*pointerCount*/ 1, pointerProperties, pointerCoords);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, /*targetUid=*/{}, InputEventInjectionSync::NONE,
0ms, 0))
<< "Should reject motion events with undefined action.";
// Rejects pointer down with invalid index.
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
POINTER_1_DOWN, 0, 0, edgeFlags, metaState, 0, classification,
identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform, ARBITRARY_TIME,
ARBITRARY_TIME,
/*pointerCount*/ 1, pointerProperties, pointerCoords);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, /*targetUid=*/{}, InputEventInjectionSync::NONE,
0ms, 0))
<< "Should reject motion events with pointer down index too large.";
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_POINTER_DOWN |
(~0U << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
0, 0, edgeFlags, metaState, 0, classification, identityTransform, 0, 0,
AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION,
identityTransform, ARBITRARY_TIME, ARBITRARY_TIME,
/*pointerCount*/ 1, pointerProperties, pointerCoords);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, /*targetUid=*/{}, InputEventInjectionSync::NONE,
0ms, 0))
<< "Should reject motion events with pointer down index too small.";
// Rejects pointer up with invalid index.
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
POINTER_1_UP, 0, 0, edgeFlags, metaState, 0, classification, identityTransform,
0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform, ARBITRARY_TIME,
ARBITRARY_TIME,
/*pointerCount*/ 1, pointerProperties, pointerCoords);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, /*targetUid=*/{}, InputEventInjectionSync::NONE,
0ms, 0))
<< "Should reject motion events with pointer up index too large.";
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_POINTER_UP |
(~0U << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
0, 0, edgeFlags, metaState, 0, classification, identityTransform, 0, 0,
AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION,
identityTransform, ARBITRARY_TIME, ARBITRARY_TIME,
/*pointerCount*/ 1, pointerProperties, pointerCoords);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, /*targetUid=*/{}, InputEventInjectionSync::NONE,
0ms, 0))
<< "Should reject motion events with pointer up index too small.";
// Rejects motion events with invalid number of pointers.
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_DOWN, 0, 0, edgeFlags, metaState, 0, classification,
identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform, ARBITRARY_TIME,
ARBITRARY_TIME,
/*pointerCount*/ 0, pointerProperties, pointerCoords);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, /*targetUid=*/{}, InputEventInjectionSync::NONE,
0ms, 0))
<< "Should reject motion events with 0 pointers.";
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_DOWN, 0, 0, edgeFlags, metaState, 0, classification,
identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform, ARBITRARY_TIME,
ARBITRARY_TIME,
/*pointerCount*/ MAX_POINTERS + 1, pointerProperties, pointerCoords);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, /*targetUid=*/{}, InputEventInjectionSync::NONE,
0ms, 0))
<< "Should reject motion events with more than MAX_POINTERS pointers.";
// Rejects motion events with invalid pointer ids.
pointerProperties[0].id = -1;
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_DOWN, 0, 0, edgeFlags, metaState, 0, classification,
identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform, ARBITRARY_TIME,
ARBITRARY_TIME,
/*pointerCount*/ 1, pointerProperties, pointerCoords);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, /*targetUid=*/{}, InputEventInjectionSync::NONE,
0ms, 0))
<< "Should reject motion events with pointer ids less than 0.";
pointerProperties[0].id = MAX_POINTER_ID + 1;
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_DOWN, 0, 0, edgeFlags, metaState, 0, classification,
identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform, ARBITRARY_TIME,
ARBITRARY_TIME,
/*pointerCount*/ 1, pointerProperties, pointerCoords);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, /*targetUid=*/{}, InputEventInjectionSync::NONE,
0ms, 0))
<< "Should reject motion events with pointer ids greater than MAX_POINTER_ID.";
// Rejects motion events with duplicate pointer ids.
pointerProperties[0].id = 1;
pointerProperties[1].id = 1;
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_DOWN, 0, 0, edgeFlags, metaState, 0, classification,
identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform, ARBITRARY_TIME,
ARBITRARY_TIME,
/*pointerCount*/ 2, pointerProperties, pointerCoords);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, /*targetUid=*/{}, InputEventInjectionSync::NONE,
0ms, 0))
<< "Should reject motion events with duplicate pointer ids.";
}
/* Test InputDispatcher for notifyConfigurationChanged and notifySwitch events */
TEST_F(InputDispatcherTest, NotifyConfigurationChanged_CallsPolicy) {
constexpr nsecs_t eventTime = 20;
mDispatcher->notifyConfigurationChanged({/*id=*/10, eventTime});
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyConfigurationChangedWasCalled(eventTime);
}
TEST_F(InputDispatcherTest, NotifySwitch_CallsPolicy) {
NotifySwitchArgs args(/*id=*/10, /*eventTime=*/20, /*policyFlags=*/0, /*switchValues=*/1,
/*switchMask=*/2);
mDispatcher->notifySwitch(args);
// InputDispatcher adds POLICY_FLAG_TRUSTED because the event went through InputListener
args.policyFlags |= POLICY_FLAG_TRUSTED;
mFakePolicy->assertNotifySwitchWasCalled(args);
}
namespace {
// --- InputDispatcherTest SetInputWindowTest ---
static constexpr std::chrono::duration INJECT_EVENT_TIMEOUT = 500ms;
// Default input dispatching timeout if there is no focused application or paused window
// from which to determine an appropriate dispatching timeout.
static const std::chrono::duration DISPATCHING_TIMEOUT = std::chrono::milliseconds(
android::os::IInputConstants::UNMULTIPLIED_DEFAULT_DISPATCHING_TIMEOUT_MILLIS *
android::base::HwTimeoutMultiplier());
class FakeApplicationHandle : public InputApplicationHandle {
public:
FakeApplicationHandle() {
mInfo.name = "Fake Application";
mInfo.token = sp<BBinder>::make();
mInfo.dispatchingTimeoutMillis =
std::chrono::duration_cast<std::chrono::milliseconds>(DISPATCHING_TIMEOUT).count();
}
virtual ~FakeApplicationHandle() {}
virtual bool updateInfo() override { return true; }
void setDispatchingTimeout(std::chrono::milliseconds timeout) {
mInfo.dispatchingTimeoutMillis = timeout.count();
}
};
class FakeInputReceiver {
public:
explicit FakeInputReceiver(std::unique_ptr<InputChannel> clientChannel, const std::string name)
: mName(name) {
mConsumer = std::make_unique<InputConsumer>(std::move(clientChannel));
}
InputEvent* consume() {
InputEvent* event;
std::optional<uint32_t> consumeSeq = receiveEvent(&event);
if (!consumeSeq) {
return nullptr;
}
finishEvent(*consumeSeq);
return event;
}
/**
* Receive an event without acknowledging it.
* Return the sequence number that could later be used to send finished signal.
*/
std::optional<uint32_t> receiveEvent(InputEvent** outEvent = nullptr) {
uint32_t consumeSeq;
InputEvent* event;
std::chrono::time_point start = std::chrono::steady_clock::now();
status_t status = WOULD_BLOCK;
while (status == WOULD_BLOCK) {
status = mConsumer->consume(&mEventFactory, /*consumeBatches=*/true, -1, &consumeSeq,
&event);
std::chrono::duration elapsed = std::chrono::steady_clock::now() - start;
if (elapsed > 100ms) {
break;
}
}
if (status == WOULD_BLOCK) {
// Just means there's no event available.
return std::nullopt;
}
if (status != OK) {
ADD_FAILURE() << mName.c_str() << ": consumer consume should return OK.";
return std::nullopt;
}
if (event == nullptr) {
ADD_FAILURE() << "Consumed correctly, but received NULL event from consumer";
return std::nullopt;
}
if (outEvent != nullptr) {
*outEvent = event;
}
return consumeSeq;
}
/**
* To be used together with "receiveEvent" to complete the consumption of an event.
*/
void finishEvent(uint32_t consumeSeq) {
const status_t status = mConsumer->sendFinishedSignal(consumeSeq, true);
ASSERT_EQ(OK, status) << mName.c_str() << ": consumer sendFinishedSignal should return OK.";
}
void sendTimeline(int32_t inputEventId, std::array<nsecs_t, GraphicsTimeline::SIZE> timeline) {
const status_t status = mConsumer->sendTimeline(inputEventId, timeline);
ASSERT_EQ(OK, status);
}
void consumeEvent(InputEventType expectedEventType, int32_t expectedAction,
std::optional<int32_t> expectedDisplayId,
std::optional<int32_t> expectedFlags) {
InputEvent* event = consume();
ASSERT_NE(nullptr, event) << mName.c_str()
<< ": consumer should have returned non-NULL event.";
ASSERT_EQ(expectedEventType, event->getType())
<< mName.c_str() << " expected " << ftl::enum_string(expectedEventType)
<< " event, got " << *event;
if (expectedDisplayId.has_value()) {
EXPECT_EQ(expectedDisplayId, event->getDisplayId());
}
switch (expectedEventType) {
case InputEventType::KEY: {
const KeyEvent& keyEvent = static_cast<const KeyEvent&>(*event);
EXPECT_EQ(expectedAction, keyEvent.getAction());
if (expectedFlags.has_value()) {
EXPECT_EQ(expectedFlags.value(), keyEvent.getFlags());
}
break;
}
case InputEventType::MOTION: {
const MotionEvent& motionEvent = static_cast<const MotionEvent&>(*event);
assertMotionAction(expectedAction, motionEvent.getAction());
if (expectedFlags.has_value()) {
EXPECT_EQ(expectedFlags.value(), motionEvent.getFlags());
}
break;
}
case InputEventType::FOCUS: {
FAIL() << "Use 'consumeFocusEvent' for FOCUS events";
}
case InputEventType::CAPTURE: {
FAIL() << "Use 'consumeCaptureEvent' for CAPTURE events";
}
case InputEventType::TOUCH_MODE: {
FAIL() << "Use 'consumeTouchModeEvent' for TOUCH_MODE events";
}
case InputEventType::DRAG: {
FAIL() << "Use 'consumeDragEvent' for DRAG events";
}
}
}
MotionEvent* consumeMotion() {
InputEvent* event = consume();
if (event == nullptr) {
ADD_FAILURE() << mName << ": expected a MotionEvent, but didn't get one.";
return nullptr;
}
if (event->getType() != InputEventType::MOTION) {
ADD_FAILURE() << mName << " expected a MotionEvent, got " << *event;
return nullptr;
}
return static_cast<MotionEvent*>(event);
}
void consumeMotionEvent(const ::testing::Matcher<MotionEvent>& matcher) {
MotionEvent* motionEvent = consumeMotion();
ASSERT_NE(nullptr, motionEvent) << "Did not get a motion event, but expected " << matcher;
ASSERT_THAT(*motionEvent, matcher);
}
void consumeFocusEvent(bool hasFocus, bool inTouchMode) {
InputEvent* event = consume();
ASSERT_NE(nullptr, event) << mName.c_str()
<< ": consumer should have returned non-NULL event.";
ASSERT_EQ(InputEventType::FOCUS, event->getType())
<< "Instead of FocusEvent, got " << *event;
ASSERT_EQ(ADISPLAY_ID_NONE, event->getDisplayId())
<< mName.c_str() << ": event displayId should always be NONE.";
FocusEvent* focusEvent = static_cast<FocusEvent*>(event);
EXPECT_EQ(hasFocus, focusEvent->getHasFocus());
}
void consumeCaptureEvent(bool hasCapture) {
const InputEvent* event = consume();
ASSERT_NE(nullptr, event) << mName.c_str()
<< ": consumer should have returned non-NULL event.";
ASSERT_EQ(InputEventType::CAPTURE, event->getType())
<< "Instead of CaptureEvent, got " << *event;
ASSERT_EQ(ADISPLAY_ID_NONE, event->getDisplayId())
<< mName.c_str() << ": event displayId should always be NONE.";
const auto& captureEvent = static_cast<const CaptureEvent&>(*event);
EXPECT_EQ(hasCapture, captureEvent.getPointerCaptureEnabled());
}
void consumeDragEvent(bool isExiting, float x, float y) {
const InputEvent* event = consume();
ASSERT_NE(nullptr, event) << mName.c_str()
<< ": consumer should have returned non-NULL event.";
ASSERT_EQ(InputEventType::DRAG, event->getType()) << "Instead of DragEvent, got " << *event;
EXPECT_EQ(ADISPLAY_ID_NONE, event->getDisplayId())
<< mName.c_str() << ": event displayId should always be NONE.";
const auto& dragEvent = static_cast<const DragEvent&>(*event);
EXPECT_EQ(isExiting, dragEvent.isExiting());
EXPECT_EQ(x, dragEvent.getX());
EXPECT_EQ(y, dragEvent.getY());
}
void consumeTouchModeEvent(bool inTouchMode) {
const InputEvent* event = consume();
ASSERT_NE(nullptr, event) << mName.c_str()
<< ": consumer should have returned non-NULL event.";
ASSERT_EQ(InputEventType::TOUCH_MODE, event->getType())
<< "Instead of TouchModeEvent, got " << *event;
ASSERT_EQ(ADISPLAY_ID_NONE, event->getDisplayId())
<< mName.c_str() << ": event displayId should always be NONE.";
const auto& touchModeEvent = static_cast<const TouchModeEvent&>(*event);
EXPECT_EQ(inTouchMode, touchModeEvent.isInTouchMode());
}
void assertNoEvents() {
InputEvent* event = consume();
if (event == nullptr) {
return;
}
if (event->getType() == InputEventType::KEY) {
KeyEvent& keyEvent = static_cast<KeyEvent&>(*event);
ADD_FAILURE() << "Received key event "
<< KeyEvent::actionToString(keyEvent.getAction());
} else if (event->getType() == InputEventType::MOTION) {
MotionEvent& motionEvent = static_cast<MotionEvent&>(*event);
ADD_FAILURE() << "Received motion event "
<< MotionEvent::actionToString(motionEvent.getAction());
} else if (event->getType() == InputEventType::FOCUS) {
FocusEvent& focusEvent = static_cast<FocusEvent&>(*event);
ADD_FAILURE() << "Received focus event, hasFocus = "
<< (focusEvent.getHasFocus() ? "true" : "false");
} else if (event->getType() == InputEventType::CAPTURE) {
const auto& captureEvent = static_cast<CaptureEvent&>(*event);
ADD_FAILURE() << "Received capture event, pointerCaptureEnabled = "
<< (captureEvent.getPointerCaptureEnabled() ? "true" : "false");
} else if (event->getType() == InputEventType::TOUCH_MODE) {
const auto& touchModeEvent = static_cast<TouchModeEvent&>(*event);
ADD_FAILURE() << "Received touch mode event, inTouchMode = "
<< (touchModeEvent.isInTouchMode() ? "true" : "false");
}
FAIL() << mName.c_str()
<< ": should not have received any events, so consume() should return NULL";
}
sp<IBinder> getToken() { return mConsumer->getChannel()->getConnectionToken(); }
int getChannelFd() { return mConsumer->getChannel()->getFd().get(); }
protected:
std::unique_ptr<InputConsumer> mConsumer;
PreallocatedInputEventFactory mEventFactory;
std::string mName;
};
class FakeWindowHandle : public WindowInfoHandle {
public:
static const int32_t WIDTH = 600;
static const int32_t HEIGHT = 800;
FakeWindowHandle(const std::shared_ptr<InputApplicationHandle>& inputApplicationHandle,
const std::unique_ptr<InputDispatcher>& dispatcher, const std::string name,
int32_t displayId, std::optional<sp<IBinder>> token = std::nullopt)
: mName(name) {
if (token == std::nullopt) {
base::Result<std::unique_ptr<InputChannel>> channel =
dispatcher->createInputChannel(name);
token = (*channel)->getConnectionToken();
mInputReceiver = std::make_unique<FakeInputReceiver>(std::move(*channel), name);
}
inputApplicationHandle->updateInfo();
mInfo.applicationInfo = *inputApplicationHandle->getInfo();
mInfo.token = *token;
mInfo.id = sId++;
mInfo.name = name;
mInfo.dispatchingTimeout = DISPATCHING_TIMEOUT;
mInfo.alpha = 1.0;
mInfo.frameLeft = 0;
mInfo.frameTop = 0;
mInfo.frameRight = WIDTH;
mInfo.frameBottom = HEIGHT;
mInfo.transform.set(0, 0);
mInfo.globalScaleFactor = 1.0;
mInfo.touchableRegion.clear();
mInfo.addTouchableRegion(Rect(0, 0, WIDTH, HEIGHT));
mInfo.ownerPid = WINDOW_PID;
mInfo.ownerUid = WINDOW_UID;
mInfo.displayId = displayId;
mInfo.inputConfig = WindowInfo::InputConfig::DEFAULT;
}
sp<FakeWindowHandle> clone(int32_t displayId) {
sp<FakeWindowHandle> handle = sp<FakeWindowHandle>::make(mInfo.name + "(Mirror)");
handle->mInfo = mInfo;
handle->mInfo.displayId = displayId;
handle->mInfo.id = sId++;
handle->mInputReceiver = mInputReceiver;
return handle;
}
/**
* This is different from clone, because clone will make a "mirror" window - a window with the
* same token, but a different ID. The original window and the clone window are allowed to be
* sent to the dispatcher at the same time - they can coexist inside the dispatcher.
* This function will create a different object of WindowInfoHandle, but with the same
* properties as the original object - including the ID.
* You can use either the old or the new object to consume the events.
* IMPORTANT: The duplicated object is supposed to replace the original object, and not appear
* at the same time inside dispatcher.
*/
sp<FakeWindowHandle> duplicate() {
sp<FakeWindowHandle> handle = sp<FakeWindowHandle>::make(mName);
handle->mInfo = mInfo;
handle->mInputReceiver = mInputReceiver;
return handle;
}
void setTouchable(bool touchable) {
mInfo.setInputConfig(WindowInfo::InputConfig::NOT_TOUCHABLE, !touchable);
}
void setFocusable(bool focusable) {
mInfo.setInputConfig(WindowInfo::InputConfig::NOT_FOCUSABLE, !focusable);
}
void setVisible(bool visible) {
mInfo.setInputConfig(WindowInfo::InputConfig::NOT_VISIBLE, !visible);
}
void setDispatchingTimeout(std::chrono::nanoseconds timeout) {
mInfo.dispatchingTimeout = timeout;
}
void setPaused(bool paused) {
mInfo.setInputConfig(WindowInfo::InputConfig::PAUSE_DISPATCHING, paused);
}
void setPreventSplitting(bool preventSplitting) {
mInfo.setInputConfig(WindowInfo::InputConfig::PREVENT_SPLITTING, preventSplitting);
}
void setSlippery(bool slippery) {
mInfo.setInputConfig(WindowInfo::InputConfig::SLIPPERY, slippery);
}
void setWatchOutsideTouch(bool watchOutside) {
mInfo.setInputConfig(WindowInfo::InputConfig::WATCH_OUTSIDE_TOUCH, watchOutside);
}
void setSpy(bool spy) { mInfo.setInputConfig(WindowInfo::InputConfig::SPY, spy); }
void setInterceptsStylus(bool interceptsStylus) {
mInfo.setInputConfig(WindowInfo::InputConfig::INTERCEPTS_STYLUS, interceptsStylus);
}
void setDropInput(bool dropInput) {
mInfo.setInputConfig(WindowInfo::InputConfig::DROP_INPUT, dropInput);
}
void setDropInputIfObscured(bool dropInputIfObscured) {
mInfo.setInputConfig(WindowInfo::InputConfig::DROP_INPUT_IF_OBSCURED, dropInputIfObscured);
}
void setNoInputChannel(bool noInputChannel) {
mInfo.setInputConfig(WindowInfo::InputConfig::NO_INPUT_CHANNEL, noInputChannel);
}
void setDisableUserActivity(bool disableUserActivity) {
mInfo.setInputConfig(WindowInfo::InputConfig::DISABLE_USER_ACTIVITY, disableUserActivity);
}
void setAlpha(float alpha) { mInfo.alpha = alpha; }
void setTouchOcclusionMode(TouchOcclusionMode mode) { mInfo.touchOcclusionMode = mode; }
void setApplicationToken(sp<IBinder> token) { mInfo.applicationInfo.token = token; }
void setFrame(const Rect& frame, const ui::Transform& displayTransform = ui::Transform()) {
mInfo.frameLeft = frame.left;
mInfo.frameTop = frame.top;
mInfo.frameRight = frame.right;
mInfo.frameBottom = frame.bottom;
mInfo.touchableRegion.clear();
mInfo.addTouchableRegion(frame);
const Rect logicalDisplayFrame = displayTransform.transform(frame);
ui::Transform translate;
translate.set(-logicalDisplayFrame.left, -logicalDisplayFrame.top);
mInfo.transform = translate * displayTransform;
}
void setTouchableRegion(const Region& region) { mInfo.touchableRegion = region; }
void setIsWallpaper(bool isWallpaper) {
mInfo.setInputConfig(WindowInfo::InputConfig::IS_WALLPAPER, isWallpaper);
}
void setDupTouchToWallpaper(bool hasWallpaper) {
mInfo.setInputConfig(WindowInfo::InputConfig::DUPLICATE_TOUCH_TO_WALLPAPER, hasWallpaper);
}
void setTrustedOverlay(bool trustedOverlay) {
mInfo.setInputConfig(WindowInfo::InputConfig::TRUSTED_OVERLAY, trustedOverlay);
}
void setWindowTransform(float dsdx, float dtdx, float dtdy, float dsdy) {
mInfo.transform.set(dsdx, dtdx, dtdy, dsdy);
}
void setWindowScale(float xScale, float yScale) { setWindowTransform(xScale, 0, 0, yScale); }
void setWindowOffset(float offsetX, float offsetY) { mInfo.transform.set(offsetX, offsetY); }
void consumeKeyDown(int32_t expectedDisplayId, int32_t expectedFlags = 0) {
consumeEvent(InputEventType::KEY, AKEY_EVENT_ACTION_DOWN, expectedDisplayId, expectedFlags);
}
void consumeKeyUp(int32_t expectedDisplayId, int32_t expectedFlags = 0) {
consumeEvent(InputEventType::KEY, AKEY_EVENT_ACTION_UP, expectedDisplayId, expectedFlags);
}
void consumeMotionCancel(int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT,
int32_t expectedFlags = 0) {
consumeMotionEvent(AllOf(WithMotionAction(ACTION_CANCEL), WithDisplayId(expectedDisplayId),
WithFlags(expectedFlags | AMOTION_EVENT_FLAG_CANCELED)));
}
void consumeMotionMove(int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT,
int32_t expectedFlags = 0) {
consumeMotionEvent(AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE),
WithDisplayId(expectedDisplayId), WithFlags(expectedFlags)));
}
void consumeMotionDown(int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT,
int32_t expectedFlags = 0) {
consumeAnyMotionDown(expectedDisplayId, expectedFlags);
}
void consumeAnyMotionDown(std::optional<int32_t> expectedDisplayId = std::nullopt,
std::optional<int32_t> expectedFlags = std::nullopt) {
consumeEvent(InputEventType::MOTION, AMOTION_EVENT_ACTION_DOWN, expectedDisplayId,
expectedFlags);
}
void consumeMotionPointerDown(int32_t pointerIdx,
int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT,
int32_t expectedFlags = 0) {
int32_t action = AMOTION_EVENT_ACTION_POINTER_DOWN |
(pointerIdx << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
consumeEvent(InputEventType::MOTION, action, expectedDisplayId, expectedFlags);
}
void consumeMotionPointerUp(int32_t pointerIdx, int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT,
int32_t expectedFlags = 0) {
int32_t action = AMOTION_EVENT_ACTION_POINTER_UP |
(pointerIdx << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
consumeEvent(InputEventType::MOTION, action, expectedDisplayId, expectedFlags);
}
void consumeMotionUp(int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT,
int32_t expectedFlags = 0) {
consumeEvent(InputEventType::MOTION, AMOTION_EVENT_ACTION_UP, expectedDisplayId,
expectedFlags);
}
void consumeMotionOutside(int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT,
int32_t expectedFlags = 0) {
consumeEvent(InputEventType::MOTION, AMOTION_EVENT_ACTION_OUTSIDE, expectedDisplayId,
expectedFlags);
}
void consumeMotionOutsideWithZeroedCoords(int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT,
int32_t expectedFlags = 0) {
InputEvent* event = consume();
ASSERT_NE(nullptr, event);
ASSERT_EQ(InputEventType::MOTION, event->getType());
const MotionEvent& motionEvent = static_cast<MotionEvent&>(*event);
EXPECT_EQ(AMOTION_EVENT_ACTION_OUTSIDE, motionEvent.getActionMasked());
EXPECT_EQ(0.f, motionEvent.getRawPointerCoords(0)->getX());
EXPECT_EQ(0.f, motionEvent.getRawPointerCoords(0)->getY());
}
void consumeFocusEvent(bool hasFocus, bool inTouchMode = true) {
ASSERT_NE(mInputReceiver, nullptr)
<< "Cannot consume events from a window with no receiver";
mInputReceiver->consumeFocusEvent(hasFocus, inTouchMode);
}
void consumeCaptureEvent(bool hasCapture) {
ASSERT_NE(mInputReceiver, nullptr)
<< "Cannot consume events from a window with no receiver";
mInputReceiver->consumeCaptureEvent(hasCapture);
}
void consumeMotionEvent(const ::testing::Matcher<MotionEvent>& matcher) {
MotionEvent* motionEvent = consumeMotion();
ASSERT_NE(nullptr, motionEvent) << "Did not get a motion event, but expected " << matcher;
ASSERT_THAT(*motionEvent, matcher);
}
void consumeEvent(InputEventType expectedEventType, int32_t expectedAction,
std::optional<int32_t> expectedDisplayId,
std::optional<int32_t> expectedFlags) {
ASSERT_NE(mInputReceiver, nullptr) << "Invalid consume event on window with no receiver";
mInputReceiver->consumeEvent(expectedEventType, expectedAction, expectedDisplayId,
expectedFlags);
}
void consumeDragEvent(bool isExiting, float x, float y) {
mInputReceiver->consumeDragEvent(isExiting, x, y);
}
void consumeTouchModeEvent(bool inTouchMode) {
ASSERT_NE(mInputReceiver, nullptr)
<< "Cannot consume events from a window with no receiver";
mInputReceiver->consumeTouchModeEvent(inTouchMode);
}
std::optional<uint32_t> receiveEvent(InputEvent** outEvent = nullptr) {
if (mInputReceiver == nullptr) {
ADD_FAILURE() << "Invalid receive event on window with no receiver";
return std::nullopt;
}
return mInputReceiver->receiveEvent(outEvent);
}
void finishEvent(uint32_t sequenceNum) {
ASSERT_NE(mInputReceiver, nullptr) << "Invalid receive event on window with no receiver";
mInputReceiver->finishEvent(sequenceNum);
}
void sendTimeline(int32_t inputEventId, std::array<nsecs_t, GraphicsTimeline::SIZE> timeline) {
ASSERT_NE(mInputReceiver, nullptr) << "Invalid receive event on window with no receiver";
mInputReceiver->sendTimeline(inputEventId, timeline);
}
InputEvent* consume() {
if (mInputReceiver == nullptr) {
return nullptr;
}
return mInputReceiver->consume();
}
MotionEvent* consumeMotion() {
InputEvent* event = consume();
if (event == nullptr) {
ADD_FAILURE() << "Consume failed : no event";
return nullptr;
}
if (event->getType() != InputEventType::MOTION) {
ADD_FAILURE() << "Instead of motion event, got " << *event;
return nullptr;
}
return static_cast<MotionEvent*>(event);
}
void assertNoEvents() {
if (mInputReceiver == nullptr &&
mInfo.inputConfig.test(WindowInfo::InputConfig::NO_INPUT_CHANNEL)) {
return; // Can't receive events if the window does not have input channel
}
ASSERT_NE(nullptr, mInputReceiver)
<< "Window without InputReceiver must specify feature NO_INPUT_CHANNEL";
mInputReceiver->assertNoEvents();
}
sp<IBinder> getToken() { return mInfo.token; }
const std::string& getName() { return mName; }
void setOwnerInfo(int32_t ownerPid, int32_t ownerUid) {
mInfo.ownerPid = ownerPid;
mInfo.ownerUid = ownerUid;
}
int32_t getPid() const { return mInfo.ownerPid; }
void destroyReceiver() { mInputReceiver = nullptr; }
int getChannelFd() { return mInputReceiver->getChannelFd(); }
private:
FakeWindowHandle(std::string name) : mName(name){};
const std::string mName;
std::shared_ptr<FakeInputReceiver> mInputReceiver;
static std::atomic<int32_t> sId; // each window gets a unique id, like in surfaceflinger
friend class sp<FakeWindowHandle>;
};
std::atomic<int32_t> FakeWindowHandle::sId{1};
static InputEventInjectionResult injectKey(
const std::unique_ptr<InputDispatcher>& dispatcher, int32_t action, int32_t repeatCount,
int32_t displayId = ADISPLAY_ID_NONE,
InputEventInjectionSync syncMode = InputEventInjectionSync::WAIT_FOR_RESULT,
std::chrono::milliseconds injectionTimeout = INJECT_EVENT_TIMEOUT,
bool allowKeyRepeat = true, std::optional<int32_t> targetUid = {},
uint32_t policyFlags = DEFAULT_POLICY_FLAGS) {
KeyEvent event;
nsecs_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC);
// Define a valid key down event.
event.initialize(InputEvent::nextId(), DEVICE_ID, AINPUT_SOURCE_KEYBOARD, displayId,
INVALID_HMAC, action, /*flags=*/0, AKEYCODE_A, KEY_A, AMETA_NONE, repeatCount,
currentTime, currentTime);
if (!allowKeyRepeat) {
policyFlags |= POLICY_FLAG_DISABLE_KEY_REPEAT;
}
// Inject event until dispatch out.
return dispatcher->injectInputEvent(&event, targetUid, syncMode, injectionTimeout, policyFlags);
}
static InputEventInjectionResult injectKeyDown(const std::unique_ptr<InputDispatcher>& dispatcher,
int32_t displayId = ADISPLAY_ID_NONE) {
return injectKey(dispatcher, AKEY_EVENT_ACTION_DOWN, /*repeatCount=*/0, displayId);
}
// Inject a down event that has key repeat disabled. This allows InputDispatcher to idle without
// sending a subsequent key up. When key repeat is enabled, the dispatcher cannot idle because it
// has to be woken up to process the repeating key.
static InputEventInjectionResult injectKeyDownNoRepeat(
const std::unique_ptr<InputDispatcher>& dispatcher, int32_t displayId = ADISPLAY_ID_NONE) {
return injectKey(dispatcher, AKEY_EVENT_ACTION_DOWN, /*repeatCount=*/0, displayId,
InputEventInjectionSync::WAIT_FOR_RESULT, INJECT_EVENT_TIMEOUT,
/*allowKeyRepeat=*/false);
}
static InputEventInjectionResult injectKeyUp(const std::unique_ptr<InputDispatcher>& dispatcher,
int32_t displayId = ADISPLAY_ID_NONE) {
return injectKey(dispatcher, AKEY_EVENT_ACTION_UP, /*repeatCount=*/0, displayId);
}
static InputEventInjectionResult injectMotionEvent(
const std::unique_ptr<InputDispatcher>& dispatcher, const MotionEvent& event,
std::chrono::milliseconds injectionTimeout = INJECT_EVENT_TIMEOUT,
InputEventInjectionSync injectionMode = InputEventInjectionSync::WAIT_FOR_RESULT,
std::optional<int32_t> targetUid = {}, uint32_t policyFlags = DEFAULT_POLICY_FLAGS) {
return dispatcher->injectInputEvent(&event, targetUid, injectionMode, injectionTimeout,
policyFlags);
}
static InputEventInjectionResult injectMotionEvent(
const std::unique_ptr<InputDispatcher>& dispatcher, int32_t action, int32_t source,
int32_t displayId, const PointF& position = {100, 200},
const PointF& cursorPosition = {AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION},
std::chrono::milliseconds injectionTimeout = INJECT_EVENT_TIMEOUT,
InputEventInjectionSync injectionMode = InputEventInjectionSync::WAIT_FOR_RESULT,
nsecs_t eventTime = systemTime(SYSTEM_TIME_MONOTONIC),
std::optional<int32_t> targetUid = {}, uint32_t policyFlags = DEFAULT_POLICY_FLAGS) {
MotionEventBuilder motionBuilder =
MotionEventBuilder(action, source)
.displayId(displayId)
.eventTime(eventTime)
.rawXCursorPosition(cursorPosition.x)
.rawYCursorPosition(cursorPosition.y)
.pointer(
PointerBuilder(/*id=*/0, ToolType::FINGER).x(position.x).y(position.y));
if (MotionEvent::getActionMasked(action) == ACTION_DOWN) {
motionBuilder.downTime(eventTime);
}
// Inject event until dispatch out.
return injectMotionEvent(dispatcher, motionBuilder.build(), injectionTimeout, injectionMode,
targetUid, policyFlags);
}
static InputEventInjectionResult injectMotionDown(
const std::unique_ptr<InputDispatcher>& dispatcher, int32_t source, int32_t displayId,
const PointF& location = {100, 200}) {
return injectMotionEvent(dispatcher, AMOTION_EVENT_ACTION_DOWN, source, displayId, location);
}
static InputEventInjectionResult injectMotionUp(const std::unique_ptr<InputDispatcher>& dispatcher,
int32_t source, int32_t displayId,
const PointF& location = {100, 200}) {
return injectMotionEvent(dispatcher, AMOTION_EVENT_ACTION_UP, source, displayId, location);
}
static NotifyKeyArgs generateKeyArgs(int32_t action, int32_t displayId = ADISPLAY_ID_NONE) {
nsecs_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC);
// Define a valid key event.
NotifyKeyArgs args(/*id=*/0, currentTime, /*readTime=*/0, DEVICE_ID, AINPUT_SOURCE_KEYBOARD,
displayId, POLICY_FLAG_PASS_TO_USER, action, /* flags */ 0, AKEYCODE_A,
KEY_A, AMETA_NONE, currentTime);
return args;
}
static NotifyKeyArgs generateSystemShortcutArgs(int32_t action,
int32_t displayId = ADISPLAY_ID_NONE) {
nsecs_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC);
// Define a valid key event.
NotifyKeyArgs args(/*id=*/0, currentTime, /*readTime=*/0, DEVICE_ID, AINPUT_SOURCE_KEYBOARD,
displayId, 0, action, /* flags */ 0, AKEYCODE_C, KEY_C, AMETA_META_ON,
currentTime);
return args;
}
static NotifyKeyArgs generateAssistantKeyArgs(int32_t action,
int32_t displayId = ADISPLAY_ID_NONE) {
nsecs_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC);
// Define a valid key event.
NotifyKeyArgs args(/*id=*/0, currentTime, /*readTime=*/0, DEVICE_ID, AINPUT_SOURCE_KEYBOARD,
displayId, 0, action, /* flags */ 0, AKEYCODE_ASSIST, KEY_ASSISTANT,
AMETA_NONE, currentTime);
return args;
}
[[nodiscard]] static NotifyMotionArgs generateMotionArgs(int32_t action, int32_t source,
int32_t displayId,
const std::vector<PointF>& points) {
size_t pointerCount = points.size();
if (action == AMOTION_EVENT_ACTION_DOWN || action == AMOTION_EVENT_ACTION_UP) {
EXPECT_EQ(1U, pointerCount) << "Actions DOWN and UP can only contain a single pointer";
}
PointerProperties pointerProperties[pointerCount];
PointerCoords pointerCoords[pointerCount];
for (size_t i = 0; i < pointerCount; i++) {
pointerProperties[i].clear();
pointerProperties[i].id = i;
pointerProperties[i].toolType = ToolType::FINGER;
pointerCoords[i].clear();
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_X, points[i].x);
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_Y, points[i].y);
}
nsecs_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC);
// Define a valid motion event.
NotifyMotionArgs args(/*id=*/0, currentTime, /*readTime=*/0, DEVICE_ID, source, displayId,
POLICY_FLAG_PASS_TO_USER, action, /* actionButton */ 0, /* flags */ 0,
AMETA_NONE, /* buttonState */ 0, MotionClassification::NONE,
AMOTION_EVENT_EDGE_FLAG_NONE, pointerCount, pointerProperties,
pointerCoords, /* xPrecision */ 0, /* yPrecision */ 0,
AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, currentTime, /* videoFrames */ {});
return args;
}
static NotifyMotionArgs generateTouchArgs(int32_t action, const std::vector<PointF>& points) {
return generateMotionArgs(action, AINPUT_SOURCE_TOUCHSCREEN, DISPLAY_ID, points);
}
static NotifyMotionArgs generateMotionArgs(int32_t action, int32_t source, int32_t displayId) {
return generateMotionArgs(action, source, displayId, {PointF{100, 200}});
}
static NotifyPointerCaptureChangedArgs generatePointerCaptureChangedArgs(
const PointerCaptureRequest& request) {
return NotifyPointerCaptureChangedArgs(/*id=*/0, systemTime(SYSTEM_TIME_MONOTONIC), request);
}
} // namespace
/**
* When a window unexpectedly disposes of its input channel, policy should be notified about the
* broken channel.
*/
TEST_F(InputDispatcherTest, WhenInputChannelBreaks_PolicyIsNotified) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher,
"Window that breaks its input channel", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
// Window closes its channel, but the window remains.
window->destroyReceiver();
mFakePolicy->assertNotifyInputChannelBrokenWasCalled(window->getInfo()->token);
}
TEST_F(InputDispatcherTest, SetInputWindow_SingleWindowTouch) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
// Window should receive motion event.
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
}
TEST_F(InputDispatcherTest, WhenDisplayNotSpecified_InjectMotionToDefaultDisplay) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
// Inject a MotionEvent to an unknown display.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_NONE))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
// Window should receive motion event.
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
}
/**
* Calling setInputWindows once should not cause any issues.
* This test serves as a sanity check for the next test, where setInputWindows is
* called twice.
*/
TEST_F(InputDispatcherTest, SetInputWindowOnceWithSingleTouchWindow) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 100, 100));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
// Window should receive motion event.
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
}
/**
* Calling setInputWindows twice, with the same info, should not cause any issues.
*/
TEST_F(InputDispatcherTest, SetInputWindowTwice_SingleWindowTouch) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 100, 100));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
// Window should receive motion event.
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
}
// The foreground window should receive the first touch down event.
TEST_F(InputDispatcherTest, SetInputWindow_MultiWindowsTouch) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> windowTop =
sp<FakeWindowHandle>::make(application, mDispatcher, "Top", ADISPLAY_ID_DEFAULT);
sp<FakeWindowHandle> windowSecond =
sp<FakeWindowHandle>::make(application, mDispatcher, "Second", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowTop, windowSecond}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
// Top window should receive the touch down event. Second window should not receive anything.
windowTop->consumeMotionDown(ADISPLAY_ID_DEFAULT);
windowSecond->assertNoEvents();
}
/**
* Two windows: A top window, and a wallpaper behind the window.
* Touch goes to the top window, and then top window disappears. Ensure that wallpaper window
* gets ACTION_CANCEL.
* 1. foregroundWindow <-- dup touch to wallpaper
* 2. wallpaperWindow <-- is wallpaper
*/
TEST_F(InputDispatcherTest, WhenForegroundWindowDisappears_WallpaperTouchIsCanceled) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> foregroundWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Foreground", ADISPLAY_ID_DEFAULT);
foregroundWindow->setDupTouchToWallpaper(true);
sp<FakeWindowHandle> wallpaperWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Wallpaper", ADISPLAY_ID_DEFAULT);
wallpaperWindow->setIsWallpaper(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {foregroundWindow, wallpaperWindow}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{100, 200}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
// Both foreground window and its wallpaper should receive the touch down
foregroundWindow->consumeMotionDown();
wallpaperWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT, expectedWallpaperFlags);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {110, 200}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
foregroundWindow->consumeMotionMove();
wallpaperWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT, expectedWallpaperFlags);
// Now the foreground window goes away, but the wallpaper stays
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {wallpaperWindow}}});
foregroundWindow->consumeMotionCancel();
// Since the "parent" window of the wallpaper is gone, wallpaper should receive cancel, too.
wallpaperWindow->consumeMotionCancel(ADISPLAY_ID_DEFAULT, expectedWallpaperFlags);
}
/**
* Two fingers down on the window, and lift off the first finger.
* Next, cancel the gesture to the window by removing the window. Make sure that the CANCEL event
* contains a single pointer.
*/
TEST_F(InputDispatcherTest, CancelAfterPointer0Up) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
// First touch pointer down on right window
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.pointer(PointerBuilder(0, ToolType::FINGER).x(100).y(100))
.build());
// Second touch pointer down
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.pointer(PointerBuilder(0, ToolType::FINGER).x(100).y(100))
.pointer(PointerBuilder(1, ToolType::FINGER).x(110).y(100))
.build());
// First touch pointer lifts. The second one remains down
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_0_UP, AINPUT_SOURCE_TOUCHSCREEN)
.pointer(PointerBuilder(0, ToolType::FINGER).x(100).y(100))
.pointer(PointerBuilder(1, ToolType::FINGER).x(110).y(100))
.build());
window->consumeMotionEvent(WithMotionAction(ACTION_DOWN));
window->consumeMotionEvent(WithMotionAction(POINTER_1_DOWN));
window->consumeMotionEvent(WithMotionAction(POINTER_0_UP));
// Remove the window. The gesture should be canceled
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {}}});
const std::map<int32_t, PointF> expectedPointers{{1, PointF{110, 100}}};
window->consumeMotionEvent(
AllOf(WithMotionAction(ACTION_CANCEL), WithPointers(expectedPointers)));
}
/**
* Same test as WhenForegroundWindowDisappears_WallpaperTouchIsCanceled above,
* with the following differences:
* After ACTION_DOWN, Wallpaper window hangs up its channel, which forces the dispatcher to
* clean up the connection.
* This later may crash dispatcher during ACTION_CANCEL synthesis, if the dispatcher is not careful.
* Ensure that there's no crash in the dispatcher.
*/
TEST_F(InputDispatcherTest, WhenWallpaperDisappears_NoCrash) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> foregroundWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Foreground", ADISPLAY_ID_DEFAULT);
foregroundWindow->setDupTouchToWallpaper(true);
sp<FakeWindowHandle> wallpaperWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Wallpaper", ADISPLAY_ID_DEFAULT);
wallpaperWindow->setIsWallpaper(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {foregroundWindow, wallpaperWindow}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{100, 200}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
// Both foreground window and its wallpaper should receive the touch down
foregroundWindow->consumeMotionDown();
wallpaperWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT, expectedWallpaperFlags);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {110, 200}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
foregroundWindow->consumeMotionMove();
wallpaperWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT, expectedWallpaperFlags);
// Wallpaper closes its channel, but the window remains.
wallpaperWindow->destroyReceiver();
mFakePolicy->assertNotifyInputChannelBrokenWasCalled(wallpaperWindow->getInfo()->token);
// Now the foreground window goes away, but the wallpaper stays, even though its channel
// is no longer valid.
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {wallpaperWindow}}});
foregroundWindow->consumeMotionCancel();
}
class ShouldSplitTouchFixture : public InputDispatcherTest,
public ::testing::WithParamInterface<bool> {};
INSTANTIATE_TEST_SUITE_P(InputDispatcherTest, ShouldSplitTouchFixture,
::testing::Values(true, false));
/**
* A single window that receives touch (on top), and a wallpaper window underneath it.
* The top window gets a multitouch gesture.
* Ensure that wallpaper gets the same gesture.
*/
TEST_P(ShouldSplitTouchFixture, WallpaperWindowReceivesMultiTouch) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> foregroundWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Foreground", ADISPLAY_ID_DEFAULT);
foregroundWindow->setDupTouchToWallpaper(true);
foregroundWindow->setPreventSplitting(GetParam());
sp<FakeWindowHandle> wallpaperWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Wallpaper", ADISPLAY_ID_DEFAULT);
wallpaperWindow->setIsWallpaper(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {foregroundWindow, wallpaperWindow}}});
// Touch down on top window
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{100, 100}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
// Both top window and its wallpaper should receive the touch down
foregroundWindow->consumeMotionDown();
wallpaperWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT, expectedWallpaperFlags);
// Second finger down on the top window
const MotionEvent secondFingerDownEvent =
MotionEventBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/*id=*/0, ToolType::FINGER).x(100).y(100))
.pointer(PointerBuilder(/*id=*/1, ToolType::FINGER).x(150).y(150))
.build();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, secondFingerDownEvent, INJECT_EVENT_TIMEOUT,
InputEventInjectionSync::WAIT_FOR_RESULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
foregroundWindow->consumeMotionPointerDown(/*pointerIndex=*/1);
wallpaperWindow->consumeMotionPointerDown(/*pointerIndex=*/1, ADISPLAY_ID_DEFAULT,
expectedWallpaperFlags);
const MotionEvent secondFingerUpEvent =
MotionEventBuilder(POINTER_0_UP, AINPUT_SOURCE_TOUCHSCREEN)
.displayId(ADISPLAY_ID_DEFAULT)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/*id=*/0, ToolType::FINGER).x(100).y(100))
.pointer(PointerBuilder(/*id=*/1, ToolType::FINGER).x(150).y(150))
.build();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, secondFingerUpEvent, INJECT_EVENT_TIMEOUT,
InputEventInjectionSync::WAIT_FOR_RESULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
foregroundWindow->consumeMotionPointerUp(0);
wallpaperWindow->consumeMotionPointerUp(0, ADISPLAY_ID_DEFAULT, expectedWallpaperFlags);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_UP,
AINPUT_SOURCE_TOUCHSCREEN)
.displayId(ADISPLAY_ID_DEFAULT)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/* id */ 1,
ToolType::FINGER)
.x(100)
.y(100))
.build(),
INJECT_EVENT_TIMEOUT, InputEventInjectionSync::WAIT_FOR_RESULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
foregroundWindow->consumeMotionUp(ADISPLAY_ID_DEFAULT);
wallpaperWindow->consumeMotionUp(ADISPLAY_ID_DEFAULT, expectedWallpaperFlags);
}
/**
* Two windows: a window on the left and window on the right.
* A third window, wallpaper, is behind both windows, and spans both top windows.
* The first touch down goes to the left window. A second pointer touches down on the right window.
* The touch is split, so both left and right windows should receive ACTION_DOWN.
* The wallpaper will get the full event, so it should receive ACTION_DOWN followed by
* ACTION_POINTER_DOWN(1).
*/
TEST_F(InputDispatcherTest, TwoWindows_SplitWallpaperTouch) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> leftWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Left", ADISPLAY_ID_DEFAULT);
leftWindow->setFrame(Rect(0, 0, 200, 200));
leftWindow->setDupTouchToWallpaper(true);
sp<FakeWindowHandle> rightWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Right", ADISPLAY_ID_DEFAULT);
rightWindow->setFrame(Rect(200, 0, 400, 200));
rightWindow->setDupTouchToWallpaper(true);
sp<FakeWindowHandle> wallpaperWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Wallpaper", ADISPLAY_ID_DEFAULT);
wallpaperWindow->setFrame(Rect(0, 0, 400, 200));
wallpaperWindow->setIsWallpaper(true);
mDispatcher->setInputWindows(
{{ADISPLAY_ID_DEFAULT, {leftWindow, rightWindow, wallpaperWindow}}});
// Touch down on left window
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{100, 100}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
// Both foreground window and its wallpaper should receive the touch down
leftWindow->consumeMotionDown();
wallpaperWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT, expectedWallpaperFlags);
// Second finger down on the right window
const MotionEvent secondFingerDownEvent =
MotionEventBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/*id=*/0, ToolType::FINGER).x(100).y(100))
.pointer(PointerBuilder(/*id=*/1, ToolType::FINGER).x(300).y(100))
.build();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, secondFingerDownEvent, INJECT_EVENT_TIMEOUT,
InputEventInjectionSync::WAIT_FOR_RESULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
leftWindow->consumeMotionMove();
// Since the touch is split, right window gets ACTION_DOWN
rightWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT);
wallpaperWindow->consumeMotionPointerDown(/*pointerIndex=*/1, ADISPLAY_ID_DEFAULT,
expectedWallpaperFlags);
// Now, leftWindow, which received the first finger, disappears.
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {rightWindow, wallpaperWindow}}});
leftWindow->consumeMotionCancel();
// Since a "parent" window of the wallpaper is gone, wallpaper should receive cancel, too.
wallpaperWindow->consumeMotionCancel(ADISPLAY_ID_DEFAULT, expectedWallpaperFlags);
// The pointer that's still down on the right window moves, and goes to the right window only.
// As far as the dispatcher's concerned though, both pointers are still present.
const MotionEvent secondFingerMoveEvent =
MotionEventBuilder(AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/*id=*/0, ToolType::FINGER).x(100).y(100))
.pointer(PointerBuilder(/*id=*/1, ToolType::FINGER).x(310).y(110))
.build();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, secondFingerMoveEvent, INJECT_EVENT_TIMEOUT,
InputEventInjectionSync::WAIT_FOR_RESULT));
rightWindow->consumeMotionMove();
leftWindow->assertNoEvents();
rightWindow->assertNoEvents();
wallpaperWindow->assertNoEvents();
}
/**
* Two windows: a window on the left with dup touch to wallpaper and window on the right without it.
* The touch slips to the right window. so left window and wallpaper should receive ACTION_CANCEL
* The right window should receive ACTION_DOWN.
*/
TEST_F(InputDispatcherTest, WallpaperWindowWhenSlippery) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> leftWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Left", ADISPLAY_ID_DEFAULT);
leftWindow->setFrame(Rect(0, 0, 200, 200));
leftWindow->setDupTouchToWallpaper(true);
leftWindow->setSlippery(true);
sp<FakeWindowHandle> rightWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Right", ADISPLAY_ID_DEFAULT);
rightWindow->setFrame(Rect(200, 0, 400, 200));
sp<FakeWindowHandle> wallpaperWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Wallpaper", ADISPLAY_ID_DEFAULT);
wallpaperWindow->setIsWallpaper(true);
mDispatcher->setInputWindows(
{{ADISPLAY_ID_DEFAULT, {leftWindow, rightWindow, wallpaperWindow}}});
// Touch down on left window
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{100, 100}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
// Both foreground window and its wallpaper should receive the touch down
leftWindow->consumeMotionDown();
wallpaperWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT, expectedWallpaperFlags);
// Move to right window, the left window should receive cancel.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {201, 100}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
leftWindow->consumeMotionCancel();
rightWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT);
wallpaperWindow->consumeMotionCancel(ADISPLAY_ID_DEFAULT, expectedWallpaperFlags);
}
/**
* The policy typically sets POLICY_FLAG_PASS_TO_USER to the events. But when the display is not
* interactive, it might stop sending this flag.
* In this test, we check that if the policy stops sending this flag mid-gesture, we still ensure
* to have a consistent input stream.
*
* Test procedure:
* DOWN -> POINTER_DOWN -> (stop sending POLICY_FLAG_PASS_TO_USER) -> CANCEL.
* DOWN (new gesture).
*
* In the bad implementation, we could potentially drop the CANCEL event, and get an inconsistent
* state in the dispatcher. This would cause the final DOWN event to not be delivered to the app.
*
* We technically just need a single window here, but we are using two windows (spy on top and a
* regular window below) to emulate the actual situation where it happens on the device.
*/
TEST_F(InputDispatcherTest, TwoPointerCancelInconsistentPolicy) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> spyWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Spy", ADISPLAY_ID_DEFAULT);
spyWindow->setFrame(Rect(0, 0, 200, 200));
spyWindow->setTrustedOverlay(true);
spyWindow->setSpy(true);
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 200, 200));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spyWindow, window}}});
const int32_t touchDeviceId = 4;
// Two pointers down
mDispatcher->notifyMotion(
MotionArgsBuilder(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.policyFlags(DEFAULT_POLICY_FLAGS)
.pointer(PointerBuilder(0, ToolType::FINGER).x(100).y(100))
.build());
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.policyFlags(DEFAULT_POLICY_FLAGS)
.pointer(PointerBuilder(0, ToolType::FINGER).x(100).y(100))
.pointer(PointerBuilder(1, ToolType::FINGER).x(120).y(120))
.build());
spyWindow->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_DOWN));
spyWindow->consumeMotionEvent(WithMotionAction(POINTER_1_DOWN));
window->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_DOWN));
window->consumeMotionEvent(WithMotionAction(POINTER_1_DOWN));
// Cancel the current gesture. Send the cancel without the default policy flags.
mDispatcher->notifyMotion(
MotionArgsBuilder(AMOTION_EVENT_ACTION_CANCEL, AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.policyFlags(0)
.pointer(PointerBuilder(0, ToolType::FINGER).x(100).y(100))
.pointer(PointerBuilder(1, ToolType::FINGER).x(120).y(120))
.build());
spyWindow->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_CANCEL));
window->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_CANCEL));
// We don't need to reset the device to reproduce the issue, but the reset event typically
// follows, so we keep it here to model the actual listener behaviour more closely.
mDispatcher->notifyDeviceReset({/*id=*/1, systemTime(SYSTEM_TIME_MONOTONIC), touchDeviceId});
// Start new gesture
mDispatcher->notifyMotion(
MotionArgsBuilder(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.policyFlags(DEFAULT_POLICY_FLAGS)
.pointer(PointerBuilder(0, ToolType::FINGER).x(100).y(100))
.build());
spyWindow->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_DOWN));
window->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_DOWN));
// No more events
spyWindow->assertNoEvents();
window->assertNoEvents();
}
/**
* Two windows: a window on the left and a window on the right.
* Mouse is hovered from the right window into the left window.
* Next, we tap on the left window, where the cursor was last seen.
* The second tap is done onto the right window.
* The mouse and tap are from two different devices.
* We technically don't need to set the downtime / eventtime for these events, but setting these
* explicitly helps during debugging.
* This test reproduces a crash where there is a mismatch between the downTime and eventTime.
* In the buggy implementation, a tap on the right window would cause a crash.
*/
TEST_F(InputDispatcherTest, HoverFromLeftToRightAndTap) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> leftWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Left", ADISPLAY_ID_DEFAULT);
leftWindow->setFrame(Rect(0, 0, 200, 200));
sp<FakeWindowHandle> rightWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Right", ADISPLAY_ID_DEFAULT);
rightWindow->setFrame(Rect(200, 0, 400, 200));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {leftWindow, rightWindow}}});
// All times need to start at the current time, otherwise the dispatcher will drop the events as
// stale.
const nsecs_t baseTime = systemTime(SYSTEM_TIME_MONOTONIC);
const int32_t mouseDeviceId = 6;
const int32_t touchDeviceId = 4;
// Move the cursor from right
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_MOVE,
AINPUT_SOURCE_MOUSE)
.deviceId(mouseDeviceId)
.downTime(baseTime + 10)
.eventTime(baseTime + 20)
.pointer(PointerBuilder(0, ToolType::MOUSE)
.x(300)
.y(100))
.build()));
rightWindow->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER));
// .. to the left window
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_MOVE,
AINPUT_SOURCE_MOUSE)
.deviceId(mouseDeviceId)
.downTime(baseTime + 10)
.eventTime(baseTime + 30)
.pointer(PointerBuilder(0, ToolType::MOUSE)
.x(110)
.y(100))
.build()));
rightWindow->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_EXIT));
leftWindow->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER));
// Now tap the left window
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.downTime(baseTime + 40)
.eventTime(baseTime + 40)
.pointer(PointerBuilder(0, ToolType::FINGER)
.x(100)
.y(100))
.build()));
leftWindow->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_EXIT));
leftWindow->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_DOWN));
// release tap
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_UP,
AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.downTime(baseTime + 40)
.eventTime(baseTime + 50)
.pointer(PointerBuilder(0, ToolType::FINGER)
.x(100)
.y(100))
.build()));
leftWindow->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_UP));
// Tap the window on the right
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.downTime(baseTime + 60)
.eventTime(baseTime + 60)
.pointer(PointerBuilder(0, ToolType::FINGER)
.x(300)
.y(100))
.build()));
rightWindow->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_DOWN));
// release tap
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_UP,
AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.downTime(baseTime + 60)
.eventTime(baseTime + 70)
.pointer(PointerBuilder(0, ToolType::FINGER)
.x(300)
.y(100))
.build()));
rightWindow->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_UP));
// No more events
leftWindow->assertNoEvents();
rightWindow->assertNoEvents();
}
/**
* Start hovering in a window. While this hover is still active, make another window appear on top.
* The top, obstructing window has no input channel, so it's not supposed to receive input.
* While the top window is present, the hovering is stopped.
* Later, hovering gets resumed again.
* Ensure that new hover gesture is handled correctly.
* This test reproduces a crash where the HOVER_EXIT event wasn't getting dispatched correctly
* to the window that's currently being hovered over.
*/
TEST_F(InputDispatcherTest, HoverWhileWindowAppears) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 200, 200));
// Only a single window is present at first
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
// Start hovering in the window
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_HOVER_ENTER, AINPUT_SOURCE_STYLUS)
.pointer(PointerBuilder(0, ToolType::STYLUS).x(100).y(100))
.build());
window->consumeMotionEvent(WithMotionAction(ACTION_HOVER_ENTER));
// Now, an obscuring window appears!
sp<FakeWindowHandle> obscuringWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Obscuring window",
ADISPLAY_ID_DEFAULT,
/*token=*/std::make_optional<sp<IBinder>>(nullptr));
obscuringWindow->setFrame(Rect(0, 0, 200, 200));
obscuringWindow->setTouchOcclusionMode(TouchOcclusionMode::BLOCK_UNTRUSTED);
obscuringWindow->setOwnerInfo(SECONDARY_WINDOW_PID, SECONDARY_WINDOW_UID);
obscuringWindow->setNoInputChannel(true);
obscuringWindow->setFocusable(false);
obscuringWindow->setAlpha(1.0);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {obscuringWindow, window}}});
// While this new obscuring window is present, the hovering is stopped
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_HOVER_EXIT, AINPUT_SOURCE_STYLUS)
.pointer(PointerBuilder(0, ToolType::STYLUS).x(100).y(100))
.build());
window->consumeMotionEvent(WithMotionAction(ACTION_HOVER_EXIT));
// Now the obscuring window goes away.
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
// And a new hover gesture starts.
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_HOVER_ENTER, AINPUT_SOURCE_STYLUS)
.pointer(PointerBuilder(0, ToolType::STYLUS).x(100).y(100))
.build());
window->consumeMotionEvent(WithMotionAction(ACTION_HOVER_ENTER));
}
/**
* Same test as 'HoverWhileWindowAppears' above, but here, we also send some HOVER_MOVE events to
* the obscuring window.
*/
TEST_F(InputDispatcherTest, HoverMoveWhileWindowAppears) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 200, 200));
// Only a single window is present at first
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
// Start hovering in the window
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_HOVER_ENTER, AINPUT_SOURCE_STYLUS)
.pointer(PointerBuilder(0, ToolType::STYLUS).x(100).y(100))
.build());
window->consumeMotionEvent(WithMotionAction(ACTION_HOVER_ENTER));
// Now, an obscuring window appears!
sp<FakeWindowHandle> obscuringWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Obscuring window",
ADISPLAY_ID_DEFAULT,
/*token=*/std::make_optional<sp<IBinder>>(nullptr));
obscuringWindow->setFrame(Rect(0, 0, 200, 200));
obscuringWindow->setTouchOcclusionMode(TouchOcclusionMode::BLOCK_UNTRUSTED);
obscuringWindow->setOwnerInfo(SECONDARY_WINDOW_PID, SECONDARY_WINDOW_UID);
obscuringWindow->setNoInputChannel(true);
obscuringWindow->setFocusable(false);
obscuringWindow->setAlpha(1.0);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {obscuringWindow, window}}});
// While this new obscuring window is present, the hovering continues. The event can't go to the
// bottom window due to obstructed touches, so it should generate HOVER_EXIT for that window.
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_HOVER_MOVE, AINPUT_SOURCE_STYLUS)
.pointer(PointerBuilder(0, ToolType::STYLUS).x(100).y(100))
.build());
obscuringWindow->assertNoEvents();
window->consumeMotionEvent(WithMotionAction(ACTION_HOVER_EXIT));
// Now the obscuring window goes away.
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
// Hovering continues in the same position. The hovering pointer re-enters the bottom window,
// so it should generate a HOVER_ENTER
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_HOVER_MOVE, AINPUT_SOURCE_STYLUS)
.pointer(PointerBuilder(0, ToolType::STYLUS).x(100).y(100))
.build());
window->consumeMotionEvent(WithMotionAction(ACTION_HOVER_ENTER));
// Now the MOVE should be getting dispatched normally
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_HOVER_MOVE, AINPUT_SOURCE_STYLUS)
.pointer(PointerBuilder(0, ToolType::STYLUS).x(110).y(110))
.build());
window->consumeMotionEvent(WithMotionAction(ACTION_HOVER_MOVE));
}
/**
* Two windows: a window on the left and a window on the right.
* Mouse is clicked on the left window and remains down. Touch is touched on the right and remains
* down. Then, on the left window, also place second touch pointer down.
* This test tries to reproduce a crash.
* In the buggy implementation, second pointer down on the left window would cause a crash.
*/
TEST_F(InputDispatcherTest, MultiDeviceSplitTouch) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> leftWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Left", ADISPLAY_ID_DEFAULT);
leftWindow->setFrame(Rect(0, 0, 200, 200));
sp<FakeWindowHandle> rightWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Right", ADISPLAY_ID_DEFAULT);
rightWindow->setFrame(Rect(200, 0, 400, 200));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {leftWindow, rightWindow}}});
const int32_t touchDeviceId = 4;
const int32_t mouseDeviceId = 6;
NotifyMotionArgs args;
// Start hovering over the left window
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_HOVER_ENTER, AINPUT_SOURCE_MOUSE)
.deviceId(mouseDeviceId)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(100).y(100))
.build());
leftWindow->consumeMotionEvent(
AllOf(WithMotionAction(ACTION_HOVER_ENTER), WithDeviceId(mouseDeviceId)));
// Mouse down on left window
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_DOWN, AINPUT_SOURCE_MOUSE)
.deviceId(mouseDeviceId)
.buttonState(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(100).y(100))
.build());
leftWindow->consumeMotionEvent(
AllOf(WithMotionAction(ACTION_HOVER_EXIT), WithDeviceId(mouseDeviceId)));
leftWindow->consumeMotionEvent(
AllOf(WithMotionAction(ACTION_DOWN), WithDeviceId(mouseDeviceId)));
mDispatcher->notifyMotion(
MotionArgsBuilder(AMOTION_EVENT_ACTION_BUTTON_PRESS, AINPUT_SOURCE_MOUSE)
.deviceId(mouseDeviceId)
.buttonState(AMOTION_EVENT_BUTTON_PRIMARY)
.actionButton(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(100).y(100))
.build());
leftWindow->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_PRESS));
// First touch pointer down on right window
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.pointer(PointerBuilder(0, ToolType::FINGER).x(300).y(100))
.build());
leftWindow->consumeMotionEvent(WithMotionAction(ACTION_CANCEL));
rightWindow->consumeMotionEvent(WithMotionAction(ACTION_DOWN));
// Second touch pointer down on left window
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.pointer(PointerBuilder(0, ToolType::FINGER).x(300).y(100))
.pointer(PointerBuilder(1, ToolType::FINGER).x(100).y(100))
.build());
leftWindow->consumeMotionEvent(
AllOf(WithMotionAction(ACTION_DOWN), WithDeviceId(touchDeviceId)));
// This MOVE event is not necessary (doesn't carry any new information), but it's there in the
// current implementation.
const std::map<int32_t, PointF> expectedPointers{{0, PointF{100, 100}}};
rightWindow->consumeMotionEvent(
AllOf(WithMotionAction(ACTION_MOVE), WithPointers(expectedPointers)));
leftWindow->assertNoEvents();
rightWindow->assertNoEvents();
}
/**
* On a single window, use two different devices: mouse and touch.
* Touch happens first, with two pointers going down, and then the first pointer leaving.
* Mouse is clicked next, which causes the touch stream to be aborted with ACTION_CANCEL.
* Finally, a second touch pointer goes down again. Ensure the second touch pointer is ignored,
* because the mouse is currently down, and a POINTER_DOWN event from the touchscreen does not
* represent a new gesture.
*/
TEST_F(InputDispatcherTest, MixedTouchAndMouseWithPointerDown) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 400, 400));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
const int32_t touchDeviceId = 4;
const int32_t mouseDeviceId = 6;
NotifyMotionArgs args;
// First touch pointer down
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.pointer(PointerBuilder(0, ToolType::FINGER).x(300).y(100))
.build());
// Second touch pointer down
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.pointer(PointerBuilder(0, ToolType::FINGER).x(300).y(100))
.pointer(PointerBuilder(1, ToolType::FINGER).x(350).y(100))
.build());
// First touch pointer lifts. The second one remains down
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_0_UP, AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.pointer(PointerBuilder(0, ToolType::FINGER).x(300).y(100))
.pointer(PointerBuilder(1, ToolType::FINGER).x(350).y(100))
.build());
window->consumeMotionEvent(WithMotionAction(ACTION_DOWN));
window->consumeMotionEvent(WithMotionAction(POINTER_1_DOWN));
window->consumeMotionEvent(WithMotionAction(POINTER_0_UP));
// Mouse down. The touch should be canceled
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_DOWN, AINPUT_SOURCE_MOUSE)
.deviceId(mouseDeviceId)
.buttonState(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(320).y(100))
.build());
window->consumeMotionEvent(AllOf(WithMotionAction(ACTION_CANCEL), WithDeviceId(touchDeviceId),
WithPointerCount(1u)));
window->consumeMotionEvent(AllOf(WithMotionAction(ACTION_DOWN), WithDeviceId(mouseDeviceId)));
mDispatcher->notifyMotion(
MotionArgsBuilder(AMOTION_EVENT_ACTION_BUTTON_PRESS, AINPUT_SOURCE_MOUSE)
.deviceId(mouseDeviceId)
.buttonState(AMOTION_EVENT_BUTTON_PRIMARY)
.actionButton(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(320).y(100))
.build());
window->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_PRESS));
// Second touch pointer down.
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_0_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.pointer(PointerBuilder(0, ToolType::FINGER).x(300).y(100))
.pointer(PointerBuilder(1, ToolType::FINGER).x(350).y(100))
.build());
// The pointer_down event should be ignored
window->assertNoEvents();
}
/**
* Inject a touch down and then send a new event via 'notifyMotion'. Ensure the new event cancels
* the injected event.
*/
TEST_F(InputDispatcherTest, UnfinishedInjectedEvent) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 400, 400));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
const int32_t touchDeviceId = 4;
NotifyMotionArgs args;
// Pretend a test injects an ACTION_DOWN mouse event, but forgets to lift up the touch after
// completion.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(ACTION_DOWN, AINPUT_SOURCE_MOUSE)
.deviceId(ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID)
.pointer(PointerBuilder(0, ToolType::MOUSE)
.x(50)
.y(50))
.build()));
window->consumeMotionEvent(
AllOf(WithMotionAction(ACTION_DOWN), WithDeviceId(VIRTUAL_KEYBOARD_ID)));
// Now a real touch comes. Rather than crashing or dropping the real event, the injected pointer
// should be canceled and the new gesture should take over.
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.pointer(PointerBuilder(0, ToolType::FINGER).x(300).y(100))
.build());
window->consumeMotionEvent(
AllOf(WithMotionAction(ACTION_CANCEL), WithDeviceId(VIRTUAL_KEYBOARD_ID)));
window->consumeMotionEvent(AllOf(WithMotionAction(ACTION_DOWN), WithDeviceId(touchDeviceId)));
}
/**
* This test is similar to the test above, but the sequence of injected events is different.
*
* Two windows: a window on the left and a window on the right.
* Mouse is hovered over the left window.
* Next, we tap on the left window, where the cursor was last seen.
*
* After that, we inject one finger down onto the right window, and then a second finger down onto
* the left window.
* The touch is split, so this last gesture should cause 2 ACTION_DOWN events, one in the right
* window (first), and then another on the left window (second).
* This test reproduces a crash where there is a mismatch between the downTime and eventTime.
* In the buggy implementation, second finger down on the left window would cause a crash.
*/
TEST_F(InputDispatcherTest, HoverTapAndSplitTouch) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> leftWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Left", ADISPLAY_ID_DEFAULT);
leftWindow->setFrame(Rect(0, 0, 200, 200));
sp<FakeWindowHandle> rightWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Right", ADISPLAY_ID_DEFAULT);
rightWindow->setFrame(Rect(200, 0, 400, 200));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {leftWindow, rightWindow}}});
const int32_t mouseDeviceId = 6;
const int32_t touchDeviceId = 4;
// Hover over the left window. Keep the cursor there.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_ENTER,
AINPUT_SOURCE_MOUSE)
.deviceId(mouseDeviceId)
.pointer(PointerBuilder(0, ToolType::MOUSE)
.x(50)
.y(50))
.build()));
leftWindow->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER));
// Tap on left window
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.pointer(PointerBuilder(0, ToolType::FINGER)
.x(100)
.y(100))
.build()));
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_UP,
AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.pointer(PointerBuilder(0, ToolType::FINGER)
.x(100)
.y(100))
.build()));
leftWindow->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_EXIT));
leftWindow->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_DOWN));
leftWindow->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_UP));
// First finger down on right window
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.pointer(PointerBuilder(0, ToolType::FINGER)
.x(300)
.y(100))
.build()));
rightWindow->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_DOWN));
// Second finger down on the left window
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.pointer(PointerBuilder(0, ToolType::FINGER)
.x(300)
.y(100))
.pointer(PointerBuilder(1, ToolType::FINGER)
.x(100)
.y(100))
.build()));
leftWindow->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_DOWN));
rightWindow->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_MOVE));
// No more events
leftWindow->assertNoEvents();
rightWindow->assertNoEvents();
}
/**
* Start hovering with a stylus device, and then tap with a touch device. Ensure no crash occurs.
* While the touch is down, new hover events from the stylus device should be ignored. After the
* touch is gone, stylus hovering should start working again.
*/
TEST_F(InputDispatcherTest, StylusHoverAndTouchTap) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 200, 200));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
const int32_t stylusDeviceId = 5;
const int32_t touchDeviceId = 4;
// Start hovering with stylus
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_ENTER,
AINPUT_SOURCE_STYLUS)
.deviceId(stylusDeviceId)
.pointer(PointerBuilder(0, ToolType::STYLUS)
.x(50)
.y(50))
.build()));
window->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER));
// Finger down on the window
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.pointer(PointerBuilder(0, ToolType::FINGER)
.x(100)
.y(100))
.build()));
window->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_EXIT));
window->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_DOWN));
// Try to continue hovering with stylus. Since we are already down, injection should fail
ASSERT_EQ(InputEventInjectionResult::FAILED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_MOVE,
AINPUT_SOURCE_STYLUS)
.deviceId(stylusDeviceId)
.pointer(PointerBuilder(0, ToolType::STYLUS)
.x(50)
.y(50))
.build()));
// No event should be sent. This event should be ignored because a pointer from another device
// is already down.
// Lift up the finger
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_UP,
AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.pointer(PointerBuilder(0, ToolType::FINGER)
.x(100)
.y(100))
.build()));
window->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_UP));
// Now that the touch is gone, stylus hovering should start working again
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_MOVE,
AINPUT_SOURCE_STYLUS)
.deviceId(stylusDeviceId)
.pointer(PointerBuilder(0, ToolType::STYLUS)
.x(50)
.y(50))
.build()));
window->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER));
// No more events
window->assertNoEvents();
}
/**
* A spy window above a window with no input channel.
* Start hovering with a stylus device, and then tap with it.
* Ensure spy window receives the entire sequence.
*/
TEST_F(InputDispatcherTest, StylusHoverAndDownNoInputChannel) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> spyWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Spy", ADISPLAY_ID_DEFAULT);
spyWindow->setFrame(Rect(0, 0, 200, 200));
spyWindow->setTrustedOverlay(true);
spyWindow->setSpy(true);
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
window->setNoInputChannel(true);
window->setFrame(Rect(0, 0, 200, 200));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spyWindow, window}}});
// Start hovering with stylus
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_HOVER_ENTER, AINPUT_SOURCE_STYLUS)
.pointer(PointerBuilder(0, ToolType::STYLUS).x(50).y(50))
.build());
spyWindow->consumeMotionEvent(WithMotionAction(ACTION_HOVER_ENTER));
// Stop hovering
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_HOVER_EXIT, AINPUT_SOURCE_STYLUS)
.pointer(PointerBuilder(0, ToolType::STYLUS).x(50).y(50))
.build());
spyWindow->consumeMotionEvent(WithMotionAction(ACTION_HOVER_EXIT));
// Stylus touches down
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_DOWN, AINPUT_SOURCE_STYLUS)
.pointer(PointerBuilder(0, ToolType::STYLUS).x(50).y(50))
.build());
spyWindow->consumeMotionEvent(WithMotionAction(ACTION_DOWN));
// Stylus goes up
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_UP, AINPUT_SOURCE_STYLUS)
.pointer(PointerBuilder(0, ToolType::STYLUS).x(50).y(50))
.build());
spyWindow->consumeMotionEvent(WithMotionAction(ACTION_UP));
// Again hover
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_HOVER_ENTER, AINPUT_SOURCE_STYLUS)
.pointer(PointerBuilder(0, ToolType::STYLUS).x(50).y(50))
.build());
spyWindow->consumeMotionEvent(WithMotionAction(ACTION_HOVER_ENTER));
// Stop hovering
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_HOVER_EXIT, AINPUT_SOURCE_STYLUS)
.pointer(PointerBuilder(0, ToolType::STYLUS).x(50).y(50))
.build());
spyWindow->consumeMotionEvent(WithMotionAction(ACTION_HOVER_EXIT));
// No more events
spyWindow->assertNoEvents();
window->assertNoEvents();
}
/**
* Start hovering with a mouse, and then tap with a touch device. Pilfer the touch stream.
* Next, click with the mouse device. Both windows (spy and regular) should receive the new mouse
* ACTION_DOWN event because that's a new gesture, and pilfering should no longer be active.
* While the mouse is down, new move events from the touch device should be ignored.
*/
TEST_F(InputDispatcherTest, TouchPilferAndMouseMove) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> spyWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Spy", ADISPLAY_ID_DEFAULT);
spyWindow->setFrame(Rect(0, 0, 200, 200));
spyWindow->setTrustedOverlay(true);
spyWindow->setSpy(true);
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 200, 200));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spyWindow, window}}});
const int32_t mouseDeviceId = 7;
const int32_t touchDeviceId = 4;
// Hover a bit with mouse first
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_HOVER_ENTER, AINPUT_SOURCE_MOUSE)
.deviceId(mouseDeviceId)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(100).y(100))
.build());
spyWindow->consumeMotionEvent(
AllOf(WithMotionAction(ACTION_HOVER_ENTER), WithDeviceId(mouseDeviceId)));
window->consumeMotionEvent(
AllOf(WithMotionAction(ACTION_HOVER_ENTER), WithDeviceId(mouseDeviceId)));
// Start touching
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.pointer(PointerBuilder(0, ToolType::FINGER).x(50).y(50))
.build());
spyWindow->consumeMotionEvent(WithMotionAction(ACTION_HOVER_EXIT));
window->consumeMotionEvent(WithMotionAction(ACTION_HOVER_EXIT));
spyWindow->consumeMotionEvent(WithMotionAction(ACTION_DOWN));
window->consumeMotionEvent(WithMotionAction(ACTION_DOWN));
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.pointer(PointerBuilder(0, ToolType::FINGER).x(55).y(55))
.build());
spyWindow->consumeMotionEvent(WithMotionAction(ACTION_MOVE));
window->consumeMotionEvent(WithMotionAction(ACTION_MOVE));
// Pilfer the stream
EXPECT_EQ(OK, mDispatcher->pilferPointers(spyWindow->getToken()));
window->consumeMotionEvent(WithMotionAction(ACTION_CANCEL));
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.pointer(PointerBuilder(0, ToolType::FINGER).x(60).y(60))
.build());
spyWindow->consumeMotionEvent(WithMotionAction(ACTION_MOVE));
// Mouse down
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_DOWN, AINPUT_SOURCE_MOUSE)
.deviceId(mouseDeviceId)
.buttonState(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(100).y(100))
.build());
spyWindow->consumeMotionEvent(
AllOf(WithMotionAction(ACTION_CANCEL), WithDeviceId(touchDeviceId)));
spyWindow->consumeMotionEvent(
AllOf(WithMotionAction(ACTION_DOWN), WithDeviceId(mouseDeviceId)));
window->consumeMotionEvent(AllOf(WithMotionAction(ACTION_DOWN), WithDeviceId(mouseDeviceId)));
mDispatcher->notifyMotion(
MotionArgsBuilder(AMOTION_EVENT_ACTION_BUTTON_PRESS, AINPUT_SOURCE_MOUSE)
.deviceId(mouseDeviceId)
.buttonState(AMOTION_EVENT_BUTTON_PRIMARY)
.actionButton(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(100).y(100))
.build());
spyWindow->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_PRESS));
window->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_PRESS));
// Mouse move!
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_MOVE, AINPUT_SOURCE_MOUSE)
.deviceId(mouseDeviceId)
.buttonState(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(110).y(110))
.build());
spyWindow->consumeMotionEvent(WithMotionAction(ACTION_MOVE));
window->consumeMotionEvent(WithMotionAction(ACTION_MOVE));
// Touch move!
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.pointer(PointerBuilder(0, ToolType::FINGER).x(65).y(65))
.build());
// No more events
spyWindow->assertNoEvents();
window->assertNoEvents();
}
/**
* On the display, have a single window, and also an area where there's no window.
* First pointer touches the "no window" area of the screen. Second pointer touches the window.
* Make sure that the window receives the second pointer, and first pointer is simply ignored.
*/
TEST_F(InputDispatcherTest, SplitWorksWhenEmptyAreaIsTouched) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", DISPLAY_ID);
mDispatcher->setInputWindows({{DISPLAY_ID, {window}}});
// Touch down on the empty space
mDispatcher->notifyMotion(generateTouchArgs(AMOTION_EVENT_ACTION_DOWN, {{-1, -1}}));
mDispatcher->waitForIdle();
window->assertNoEvents();
// Now touch down on the window with another pointer
mDispatcher->notifyMotion(generateTouchArgs(POINTER_1_DOWN, {{-1, -1}, {10, 10}}));
mDispatcher->waitForIdle();
window->consumeMotionDown();
}
/**
* Same test as above, but instead of touching the empty space, the first touch goes to
* non-touchable window.
*/
TEST_F(InputDispatcherTest, SplitWorksWhenNonTouchableWindowIsTouched) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window1 =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window1", DISPLAY_ID);
window1->setTouchableRegion(Region{{0, 0, 100, 100}});
window1->setTouchable(false);
sp<FakeWindowHandle> window2 =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window2", DISPLAY_ID);
window2->setTouchableRegion(Region{{100, 0, 200, 100}});
mDispatcher->setInputWindows({{DISPLAY_ID, {window1, window2}}});
// Touch down on the non-touchable window
mDispatcher->notifyMotion(generateTouchArgs(AMOTION_EVENT_ACTION_DOWN, {{50, 50}}));
mDispatcher->waitForIdle();
window1->assertNoEvents();
window2->assertNoEvents();
// Now touch down on the window with another pointer
mDispatcher->notifyMotion(generateTouchArgs(POINTER_1_DOWN, {{50, 50}, {150, 50}}));
mDispatcher->waitForIdle();
window2->consumeMotionDown();
}
/**
* When splitting touch events the downTime should be adjusted such that the downTime corresponds
* to the event time of the first ACTION_DOWN sent to the particular window.
*/
TEST_F(InputDispatcherTest, SplitTouchesSendCorrectActionDownTime) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window1 =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window1", DISPLAY_ID);
window1->setTouchableRegion(Region{{0, 0, 100, 100}});
sp<FakeWindowHandle> window2 =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window2", DISPLAY_ID);
window2->setTouchableRegion(Region{{100, 0, 200, 100}});
mDispatcher->setInputWindows({{DISPLAY_ID, {window1, window2}}});
// Touch down on the first window
mDispatcher->notifyMotion(generateTouchArgs(AMOTION_EVENT_ACTION_DOWN, {{50, 50}}));
mDispatcher->waitForIdle();
InputEvent* inputEvent1 = window1->consume();
ASSERT_NE(inputEvent1, nullptr);
window2->assertNoEvents();
MotionEvent& motionEvent1 = static_cast<MotionEvent&>(*inputEvent1);
nsecs_t downTimeForWindow1 = motionEvent1.getDownTime();
ASSERT_EQ(motionEvent1.getDownTime(), motionEvent1.getEventTime());
// Now touch down on the window with another pointer
mDispatcher->notifyMotion(generateTouchArgs(POINTER_1_DOWN, {{50, 50}, {150, 50}}));
mDispatcher->waitForIdle();
InputEvent* inputEvent2 = window2->consume();
ASSERT_NE(inputEvent2, nullptr);
MotionEvent& motionEvent2 = static_cast<MotionEvent&>(*inputEvent2);
nsecs_t downTimeForWindow2 = motionEvent2.getDownTime();
ASSERT_NE(downTimeForWindow1, downTimeForWindow2);
ASSERT_EQ(motionEvent2.getDownTime(), motionEvent2.getEventTime());
// Now move the pointer on the second window
mDispatcher->notifyMotion(generateTouchArgs(AMOTION_EVENT_ACTION_MOVE, {{50, 50}, {151, 51}}));
mDispatcher->waitForIdle();
window2->consumeMotionEvent(WithDownTime(downTimeForWindow2));
// Now add new touch down on the second window
mDispatcher->notifyMotion(generateTouchArgs(POINTER_2_DOWN, {{50, 50}, {151, 51}, {150, 50}}));
mDispatcher->waitForIdle();
window2->consumeMotionEvent(WithDownTime(downTimeForWindow2));
// TODO(b/232530217): do not send the unnecessary MOVE event and delete the next line
window1->consumeMotionMove();
window1->assertNoEvents();
// Now move the pointer on the first window
mDispatcher->notifyMotion(
generateTouchArgs(AMOTION_EVENT_ACTION_MOVE, {{51, 51}, {151, 51}, {150, 50}}));
mDispatcher->waitForIdle();
window1->consumeMotionEvent(WithDownTime(downTimeForWindow1));
mDispatcher->notifyMotion(
generateTouchArgs(POINTER_3_DOWN, {{51, 51}, {151, 51}, {150, 50}, {50, 50}}));
mDispatcher->waitForIdle();
window1->consumeMotionEvent(WithDownTime(downTimeForWindow1));
}
TEST_F(InputDispatcherTest, HoverMoveEnterMouseClickAndHoverMoveExit) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> windowLeft =
sp<FakeWindowHandle>::make(application, mDispatcher, "Left", ADISPLAY_ID_DEFAULT);
windowLeft->setFrame(Rect(0, 0, 600, 800));
sp<FakeWindowHandle> windowRight =
sp<FakeWindowHandle>::make(application, mDispatcher, "Right", ADISPLAY_ID_DEFAULT);
windowRight->setFrame(Rect(600, 0, 1200, 800));
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowLeft, windowRight}}});
// Start cursor position in right window so that we can move the cursor to left window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_MOVE,
AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(900).y(400))
.build()));
windowRight->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER));
// Move cursor into left window
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_MOVE,
AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(300).y(400))
.build()));
windowRight->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_EXIT));
windowLeft->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER));
// Inject a series of mouse events for a mouse click
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_MOUSE)
.buttonState(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(300).y(400))
.build()));
windowLeft->consumeMotionEvent(WithMotionAction(ACTION_HOVER_EXIT));
windowLeft->consumeMotionEvent(WithMotionAction(ACTION_DOWN));
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_BUTTON_PRESS,
AINPUT_SOURCE_MOUSE)
.buttonState(AMOTION_EVENT_BUTTON_PRIMARY)
.actionButton(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(300).y(400))
.build()));
windowLeft->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_PRESS));
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_BUTTON_RELEASE,
AINPUT_SOURCE_MOUSE)
.buttonState(0)
.actionButton(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(300).y(400))
.build()));
windowLeft->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_RELEASE));
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_MOUSE)
.buttonState(0)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(300).y(400))
.build()));
windowLeft->consumeMotionUp(ADISPLAY_ID_DEFAULT);
// Move mouse cursor back to right window
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_MOVE,
AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(900).y(400))
.build()));
windowRight->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER));
// No more events
windowLeft->assertNoEvents();
windowRight->assertNoEvents();
}
/**
* Put two fingers down (and don't release them) and click the mouse button.
* The clicking of mouse is a new ACTION_DOWN event. Since it's from a different device, the
* currently active gesture should be canceled, and the new one should proceed.
*/
TEST_F(InputDispatcherTest, TwoPointersDownMouseClick) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 600, 800));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
const int32_t touchDeviceId = 4;
const int32_t mouseDeviceId = 6;
// Two pointers down
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.pointer(PointerBuilder(0, ToolType::FINGER).x(100).y(100))
.build());
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.pointer(PointerBuilder(0, ToolType::FINGER).x(100).y(100))
.pointer(PointerBuilder(1, ToolType::FINGER).x(120).y(120))
.build());
window->consumeMotionEvent(WithMotionAction(ACTION_DOWN));
window->consumeMotionEvent(WithMotionAction(POINTER_1_DOWN));
// Inject a series of mouse events for a mouse click
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_DOWN, AINPUT_SOURCE_MOUSE)
.deviceId(mouseDeviceId)
.buttonState(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(300).y(400))
.build());
window->consumeMotionEvent(AllOf(WithMotionAction(ACTION_CANCEL), WithDeviceId(touchDeviceId),
WithPointerCount(2u)));
window->consumeMotionEvent(AllOf(WithMotionAction(ACTION_DOWN), WithDeviceId(mouseDeviceId)));
mDispatcher->notifyMotion(
MotionArgsBuilder(AMOTION_EVENT_ACTION_BUTTON_PRESS, AINPUT_SOURCE_MOUSE)
.deviceId(mouseDeviceId)
.buttonState(AMOTION_EVENT_BUTTON_PRIMARY)
.actionButton(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(300).y(400))
.build());
window->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_PRESS));
// Try to send more touch events while the mouse is down. Since it's a continuation of an
// already canceled gesture, it should be ignored.
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.pointer(PointerBuilder(0, ToolType::FINGER).x(101).y(101))
.pointer(PointerBuilder(1, ToolType::FINGER).x(121).y(121))
.build());
window->assertNoEvents();
}
TEST_F(InputDispatcherTest, HoverWithSpyWindows) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> spyWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Spy", ADISPLAY_ID_DEFAULT);
spyWindow->setFrame(Rect(0, 0, 600, 800));
spyWindow->setTrustedOverlay(true);
spyWindow->setSpy(true);
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 600, 800));
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spyWindow, window}}});
// Send mouse cursor to the window
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_ENTER,
AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::MOUSE)
.x(100)
.y(100))
.build()));
window->consumeMotionEvent(AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER),
WithSource(AINPUT_SOURCE_MOUSE)));
spyWindow->consumeMotionEvent(AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER),
WithSource(AINPUT_SOURCE_MOUSE)));
window->assertNoEvents();
spyWindow->assertNoEvents();
}
TEST_F(InputDispatcherTest, MouseAndTouchWithSpyWindows) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> spyWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Spy", ADISPLAY_ID_DEFAULT);
spyWindow->setFrame(Rect(0, 0, 600, 800));
spyWindow->setTrustedOverlay(true);
spyWindow->setSpy(true);
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 600, 800));
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spyWindow, window}}});
// Send mouse cursor to the window
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_ENTER,
AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::MOUSE)
.x(100)
.y(100))
.build()));
// Move mouse cursor
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_MOVE,
AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::MOUSE)
.x(110)
.y(110))
.build()));
window->consumeMotionEvent(AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER),
WithSource(AINPUT_SOURCE_MOUSE)));
spyWindow->consumeMotionEvent(AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER),
WithSource(AINPUT_SOURCE_MOUSE)));
window->consumeMotionEvent(AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_MOVE),
WithSource(AINPUT_SOURCE_MOUSE)));
spyWindow->consumeMotionEvent(AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_MOVE),
WithSource(AINPUT_SOURCE_MOUSE)));
// Touch down on the window
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(SECOND_DEVICE_ID)
.pointer(PointerBuilder(0, ToolType::FINGER)
.x(200)
.y(200))
.build()));
window->consumeMotionEvent(AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_EXIT),
WithSource(AINPUT_SOURCE_MOUSE)));
spyWindow->consumeMotionEvent(AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_EXIT),
WithSource(AINPUT_SOURCE_MOUSE)));
window->consumeMotionEvent(AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
WithSource(AINPUT_SOURCE_TOUCHSCREEN)));
spyWindow->consumeMotionEvent(AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
WithSource(AINPUT_SOURCE_TOUCHSCREEN)));
// pilfer the motion, retaining the gesture on the spy window.
EXPECT_EQ(OK, mDispatcher->pilferPointers(spyWindow->getToken()));
window->consumeMotionEvent(AllOf(WithMotionAction(AMOTION_EVENT_ACTION_CANCEL),
WithSource(AINPUT_SOURCE_TOUCHSCREEN)));
// Touch UP on the window
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_UP,
AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(SECOND_DEVICE_ID)
.pointer(PointerBuilder(0, ToolType::FINGER)
.x(200)
.y(200))
.build()));
spyWindow->consumeMotionEvent(AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP),
WithSource(AINPUT_SOURCE_TOUCHSCREEN)));
// Previously, a touch was pilfered. However, that gesture was just finished. Now, we are going
// to send a new gesture. It should again go to both windows (spy and the window below), just
// like the first gesture did, before pilfering. The window configuration has not changed.
// One more tap - DOWN
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(SECOND_DEVICE_ID)
.pointer(PointerBuilder(0, ToolType::FINGER)
.x(250)
.y(250))
.build()));
window->consumeMotionEvent(AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
WithSource(AINPUT_SOURCE_TOUCHSCREEN)));
spyWindow->consumeMotionEvent(AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
WithSource(AINPUT_SOURCE_TOUCHSCREEN)));
// Touch UP on the window
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_UP,
AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(SECOND_DEVICE_ID)
.pointer(PointerBuilder(0, ToolType::FINGER)
.x(250)
.y(250))
.build()));
window->consumeMotionEvent(AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP),
WithSource(AINPUT_SOURCE_TOUCHSCREEN)));
spyWindow->consumeMotionEvent(AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP),
WithSource(AINPUT_SOURCE_TOUCHSCREEN)));
window->assertNoEvents();
spyWindow->assertNoEvents();
}
// This test is different from the test above that HOVER_ENTER and HOVER_EXIT events are injected
// directly in this test.
TEST_F(InputDispatcherTest, HoverEnterMouseClickAndHoverExit) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 1200, 800));
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_ENTER,
AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(300).y(400))
.build()));
window->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER));
// Inject a series of mouse events for a mouse click
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_MOUSE)
.buttonState(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(300).y(400))
.build()));
window->consumeMotionEvent(WithMotionAction(ACTION_HOVER_EXIT));
window->consumeMotionEvent(WithMotionAction(ACTION_DOWN));
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_BUTTON_PRESS,
AINPUT_SOURCE_MOUSE)
.buttonState(AMOTION_EVENT_BUTTON_PRIMARY)
.actionButton(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(300).y(400))
.build()));
window->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_PRESS));
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_BUTTON_RELEASE,
AINPUT_SOURCE_MOUSE)
.buttonState(0)
.actionButton(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(300).y(400))
.build()));
window->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_RELEASE));
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_MOUSE)
.buttonState(0)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(300).y(400))
.build()));
window->consumeMotionUp(ADISPLAY_ID_DEFAULT);
// We already canceled the hovering implicitly by injecting the "DOWN" event without lifting the
// hover first. Therefore, injection of HOVER_EXIT is inconsistent, and should fail.
ASSERT_EQ(InputEventInjectionResult::FAILED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_EXIT,
AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(300).y(400))
.build()));
window->assertNoEvents();
}
/**
* Hover over a window, and then remove that window. Make sure that HOVER_EXIT for that event
* is generated.
*/
TEST_F(InputDispatcherTest, HoverExitIsSentToRemovedWindow) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 1200, 800));
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_ENTER,
AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::MOUSE)
.x(300)
.y(400))
.build()));
window->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER));
// Remove the window, but keep the channel.
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {}}});
window->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_EXIT));
}
/**
* If mouse is hovering when the touch goes down, the hovering should be stopped via HOVER_EXIT.
*/
TEST_F(InputDispatcherTest, TouchDownAfterMouseHover) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 100, 100));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
const int32_t mouseDeviceId = 7;
const int32_t touchDeviceId = 4;
// Start hovering with the mouse
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_HOVER_ENTER, AINPUT_SOURCE_MOUSE)
.deviceId(mouseDeviceId)
.pointer(PointerBuilder(0, ToolType::MOUSE).x(10).y(10))
.build());
window->consumeMotionEvent(
AllOf(WithMotionAction(ACTION_HOVER_ENTER), WithDeviceId(mouseDeviceId)));
// Touch goes down
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.deviceId(touchDeviceId)
.pointer(PointerBuilder(0, ToolType::FINGER).x(50).y(50))
.build());
window->consumeMotionEvent(
AllOf(WithMotionAction(ACTION_HOVER_EXIT), WithDeviceId(mouseDeviceId)));
window->consumeMotionEvent(AllOf(WithMotionAction(ACTION_DOWN), WithDeviceId(touchDeviceId)));
}
/**
* Inject a mouse hover event followed by a tap from touchscreen.
* The tap causes a HOVER_EXIT event to be generated because the current event
* stream's source has been switched.
*/
TEST_F(InputDispatcherTest, MouseHoverAndTouchTap) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 100, 100));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
// Inject a hover_move from mouse.
NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_HOVER_MOVE, AINPUT_SOURCE_MOUSE,
ADISPLAY_ID_DEFAULT, {{50, 50}});
motionArgs.xCursorPosition = 50;
motionArgs.yCursorPosition = 50;
mDispatcher->notifyMotion(motionArgs);
ASSERT_NO_FATAL_FAILURE(
window->consumeMotionEvent(AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER),
WithSource(AINPUT_SOURCE_MOUSE))));
// Tap on the window
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{{10, 10}}));
ASSERT_NO_FATAL_FAILURE(
window->consumeMotionEvent(AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_EXIT),
WithSource(AINPUT_SOURCE_MOUSE))));
ASSERT_NO_FATAL_FAILURE(
window->consumeMotionEvent(AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
WithSource(AINPUT_SOURCE_TOUCHSCREEN))));
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {{10, 10}}));
ASSERT_NO_FATAL_FAILURE(
window->consumeMotionEvent(AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP),
WithSource(AINPUT_SOURCE_TOUCHSCREEN))));
}
TEST_F(InputDispatcherTest, HoverEnterMoveRemoveWindowsInSecondDisplay) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> windowDefaultDisplay =
sp<FakeWindowHandle>::make(application, mDispatcher, "DefaultDisplay",
ADISPLAY_ID_DEFAULT);
windowDefaultDisplay->setFrame(Rect(0, 0, 600, 800));
sp<FakeWindowHandle> windowSecondDisplay =
sp<FakeWindowHandle>::make(application, mDispatcher, "SecondDisplay",
SECOND_DISPLAY_ID);
windowSecondDisplay->setFrame(Rect(0, 0, 600, 800));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowDefaultDisplay}},
{SECOND_DISPLAY_ID, {windowSecondDisplay}}});
// Set cursor position in window in default display and check that hover enter and move
// events are generated.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_MOVE,
AINPUT_SOURCE_MOUSE)
.displayId(ADISPLAY_ID_DEFAULT)
.pointer(PointerBuilder(0, ToolType::MOUSE)
.x(300)
.y(600))
.build()));
windowDefaultDisplay->consumeMotionEvent(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER));
// Remove all windows in secondary display and check that no event happens on window in
// primary display.
mDispatcher->setInputWindows(
{{ADISPLAY_ID_DEFAULT, {windowDefaultDisplay}}, {SECOND_DISPLAY_ID, {}}});
windowDefaultDisplay->assertNoEvents();
// Move cursor position in window in default display and check that only hover move
// event is generated and not hover enter event.
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowDefaultDisplay}},
{SECOND_DISPLAY_ID, {windowSecondDisplay}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_MOVE,
AINPUT_SOURCE_MOUSE)
.displayId(ADISPLAY_ID_DEFAULT)
.pointer(PointerBuilder(0, ToolType::MOUSE)
.x(400)
.y(700))
.build()));
windowDefaultDisplay->consumeMotionEvent(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_MOVE),
WithSource(AINPUT_SOURCE_MOUSE)));
windowDefaultDisplay->assertNoEvents();
}
TEST_F(InputDispatcherTest, DispatchMouseEventsUnderCursor) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> windowLeft =
sp<FakeWindowHandle>::make(application, mDispatcher, "Left", ADISPLAY_ID_DEFAULT);
windowLeft->setFrame(Rect(0, 0, 600, 800));
sp<FakeWindowHandle> windowRight =
sp<FakeWindowHandle>::make(application, mDispatcher, "Right", ADISPLAY_ID_DEFAULT);
windowRight->setFrame(Rect(600, 0, 1200, 800));
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowLeft, windowRight}}});
// Inject an event with coordinate in the area of right window, with mouse cursor in the area of
// left window. This event should be dispatched to the left window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_MOUSE,
ADISPLAY_ID_DEFAULT, {610, 400}, {599, 400}));
windowLeft->consumeMotionDown(ADISPLAY_ID_DEFAULT);
windowRight->assertNoEvents();
}
TEST_F(InputDispatcherTest, NotifyDeviceReset_CancelsKeyStream) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(true);
mDispatcher->notifyKey(generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT));
// Window should receive key down event.
window->consumeKeyDown(ADISPLAY_ID_DEFAULT);
// When device reset happens, that key stream should be terminated with FLAG_CANCELED
// on the app side.
mDispatcher->notifyDeviceReset({/*id=*/10, /*eventTime=*/20, DEVICE_ID});
window->consumeEvent(InputEventType::KEY, AKEY_EVENT_ACTION_UP, ADISPLAY_ID_DEFAULT,
AKEY_EVENT_FLAG_CANCELED);
}
TEST_F(InputDispatcherTest, NotifyDeviceReset_CancelsMotionStream) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT));
// Window should receive motion down event.
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
// When device reset happens, that motion stream should be terminated with ACTION_CANCEL
// on the app side.
mDispatcher->notifyDeviceReset({/*id=*/10, /*eventTime=*/20, DEVICE_ID});
window->consumeMotionEvent(
AllOf(WithMotionAction(ACTION_CANCEL), WithDisplayId(ADISPLAY_ID_DEFAULT)));
}
TEST_F(InputDispatcherTest, NotifyDeviceResetCancelsHoveringStream) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_HOVER_ENTER, AINPUT_SOURCE_STYLUS)
.pointer(PointerBuilder(0, ToolType::STYLUS).x(10).y(10))
.build());
window->consumeMotionEvent(WithMotionAction(ACTION_HOVER_ENTER));
// When device reset happens, that hover stream should be terminated with ACTION_HOVER_EXIT
mDispatcher->notifyDeviceReset({/*id=*/10, /*eventTime=*/20, DEVICE_ID});
window->consumeMotionEvent(WithMotionAction(ACTION_HOVER_EXIT));
// After the device has been reset, a new hovering stream can be sent to the window
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_HOVER_ENTER, AINPUT_SOURCE_STYLUS)
.pointer(PointerBuilder(0, ToolType::STYLUS).x(15).y(15))
.build());
window->consumeMotionEvent(WithMotionAction(ACTION_HOVER_ENTER));
}
TEST_F(InputDispatcherTest, InterceptKeyByPolicy) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(true);
const NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT);
const std::chrono::milliseconds interceptKeyTimeout = 50ms;
const nsecs_t injectTime = keyArgs.eventTime;
mFakePolicy->setInterceptKeyTimeout(interceptKeyTimeout);
mDispatcher->notifyKey(keyArgs);
// The dispatching time should be always greater than or equal to intercept key timeout.
window->consumeKeyDown(ADISPLAY_ID_DEFAULT);
ASSERT_TRUE((systemTime(SYSTEM_TIME_MONOTONIC) - injectTime) >=
std::chrono::nanoseconds(interceptKeyTimeout).count());
}
/**
* Keys with ACTION_UP are delivered immediately, even if a long 'intercept key timeout' is set.
*/
TEST_F(InputDispatcherTest, InterceptKeyIfKeyUp) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(true);
mDispatcher->notifyKey(generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT));
window->consumeKeyDown(ADISPLAY_ID_DEFAULT);
// Set a value that's significantly larger than the default consumption timeout. If the
// implementation is correct, the actual value doesn't matter; it won't slow down the test.
mFakePolicy->setInterceptKeyTimeout(600ms);
mDispatcher->notifyKey(generateKeyArgs(AKEY_EVENT_ACTION_UP, ADISPLAY_ID_DEFAULT));
// Window should receive key event immediately when same key up.
window->consumeKeyUp(ADISPLAY_ID_DEFAULT);
}
/**
* Two windows. First is a regular window. Second does not overlap with the first, and has
* WATCH_OUTSIDE_TOUCH.
* Both windows are owned by the same UID.
* Tap first window. Make sure that the second window receives ACTION_OUTSIDE with correct, non-zero
* coordinates. The coordinates are not zeroed out because both windows are owned by the same UID.
*/
TEST_F(InputDispatcherTest, ActionOutsideForOwnedWindowHasValidCoordinates) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"First Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect{0, 0, 100, 100});
sp<FakeWindowHandle> outsideWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Second Window",
ADISPLAY_ID_DEFAULT);
outsideWindow->setFrame(Rect{100, 100, 200, 200});
outsideWindow->setWatchOutsideTouch(true);
// outsideWindow must be above 'window' to receive ACTION_OUTSIDE events when 'window' is tapped
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {outsideWindow, window}}});
// Tap on first window.
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{PointF{50, 50}}));
window->consumeMotionDown();
// The coordinates of the tap in 'outsideWindow' are relative to its top left corner.
// Therefore, we should offset them by (100, 100) relative to the screen's top left corner.
outsideWindow->consumeMotionEvent(
AllOf(WithMotionAction(ACTION_OUTSIDE), WithCoords(-50, -50)));
}
/**
* This test documents the behavior of WATCH_OUTSIDE_TOUCH. The window will get ACTION_OUTSIDE when
* a another pointer causes ACTION_DOWN to be sent to another window for the first time. Only one
* ACTION_OUTSIDE event is sent per gesture.
*/
TEST_F(InputDispatcherTest, ActionOutsideSentOnlyWhenAWindowIsTouched) {
// There are three windows that do not overlap. `window` wants to WATCH_OUTSIDE_TOUCH.
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"First Window", ADISPLAY_ID_DEFAULT);
window->setWatchOutsideTouch(true);
window->setFrame(Rect{0, 0, 100, 100});
sp<FakeWindowHandle> secondWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Second Window",
ADISPLAY_ID_DEFAULT);
secondWindow->setFrame(Rect{100, 100, 200, 200});
sp<FakeWindowHandle> thirdWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Third Window",
ADISPLAY_ID_DEFAULT);
thirdWindow->setFrame(Rect{200, 200, 300, 300});
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window, secondWindow, thirdWindow}}});
// First pointer lands outside all windows. `window` does not get ACTION_OUTSIDE.
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{PointF{-10, -10}}));
window->assertNoEvents();
secondWindow->assertNoEvents();
// The second pointer lands inside `secondWindow`, which should receive a DOWN event.
// Now, `window` should get ACTION_OUTSIDE.
mDispatcher->notifyMotion(generateMotionArgs(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT,
{PointF{-10, -10}, PointF{105, 105}}));
const std::map<int32_t, PointF> expectedPointers{{0, PointF{-10, -10}}, {1, PointF{105, 105}}};
window->consumeMotionEvent(
AllOf(WithMotionAction(ACTION_OUTSIDE), WithPointers(expectedPointers)));
secondWindow->consumeMotionDown();
thirdWindow->assertNoEvents();
// The third pointer lands inside `thirdWindow`, which should receive a DOWN event. There is
// no ACTION_OUTSIDE sent to `window` because one has already been sent for this gesture.
mDispatcher->notifyMotion(
generateMotionArgs(POINTER_2_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{PointF{-10, -10}, PointF{105, 105}, PointF{205, 205}}));
window->assertNoEvents();
secondWindow->consumeMotionMove();
thirdWindow->consumeMotionDown();
}
TEST_F(InputDispatcherTest, OnWindowInfosChanged_RemoveAllWindowsOnDisplay) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
window->setFocusable(true);
mDispatcher->onWindowInfosChanged({{*window->getInfo()}, {}, 0, 0});
setFocusedWindow(window);
window->consumeFocusEvent(true);
const NotifyKeyArgs keyDown = generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT);
const NotifyKeyArgs keyUp = generateKeyArgs(AKEY_EVENT_ACTION_UP, ADISPLAY_ID_DEFAULT);
mDispatcher->notifyKey(keyDown);
mDispatcher->notifyKey(keyUp);
window->consumeKeyDown(ADISPLAY_ID_DEFAULT);
window->consumeKeyUp(ADISPLAY_ID_DEFAULT);
// All windows are removed from the display. Ensure that we can no longer dispatch to it.
mDispatcher->onWindowInfosChanged({{}, {}, 0, 0});
window->consumeFocusEvent(false);
mDispatcher->notifyKey(keyDown);
mDispatcher->notifyKey(keyUp);
window->assertNoEvents();
}
TEST_F(InputDispatcherTest, NonSplitTouchableWindowReceivesMultiTouch) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
// Ensure window is non-split and have some transform.
window->setPreventSplitting(true);
window->setWindowOffset(20, 40);
mDispatcher->onWindowInfosChanged({{*window->getInfo()}, {}, 0, 0});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
const MotionEvent secondFingerDownEvent =
MotionEventBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.displayId(ADISPLAY_ID_DEFAULT)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/*id=*/0, ToolType::FINGER).x(50).y(50))
.pointer(PointerBuilder(/*id=*/1, ToolType::FINGER).x(-30).y(-50))
.build();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, secondFingerDownEvent, INJECT_EVENT_TIMEOUT,
InputEventInjectionSync::WAIT_FOR_RESULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
const MotionEvent* event = window->consumeMotion();
EXPECT_EQ(POINTER_1_DOWN, event->getAction());
EXPECT_EQ(70, event->getX(0)); // 50 + 20
EXPECT_EQ(90, event->getY(0)); // 50 + 40
EXPECT_EQ(-10, event->getX(1)); // -30 + 20
EXPECT_EQ(-10, event->getY(1)); // -50 + 40
}
TEST_F(InputDispatcherTest, TouchpadThreeFingerSwipeOnlySentToTrustedOverlays) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 400, 400));
sp<FakeWindowHandle> trustedOverlay =
sp<FakeWindowHandle>::make(application, mDispatcher, "Trusted Overlay",
ADISPLAY_ID_DEFAULT);
trustedOverlay->setSpy(true);
trustedOverlay->setTrustedOverlay(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {trustedOverlay, window}}});
// Start a three-finger touchpad swipe
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_DOWN, AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::FINGER).x(200).y(100))
.classification(MotionClassification::MULTI_FINGER_SWIPE)
.build());
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_1_DOWN, AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::FINGER).x(200).y(100))
.pointer(PointerBuilder(1, ToolType::FINGER).x(250).y(100))
.classification(MotionClassification::MULTI_FINGER_SWIPE)
.build());
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_2_DOWN, AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::FINGER).x(200).y(100))
.pointer(PointerBuilder(1, ToolType::FINGER).x(250).y(100))
.pointer(PointerBuilder(2, ToolType::FINGER).x(300).y(100))
.classification(MotionClassification::MULTI_FINGER_SWIPE)
.build());
trustedOverlay->consumeMotionEvent(WithMotionAction(ACTION_DOWN));
trustedOverlay->consumeMotionEvent(WithMotionAction(POINTER_1_DOWN));
trustedOverlay->consumeMotionEvent(WithMotionAction(POINTER_2_DOWN));
// Move the swipe a bit
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_MOVE, AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::FINGER).x(200).y(105))
.pointer(PointerBuilder(1, ToolType::FINGER).x(250).y(105))
.pointer(PointerBuilder(2, ToolType::FINGER).x(300).y(105))
.classification(MotionClassification::MULTI_FINGER_SWIPE)
.build());
trustedOverlay->consumeMotionEvent(WithMotionAction(ACTION_MOVE));
// End the swipe
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_2_UP, AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::FINGER).x(200).y(105))
.pointer(PointerBuilder(1, ToolType::FINGER).x(250).y(105))
.pointer(PointerBuilder(2, ToolType::FINGER).x(300).y(105))
.classification(MotionClassification::MULTI_FINGER_SWIPE)
.build());
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_1_UP, AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::FINGER).x(200).y(105))
.pointer(PointerBuilder(1, ToolType::FINGER).x(250).y(105))
.classification(MotionClassification::MULTI_FINGER_SWIPE)
.build());
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_UP, AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::FINGER).x(200).y(105))
.classification(MotionClassification::MULTI_FINGER_SWIPE)
.build());
trustedOverlay->consumeMotionEvent(WithMotionAction(POINTER_2_UP));
trustedOverlay->consumeMotionEvent(WithMotionAction(POINTER_1_UP));
trustedOverlay->consumeMotionEvent(WithMotionAction(ACTION_UP));
window->assertNoEvents();
}
TEST_F(InputDispatcherTest, TouchpadThreeFingerSwipeNotSentToSingleWindow) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 400, 400));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
// Start a three-finger touchpad swipe
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_DOWN, AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::FINGER).x(200).y(100))
.classification(MotionClassification::MULTI_FINGER_SWIPE)
.build());
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_1_DOWN, AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::FINGER).x(200).y(100))
.pointer(PointerBuilder(1, ToolType::FINGER).x(250).y(100))
.classification(MotionClassification::MULTI_FINGER_SWIPE)
.build());
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_2_DOWN, AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::FINGER).x(200).y(100))
.pointer(PointerBuilder(1, ToolType::FINGER).x(250).y(100))
.pointer(PointerBuilder(2, ToolType::FINGER).x(300).y(100))
.classification(MotionClassification::MULTI_FINGER_SWIPE)
.build());
// Move the swipe a bit
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_MOVE, AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::FINGER).x(200).y(105))
.pointer(PointerBuilder(1, ToolType::FINGER).x(250).y(105))
.pointer(PointerBuilder(2, ToolType::FINGER).x(300).y(105))
.classification(MotionClassification::MULTI_FINGER_SWIPE)
.build());
// End the swipe
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_2_UP, AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::FINGER).x(200).y(105))
.pointer(PointerBuilder(1, ToolType::FINGER).x(250).y(105))
.pointer(PointerBuilder(2, ToolType::FINGER).x(300).y(105))
.classification(MotionClassification::MULTI_FINGER_SWIPE)
.build());
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_1_UP, AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::FINGER).x(200).y(105))
.pointer(PointerBuilder(1, ToolType::FINGER).x(250).y(105))
.classification(MotionClassification::MULTI_FINGER_SWIPE)
.build());
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_UP, AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, ToolType::FINGER).x(200).y(105))
.classification(MotionClassification::MULTI_FINGER_SWIPE)
.build());
window->assertNoEvents();
}
/**
* Send a two-pointer gesture to a single window. The window's orientation changes in response to
* the first pointer.
* Ensure that the second pointer is not sent to the window.
*
* The subsequent gesture should be correctly delivered to the window.
*/
TEST_F(InputDispatcherTest, MultiplePointersWithRotatingWindow) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 400, 400));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
const nsecs_t baseTime = systemTime(SYSTEM_TIME_MONOTONIC);
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.downTime(baseTime + 10)
.eventTime(baseTime + 10)
.pointer(PointerBuilder(0, ToolType::FINGER).x(100).y(100))
.build());
window->consumeMotionEvent(WithMotionAction(ACTION_DOWN));
// We need a new window object for the same window, because dispatcher will store objects by
// reference. That means that the testing code and the dispatcher will refer to the same shared
// object. Calling window->setTransform here would affect dispatcher's comparison
// of the old window to the new window, since both the old window and the new window would be
// updated to the same value.
sp<FakeWindowHandle> windowDup = window->duplicate();
// Change the transform so that the orientation is now different from original.
windowDup->setWindowTransform(0, -1, 1, 0);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowDup}}});
window->consumeMotionEvent(WithMotionAction(ACTION_CANCEL));
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.downTime(baseTime + 10)
.eventTime(baseTime + 30)
.pointer(PointerBuilder(0, ToolType::FINGER).x(100).y(100))
.pointer(PointerBuilder(1, ToolType::FINGER).x(200).y(200))
.build());
// Finish the gesture and start a new one. Ensure the new gesture is sent to the window
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_1_UP, AINPUT_SOURCE_TOUCHSCREEN)
.downTime(baseTime + 10)
.eventTime(baseTime + 40)
.pointer(PointerBuilder(0, ToolType::FINGER).x(100).y(100))
.pointer(PointerBuilder(1, ToolType::FINGER).x(200).y(200))
.build());
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN)
.downTime(baseTime + 10)
.eventTime(baseTime + 50)
.pointer(PointerBuilder(0, ToolType::FINGER).x(100).y(100))
.build());
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.downTime(baseTime + 60)
.eventTime(baseTime + 60)
.pointer(PointerBuilder(0, ToolType::FINGER).x(40).y(40))
.build());
windowDup->consumeMotionEvent(WithMotionAction(ACTION_DOWN));
}
/**
* Ensure the correct coordinate spaces are used by InputDispatcher.
*
* InputDispatcher works in the display space, so its coordinate system is relative to the display
* panel. Windows get events in the window space, and get raw coordinates in the logical display
* space.
*/
class InputDispatcherDisplayProjectionTest : public InputDispatcherTest {
public:
void SetUp() override {
InputDispatcherTest::SetUp();
removeAllWindowsAndDisplays();
}
void addDisplayInfo(int displayId, const ui::Transform& transform) {
gui::DisplayInfo info;
info.displayId = displayId;
info.transform = transform;
mDisplayInfos.push_back(std::move(info));
mDispatcher->onWindowInfosChanged({mWindowInfos, mDisplayInfos, 0, 0});
}
void addWindow(const sp<WindowInfoHandle>& windowHandle) {
mWindowInfos.push_back(*windowHandle->getInfo());
mDispatcher->onWindowInfosChanged({mWindowInfos, mDisplayInfos, 0, 0});
}
void removeAllWindowsAndDisplays() {
mDisplayInfos.clear();
mWindowInfos.clear();
}
// Set up a test scenario where the display has a scaled projection and there are two windows
// on the display.
std::pair<sp<FakeWindowHandle>, sp<FakeWindowHandle>> setupScaledDisplayScenario() {
// The display has a projection that has a scale factor of 2 and 4 in the x and y directions
// respectively.
ui::Transform displayTransform;
displayTransform.set(2, 0, 0, 4);
addDisplayInfo(ADISPLAY_ID_DEFAULT, displayTransform);
std::shared_ptr<FakeApplicationHandle> application =
std::make_shared<FakeApplicationHandle>();
// Add two windows to the display. Their frames are represented in the display space.
sp<FakeWindowHandle> firstWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "First Window",
ADISPLAY_ID_DEFAULT);
firstWindow->setFrame(Rect(0, 0, 100, 200), displayTransform);
addWindow(firstWindow);
sp<FakeWindowHandle> secondWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Second Window",
ADISPLAY_ID_DEFAULT);
secondWindow->setFrame(Rect(100, 200, 200, 400), displayTransform);
addWindow(secondWindow);
return {std::move(firstWindow), std::move(secondWindow)};
}
private:
std::vector<gui::DisplayInfo> mDisplayInfos;
std::vector<gui::WindowInfo> mWindowInfos;
};
TEST_F(InputDispatcherDisplayProjectionTest, HitTestCoordinateSpaceConsistency) {
auto [firstWindow, secondWindow] = setupScaledDisplayScenario();
// Send down to the first window. The point is represented in the display space. The point is
// selected so that if the hit test was performed with the point and the bounds being in
// different coordinate spaces, the event would end up in the incorrect window.
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{PointF{75, 55}}));
firstWindow->consumeMotionDown();
secondWindow->assertNoEvents();
}
// Ensure that when a MotionEvent is injected through the InputDispatcher::injectInputEvent() API,
// the event should be treated as being in the logical display space.
TEST_F(InputDispatcherDisplayProjectionTest, InjectionInLogicalDisplaySpace) {
auto [firstWindow, secondWindow] = setupScaledDisplayScenario();
// Send down to the first window. The point is represented in the logical display space. The
// point is selected so that if the hit test was done in logical display space, then it would
// end up in the incorrect window.
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
PointF{75 * 2, 55 * 4});
firstWindow->consumeMotionDown();
secondWindow->assertNoEvents();
}
// Ensure that when a MotionEvent that has a custom transform is injected, the post-transformed
// event should be treated as being in the logical display space.
TEST_F(InputDispatcherDisplayProjectionTest, InjectionWithTransformInLogicalDisplaySpace) {
auto [firstWindow, secondWindow] = setupScaledDisplayScenario();
const std::array<float, 9> matrix = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 0.0, 0.0, 1.0};
ui::Transform injectedEventTransform;
injectedEventTransform.set(matrix);
const vec2 expectedPoint{75, 55}; // The injected point in the logical display space.
const vec2 untransformedPoint = injectedEventTransform.inverse().transform(expectedPoint);
MotionEvent event = MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.displayId(ADISPLAY_ID_DEFAULT)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/*id=*/0, ToolType::FINGER)
.x(untransformedPoint.x)
.y(untransformedPoint.y))
.build();
event.transform(matrix);
injectMotionEvent(mDispatcher, event, INJECT_EVENT_TIMEOUT,
InputEventInjectionSync::WAIT_FOR_RESULT);
firstWindow->consumeMotionDown();
secondWindow->assertNoEvents();
}
TEST_F(InputDispatcherDisplayProjectionTest, WindowGetsEventsInCorrectCoordinateSpace) {
auto [firstWindow, secondWindow] = setupScaledDisplayScenario();
// Send down to the second window.
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{PointF{150, 220}}));
firstWindow->assertNoEvents();
const MotionEvent* event = secondWindow->consumeMotion();
ASSERT_NE(nullptr, event);
EXPECT_EQ(AMOTION_EVENT_ACTION_DOWN, event->getAction());
// Ensure that the events from the "getRaw" API are in logical display coordinates.
EXPECT_EQ(300, event->getRawX(0));
EXPECT_EQ(880, event->getRawY(0));
// Ensure that the x and y values are in the window's coordinate space.
// The left-top of the second window is at (100, 200) in display space, which is (200, 800) in
// the logical display space. This will be the origin of the window space.
EXPECT_EQ(100, event->getX(0));
EXPECT_EQ(80, event->getY(0));
}
/** Ensure consistent behavior of InputDispatcher in all orientations. */
class InputDispatcherDisplayOrientationFixture
: public InputDispatcherDisplayProjectionTest,
public ::testing::WithParamInterface<ui::Rotation> {};
// This test verifies the touchable region of a window for all rotations of the display by tapping
// in different locations on the display, specifically points close to the four corners of a
// window.
TEST_P(InputDispatcherDisplayOrientationFixture, HitTestInDifferentOrientations) {
constexpr static int32_t displayWidth = 400;
constexpr static int32_t displayHeight = 800;
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
const auto rotation = GetParam();
// Set up the display with the specified rotation.
const bool isRotated = rotation == ui::ROTATION_90 || rotation == ui::ROTATION_270;
const int32_t logicalDisplayWidth = isRotated ? displayHeight : displayWidth;
const int32_t logicalDisplayHeight = isRotated ? displayWidth : displayHeight;
const ui::Transform displayTransform(ui::Transform::toRotationFlags(rotation),
logicalDisplayWidth, logicalDisplayHeight);
addDisplayInfo(ADISPLAY_ID_DEFAULT, displayTransform);
// Create a window with its bounds determined in the logical display.
const Rect frameInLogicalDisplay(100, 100, 200, 300);
const Rect frameInDisplay = displayTransform.inverse().transform(frameInLogicalDisplay);
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
window->setFrame(frameInDisplay, displayTransform);
addWindow(window);
// The following points in logical display space should be inside the window.
static const std::array<vec2, 4> insidePoints{
{{100, 100}, {199.99, 100}, {100, 299.99}, {199.99, 299.99}}};
for (const auto pointInsideWindow : insidePoints) {
const vec2 p = displayTransform.inverse().transform(pointInsideWindow);
const PointF pointInDisplaySpace{p.x, p.y};
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{pointInDisplaySpace}));
window->consumeMotionDown();
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_UP,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{pointInDisplaySpace}));
window->consumeMotionUp();
}
// The following points in logical display space should be outside the window.
static const std::array<vec2, 5> outsidePoints{
{{200, 100}, {100, 300}, {200, 300}, {100, 99.99}, {99.99, 100}}};
for (const auto pointOutsideWindow : outsidePoints) {
const vec2 p = displayTransform.inverse().transform(pointOutsideWindow);
const PointF pointInDisplaySpace{p.x, p.y};
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{pointInDisplaySpace}));
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_UP,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{pointInDisplaySpace}));
}
window->assertNoEvents();
}
// Run the precision tests for all rotations.
INSTANTIATE_TEST_SUITE_P(InputDispatcherDisplayOrientationTests,
InputDispatcherDisplayOrientationFixture,
::testing::Values(ui::ROTATION_0, ui::ROTATION_90, ui::ROTATION_180,
ui::ROTATION_270),
[](const testing::TestParamInfo<ui::Rotation>& testParamInfo) {
return ftl::enum_string(testParamInfo.param);
});
using TransferFunction = std::function<bool(const std::unique_ptr<InputDispatcher>& dispatcher,
sp<IBinder>, sp<IBinder>)>;
class TransferTouchFixture : public InputDispatcherTest,
public ::testing::WithParamInterface<TransferFunction> {};
TEST_P(TransferTouchFixture, TransferTouch_OnePointer) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
// Create a couple of windows
sp<FakeWindowHandle> firstWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "First Window",
ADISPLAY_ID_DEFAULT);
firstWindow->setDupTouchToWallpaper(true);
sp<FakeWindowHandle> secondWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Second Window",
ADISPLAY_ID_DEFAULT);
sp<FakeWindowHandle> wallpaper =
sp<FakeWindowHandle>::make(application, mDispatcher, "Wallpaper", ADISPLAY_ID_DEFAULT);
wallpaper->setIsWallpaper(true);
// Add the windows to the dispatcher
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {firstWindow, secondWindow, wallpaper}}});
// Send down to the first window
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT));
// Only the first window should get the down event
firstWindow->consumeMotionDown();
secondWindow->assertNoEvents();
wallpaper->consumeMotionDown(ADISPLAY_ID_DEFAULT, expectedWallpaperFlags);
// Transfer touch to the second window
TransferFunction f = GetParam();
const bool success = f(mDispatcher, firstWindow->getToken(), secondWindow->getToken());
ASSERT_TRUE(success);
// The first window gets cancel and the second gets down
firstWindow->consumeMotionCancel();
secondWindow->consumeMotionDown();
wallpaper->consumeMotionCancel(ADISPLAY_ID_DEFAULT, expectedWallpaperFlags);
// Send up event to the second window
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT));
// The first window gets no events and the second gets up
firstWindow->assertNoEvents();
secondWindow->consumeMotionUp();
wallpaper->assertNoEvents();
}
/**
* When 'transferTouch' API is invoked, dispatcher needs to find the "best" window to take touch
* from. When we have spy windows, there are several windows to choose from: either spy, or the
* 'real' (non-spy) window. Always prefer the 'real' window because that's what would be most
* natural to the user.
* In this test, we are sending a pointer to both spy window and first window. We then try to
* transfer touch to the second window. The dispatcher should identify the first window as the
* one that should lose the gesture, and therefore the action should be to move the gesture from
* the first window to the second.
* The main goal here is to test the behaviour of 'transferTouch' API, but it's still valid to test
* the other API, as well.
*/
TEST_P(TransferTouchFixture, TransferTouch_MultipleWindowsWithSpy) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
// Create a couple of windows + a spy window
sp<FakeWindowHandle> spyWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Spy", ADISPLAY_ID_DEFAULT);
spyWindow->setTrustedOverlay(true);
spyWindow->setSpy(true);
sp<FakeWindowHandle> firstWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "First", ADISPLAY_ID_DEFAULT);
sp<FakeWindowHandle> secondWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Second", ADISPLAY_ID_DEFAULT);
// Add the windows to the dispatcher
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spyWindow, firstWindow, secondWindow}}});
// Send down to the first window
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT));
// Only the first window and spy should get the down event
spyWindow->consumeMotionDown();
firstWindow->consumeMotionDown();
// Transfer touch to the second window. Non-spy window should be preferred over the spy window
// if f === 'transferTouch'.
TransferFunction f = GetParam();
const bool success = f(mDispatcher, firstWindow->getToken(), secondWindow->getToken());
ASSERT_TRUE(success);
// The first window gets cancel and the second gets down
firstWindow->consumeMotionCancel();
secondWindow->consumeMotionDown();
// Send up event to the second window
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT));
// The first window gets no events and the second+spy get up
firstWindow->assertNoEvents();
spyWindow->consumeMotionUp();
secondWindow->consumeMotionUp();
}
TEST_P(TransferTouchFixture, TransferTouch_TwoPointersNonSplitTouch) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
PointF touchPoint = {10, 10};
// Create a couple of windows
sp<FakeWindowHandle> firstWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "First Window",
ADISPLAY_ID_DEFAULT);
firstWindow->setPreventSplitting(true);
sp<FakeWindowHandle> secondWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Second Window",
ADISPLAY_ID_DEFAULT);
secondWindow->setPreventSplitting(true);
// Add the windows to the dispatcher
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {firstWindow, secondWindow}}});
// Send down to the first window
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{touchPoint}));
// Only the first window should get the down event
firstWindow->consumeMotionDown();
secondWindow->assertNoEvents();
// Send pointer down to the first window
mDispatcher->notifyMotion(generateMotionArgs(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {touchPoint, touchPoint}));
// Only the first window should get the pointer down event
firstWindow->consumeMotionPointerDown(1);
secondWindow->assertNoEvents();
// Transfer touch focus to the second window
TransferFunction f = GetParam();
bool success = f(mDispatcher, firstWindow->getToken(), secondWindow->getToken());
ASSERT_TRUE(success);
// The first window gets cancel and the second gets down and pointer down
firstWindow->consumeMotionCancel();
secondWindow->consumeMotionDown();
secondWindow->consumeMotionPointerDown(1);
// Send pointer up to the second window
mDispatcher->notifyMotion(generateMotionArgs(POINTER_1_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {touchPoint, touchPoint}));
// The first window gets nothing and the second gets pointer up
firstWindow->assertNoEvents();
secondWindow->consumeMotionPointerUp(1);
// Send up event to the second window
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT));
// The first window gets nothing and the second gets up
firstWindow->assertNoEvents();
secondWindow->consumeMotionUp();
}
TEST_P(TransferTouchFixture, TransferTouch_MultipleWallpapers) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
// Create a couple of windows
sp<FakeWindowHandle> firstWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "First Window",
ADISPLAY_ID_DEFAULT);
firstWindow->setDupTouchToWallpaper(true);
sp<FakeWindowHandle> secondWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Second Window",
ADISPLAY_ID_DEFAULT);
secondWindow->setDupTouchToWallpaper(true);
sp<FakeWindowHandle> wallpaper1 =
sp<FakeWindowHandle>::make(application, mDispatcher, "Wallpaper1", ADISPLAY_ID_DEFAULT);
wallpaper1->setIsWallpaper(true);
sp<FakeWindowHandle> wallpaper2 =
sp<FakeWindowHandle>::make(application, mDispatcher, "Wallpaper2", ADISPLAY_ID_DEFAULT);
wallpaper2->setIsWallpaper(true);
// Add the windows to the dispatcher
mDispatcher->setInputWindows(
{{ADISPLAY_ID_DEFAULT, {firstWindow, wallpaper1, secondWindow, wallpaper2}}});
// Send down to the first window
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT));
// Only the first window should get the down event
firstWindow->consumeMotionDown();
secondWindow->assertNoEvents();
wallpaper1->consumeMotionDown(ADISPLAY_ID_DEFAULT, expectedWallpaperFlags);
wallpaper2->assertNoEvents();
// Transfer touch focus to the second window
TransferFunction f = GetParam();
bool success = f(mDispatcher, firstWindow->getToken(), secondWindow->getToken());
ASSERT_TRUE(success);
// The first window gets cancel and the second gets down
firstWindow->consumeMotionCancel();
secondWindow->consumeMotionDown();
wallpaper1->consumeMotionCancel(ADISPLAY_ID_DEFAULT, expectedWallpaperFlags);
wallpaper2->consumeMotionDown(ADISPLAY_ID_DEFAULT, expectedWallpaperFlags);
// Send up event to the second window
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT));
// The first window gets no events and the second gets up
firstWindow->assertNoEvents();
secondWindow->consumeMotionUp();
wallpaper1->assertNoEvents();
wallpaper2->consumeMotionUp(ADISPLAY_ID_DEFAULT, expectedWallpaperFlags);
}
// For the cases of single pointer touch and two pointers non-split touch, the api's
// 'transferTouch' and 'transferTouchFocus' are equivalent in behaviour. They only differ
// for the case where there are multiple pointers split across several windows.
INSTANTIATE_TEST_SUITE_P(TransferFunctionTests, TransferTouchFixture,
::testing::Values(
[&](const std::unique_ptr<InputDispatcher>& dispatcher,
sp<IBinder> /*ignored*/, sp<IBinder> destChannelToken) {
return dispatcher->transferTouch(destChannelToken,
ADISPLAY_ID_DEFAULT);
},
[&](const std::unique_ptr<InputDispatcher>& dispatcher,
sp<IBinder> from, sp<IBinder> to) {
return dispatcher->transferTouchFocus(from, to,
/*isDragAndDrop=*/false);
}));
TEST_F(InputDispatcherTest, TransferTouchFocus_TwoPointersSplitTouch) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> firstWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "First Window",
ADISPLAY_ID_DEFAULT);
firstWindow->setFrame(Rect(0, 0, 600, 400));
sp<FakeWindowHandle> secondWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Second Window",
ADISPLAY_ID_DEFAULT);
secondWindow->setFrame(Rect(0, 400, 600, 800));
// Add the windows to the dispatcher
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {firstWindow, secondWindow}}});
PointF pointInFirst = {300, 200};
PointF pointInSecond = {300, 600};
// Send down to the first window
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{pointInFirst}));
// Only the first window should get the down event
firstWindow->consumeMotionDown();
secondWindow->assertNoEvents();
// Send down to the second window
mDispatcher->notifyMotion(generateMotionArgs(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT,
{pointInFirst, pointInSecond}));
// The first window gets a move and the second a down
firstWindow->consumeMotionMove();
secondWindow->consumeMotionDown();
// Transfer touch focus to the second window
mDispatcher->transferTouchFocus(firstWindow->getToken(), secondWindow->getToken());
// The first window gets cancel and the new gets pointer down (it already saw down)
firstWindow->consumeMotionCancel();
secondWindow->consumeMotionPointerDown(1);
// Send pointer up to the second window
mDispatcher->notifyMotion(generateMotionArgs(POINTER_1_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT,
{pointInFirst, pointInSecond}));
// The first window gets nothing and the second gets pointer up
firstWindow->assertNoEvents();
secondWindow->consumeMotionPointerUp(1);
// Send up event to the second window
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT));
// The first window gets nothing and the second gets up
firstWindow->assertNoEvents();
secondWindow->consumeMotionUp();
}
// Same as TransferTouchFocus_TwoPointersSplitTouch, but using 'transferTouch' api.
// Unlike 'transferTouchFocus', calling 'transferTouch' when there are two windows receiving
// touch is not supported, so the touch should continue on those windows and the transferred-to
// window should get nothing.
TEST_F(InputDispatcherTest, TransferTouch_TwoPointersSplitTouch) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> firstWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "First Window",
ADISPLAY_ID_DEFAULT);
firstWindow->setFrame(Rect(0, 0, 600, 400));
sp<FakeWindowHandle> secondWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Second Window",
ADISPLAY_ID_DEFAULT);
secondWindow->setFrame(Rect(0, 400, 600, 800));
// Add the windows to the dispatcher
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {firstWindow, secondWindow}}});
PointF pointInFirst = {300, 200};
PointF pointInSecond = {300, 600};
// Send down to the first window
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{pointInFirst}));
// Only the first window should get the down event
firstWindow->consumeMotionDown();
secondWindow->assertNoEvents();
// Send down to the second window
mDispatcher->notifyMotion(generateMotionArgs(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT,
{pointInFirst, pointInSecond}));
// The first window gets a move and the second a down
firstWindow->consumeMotionMove();
secondWindow->consumeMotionDown();
// Transfer touch focus to the second window
const bool transferred =
mDispatcher->transferTouch(secondWindow->getToken(), ADISPLAY_ID_DEFAULT);
// The 'transferTouch' call should not succeed, because there are 2 touched windows
ASSERT_FALSE(transferred);
firstWindow->assertNoEvents();
secondWindow->assertNoEvents();
// The rest of the dispatch should proceed as normal
// Send pointer up to the second window
mDispatcher->notifyMotion(generateMotionArgs(POINTER_1_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT,
{pointInFirst, pointInSecond}));
// The first window gets MOVE and the second gets pointer up
firstWindow->consumeMotionMove();
secondWindow->consumeMotionUp();
// Send up event to the first window
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT));
// The first window gets nothing and the second gets up
firstWindow->consumeMotionUp();
secondWindow->assertNoEvents();
}
// This case will create two windows and one mirrored window on the default display and mirror
// two windows on the second display. It will test if 'transferTouchFocus' works fine if we put
// the windows info of second display before default display.
TEST_F(InputDispatcherTest, TransferTouchFocus_CloneSurface) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> firstWindowInPrimary =
sp<FakeWindowHandle>::make(application, mDispatcher, "D_1_W1", ADISPLAY_ID_DEFAULT);
firstWindowInPrimary->setFrame(Rect(0, 0, 100, 100));
sp<FakeWindowHandle> secondWindowInPrimary =
sp<FakeWindowHandle>::make(application, mDispatcher, "D_1_W2", ADISPLAY_ID_DEFAULT);
secondWindowInPrimary->setFrame(Rect(100, 0, 200, 100));
sp<FakeWindowHandle> mirrorWindowInPrimary = firstWindowInPrimary->clone(ADISPLAY_ID_DEFAULT);
mirrorWindowInPrimary->setFrame(Rect(0, 100, 100, 200));
sp<FakeWindowHandle> firstWindowInSecondary = firstWindowInPrimary->clone(SECOND_DISPLAY_ID);
firstWindowInSecondary->setFrame(Rect(0, 0, 100, 100));
sp<FakeWindowHandle> secondWindowInSecondary = secondWindowInPrimary->clone(SECOND_DISPLAY_ID);
secondWindowInPrimary->setFrame(Rect(100, 0, 200, 100));
// Update window info, let it find window handle of second display first.
mDispatcher->setInputWindows(
{{SECOND_DISPLAY_ID, {firstWindowInSecondary, secondWindowInSecondary}},
{ADISPLAY_ID_DEFAULT,
{mirrorWindowInPrimary, firstWindowInPrimary, secondWindowInPrimary}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
// Window should receive motion event.
firstWindowInPrimary->consumeMotionDown(ADISPLAY_ID_DEFAULT);
// Transfer touch focus
ASSERT_TRUE(mDispatcher->transferTouchFocus(firstWindowInPrimary->getToken(),
secondWindowInPrimary->getToken()));
// The first window gets cancel.
firstWindowInPrimary->consumeMotionCancel();
secondWindowInPrimary->consumeMotionDown();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {150, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
firstWindowInPrimary->assertNoEvents();
secondWindowInPrimary->consumeMotionMove();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{150, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
firstWindowInPrimary->assertNoEvents();
secondWindowInPrimary->consumeMotionUp();
}
// Same as TransferTouchFocus_CloneSurface, but this touch on the secondary display and use
// 'transferTouch' api.
TEST_F(InputDispatcherTest, TransferTouch_CloneSurface) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> firstWindowInPrimary =
sp<FakeWindowHandle>::make(application, mDispatcher, "D_1_W1", ADISPLAY_ID_DEFAULT);
firstWindowInPrimary->setFrame(Rect(0, 0, 100, 100));
sp<FakeWindowHandle> secondWindowInPrimary =
sp<FakeWindowHandle>::make(application, mDispatcher, "D_1_W2", ADISPLAY_ID_DEFAULT);
secondWindowInPrimary->setFrame(Rect(100, 0, 200, 100));
sp<FakeWindowHandle> mirrorWindowInPrimary = firstWindowInPrimary->clone(ADISPLAY_ID_DEFAULT);
mirrorWindowInPrimary->setFrame(Rect(0, 100, 100, 200));
sp<FakeWindowHandle> firstWindowInSecondary = firstWindowInPrimary->clone(SECOND_DISPLAY_ID);
firstWindowInSecondary->setFrame(Rect(0, 0, 100, 100));
sp<FakeWindowHandle> secondWindowInSecondary = secondWindowInPrimary->clone(SECOND_DISPLAY_ID);
secondWindowInPrimary->setFrame(Rect(100, 0, 200, 100));
// Update window info, let it find window handle of second display first.
mDispatcher->setInputWindows(
{{SECOND_DISPLAY_ID, {firstWindowInSecondary, secondWindowInSecondary}},
{ADISPLAY_ID_DEFAULT,
{mirrorWindowInPrimary, firstWindowInPrimary, secondWindowInPrimary}}});
// Touch on second display.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, SECOND_DISPLAY_ID, {50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
// Window should receive motion event.
firstWindowInPrimary->consumeMotionDown(SECOND_DISPLAY_ID);
// Transfer touch focus
ASSERT_TRUE(mDispatcher->transferTouch(secondWindowInSecondary->getToken(), SECOND_DISPLAY_ID));
// The first window gets cancel.
firstWindowInPrimary->consumeMotionCancel(SECOND_DISPLAY_ID);
secondWindowInPrimary->consumeMotionDown(SECOND_DISPLAY_ID);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
SECOND_DISPLAY_ID, {150, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
firstWindowInPrimary->assertNoEvents();
secondWindowInPrimary->consumeMotionMove(SECOND_DISPLAY_ID);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, SECOND_DISPLAY_ID, {150, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
firstWindowInPrimary->assertNoEvents();
secondWindowInPrimary->consumeMotionUp(SECOND_DISPLAY_ID);
}
TEST_F(InputDispatcherTest, FocusedWindow_ReceivesFocusEventAndKeyEvent) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(true);
mDispatcher->notifyKey(generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT));
// Window should receive key down event.
window->consumeKeyDown(ADISPLAY_ID_DEFAULT);
// Should have poked user activity
mDispatcher->waitForIdle();
mFakePolicy->assertUserActivityPoked();
}
TEST_F(InputDispatcherTest, FocusedWindow_DisableUserActivity) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
window->setDisableUserActivity(true);
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(true);
mDispatcher->notifyKey(generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT));
// Window should receive key down event.
window->consumeKeyDown(ADISPLAY_ID_DEFAULT);
// Should have poked user activity
mDispatcher->waitForIdle();
mFakePolicy->assertUserActivityNotPoked();
}
TEST_F(InputDispatcherTest, FocusedWindow_DoesNotReceiveSystemShortcut) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(true);
mDispatcher->notifyKey(generateSystemShortcutArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT));
mDispatcher->waitForIdle();
// System key is not passed down
window->assertNoEvents();
// Should have poked user activity
mFakePolicy->assertUserActivityPoked();
}
TEST_F(InputDispatcherTest, FocusedWindow_DoesNotReceiveAssistantKey) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(true);
mDispatcher->notifyKey(generateAssistantKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT));
mDispatcher->waitForIdle();
// System key is not passed down
window->assertNoEvents();
// Should have poked user activity
mFakePolicy->assertUserActivityPoked();
}
TEST_F(InputDispatcherTest, FocusedWindow_SystemKeyIgnoresDisableUserActivity) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
window->setDisableUserActivity(true);
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(true);
mDispatcher->notifyKey(generateSystemShortcutArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT));
mDispatcher->waitForIdle();
// System key is not passed down
window->assertNoEvents();
// Should have poked user activity
mFakePolicy->assertUserActivityPoked();
}
TEST_F(InputDispatcherTest, InjectedTouchesPokeUserActivity) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {100, 100}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionEvent(
AllOf(WithMotionAction(ACTION_DOWN), WithDisplayId(ADISPLAY_ID_DEFAULT)));
// Should have poked user activity
mDispatcher->waitForIdle();
mFakePolicy->assertUserActivityPoked();
}
TEST_F(InputDispatcherTest, UnfocusedWindow_DoesNotReceiveFocusEventOrKeyEvent) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
mDispatcher->notifyKey(generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT));
mDispatcher->waitForIdle();
window->assertNoEvents();
}
// If a window is touchable, but does not have focus, it should receive motion events, but not keys
TEST_F(InputDispatcherTest, UnfocusedWindow_ReceivesMotionsButNotKeys) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
// Send key
mDispatcher->notifyKey(generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT));
// Send motion
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT));
// Window should receive only the motion event
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
window->assertNoEvents(); // Key event or focus event will not be received
}
TEST_F(InputDispatcherTest, PointerCancel_SendCancelWhenSplitTouch) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> firstWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "First Window",
ADISPLAY_ID_DEFAULT);
firstWindow->setFrame(Rect(0, 0, 600, 400));
sp<FakeWindowHandle> secondWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Second Window",
ADISPLAY_ID_DEFAULT);
secondWindow->setFrame(Rect(0, 400, 600, 800));
// Add the windows to the dispatcher
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {firstWindow, secondWindow}}});
PointF pointInFirst = {300, 200};
PointF pointInSecond = {300, 600};
// Send down to the first window
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{pointInFirst}));
// Only the first window should get the down event
firstWindow->consumeMotionDown();
secondWindow->assertNoEvents();
// Send down to the second window
mDispatcher->notifyMotion(generateMotionArgs(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT,
{pointInFirst, pointInSecond}));
// The first window gets a move and the second a down
firstWindow->consumeMotionMove();
secondWindow->consumeMotionDown();
// Send pointer cancel to the second window
NotifyMotionArgs pointerUpMotionArgs =
generateMotionArgs(POINTER_1_UP, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{pointInFirst, pointInSecond});
pointerUpMotionArgs.flags |= AMOTION_EVENT_FLAG_CANCELED;
mDispatcher->notifyMotion(pointerUpMotionArgs);
// The first window gets move and the second gets cancel.
firstWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT, AMOTION_EVENT_FLAG_CANCELED);
secondWindow->consumeMotionCancel(ADISPLAY_ID_DEFAULT, AMOTION_EVENT_FLAG_CANCELED);
// Send up event.
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT));
// The first window gets up and the second gets nothing.
firstWindow->consumeMotionUp();
secondWindow->assertNoEvents();
}
TEST_F(InputDispatcherTest, SendTimeline_DoesNotCrashDispatcher) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
std::array<nsecs_t, GraphicsTimeline::SIZE> graphicsTimeline;
graphicsTimeline[GraphicsTimeline::GPU_COMPLETED_TIME] = 2;
graphicsTimeline[GraphicsTimeline::PRESENT_TIME] = 3;
window->sendTimeline(/*inputEventId=*/1, graphicsTimeline);
window->assertNoEvents();
mDispatcher->waitForIdle();
}
class FakeMonitorReceiver {
public:
FakeMonitorReceiver(const std::unique_ptr<InputDispatcher>& dispatcher, const std::string name,
int32_t displayId) {
base::Result<std::unique_ptr<InputChannel>> channel =
dispatcher->createInputMonitor(displayId, name, MONITOR_PID);
mInputReceiver = std::make_unique<FakeInputReceiver>(std::move(*channel), name);
}
sp<IBinder> getToken() { return mInputReceiver->getToken(); }
void consumeKeyDown(int32_t expectedDisplayId, int32_t expectedFlags = 0) {
mInputReceiver->consumeEvent(InputEventType::KEY, AKEY_EVENT_ACTION_DOWN, expectedDisplayId,
expectedFlags);
}
std::optional<int32_t> receiveEvent() { return mInputReceiver->receiveEvent(); }
void finishEvent(uint32_t consumeSeq) { return mInputReceiver->finishEvent(consumeSeq); }
void consumeMotionDown(int32_t expectedDisplayId, int32_t expectedFlags = 0) {
mInputReceiver->consumeEvent(InputEventType::MOTION, AMOTION_EVENT_ACTION_DOWN,
expectedDisplayId, expectedFlags);
}
void consumeMotionMove(int32_t expectedDisplayId, int32_t expectedFlags = 0) {
mInputReceiver->consumeEvent(InputEventType::MOTION, AMOTION_EVENT_ACTION_MOVE,
expectedDisplayId, expectedFlags);
}
void consumeMotionUp(int32_t expectedDisplayId, int32_t expectedFlags = 0) {
mInputReceiver->consumeEvent(InputEventType::MOTION, AMOTION_EVENT_ACTION_UP,
expectedDisplayId, expectedFlags);
}
void consumeMotionCancel(int32_t expectedDisplayId, int32_t expectedFlags = 0) {
mInputReceiver->consumeMotionEvent(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_CANCEL),
WithDisplayId(expectedDisplayId),
WithFlags(expectedFlags | AMOTION_EVENT_FLAG_CANCELED)));
}
void consumeMotionPointerDown(int32_t pointerIdx) {
int32_t action = AMOTION_EVENT_ACTION_POINTER_DOWN |
(pointerIdx << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
mInputReceiver->consumeEvent(InputEventType::MOTION, action, ADISPLAY_ID_DEFAULT,
/*expectedFlags=*/0);
}
MotionEvent* consumeMotion() {
InputEvent* event = mInputReceiver->consume();
if (!event) {
ADD_FAILURE() << "No event was produced";
return nullptr;
}
if (event->getType() != InputEventType::MOTION) {
ADD_FAILURE() << "Expected MotionEvent, got " << *event;
return nullptr;
}
return static_cast<MotionEvent*>(event);
}
void assertNoEvents() { mInputReceiver->assertNoEvents(); }
private:
std::unique_ptr<FakeInputReceiver> mInputReceiver;
};
using InputDispatcherMonitorTest = InputDispatcherTest;
/**
* Two entities that receive touch: A window, and a global monitor.
* The touch goes to the window, and then the window disappears.
* The monitor does not get cancel right away. But if more events come in, the touch gets canceled
* for the monitor, as well.
* 1. foregroundWindow
* 2. monitor <-- global monitor (doesn't observe z order, receives all events)
*/
TEST_F(InputDispatcherMonitorTest, MonitorTouchIsCanceledWhenForegroundWindowDisappears) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Foreground", ADISPLAY_ID_DEFAULT);
FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "M_1", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{100, 200}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
// Both the foreground window and the global monitor should receive the touch down
window->consumeMotionDown();
monitor.consumeMotionDown(ADISPLAY_ID_DEFAULT);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {110, 200}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionMove();
monitor.consumeMotionMove(ADISPLAY_ID_DEFAULT);
// Now the foreground window goes away
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {}}});
window->consumeMotionCancel();
monitor.assertNoEvents(); // Global monitor does not get a cancel yet
// If more events come in, there will be no more foreground window to send them to. This will
// cause a cancel for the monitor, as well.
ASSERT_EQ(InputEventInjectionResult::FAILED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {120, 200}))
<< "Injection should fail because the window was removed";
window->assertNoEvents();
// Global monitor now gets the cancel
monitor.consumeMotionCancel(ADISPLAY_ID_DEFAULT);
}
TEST_F(InputDispatcherMonitorTest, ReceivesMotionEvents) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "M_1", ADISPLAY_ID_DEFAULT);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
monitor.consumeMotionDown(ADISPLAY_ID_DEFAULT);
}
TEST_F(InputDispatcherMonitorTest, MonitorCannotPilferPointers) {
FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "M_1", ADISPLAY_ID_DEFAULT);
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
monitor.consumeMotionDown(ADISPLAY_ID_DEFAULT);
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
// Pilfer pointers from the monitor.
// This should not do anything and the window should continue to receive events.
EXPECT_NE(OK, mDispatcher->pilferPointers(monitor.getToken()));
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
monitor.consumeMotionMove(ADISPLAY_ID_DEFAULT);
window->consumeMotionMove(ADISPLAY_ID_DEFAULT);
}
TEST_F(InputDispatcherMonitorTest, NoWindowTransform) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
window->setWindowOffset(20, 40);
window->setWindowTransform(0, 1, -1, 0);
FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "M_1", ADISPLAY_ID_DEFAULT);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
MotionEvent* event = monitor.consumeMotion();
// Even though window has transform, gesture monitor must not.
ASSERT_EQ(ui::Transform(), event->getTransform());
}
TEST_F(InputDispatcherMonitorTest, InjectionFailsWithNoWindow) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "M_1", ADISPLAY_ID_DEFAULT);
ASSERT_EQ(InputEventInjectionResult::FAILED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Injection should fail if there is a monitor, but no touchable window";
monitor.assertNoEvents();
}
TEST_F(InputDispatcherTest, TestMoveEvent) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(motionArgs);
// Window should receive motion down event.
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
motionArgs.action = AMOTION_EVENT_ACTION_MOVE;
motionArgs.id += 1;
motionArgs.eventTime = systemTime(SYSTEM_TIME_MONOTONIC);
motionArgs.pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X,
motionArgs.pointerCoords[0].getX() - 10);
mDispatcher->notifyMotion(motionArgs);
window->consumeEvent(InputEventType::MOTION, AMOTION_EVENT_ACTION_MOVE, ADISPLAY_ID_DEFAULT,
/*expectedFlags=*/0);
}
/**
* Dispatcher has touch mode enabled by default. Typically, the policy overrides that value to
* the device default right away. In the test scenario, we check both the default value,
* and the action of enabling / disabling.
*/
TEST_F(InputDispatcherTest, TouchModeState_IsSentToApps) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Test window", ADISPLAY_ID_DEFAULT);
const WindowInfo& windowInfo = *window->getInfo();
// Set focused application.
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
window->setFocusable(true);
SCOPED_TRACE("Check default value of touch mode");
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(/*hasFocus=*/true, /*inTouchMode=*/true);
SCOPED_TRACE("Remove the window to trigger focus loss");
window->setFocusable(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
window->consumeFocusEvent(/*hasFocus=*/false, /*inTouchMode=*/true);
SCOPED_TRACE("Disable touch mode");
mDispatcher->setInTouchMode(false, windowInfo.ownerPid, windowInfo.ownerUid,
/*hasPermission=*/true, ADISPLAY_ID_DEFAULT);
window->consumeTouchModeEvent(false);
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(/*hasFocus=*/true, /*inTouchMode=*/false);
SCOPED_TRACE("Remove the window to trigger focus loss");
window->setFocusable(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
window->consumeFocusEvent(/*hasFocus=*/false, /*inTouchMode=*/false);
SCOPED_TRACE("Enable touch mode again");
mDispatcher->setInTouchMode(true, windowInfo.ownerPid, windowInfo.ownerUid,
/*hasPermission=*/true, ADISPLAY_ID_DEFAULT);
window->consumeTouchModeEvent(true);
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(/*hasFocus=*/true, /*inTouchMode=*/true);
window->assertNoEvents();
}
TEST_F(InputDispatcherTest, VerifyInputEvent_KeyEvent) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Test window", ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(/*hasFocus=*/true, /*inTouchMode=*/true);
const NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN);
mDispatcher->notifyKey(keyArgs);
InputEvent* event = window->consume();
ASSERT_NE(event, nullptr);
std::unique_ptr<VerifiedInputEvent> verified = mDispatcher->verifyInputEvent(*event);
ASSERT_NE(verified, nullptr);
ASSERT_EQ(verified->type, VerifiedInputEvent::Type::KEY);
ASSERT_EQ(keyArgs.eventTime, verified->eventTimeNanos);
ASSERT_EQ(keyArgs.deviceId, verified->deviceId);
ASSERT_EQ(keyArgs.source, verified->source);
ASSERT_EQ(keyArgs.displayId, verified->displayId);
const VerifiedKeyEvent& verifiedKey = static_cast<const VerifiedKeyEvent&>(*verified);
ASSERT_EQ(keyArgs.action, verifiedKey.action);
ASSERT_EQ(keyArgs.flags & VERIFIED_KEY_EVENT_FLAGS, verifiedKey.flags);
ASSERT_EQ(keyArgs.downTime, verifiedKey.downTimeNanos);
ASSERT_EQ(keyArgs.keyCode, verifiedKey.keyCode);
ASSERT_EQ(keyArgs.scanCode, verifiedKey.scanCode);
ASSERT_EQ(keyArgs.metaState, verifiedKey.metaState);
ASSERT_EQ(0, verifiedKey.repeatCount);
}
TEST_F(InputDispatcherTest, VerifyInputEvent_MotionEvent) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Test window", ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
ui::Transform transform;
transform.set({1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 0, 0, 1});
gui::DisplayInfo displayInfo;
displayInfo.displayId = ADISPLAY_ID_DEFAULT;
displayInfo.transform = transform;
mDispatcher->onWindowInfosChanged({{*window->getInfo()}, {displayInfo}, 0, 0});
const NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(motionArgs);
InputEvent* event = window->consume();
ASSERT_NE(event, nullptr);
std::unique_ptr<VerifiedInputEvent> verified = mDispatcher->verifyInputEvent(*event);
ASSERT_NE(verified, nullptr);
ASSERT_EQ(verified->type, VerifiedInputEvent::Type::MOTION);
EXPECT_EQ(motionArgs.eventTime, verified->eventTimeNanos);
EXPECT_EQ(motionArgs.deviceId, verified->deviceId);
EXPECT_EQ(motionArgs.source, verified->source);
EXPECT_EQ(motionArgs.displayId, verified->displayId);
const VerifiedMotionEvent& verifiedMotion = static_cast<const VerifiedMotionEvent&>(*verified);
const vec2 rawXY =
MotionEvent::calculateTransformedXY(motionArgs.source, transform,
motionArgs.pointerCoords[0].getXYValue());
EXPECT_EQ(rawXY.x, verifiedMotion.rawX);
EXPECT_EQ(rawXY.y, verifiedMotion.rawY);
EXPECT_EQ(motionArgs.action & AMOTION_EVENT_ACTION_MASK, verifiedMotion.actionMasked);
EXPECT_EQ(motionArgs.flags & VERIFIED_MOTION_EVENT_FLAGS, verifiedMotion.flags);
EXPECT_EQ(motionArgs.downTime, verifiedMotion.downTimeNanos);
EXPECT_EQ(motionArgs.metaState, verifiedMotion.metaState);
EXPECT_EQ(motionArgs.buttonState, verifiedMotion.buttonState);
}
/**
* Ensure that separate calls to sign the same data are generating the same key.
* We avoid asserting against INVALID_HMAC. Since the key is random, there is a non-zero chance
* that a specific key and data combination would produce INVALID_HMAC, which would cause flaky
* tests.
*/
TEST_F(InputDispatcherTest, GeneratedHmac_IsConsistent) {
KeyEvent event = getTestKeyEvent();
VerifiedKeyEvent verifiedEvent = verifiedKeyEventFromKeyEvent(event);
std::array<uint8_t, 32> hmac1 = mDispatcher->sign(verifiedEvent);
std::array<uint8_t, 32> hmac2 = mDispatcher->sign(verifiedEvent);
ASSERT_EQ(hmac1, hmac2);
}
/**
* Ensure that changes in VerifiedKeyEvent produce a different hmac.
*/
TEST_F(InputDispatcherTest, GeneratedHmac_ChangesWhenFieldsChange) {
KeyEvent event = getTestKeyEvent();
VerifiedKeyEvent verifiedEvent = verifiedKeyEventFromKeyEvent(event);
std::array<uint8_t, 32> initialHmac = mDispatcher->sign(verifiedEvent);
verifiedEvent.deviceId += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
verifiedEvent.source += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
verifiedEvent.eventTimeNanos += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
verifiedEvent.displayId += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
verifiedEvent.action += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
verifiedEvent.downTimeNanos += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
verifiedEvent.flags += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
verifiedEvent.keyCode += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
verifiedEvent.scanCode += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
verifiedEvent.metaState += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
verifiedEvent.repeatCount += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
}
TEST_F(InputDispatcherTest, SetFocusedWindow) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> windowTop =
sp<FakeWindowHandle>::make(application, mDispatcher, "Top", ADISPLAY_ID_DEFAULT);
sp<FakeWindowHandle> windowSecond =
sp<FakeWindowHandle>::make(application, mDispatcher, "Second", ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
// Top window is also focusable but is not granted focus.
windowTop->setFocusable(true);
windowSecond->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowTop, windowSecond}}});
setFocusedWindow(windowSecond);
windowSecond->consumeFocusEvent(true);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
// Focused window should receive event.
windowSecond->consumeKeyDown(ADISPLAY_ID_NONE);
windowTop->assertNoEvents();
}
TEST_F(InputDispatcherTest, SetFocusedWindow_DropRequestInvalidChannel) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
window->setFocusable(true);
// Release channel for window is no longer valid.
window->releaseChannel();
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
// Test inject a key down, should timeout.
ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::TIMED_OUT";
// window channel is invalid, so it should not receive any input event.
window->assertNoEvents();
}
TEST_F(InputDispatcherTest, SetFocusedWindow_DropRequestNoFocusableWindow) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT);
window->setFocusable(false);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
// Test inject a key down, should timeout.
ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::TIMED_OUT";
// window is not focusable, so it should not receive any input event.
window->assertNoEvents();
}
TEST_F(InputDispatcherTest, SetFocusedWindow_CheckFocusedToken) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> windowTop =
sp<FakeWindowHandle>::make(application, mDispatcher, "Top", ADISPLAY_ID_DEFAULT);
sp<FakeWindowHandle> windowSecond =
sp<FakeWindowHandle>::make(application, mDispatcher, "Second", ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
windowTop->setFocusable(true);
windowSecond->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowTop, windowSecond}}});
setFocusedWindow(windowTop);
windowTop->consumeFocusEvent(true);
windowTop->editInfo()->focusTransferTarget = windowSecond->getToken();
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowTop, windowSecond}}});
windowSecond->consumeFocusEvent(true);
windowTop->consumeFocusEvent(false);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
// Focused window should receive event.
windowSecond->consumeKeyDown(ADISPLAY_ID_NONE);
}
TEST_F(InputDispatcherTest, SetFocusedWindow_TransferFocusTokenNotFocusable) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> windowTop =
sp<FakeWindowHandle>::make(application, mDispatcher, "Top", ADISPLAY_ID_DEFAULT);
sp<FakeWindowHandle> windowSecond =
sp<FakeWindowHandle>::make(application, mDispatcher, "Second", ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
windowTop->setFocusable(true);
windowSecond->setFocusable(false);
windowTop->editInfo()->focusTransferTarget = windowSecond->getToken();
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowTop, windowSecond}}});
setFocusedWindow(windowTop);
windowTop->consumeFocusEvent(true);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
// Event should be dropped.
windowTop->consumeKeyDown(ADISPLAY_ID_NONE);
windowSecond->assertNoEvents();
}
TEST_F(InputDispatcherTest, SetFocusedWindow_DeferInvisibleWindow) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT);
sp<FakeWindowHandle> previousFocusedWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "previousFocusedWindow",
ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
window->setFocusable(true);
previousFocusedWindow->setFocusable(true);
window->setVisible(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window, previousFocusedWindow}}});
setFocusedWindow(previousFocusedWindow);
previousFocusedWindow->consumeFocusEvent(true);
// Requesting focus on invisible window takes focus from currently focused window.
setFocusedWindow(window);
previousFocusedWindow->consumeFocusEvent(false);
// Injected key goes to pending queue.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, /*repeatCount=*/0, ADISPLAY_ID_DEFAULT,
InputEventInjectionSync::NONE));
// Window does not get focus event or key down.
window->assertNoEvents();
// Window becomes visible.
window->setVisible(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
// Window receives focus event.
window->consumeFocusEvent(true);
// Focused window receives key down.
window->consumeKeyDown(ADISPLAY_ID_DEFAULT);
}
TEST_F(InputDispatcherTest, DisplayRemoved) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "window", ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
// window is granted focus.
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(true);
// When a display is removed window loses focus.
mDispatcher->displayRemoved(ADISPLAY_ID_DEFAULT);
window->consumeFocusEvent(false);
}
/**
* Launch two windows, with different owners. One window (slipperyExitWindow) has Flag::SLIPPERY,
* and overlaps the other window, slipperyEnterWindow. The window 'slipperyExitWindow' is on top
* of the 'slipperyEnterWindow'.
*
* Inject touch down into the top window. Upon receipt of the DOWN event, move the window in such
* a way so that the touched location is no longer covered by the top window.
*
* Next, inject a MOVE event. Because the top window already moved earlier, this event is now
* positioned over the bottom (slipperyEnterWindow) only. And because the top window had
* Flag::SLIPPERY, this will cause the top window to lose the touch event (it will receive
* ACTION_CANCEL instead), and the bottom window will receive a newly generated gesture (starting
* with ACTION_DOWN).
* Thus, the touch has been transferred from the top window into the bottom window, because the top
* window moved itself away from the touched location and had Flag::SLIPPERY.
*
* Even though the top window moved away from the touched location, it is still obscuring the bottom
* window. It's just not obscuring it at the touched location. That means, FLAG_WINDOW_IS_PARTIALLY_
* OBSCURED should be set for the MotionEvent that reaches the bottom window.
*
* In this test, we ensure that the event received by the bottom window has
* FLAG_WINDOW_IS_PARTIALLY_OBSCURED.
*/
TEST_F(InputDispatcherTest, SlipperyWindow_SetsFlagPartiallyObscured) {
constexpr int32_t SLIPPERY_PID = WINDOW_PID + 1;
constexpr int32_t SLIPPERY_UID = WINDOW_UID + 1;
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
sp<FakeWindowHandle> slipperyExitWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Top", ADISPLAY_ID_DEFAULT);
slipperyExitWindow->setSlippery(true);
// Make sure this one overlaps the bottom window
slipperyExitWindow->setFrame(Rect(25, 25, 75, 75));
// Change the owner uid/pid of the window so that it is considered to be occluding the bottom
// one. Windows with the same owner are not considered to be occluding each other.
slipperyExitWindow->setOwnerInfo(SLIPPERY_PID, SLIPPERY_UID);
sp<FakeWindowHandle> slipperyEnterWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Second", ADISPLAY_ID_DEFAULT);
slipperyExitWindow->setFrame(Rect(0, 0, 100, 100));
mDispatcher->setInputWindows(
{{ADISPLAY_ID_DEFAULT, {slipperyExitWindow, slipperyEnterWindow}}});
// Use notifyMotion instead of injecting to avoid dealing with injection permissions
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{{50, 50}}));
slipperyExitWindow->consumeMotionDown();
slipperyExitWindow->setFrame(Rect(70, 70, 100, 100));
mDispatcher->setInputWindows(
{{ADISPLAY_ID_DEFAULT, {slipperyExitWindow, slipperyEnterWindow}}});
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_MOVE,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{{51, 51}}));
slipperyExitWindow->consumeMotionCancel();
slipperyEnterWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT,
AMOTION_EVENT_FLAG_WINDOW_IS_PARTIALLY_OBSCURED);
}
/**
* Two windows, one on the left and another on the right. The left window is slippery. The right
* window isn't eligible to receive touch because it specifies InputConfig::DROP_INPUT. When the
* touch moves from the left window into the right window, the gesture should continue to go to the
* left window. Touch shouldn't slip because the right window can't receive touches. This test
* reproduces a crash.
*/
TEST_F(InputDispatcherTest, TouchSlippingIntoWindowThatDropsTouches) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> leftSlipperyWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Left", ADISPLAY_ID_DEFAULT);
leftSlipperyWindow->setSlippery(true);
leftSlipperyWindow->setFrame(Rect(0, 0, 100, 100));
sp<FakeWindowHandle> rightDropTouchesWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Right", ADISPLAY_ID_DEFAULT);
rightDropTouchesWindow->setFrame(Rect(100, 0, 200, 100));
rightDropTouchesWindow->setDropInput(true);
mDispatcher->setInputWindows(
{{ADISPLAY_ID_DEFAULT, {leftSlipperyWindow, rightDropTouchesWindow}}});
// Start touch in the left window
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.pointer(PointerBuilder(0, ToolType::FINGER).x(50).y(50))
.build());
leftSlipperyWindow->consumeMotionDown();
// And move it into the right window
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN)
.pointer(PointerBuilder(0, ToolType::FINGER).x(150).y(50))
.build());
// Since the right window isn't eligible to receive input, touch does not slip.
// The left window continues to receive the gesture.
leftSlipperyWindow->consumeMotionEvent(WithMotionAction(ACTION_MOVE));
rightDropTouchesWindow->assertNoEvents();
}
TEST_F(InputDispatcherTest, NotifiesDeviceInteractionsWithMotions) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> leftWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Left", ADISPLAY_ID_DEFAULT);
leftWindow->setFrame(Rect(0, 0, 100, 100));
leftWindow->setOwnerInfo(1, 101);
sp<FakeWindowHandle> rightSpy =
sp<FakeWindowHandle>::make(application, mDispatcher, "Right spy", ADISPLAY_ID_DEFAULT);
rightSpy->setFrame(Rect(100, 0, 200, 100));
rightSpy->setOwnerInfo(2, 102);
rightSpy->setSpy(true);
rightSpy->setTrustedOverlay(true);
sp<FakeWindowHandle> rightWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Right", ADISPLAY_ID_DEFAULT);
rightWindow->setFrame(Rect(100, 0, 200, 100));
rightWindow->setOwnerInfo(3, 103);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {rightSpy, rightWindow, leftWindow}}});
// Touch in the left window
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.pointer(PointerBuilder(0, ToolType::FINGER).x(50).y(50))
.build());
ASSERT_NO_FATAL_FAILURE(leftWindow->consumeMotionDown());
mDispatcher->waitForIdle();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertNotifyDeviceInteractionWasCalled(DEVICE_ID, {101}));
// Touch another finger over the right windows
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.pointer(PointerBuilder(0, ToolType::FINGER).x(50).y(50))
.pointer(PointerBuilder(1, ToolType::FINGER).x(150).y(50))
.build());
ASSERT_NO_FATAL_FAILURE(rightSpy->consumeMotionDown());
ASSERT_NO_FATAL_FAILURE(rightWindow->consumeMotionDown());
ASSERT_NO_FATAL_FAILURE(leftWindow->consumeMotionMove());
mDispatcher->waitForIdle();
ASSERT_NO_FATAL_FAILURE(
mFakePolicy->assertNotifyDeviceInteractionWasCalled(DEVICE_ID, {101, 102, 103}));
// Release finger over left window. The UP actions are not treated as device interaction.
// The windows that did not receive the UP pointer will receive MOVE events, but since this
// is part of the UP action, we do not treat this as device interaction.
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_0_UP, AINPUT_SOURCE_TOUCHSCREEN)
.pointer(PointerBuilder(0, ToolType::FINGER).x(50).y(50))
.pointer(PointerBuilder(1, ToolType::FINGER).x(150).y(50))
.build());
ASSERT_NO_FATAL_FAILURE(leftWindow->consumeMotionUp());
ASSERT_NO_FATAL_FAILURE(rightSpy->consumeMotionMove());
ASSERT_NO_FATAL_FAILURE(rightWindow->consumeMotionMove());
mDispatcher->waitForIdle();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertNotifyDeviceInteractionWasNotCalled());
// Move remaining finger
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN)
.pointer(PointerBuilder(1, ToolType::FINGER).x(150).y(50))
.build());
ASSERT_NO_FATAL_FAILURE(rightSpy->consumeMotionMove());
ASSERT_NO_FATAL_FAILURE(rightWindow->consumeMotionMove());
mDispatcher->waitForIdle();
ASSERT_NO_FATAL_FAILURE(
mFakePolicy->assertNotifyDeviceInteractionWasCalled(DEVICE_ID, {102, 103}));
// Release all fingers
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN)
.pointer(PointerBuilder(1, ToolType::FINGER).x(150).y(50))
.build());
ASSERT_NO_FATAL_FAILURE(rightSpy->consumeMotionUp());
ASSERT_NO_FATAL_FAILURE(rightWindow->consumeMotionUp());
mDispatcher->waitForIdle();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertNotifyDeviceInteractionWasNotCalled());
}
TEST_F(InputDispatcherTest, NotifiesDeviceInteractionsWithKeys) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 100, 100));
window->setOwnerInfo(1, 101);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
ASSERT_NO_FATAL_FAILURE(window->consumeFocusEvent(true));
mDispatcher->notifyKey(KeyArgsBuilder(ACTION_DOWN, AINPUT_SOURCE_KEYBOARD).build());
ASSERT_NO_FATAL_FAILURE(window->consumeKeyDown(ADISPLAY_ID_DEFAULT));
mDispatcher->waitForIdle();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertNotifyDeviceInteractionWasCalled(DEVICE_ID, {101}));
// The UP actions are not treated as device interaction.
mDispatcher->notifyKey(KeyArgsBuilder(ACTION_UP, AINPUT_SOURCE_KEYBOARD).build());
ASSERT_NO_FATAL_FAILURE(window->consumeKeyUp(ADISPLAY_ID_DEFAULT));
mDispatcher->waitForIdle();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertNotifyDeviceInteractionWasNotCalled());
}
class InputDispatcherKeyRepeatTest : public InputDispatcherTest {
protected:
static constexpr nsecs_t KEY_REPEAT_TIMEOUT = 40 * 1000000; // 40 ms
static constexpr nsecs_t KEY_REPEAT_DELAY = 40 * 1000000; // 40 ms
std::shared_ptr<FakeApplicationHandle> mApp;
sp<FakeWindowHandle> mWindow;
virtual void SetUp() override {
mFakePolicy = std::make_unique<FakeInputDispatcherPolicy>();
mFakePolicy->setKeyRepeatConfiguration(KEY_REPEAT_TIMEOUT, KEY_REPEAT_DELAY);
mDispatcher = std::make_unique<InputDispatcher>(*mFakePolicy);
mDispatcher->requestRefreshConfiguration();
mDispatcher->setInputDispatchMode(/*enabled*/ true, /*frozen*/ false);
ASSERT_EQ(OK, mDispatcher->start());
setUpWindow();
}
void setUpWindow() {
mApp = std::make_shared<FakeApplicationHandle>();
mWindow = sp<FakeWindowHandle>::make(mApp, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
mWindow->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
setFocusedWindow(mWindow);
mWindow->consumeFocusEvent(true);
}
void sendAndConsumeKeyDown(int32_t deviceId) {
NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT);
keyArgs.deviceId = deviceId;
keyArgs.policyFlags |= POLICY_FLAG_TRUSTED; // Otherwise it won't generate repeat event
mDispatcher->notifyKey(keyArgs);
// Window should receive key down event.
mWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT);
}
void expectKeyRepeatOnce(int32_t repeatCount) {
SCOPED_TRACE(StringPrintf("Checking event with repeat count %" PRId32, repeatCount));
InputEvent* repeatEvent = mWindow->consume();
ASSERT_NE(nullptr, repeatEvent);
ASSERT_EQ(InputEventType::KEY, repeatEvent->getType());
KeyEvent* repeatKeyEvent = static_cast<KeyEvent*>(repeatEvent);
uint32_t eventAction = repeatKeyEvent->getAction();
EXPECT_EQ(AKEY_EVENT_ACTION_DOWN, eventAction);
EXPECT_EQ(repeatCount, repeatKeyEvent->getRepeatCount());
}
void sendAndConsumeKeyUp(int32_t deviceId) {
NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_UP, ADISPLAY_ID_DEFAULT);
keyArgs.deviceId = deviceId;
keyArgs.policyFlags |= POLICY_FLAG_TRUSTED; // Unless it won't generate repeat event
mDispatcher->notifyKey(keyArgs);
// Window should receive key down event.
mWindow->consumeEvent(InputEventType::KEY, AKEY_EVENT_ACTION_UP, ADISPLAY_ID_DEFAULT,
/*expectedFlags=*/0);
}
};
TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_ReceivesKeyRepeat) {
sendAndConsumeKeyDown(/*deviceId=*/1);
for (int32_t repeatCount = 1; repeatCount <= 10; ++repeatCount) {
expectKeyRepeatOnce(repeatCount);
}
}
TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_ReceivesKeyRepeatFromTwoDevices) {
sendAndConsumeKeyDown(/*deviceId=*/1);
for (int32_t repeatCount = 1; repeatCount <= 10; ++repeatCount) {
expectKeyRepeatOnce(repeatCount);
}
sendAndConsumeKeyDown(/*deviceId=*/2);
/* repeatCount will start from 1 for deviceId 2 */
for (int32_t repeatCount = 1; repeatCount <= 10; ++repeatCount) {
expectKeyRepeatOnce(repeatCount);
}
}
TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_StopsKeyRepeatAfterUp) {
sendAndConsumeKeyDown(/*deviceId=*/1);
expectKeyRepeatOnce(/*repeatCount=*/1);
sendAndConsumeKeyUp(/*deviceId=*/1);
mWindow->assertNoEvents();
}
TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_KeyRepeatAfterStaleDeviceKeyUp) {
sendAndConsumeKeyDown(/*deviceId=*/1);
expectKeyRepeatOnce(/*repeatCount=*/1);
sendAndConsumeKeyDown(/*deviceId=*/2);
expectKeyRepeatOnce(/*repeatCount=*/1);
// Stale key up from device 1.
sendAndConsumeKeyUp(/*deviceId=*/1);
// Device 2 is still down, keep repeating
expectKeyRepeatOnce(/*repeatCount=*/2);
expectKeyRepeatOnce(/*repeatCount=*/3);
// Device 2 key up
sendAndConsumeKeyUp(/*deviceId=*/2);
mWindow->assertNoEvents();
}
TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_KeyRepeatStopsAfterRepeatingKeyUp) {
sendAndConsumeKeyDown(/*deviceId=*/1);
expectKeyRepeatOnce(/*repeatCount=*/1);
sendAndConsumeKeyDown(/*deviceId=*/2);
expectKeyRepeatOnce(/*repeatCount=*/1);
// Device 2 which holds the key repeating goes up, expect the repeating to stop.
sendAndConsumeKeyUp(/*deviceId=*/2);
// Device 1 still holds key down, but the repeating was already stopped
mWindow->assertNoEvents();
}
TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_StopsKeyRepeatAfterDisableInputDevice) {
sendAndConsumeKeyDown(DEVICE_ID);
expectKeyRepeatOnce(/*repeatCount=*/1);
mDispatcher->notifyDeviceReset({/*id=*/10, /*eventTime=*/20, DEVICE_ID});
mWindow->consumeKeyUp(ADISPLAY_ID_DEFAULT,
AKEY_EVENT_FLAG_CANCELED | AKEY_EVENT_FLAG_LONG_PRESS);
mWindow->assertNoEvents();
}
TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_RepeatKeyEventsUseEventIdFromInputDispatcher) {
GTEST_SKIP() << "Flaky test (b/270393106)";
sendAndConsumeKeyDown(/*deviceId=*/1);
for (int32_t repeatCount = 1; repeatCount <= 10; ++repeatCount) {
InputEvent* repeatEvent = mWindow->consume();
ASSERT_NE(nullptr, repeatEvent) << "Didn't receive event with repeat count " << repeatCount;
EXPECT_EQ(IdGenerator::Source::INPUT_DISPATCHER,
IdGenerator::getSource(repeatEvent->getId()));
}
}
TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_RepeatKeyEventsUseUniqueEventId) {
GTEST_SKIP() << "Flaky test (b/270393106)";
sendAndConsumeKeyDown(/*deviceId=*/1);
std::unordered_set<int32_t> idSet;
for (int32_t repeatCount = 1; repeatCount <= 10; ++repeatCount) {
InputEvent* repeatEvent = mWindow->consume();
ASSERT_NE(nullptr, repeatEvent) << "Didn't receive event with repeat count " << repeatCount;
int32_t id = repeatEvent->getId();
EXPECT_EQ(idSet.end(), idSet.find(id));
idSet.insert(id);
}
}
/* Test InputDispatcher for MultiDisplay */
class InputDispatcherFocusOnTwoDisplaysTest : public InputDispatcherTest {
public:
virtual void SetUp() override {
InputDispatcherTest::SetUp();
application1 = std::make_shared<FakeApplicationHandle>();
windowInPrimary =
sp<FakeWindowHandle>::make(application1, mDispatcher, "D_1", ADISPLAY_ID_DEFAULT);
// Set focus window for primary display, but focused display would be second one.
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application1);
windowInPrimary->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowInPrimary}}});
setFocusedWindow(windowInPrimary);
windowInPrimary->consumeFocusEvent(true);
application2 = std::make_shared<FakeApplicationHandle>();
windowInSecondary =
sp<FakeWindowHandle>::make(application2, mDispatcher, "D_2", SECOND_DISPLAY_ID);
// Set focus to second display window.
// Set focus display to second one.
mDispatcher->setFocusedDisplay(SECOND_DISPLAY_ID);
// Set focus window for second display.
mDispatcher->setFocusedApplication(SECOND_DISPLAY_ID, application2);
windowInSecondary->setFocusable(true);
mDispatcher->setInputWindows({{SECOND_DISPLAY_ID, {windowInSecondary}}});
setFocusedWindow(windowInSecondary);
windowInSecondary->consumeFocusEvent(true);
}
virtual void TearDown() override {
InputDispatcherTest::TearDown();
application1.reset();
windowInPrimary.clear();
application2.reset();
windowInSecondary.clear();
}
protected:
std::shared_ptr<FakeApplicationHandle> application1;
sp<FakeWindowHandle> windowInPrimary;
std::shared_ptr<FakeApplicationHandle> application2;
sp<FakeWindowHandle> windowInSecondary;
};
TEST_F(InputDispatcherFocusOnTwoDisplaysTest, SetInputWindow_MultiDisplayTouch) {
// Test touch down on primary display.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
windowInPrimary->consumeMotionDown(ADISPLAY_ID_DEFAULT);
windowInSecondary->assertNoEvents();
// Test touch down on second display.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, SECOND_DISPLAY_ID))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
windowInPrimary->assertNoEvents();
windowInSecondary->consumeMotionDown(SECOND_DISPLAY_ID);
}
TEST_F(InputDispatcherFocusOnTwoDisplaysTest, SetInputWindow_MultiDisplayFocus) {
// Test inject a key down with display id specified.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectKeyDownNoRepeat(mDispatcher, ADISPLAY_ID_DEFAULT))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
windowInPrimary->consumeKeyDown(ADISPLAY_ID_DEFAULT);
windowInSecondary->assertNoEvents();
// Test inject a key down without display id specified.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDownNoRepeat(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
windowInPrimary->assertNoEvents();
windowInSecondary->consumeKeyDown(ADISPLAY_ID_NONE);
// Remove all windows in secondary display.
mDispatcher->setInputWindows({{SECOND_DISPLAY_ID, {}}});
// Old focus should receive a cancel event.
windowInSecondary->consumeEvent(InputEventType::KEY, AKEY_EVENT_ACTION_UP, ADISPLAY_ID_NONE,
AKEY_EVENT_FLAG_CANCELED);
// Test inject a key down, should timeout because of no target window.
ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, injectKeyDownNoRepeat(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::TIMED_OUT";
windowInPrimary->assertNoEvents();
windowInSecondary->consumeFocusEvent(false);
windowInSecondary->assertNoEvents();
}
// Test per-display input monitors for motion event.
TEST_F(InputDispatcherFocusOnTwoDisplaysTest, MonitorMotionEvent_MultiDisplay) {
FakeMonitorReceiver monitorInPrimary =
FakeMonitorReceiver(mDispatcher, "M_1", ADISPLAY_ID_DEFAULT);
FakeMonitorReceiver monitorInSecondary =
FakeMonitorReceiver(mDispatcher, "M_2", SECOND_DISPLAY_ID);
// Test touch down on primary display.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
windowInPrimary->consumeMotionDown(ADISPLAY_ID_DEFAULT);
monitorInPrimary.consumeMotionDown(ADISPLAY_ID_DEFAULT);
windowInSecondary->assertNoEvents();
monitorInSecondary.assertNoEvents();
// Test touch down on second display.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, SECOND_DISPLAY_ID))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
windowInPrimary->assertNoEvents();
monitorInPrimary.assertNoEvents();
windowInSecondary->consumeMotionDown(SECOND_DISPLAY_ID);
monitorInSecondary.consumeMotionDown(SECOND_DISPLAY_ID);
// Lift up the touch from the second display
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, SECOND_DISPLAY_ID))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
windowInSecondary->consumeMotionUp(SECOND_DISPLAY_ID);
monitorInSecondary.consumeMotionUp(SECOND_DISPLAY_ID);
// Test inject a non-pointer motion event.
// If specific a display, it will dispatch to the focused window of particular display,
// or it will dispatch to the focused window of focused display.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TRACKBALL, ADISPLAY_ID_NONE))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
windowInPrimary->assertNoEvents();
monitorInPrimary.assertNoEvents();
windowInSecondary->consumeMotionDown(ADISPLAY_ID_NONE);
monitorInSecondary.consumeMotionDown(ADISPLAY_ID_NONE);
}
// Test per-display input monitors for key event.
TEST_F(InputDispatcherFocusOnTwoDisplaysTest, MonitorKeyEvent_MultiDisplay) {
// Input monitor per display.
FakeMonitorReceiver monitorInPrimary =
FakeMonitorReceiver(mDispatcher, "M_1", ADISPLAY_ID_DEFAULT);
FakeMonitorReceiver monitorInSecondary =
FakeMonitorReceiver(mDispatcher, "M_2", SECOND_DISPLAY_ID);
// Test inject a key down.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
windowInPrimary->assertNoEvents();
monitorInPrimary.assertNoEvents();
windowInSecondary->consumeKeyDown(ADISPLAY_ID_NONE);
monitorInSecondary.consumeKeyDown(ADISPLAY_ID_NONE);
}
TEST_F(InputDispatcherFocusOnTwoDisplaysTest, CanFocusWindowOnUnfocusedDisplay) {
sp<FakeWindowHandle> secondWindowInPrimary =
sp<FakeWindowHandle>::make(application1, mDispatcher, "D_1_W2", ADISPLAY_ID_DEFAULT);
secondWindowInPrimary->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowInPrimary, secondWindowInPrimary}}});
setFocusedWindow(secondWindowInPrimary);
windowInPrimary->consumeFocusEvent(false);
secondWindowInPrimary->consumeFocusEvent(true);
// Test inject a key down.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher, ADISPLAY_ID_DEFAULT))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
windowInPrimary->assertNoEvents();
windowInSecondary->assertNoEvents();
secondWindowInPrimary->consumeKeyDown(ADISPLAY_ID_DEFAULT);
}
TEST_F(InputDispatcherFocusOnTwoDisplaysTest, CancelTouch_MultiDisplay) {
FakeMonitorReceiver monitorInPrimary =
FakeMonitorReceiver(mDispatcher, "M_1", ADISPLAY_ID_DEFAULT);
FakeMonitorReceiver monitorInSecondary =
FakeMonitorReceiver(mDispatcher, "M_2", SECOND_DISPLAY_ID);
// Test touch down on primary display.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
windowInPrimary->consumeMotionDown(ADISPLAY_ID_DEFAULT);
monitorInPrimary.consumeMotionDown(ADISPLAY_ID_DEFAULT);
// Test touch down on second display.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, SECOND_DISPLAY_ID))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
windowInSecondary->consumeMotionDown(SECOND_DISPLAY_ID);
monitorInSecondary.consumeMotionDown(SECOND_DISPLAY_ID);
// Trigger cancel touch.
mDispatcher->cancelCurrentTouch();
windowInPrimary->consumeMotionCancel(ADISPLAY_ID_DEFAULT);
monitorInPrimary.consumeMotionCancel(ADISPLAY_ID_DEFAULT);
windowInSecondary->consumeMotionCancel(SECOND_DISPLAY_ID);
monitorInSecondary.consumeMotionCancel(SECOND_DISPLAY_ID);
// Test inject a move motion event, no window/monitor should receive the event.
ASSERT_EQ(InputEventInjectionResult::FAILED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {110, 200}))
<< "Inject motion event should return InputEventInjectionResult::FAILED";
windowInPrimary->assertNoEvents();
monitorInPrimary.assertNoEvents();
ASSERT_EQ(InputEventInjectionResult::FAILED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
SECOND_DISPLAY_ID, {110, 200}))
<< "Inject motion event should return InputEventInjectionResult::FAILED";
windowInSecondary->assertNoEvents();
monitorInSecondary.assertNoEvents();
}
class InputFilterTest : public InputDispatcherTest {
protected:
void testNotifyMotion(int32_t displayId, bool expectToBeFiltered,
const ui::Transform& transform = ui::Transform()) {
NotifyMotionArgs motionArgs;
motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, displayId);
mDispatcher->notifyMotion(motionArgs);
motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN, displayId);
mDispatcher->notifyMotion(motionArgs);
ASSERT_TRUE(mDispatcher->waitForIdle());
if (expectToBeFiltered) {
const auto xy = transform.transform(motionArgs.pointerCoords[0].getXYValue());
mFakePolicy->assertFilterInputEventWasCalled(motionArgs, xy);
} else {
mFakePolicy->assertFilterInputEventWasNotCalled();
}
}
void testNotifyKey(bool expectToBeFiltered) {
NotifyKeyArgs keyArgs;
keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN);
mDispatcher->notifyKey(keyArgs);
keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_UP);
mDispatcher->notifyKey(keyArgs);
ASSERT_TRUE(mDispatcher->waitForIdle());
if (expectToBeFiltered) {
mFakePolicy->assertFilterInputEventWasCalled(keyArgs);
} else {
mFakePolicy->assertFilterInputEventWasNotCalled();
}
}
};
// Test InputFilter for MotionEvent
TEST_F(InputFilterTest, MotionEvent_InputFilter) {
// Since the InputFilter is disabled by default, check if touch events aren't filtered.
testNotifyMotion(ADISPLAY_ID_DEFAULT, /*expectToBeFiltered*/ false);
testNotifyMotion(SECOND_DISPLAY_ID, /*expectToBeFiltered*/ false);
// Enable InputFilter
mDispatcher->setInputFilterEnabled(true);
// Test touch on both primary and second display, and check if both events are filtered.
testNotifyMotion(ADISPLAY_ID_DEFAULT, /*expectToBeFiltered*/ true);
testNotifyMotion(SECOND_DISPLAY_ID, /*expectToBeFiltered*/ true);
// Disable InputFilter
mDispatcher->setInputFilterEnabled(false);
// Test touch on both primary and second display, and check if both events aren't filtered.
testNotifyMotion(ADISPLAY_ID_DEFAULT, /*expectToBeFiltered*/ false);
testNotifyMotion(SECOND_DISPLAY_ID, /*expectToBeFiltered*/ false);
}
// Test InputFilter for KeyEvent
TEST_F(InputFilterTest, KeyEvent_InputFilter) {
// Since the InputFilter is disabled by default, check if key event aren't filtered.
testNotifyKey(/*expectToBeFiltered*/ false);
// Enable InputFilter
mDispatcher->setInputFilterEnabled(true);
// Send a key event, and check if it is filtered.
testNotifyKey(/*expectToBeFiltered*/ true);
// Disable InputFilter
mDispatcher->setInputFilterEnabled(false);
// Send a key event, and check if it isn't filtered.
testNotifyKey(/*expectToBeFiltered*/ false);
}
// Ensure that MotionEvents sent to the InputFilter through InputListener are converted to the
// logical display coordinate space.
TEST_F(InputFilterTest, MotionEvent_UsesLogicalDisplayCoordinates_notifyMotion) {
ui::Transform firstDisplayTransform;
firstDisplayTransform.set({1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 0, 0, 1});
ui::Transform secondDisplayTransform;
secondDisplayTransform.set({-6.6, -5.5, -4.4, -3.3, -2.2, -1.1, 0, 0, 1});
std::vector<gui::DisplayInfo> displayInfos(2);
displayInfos[0].displayId = ADISPLAY_ID_DEFAULT;
displayInfos[0].transform = firstDisplayTransform;
displayInfos[1].displayId = SECOND_DISPLAY_ID;
displayInfos[1].transform = secondDisplayTransform;
mDispatcher->onWindowInfosChanged({{}, displayInfos, 0, 0});
// Enable InputFilter
mDispatcher->setInputFilterEnabled(true);
// Ensure the correct transforms are used for the displays.
testNotifyMotion(ADISPLAY_ID_DEFAULT, /*expectToBeFiltered*/ true, firstDisplayTransform);
testNotifyMotion(SECOND_DISPLAY_ID, /*expectToBeFiltered*/ true, secondDisplayTransform);
}
class InputFilterInjectionPolicyTest : public InputDispatcherTest {
protected:
virtual void SetUp() override {
InputDispatcherTest::SetUp();
/**
* We don't need to enable input filter to test the injected event policy, but we enabled it
* here to make the tests more realistic, since this policy only matters when inputfilter is
* on.
*/
mDispatcher->setInputFilterEnabled(true);
std::shared_ptr<InputApplicationHandle> application =
std::make_shared<FakeApplicationHandle>();
mWindow = sp<FakeWindowHandle>::make(application, mDispatcher, "Test Window",
ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
mWindow->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
setFocusedWindow(mWindow);
mWindow->consumeFocusEvent(true);
}
void testInjectedKey(int32_t policyFlags, int32_t injectedDeviceId, int32_t resolvedDeviceId,
int32_t flags) {
KeyEvent event;
const nsecs_t eventTime = systemTime(SYSTEM_TIME_MONOTONIC);
event.initialize(InputEvent::nextId(), injectedDeviceId, AINPUT_SOURCE_KEYBOARD,
ADISPLAY_ID_NONE, INVALID_HMAC, AKEY_EVENT_ACTION_DOWN, 0, AKEYCODE_A,
KEY_A, AMETA_NONE, /*repeatCount=*/0, eventTime, eventTime);
const int32_t additionalPolicyFlags =
POLICY_FLAG_PASS_TO_USER | POLICY_FLAG_DISABLE_KEY_REPEAT;
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
mDispatcher->injectInputEvent(&event, /*targetUid=*/{},
InputEventInjectionSync::WAIT_FOR_RESULT, 10ms,
policyFlags | additionalPolicyFlags));
InputEvent* received = mWindow->consume();
ASSERT_NE(nullptr, received);
ASSERT_EQ(resolvedDeviceId, received->getDeviceId());
ASSERT_EQ(received->getType(), InputEventType::KEY);
KeyEvent& keyEvent = static_cast<KeyEvent&>(*received);
ASSERT_EQ(flags, keyEvent.getFlags());
}
void testInjectedMotion(int32_t policyFlags, int32_t injectedDeviceId, int32_t resolvedDeviceId,
int32_t flags) {
MotionEvent event;
PointerProperties pointerProperties[1];
PointerCoords pointerCoords[1];
pointerProperties[0].clear();
pointerProperties[0].id = 0;
pointerCoords[0].clear();
pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, 300);
pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, 400);
ui::Transform identityTransform;
const nsecs_t eventTime = systemTime(SYSTEM_TIME_MONOTONIC);
event.initialize(InputEvent::nextId(), injectedDeviceId, AINPUT_SOURCE_TOUCHSCREEN,
DISPLAY_ID, INVALID_HMAC, AMOTION_EVENT_ACTION_DOWN, 0, 0,
AMOTION_EVENT_EDGE_FLAG_NONE, AMETA_NONE, 0, MotionClassification::NONE,
identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform, eventTime,
eventTime,
/*pointerCount*/ 1, pointerProperties, pointerCoords);
const int32_t additionalPolicyFlags = POLICY_FLAG_PASS_TO_USER;
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
mDispatcher->injectInputEvent(&event, /*targetUid=*/{},
InputEventInjectionSync::WAIT_FOR_RESULT, 10ms,
policyFlags | additionalPolicyFlags));
InputEvent* received = mWindow->consume();
ASSERT_NE(nullptr, received);
ASSERT_EQ(resolvedDeviceId, received->getDeviceId());
ASSERT_EQ(received->getType(), InputEventType::MOTION);
MotionEvent& motionEvent = static_cast<MotionEvent&>(*received);
ASSERT_EQ(flags, motionEvent.getFlags());
}
private:
sp<FakeWindowHandle> mWindow;
};
TEST_F(InputFilterInjectionPolicyTest, TrustedFilteredEvents_KeepOriginalDeviceId) {
// Must have POLICY_FLAG_FILTERED here to indicate that the event has gone through the input
// filter. Without it, the event will no different from a regularly injected event, and the
// injected device id will be overwritten.
testInjectedKey(POLICY_FLAG_FILTERED, /*injectedDeviceId=*/3, /*resolvedDeviceId=*/3,
/*flags=*/0);
}
TEST_F(InputFilterInjectionPolicyTest, KeyEventsInjectedFromAccessibility_HaveAccessibilityFlag) {
testInjectedKey(POLICY_FLAG_FILTERED | POLICY_FLAG_INJECTED_FROM_ACCESSIBILITY,
/*injectedDeviceId=*/3, /*resolvedDeviceId=*/3,
AKEY_EVENT_FLAG_IS_ACCESSIBILITY_EVENT);
}
TEST_F(InputFilterInjectionPolicyTest,
MotionEventsInjectedFromAccessibility_HaveAccessibilityFlag) {
testInjectedMotion(POLICY_FLAG_FILTERED | POLICY_FLAG_INJECTED_FROM_ACCESSIBILITY,
/*injectedDeviceId=*/3, /*resolvedDeviceId=*/3,
AMOTION_EVENT_FLAG_IS_ACCESSIBILITY_EVENT);
}
TEST_F(InputFilterInjectionPolicyTest, RegularInjectedEvents_ReceiveVirtualDeviceId) {
testInjectedKey(/*policyFlags=*/0, /*injectedDeviceId=*/3,
/*resolvedDeviceId=*/VIRTUAL_KEYBOARD_ID, /*flags=*/0);
}
class InputDispatcherOnPointerDownOutsideFocus : public InputDispatcherTest {
virtual void SetUp() override {
InputDispatcherTest::SetUp();
std::shared_ptr<FakeApplicationHandle> application =
std::make_shared<FakeApplicationHandle>();
mUnfocusedWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Top", ADISPLAY_ID_DEFAULT);
mUnfocusedWindow->setFrame(Rect(0, 0, 30, 30));
mFocusedWindow =
sp<FakeWindowHandle>::make(application, mDispatcher, "Second", ADISPLAY_ID_DEFAULT);
mFocusedWindow->setFrame(Rect(50, 50, 100, 100));
// Set focused application.
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
mFocusedWindow->setFocusable(true);
// Expect one focus window exist in display.
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mUnfocusedWindow, mFocusedWindow}}});
setFocusedWindow(mFocusedWindow);
mFocusedWindow->consumeFocusEvent(true);
}
virtual void TearDown() override {
InputDispatcherTest::TearDown();
mUnfocusedWindow.clear();
mFocusedWindow.clear();
}
protected:
sp<FakeWindowHandle> mUnfocusedWindow;
sp<FakeWindowHandle> mFocusedWindow;
static constexpr PointF FOCUSED_WINDOW_TOUCH_POINT = {60, 60};
};
// Have two windows, one with focus. Inject MotionEvent with source TOUCHSCREEN and action
// DOWN on the window that doesn't have focus. Ensure the window that didn't have focus received
// the onPointerDownOutsideFocus callback.
TEST_F(InputDispatcherOnPointerDownOutsideFocus, OnPointerDownOutsideFocus_Success) {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{20, 20}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mUnfocusedWindow->consumeMotionDown();
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertOnPointerDownEquals(mUnfocusedWindow->getToken());
}
// Have two windows, one with focus. Inject MotionEvent with source TRACKBALL and action
// DOWN on the window that doesn't have focus. Ensure no window received the
// onPointerDownOutsideFocus callback.
TEST_F(InputDispatcherOnPointerDownOutsideFocus, OnPointerDownOutsideFocus_NonPointerSource) {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TRACKBALL, ADISPLAY_ID_DEFAULT, {20, 20}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mFocusedWindow->consumeMotionDown();
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertOnPointerDownWasNotCalled();
}
// Have two windows, one with focus. Inject KeyEvent with action DOWN on the window that doesn't
// have focus. Ensure no window received the onPointerDownOutsideFocus callback.
TEST_F(InputDispatcherOnPointerDownOutsideFocus, OnPointerDownOutsideFocus_NonMotionFailure) {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectKeyDownNoRepeat(mDispatcher, ADISPLAY_ID_DEFAULT))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mFocusedWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT);
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertOnPointerDownWasNotCalled();
}
// Have two windows, one with focus. Inject MotionEvent with source TOUCHSCREEN and action
// DOWN on the window that already has focus. Ensure no window received the
// onPointerDownOutsideFocus callback.
TEST_F(InputDispatcherOnPointerDownOutsideFocus, OnPointerDownOutsideFocus_OnAlreadyFocusedWindow) {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
FOCUSED_WINDOW_TOUCH_POINT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mFocusedWindow->consumeMotionDown();
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertOnPointerDownWasNotCalled();
}
// Have two windows, one with focus. Injecting a trusted DOWN MotionEvent with the flag
// NO_FOCUS_CHANGE on the unfocused window should not call the onPointerDownOutsideFocus callback.
TEST_F(InputDispatcherOnPointerDownOutsideFocus, NoFocusChangeFlag) {
const MotionEvent event =
MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_MOUSE)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/*id=*/0, ToolType::FINGER).x(20).y(20))
.addFlag(AMOTION_EVENT_FLAG_NO_FOCUS_CHANGE)
.build();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, event))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mUnfocusedWindow->consumeAnyMotionDown(ADISPLAY_ID_DEFAULT, AMOTION_EVENT_FLAG_NO_FOCUS_CHANGE);
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertOnPointerDownWasNotCalled();
// Ensure that the unfocused window did not receive any FOCUS events.
mUnfocusedWindow->assertNoEvents();
}
// These tests ensures we can send touch events to a single client when there are multiple input
// windows that point to the same client token.
class InputDispatcherMultiWindowSameTokenTests : public InputDispatcherTest {
virtual void SetUp() override {
InputDispatcherTest::SetUp();
std::shared_ptr<FakeApplicationHandle> application =
std::make_shared<FakeApplicationHandle>();
mWindow1 = sp<FakeWindowHandle>::make(application, mDispatcher, "Fake Window 1",
ADISPLAY_ID_DEFAULT);
mWindow1->setFrame(Rect(0, 0, 100, 100));
mWindow2 = sp<FakeWindowHandle>::make(application, mDispatcher, "Fake Window 2",
ADISPLAY_ID_DEFAULT, mWindow1->getToken());
mWindow2->setFrame(Rect(100, 100, 200, 200));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow1, mWindow2}}});
}
protected:
sp<FakeWindowHandle> mWindow1;
sp<FakeWindowHandle> mWindow2;
// Helper function to convert the point from screen coordinates into the window's space
static PointF getPointInWindow(const WindowInfo* windowInfo, const PointF& point) {
vec2 vals = windowInfo->transform.transform(point.x, point.y);
return {vals.x, vals.y};
}
void consumeMotionEvent(const sp<FakeWindowHandle>& window, int32_t expectedAction,
const std::vector<PointF>& points) {
const std::string name = window->getName();
InputEvent* event = window->consume();
ASSERT_NE(nullptr, event) << name.c_str()
<< ": consumer should have returned non-NULL event.";
ASSERT_EQ(InputEventType::MOTION, event->getType())
<< name.c_str() << ": expected MotionEvent, got " << *event;
const MotionEvent& motionEvent = static_cast<const MotionEvent&>(*event);
assertMotionAction(expectedAction, motionEvent.getAction());
ASSERT_EQ(points.size(), motionEvent.getPointerCount());
for (size_t i = 0; i < points.size(); i++) {
float expectedX = points[i].x;
float expectedY = points[i].y;
EXPECT_EQ(expectedX, motionEvent.getX(i))
<< "expected " << expectedX << " for x[" << i << "] coord of " << name.c_str()
<< ", got " << motionEvent.getX(i);
EXPECT_EQ(expectedY, motionEvent.getY(i))
<< "expected " << expectedY << " for y[" << i << "] coord of " << name.c_str()
<< ", got " << motionEvent.getY(i);
}
}
void touchAndAssertPositions(int32_t action, const std::vector<PointF>& touchedPoints,
std::vector<PointF> expectedPoints) {
mDispatcher->notifyMotion(generateMotionArgs(action, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, touchedPoints));
// Always consume from window1 since it's the window that has the InputReceiver
consumeMotionEvent(mWindow1, action, expectedPoints);
}
};
TEST_F(InputDispatcherMultiWindowSameTokenTests, SingleTouchSameScale) {
// Touch Window 1
PointF touchedPoint = {10, 10};
PointF expectedPoint = getPointInWindow(mWindow1->getInfo(), touchedPoint);
touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, {touchedPoint}, {expectedPoint});
// Release touch on Window 1
touchAndAssertPositions(AMOTION_EVENT_ACTION_UP, {touchedPoint}, {expectedPoint});
// Touch Window 2
touchedPoint = {150, 150};
expectedPoint = getPointInWindow(mWindow2->getInfo(), touchedPoint);
touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, {touchedPoint}, {expectedPoint});
}
TEST_F(InputDispatcherMultiWindowSameTokenTests, SingleTouchDifferentTransform) {
// Set scale value for window2
mWindow2->setWindowScale(0.5f, 0.5f);
// Touch Window 1
PointF touchedPoint = {10, 10};
PointF expectedPoint = getPointInWindow(mWindow1->getInfo(), touchedPoint);
touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, {touchedPoint}, {expectedPoint});
// Release touch on Window 1
touchAndAssertPositions(AMOTION_EVENT_ACTION_UP, {touchedPoint}, {expectedPoint});
// Touch Window 2
touchedPoint = {150, 150};
expectedPoint = getPointInWindow(mWindow2->getInfo(), touchedPoint);
touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, {touchedPoint}, {expectedPoint});
touchAndAssertPositions(AMOTION_EVENT_ACTION_UP, {touchedPoint}, {expectedPoint});
// Update the transform so rotation is set
mWindow2->setWindowTransform(0, -1, 1, 0);
expectedPoint = getPointInWindow(mWindow2->getInfo(), touchedPoint);
touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, {touchedPoint}, {expectedPoint});
}
TEST_F(InputDispatcherMultiWindowSameTokenTests, MultipleTouchDifferentTransform) {
mWindow2->setWindowScale(0.5f, 0.5f);
// Touch Window 1
std::vector<PointF> touchedPoints = {PointF{10, 10}};
std::vector<PointF> expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0])};
touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, touchedPoints, expectedPoints);
// Touch Window 2
touchedPoints.push_back(PointF{150, 150});
expectedPoints.push_back(getPointInWindow(mWindow2->getInfo(), touchedPoints[1]));
touchAndAssertPositions(POINTER_1_DOWN, touchedPoints, expectedPoints);
// Release Window 2
touchAndAssertPositions(POINTER_1_UP, touchedPoints, expectedPoints);
expectedPoints.pop_back();
// Update the transform so rotation is set for Window 2
mWindow2->setWindowTransform(0, -1, 1, 0);
expectedPoints.push_back(getPointInWindow(mWindow2->getInfo(), touchedPoints[1]));
touchAndAssertPositions(POINTER_1_DOWN, touchedPoints, expectedPoints);
}
TEST_F(InputDispatcherMultiWindowSameTokenTests, MultipleTouchMoveDifferentTransform) {
mWindow2->setWindowScale(0.5f, 0.5f);
// Touch Window 1
std::vector<PointF> touchedPoints = {PointF{10, 10}};
std::vector<PointF> expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0])};
touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, touchedPoints, expectedPoints);
// Touch Window 2
touchedPoints.push_back(PointF{150, 150});
expectedPoints.push_back(getPointInWindow(mWindow2->getInfo(), touchedPoints[1]));
touchAndAssertPositions(POINTER_1_DOWN, touchedPoints, expectedPoints);
// Move both windows
touchedPoints = {{20, 20}, {175, 175}};
expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0]),
getPointInWindow(mWindow2->getInfo(), touchedPoints[1])};
touchAndAssertPositions(AMOTION_EVENT_ACTION_MOVE, touchedPoints, expectedPoints);
// Release Window 2
touchAndAssertPositions(POINTER_1_UP, touchedPoints, expectedPoints);
expectedPoints.pop_back();
// Touch Window 2
mWindow2->setWindowTransform(0, -1, 1, 0);
expectedPoints.push_back(getPointInWindow(mWindow2->getInfo(), touchedPoints[1]));
touchAndAssertPositions(POINTER_1_DOWN, touchedPoints, expectedPoints);
// Move both windows
touchedPoints = {{20, 20}, {175, 175}};
expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0]),
getPointInWindow(mWindow2->getInfo(), touchedPoints[1])};
touchAndAssertPositions(AMOTION_EVENT_ACTION_MOVE, touchedPoints, expectedPoints);
}
TEST_F(InputDispatcherMultiWindowSameTokenTests, MultipleWindowsFirstTouchWithScale) {
mWindow1->setWindowScale(0.5f, 0.5f);
// Touch Window 1
std::vector<PointF> touchedPoints = {PointF{10, 10}};
std::vector<PointF> expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0])};
touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, touchedPoints, expectedPoints);
// Touch Window 2
touchedPoints.push_back(PointF{150, 150});
expectedPoints.push_back(getPointInWindow(mWindow2->getInfo(), touchedPoints[1]));
touchAndAssertPositions(POINTER_1_DOWN, touchedPoints, expectedPoints);
// Move both windows
touchedPoints = {{20, 20}, {175, 175}};
expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0]),
getPointInWindow(mWindow2->getInfo(), touchedPoints[1])};
touchAndAssertPositions(AMOTION_EVENT_ACTION_MOVE, touchedPoints, expectedPoints);
}
/**
* When one of the windows is slippery, the touch should not slip into the other window with the
* same input channel.
*/
TEST_F(InputDispatcherMultiWindowSameTokenTests, TouchDoesNotSlipEvenIfSlippery) {
mWindow1->setSlippery(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow1, mWindow2}}});
// Touch down in window 1
mDispatcher->notifyMotion(generateMotionArgs(ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {{50, 50}}));
consumeMotionEvent(mWindow1, ACTION_DOWN, {{50, 50}});
// Move touch to be above window 2. Even though window 1 is slippery, touch should not slip.
// That means the gesture should continue normally, without any ACTION_CANCEL or ACTION_DOWN
// getting generated.
mDispatcher->notifyMotion(generateMotionArgs(ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {{150, 150}}));
consumeMotionEvent(mWindow1, ACTION_MOVE, {{150, 150}});
}
/**
* When hover starts in one window and continues into the other, there should be a HOVER_EXIT and
* a HOVER_ENTER generated, even if the windows have the same token. This is because the new window
* that the pointer is hovering over may have a different transform.
*/
TEST_F(InputDispatcherMultiWindowSameTokenTests, HoverIntoClone) {
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow1, mWindow2}}});
// Start hover in window 1
mDispatcher->notifyMotion(generateMotionArgs(ACTION_HOVER_ENTER, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {{50, 50}}));
consumeMotionEvent(mWindow1, ACTION_HOVER_ENTER,
{getPointInWindow(mWindow1->getInfo(), PointF{50, 50})});
// Move hover to window 2.
mDispatcher->notifyMotion(generateMotionArgs(ACTION_HOVER_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {{150, 150}}));
consumeMotionEvent(mWindow1, ACTION_HOVER_EXIT, {{50, 50}});
consumeMotionEvent(mWindow1, ACTION_HOVER_ENTER,
{getPointInWindow(mWindow2->getInfo(), PointF{150, 150})});
}
class InputDispatcherSingleWindowAnr : public InputDispatcherTest {
virtual void SetUp() override {
InputDispatcherTest::SetUp();
mApplication = std::make_shared<FakeApplicationHandle>();
mApplication->setDispatchingTimeout(20ms);
mWindow = sp<FakeWindowHandle>::make(mApplication, mDispatcher, "TestWindow",
ADISPLAY_ID_DEFAULT);
mWindow->setFrame(Rect(0, 0, 30, 30));
mWindow->setDispatchingTimeout(30ms);
mWindow->setFocusable(true);
// Set focused application.
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, mApplication);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
setFocusedWindow(mWindow);
mWindow->consumeFocusEvent(true);
}
virtual void TearDown() override {
InputDispatcherTest::TearDown();
mWindow.clear();
}
protected:
std::shared_ptr<FakeApplicationHandle> mApplication;
sp<FakeWindowHandle> mWindow;
static constexpr PointF WINDOW_LOCATION = {20, 20};
void tapOnWindow() {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
WINDOW_LOCATION));
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
WINDOW_LOCATION));
}
sp<FakeWindowHandle> addSpyWindow() {
sp<FakeWindowHandle> spy =
sp<FakeWindowHandle>::make(mApplication, mDispatcher, "Spy", ADISPLAY_ID_DEFAULT);
spy->setTrustedOverlay(true);
spy->setFocusable(false);
spy->setSpy(true);
spy->setDispatchingTimeout(30ms);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spy, mWindow}}});
return spy;
}
};
// Send a tap and respond, which should not cause an ANR.
TEST_F(InputDispatcherSingleWindowAnr, WhenTouchIsConsumed_NoAnr) {
tapOnWindow();
mWindow->consumeMotionDown();
mWindow->consumeMotionUp();
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyAnrWasNotCalled();
}
// Send a regular key and respond, which should not cause an ANR.
TEST_F(InputDispatcherSingleWindowAnr, WhenKeyIsConsumed_NoAnr) {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDownNoRepeat(mDispatcher));
mWindow->consumeKeyDown(ADISPLAY_ID_NONE);
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyAnrWasNotCalled();
}
TEST_F(InputDispatcherSingleWindowAnr, WhenFocusedApplicationChanges_NoAnr) {
mWindow->setFocusable(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
mWindow->consumeFocusEvent(false);
InputEventInjectionResult result =
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, /*repeatCount=*/0, ADISPLAY_ID_DEFAULT,
InputEventInjectionSync::NONE, /*injectionTimeout=*/10ms,
/*allowKeyRepeat=*/false);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, result);
// Key will not go to window because we have no focused window.
// The 'no focused window' ANR timer should start instead.
// Now, the focused application goes away.
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, nullptr);
// The key should get dropped and there should be no ANR.
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyAnrWasNotCalled();
}
// Send an event to the app and have the app not respond right away.
// When ANR is raised, policy will tell the dispatcher to cancel the events for that window.
// So InputDispatcher will enqueue ACTION_CANCEL event as well.
TEST_F(InputDispatcherSingleWindowAnr, OnPointerDown_BasicAnr) {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
WINDOW_LOCATION));
std::optional<uint32_t> sequenceNum = mWindow->receiveEvent(); // ACTION_DOWN
ASSERT_TRUE(sequenceNum);
const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow);
mWindow->finishEvent(*sequenceNum);
mWindow->consumeMotionEvent(
AllOf(WithMotionAction(ACTION_CANCEL), WithDisplayId(ADISPLAY_ID_DEFAULT)));
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyWindowResponsiveWasCalled(mWindow->getToken(), mWindow->getPid());
}
// Send a key to the app and have the app not respond right away.
TEST_F(InputDispatcherSingleWindowAnr, OnKeyDown_BasicAnr) {
// Inject a key, and don't respond - expect that ANR is called.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDownNoRepeat(mDispatcher));
std::optional<uint32_t> sequenceNum = mWindow->receiveEvent();
ASSERT_TRUE(sequenceNum);
const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow);
ASSERT_TRUE(mDispatcher->waitForIdle());
}
// We have a focused application, but no focused window
TEST_F(InputDispatcherSingleWindowAnr, FocusedApplication_NoFocusedWindow) {
mWindow->setFocusable(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
mWindow->consumeFocusEvent(false);
// taps on the window work as normal
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
WINDOW_LOCATION));
ASSERT_NO_FATAL_FAILURE(mWindow->consumeMotionDown());
mDispatcher->waitForIdle();
mFakePolicy->assertNotifyAnrWasNotCalled();
// Once a focused event arrives, we get an ANR for this application
// We specify the injection timeout to be smaller than the application timeout, to ensure that
// injection times out (instead of failing).
const InputEventInjectionResult result =
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, /*repeatCount=*/0, ADISPLAY_ID_DEFAULT,
InputEventInjectionSync::WAIT_FOR_RESULT, 10ms, /*allowKeyRepeat=*/false);
ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, result);
const std::chrono::duration timeout = mApplication->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyNoFocusedWindowAnrWasCalled(timeout, mApplication);
ASSERT_TRUE(mDispatcher->waitForIdle());
}
/**
* Make sure the stale key is dropped before causing an ANR. So even if there's no focused window,
* there will not be an ANR.
*/
TEST_F(InputDispatcherSingleWindowAnr, StaleKeyEventDoesNotAnr) {
mWindow->setFocusable(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
mWindow->consumeFocusEvent(false);
KeyEvent event;
const nsecs_t eventTime = systemTime(SYSTEM_TIME_MONOTONIC) -
std::chrono::nanoseconds(STALE_EVENT_TIMEOUT).count();
// Define a valid key down event that is stale (too old).
event.initialize(InputEvent::nextId(), DEVICE_ID, AINPUT_SOURCE_KEYBOARD, ADISPLAY_ID_NONE,
INVALID_HMAC, AKEY_EVENT_ACTION_DOWN, /* flags */ 0, AKEYCODE_A, KEY_A,
AMETA_NONE, /*repeatCount=*/1, eventTime, eventTime);
const int32_t policyFlags = POLICY_FLAG_FILTERED | POLICY_FLAG_PASS_TO_USER;
InputEventInjectionResult result =
mDispatcher->injectInputEvent(&event, /*targetUid=*/{},
InputEventInjectionSync::WAIT_FOR_RESULT,
INJECT_EVENT_TIMEOUT, policyFlags);
ASSERT_EQ(InputEventInjectionResult::FAILED, result)
<< "Injection should fail because the event is stale";
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyAnrWasNotCalled();
mWindow->assertNoEvents();
}
// We have a focused application, but no focused window
// Make sure that we don't notify policy twice about the same ANR.
TEST_F(InputDispatcherSingleWindowAnr, NoFocusedWindow_DoesNotSendDuplicateAnr) {
mWindow->setFocusable(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
mWindow->consumeFocusEvent(false);
// Once a focused event arrives, we get an ANR for this application
// We specify the injection timeout to be smaller than the application timeout, to ensure that
// injection times out (instead of failing).
const InputEventInjectionResult result =
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, /*repeatCount=*/0, ADISPLAY_ID_DEFAULT,
InputEventInjectionSync::WAIT_FOR_RESULT, 10ms, /*allowKeyRepeat=*/false);
ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, result);
const std::chrono::duration appTimeout =
mApplication->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyNoFocusedWindowAnrWasCalled(appTimeout, mApplication);
std::this_thread::sleep_for(appTimeout);
// ANR should not be raised again. It is up to policy to do that if it desires.
mFakePolicy->assertNotifyAnrWasNotCalled();
// If we now get a focused window, the ANR should stop, but the policy handles that via
// 'notifyFocusChanged' callback. This is implemented in the policy so we can't test it here.
ASSERT_TRUE(mDispatcher->waitForIdle());
}
// We have a focused application, but no focused window
TEST_F(InputDispatcherSingleWindowAnr, NoFocusedWindow_DropsFocusedEvents) {
mWindow->setFocusable(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
mWindow->consumeFocusEvent(false);
// Once a focused event arrives, we get an ANR for this application
const InputEventInjectionResult result =
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, /*repeatCount=*/0, ADISPLAY_ID_DEFAULT,
InputEventInjectionSync::WAIT_FOR_RESULT, 10ms);
ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, result);
const std::chrono::duration timeout = mApplication->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyNoFocusedWindowAnrWasCalled(timeout, mApplication);
// Future focused events get dropped right away
ASSERT_EQ(InputEventInjectionResult::FAILED, injectKeyDown(mDispatcher));
ASSERT_TRUE(mDispatcher->waitForIdle());
mWindow->assertNoEvents();
}
/**
* Ensure that the implementation is valid. Since we are using multiset to keep track of the
* ANR timeouts, we are allowing entries with identical timestamps in the same connection.
* If we process 1 of the events, but ANR on the second event with the same timestamp,
* the ANR mechanism should still work.
*
* In this test, we are injecting DOWN and UP events with the same timestamps, and acknowledging the
* DOWN event, while not responding on the second one.
*/
TEST_F(InputDispatcherSingleWindowAnr, Anr_HandlesEventsWithIdenticalTimestamps) {
nsecs_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC);
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, WINDOW_LOCATION,
{AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION},
500ms, InputEventInjectionSync::WAIT_FOR_RESULT, currentTime);
// Now send ACTION_UP, with identical timestamp
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, WINDOW_LOCATION,
{AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION},
500ms, InputEventInjectionSync::WAIT_FOR_RESULT, currentTime);
// We have now sent down and up. Let's consume first event and then ANR on the second.
mWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT);
const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow);
}
// A spy window can receive an ANR
TEST_F(InputDispatcherSingleWindowAnr, SpyWindowAnr) {
sp<FakeWindowHandle> spy = addSpyWindow();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
WINDOW_LOCATION));
mWindow->consumeMotionDown();
std::optional<uint32_t> sequenceNum = spy->receiveEvent(); // ACTION_DOWN
ASSERT_TRUE(sequenceNum);
const std::chrono::duration timeout = spy->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, spy);
spy->finishEvent(*sequenceNum);
spy->consumeMotionEvent(
AllOf(WithMotionAction(ACTION_CANCEL), WithDisplayId(ADISPLAY_ID_DEFAULT)));
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyWindowResponsiveWasCalled(spy->getToken(), mWindow->getPid());
}
// If an app is not responding to a key event, spy windows should continue to receive
// new motion events
TEST_F(InputDispatcherSingleWindowAnr, SpyWindowReceivesEventsDuringAppAnrOnKey) {
sp<FakeWindowHandle> spy = addSpyWindow();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectKeyDown(mDispatcher, ADISPLAY_ID_DEFAULT));
mWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyUp(mDispatcher, ADISPLAY_ID_DEFAULT));
// Stuck on the ACTION_UP
const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow);
// New tap will go to the spy window, but not to the window
tapOnWindow();
spy->consumeMotionDown(ADISPLAY_ID_DEFAULT);
spy->consumeMotionUp(ADISPLAY_ID_DEFAULT);
mWindow->consumeKeyUp(ADISPLAY_ID_DEFAULT); // still the previous motion
mDispatcher->waitForIdle();
mFakePolicy->assertNotifyWindowResponsiveWasCalled(mWindow->getToken(), mWindow->getPid());
mWindow->assertNoEvents();
spy->assertNoEvents();
}
// If an app is not responding to a motion event, spy windows should continue to receive
// new motion events
TEST_F(InputDispatcherSingleWindowAnr, SpyWindowReceivesEventsDuringAppAnrOnMotion) {
sp<FakeWindowHandle> spy = addSpyWindow();
tapOnWindow();
spy->consumeMotionDown(ADISPLAY_ID_DEFAULT);
spy->consumeMotionUp(ADISPLAY_ID_DEFAULT);
mWindow->consumeMotionDown();
// Stuck on the ACTION_UP
const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow);
// New tap will go to the spy window, but not to the window
tapOnWindow();
spy->consumeMotionDown(ADISPLAY_ID_DEFAULT);
spy->consumeMotionUp(ADISPLAY_ID_DEFAULT);
mWindow->consumeMotionUp(ADISPLAY_ID_DEFAULT); // still the previous motion
mDispatcher->waitForIdle();
mFakePolicy->assertNotifyWindowResponsiveWasCalled(mWindow->getToken(), mWindow->getPid());
mWindow->assertNoEvents();
spy->assertNoEvents();
}
TEST_F(InputDispatcherSingleWindowAnr, UnresponsiveMonitorAnr) {
mDispatcher->setMonitorDispatchingTimeoutForTest(30ms);
FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "M_1", ADISPLAY_ID_DEFAULT);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
WINDOW_LOCATION));
mWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT);
const std::optional<uint32_t> consumeSeq = monitor.receiveEvent();
ASSERT_TRUE(consumeSeq);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(30ms, monitor.getToken(), MONITOR_PID);
monitor.finishEvent(*consumeSeq);
monitor.consumeMotionCancel(ADISPLAY_ID_DEFAULT);
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyWindowResponsiveWasCalled(monitor.getToken(), MONITOR_PID);
}
// If a window is unresponsive, then you get anr. if the window later catches up and starts to
// process events, you don't get an anr. When the window later becomes unresponsive again, you
// get an ANR again.
// 1. tap -> block on ACTION_UP -> receive ANR
// 2. consume all pending events (= queue becomes healthy again)
// 3. tap again -> block on ACTION_UP again -> receive ANR second time
TEST_F(InputDispatcherSingleWindowAnr, SameWindow_CanReceiveAnrTwice) {
tapOnWindow();
mWindow->consumeMotionDown();
// Block on ACTION_UP
const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow);
mWindow->consumeMotionUp(); // Now the connection should be healthy again
mDispatcher->waitForIdle();
mFakePolicy->assertNotifyWindowResponsiveWasCalled(mWindow->getToken(), mWindow->getPid());
mWindow->assertNoEvents();
tapOnWindow();
mWindow->consumeMotionDown();
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow);
mWindow->consumeMotionUp();
mDispatcher->waitForIdle();
mFakePolicy->assertNotifyWindowResponsiveWasCalled(mWindow->getToken(), mWindow->getPid());
mFakePolicy->assertNotifyAnrWasNotCalled();
mWindow->assertNoEvents();
}
// If a connection remains unresponsive for a while, make sure policy is only notified once about
// it.
TEST_F(InputDispatcherSingleWindowAnr, Policy_DoesNotGetDuplicateAnr) {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
WINDOW_LOCATION));
const std::chrono::duration windowTimeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(windowTimeout, mWindow);
std::this_thread::sleep_for(windowTimeout);
// 'notifyConnectionUnresponsive' should only be called once per connection
mFakePolicy->assertNotifyAnrWasNotCalled();
// When the ANR happened, dispatcher should abort the current event stream via ACTION_CANCEL
mWindow->consumeMotionDown();
mWindow->consumeMotionEvent(
AllOf(WithMotionAction(ACTION_CANCEL), WithDisplayId(ADISPLAY_ID_DEFAULT)));
mWindow->assertNoEvents();
mDispatcher->waitForIdle();
mFakePolicy->assertNotifyWindowResponsiveWasCalled(mWindow->getToken(), mWindow->getPid());
mFakePolicy->assertNotifyAnrWasNotCalled();
}
/**
* If a window is processing a motion event, and then a key event comes in, the key event should
* not to to the focused window until the motion is processed.
*
* Warning!!!
* This test depends on the value of android::inputdispatcher::KEY_WAITING_FOR_MOTION_TIMEOUT
* and the injection timeout that we specify when injecting the key.
* We must have the injection timeout (10ms) be smaller than
* KEY_WAITING_FOR_MOTION_TIMEOUT (currently 500ms).
*
* If that value changes, this test should also change.
*/
TEST_F(InputDispatcherSingleWindowAnr, Key_StaysPendingWhileMotionIsProcessed) {
mWindow->setDispatchingTimeout(2s); // Set a long ANR timeout to prevent it from triggering
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
tapOnWindow();
std::optional<uint32_t> downSequenceNum = mWindow->receiveEvent();
ASSERT_TRUE(downSequenceNum);
std::optional<uint32_t> upSequenceNum = mWindow->receiveEvent();
ASSERT_TRUE(upSequenceNum);
// Don't finish the events yet, and send a key
// Injection will "succeed" because we will eventually give up and send the key to the focused
// window even if motions are still being processed. But because the injection timeout is short,
// we will receive INJECTION_TIMED_OUT as the result.
InputEventInjectionResult result =
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, /*repeatCount=*/0, ADISPLAY_ID_DEFAULT,
InputEventInjectionSync::WAIT_FOR_RESULT, 10ms);
ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, result);
// Key will not be sent to the window, yet, because the window is still processing events
// and the key remains pending, waiting for the touch events to be processed
std::optional<uint32_t> keySequenceNum = mWindow->receiveEvent();
ASSERT_FALSE(keySequenceNum);
std::this_thread::sleep_for(500ms);
// if we wait long enough though, dispatcher will give up, and still send the key
// to the focused window, even though we have not yet finished the motion event
mWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT);
mWindow->finishEvent(*downSequenceNum);
mWindow->finishEvent(*upSequenceNum);
}
/**
* If a window is processing a motion event, and then a key event comes in, the key event should
* not go to the focused window until the motion is processed.
* If then a new motion comes in, then the pending key event should be going to the currently
* focused window right away.
*/
TEST_F(InputDispatcherSingleWindowAnr,
PendingKey_IsDroppedWhileMotionIsProcessedAndNewTouchComesIn) {
mWindow->setDispatchingTimeout(2s); // Set a long ANR timeout to prevent it from triggering
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
tapOnWindow();
std::optional<uint32_t> downSequenceNum = mWindow->receiveEvent();
ASSERT_TRUE(downSequenceNum);
std::optional<uint32_t> upSequenceNum = mWindow->receiveEvent();
ASSERT_TRUE(upSequenceNum);
// Don't finish the events yet, and send a key
// Injection is async, so it will succeed
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, /*repeatCount=*/0, ADISPLAY_ID_DEFAULT,
InputEventInjectionSync::NONE));
// At this point, key is still pending, and should not be sent to the application yet.
std::optional<uint32_t> keySequenceNum = mWindow->receiveEvent();
ASSERT_FALSE(keySequenceNum);
// Now tap down again. It should cause the pending key to go to the focused window right away.
tapOnWindow();
mWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT); // it doesn't matter that we haven't ack'd
// the other events yet. We can finish events in any order.
mWindow->finishEvent(*downSequenceNum); // first tap's ACTION_DOWN
mWindow->finishEvent(*upSequenceNum); // first tap's ACTION_UP
mWindow->consumeMotionDown();
mWindow->consumeMotionUp();
mWindow->assertNoEvents();
}
/**
* Send an event to the app and have the app not respond right away.
* When ANR is raised, policy will tell the dispatcher to cancel the events for that window.
* So InputDispatcher will enqueue ACTION_CANCEL event as well.
* At some point, the window becomes responsive again.
* Ensure that subsequent events get dropped, and the next gesture is delivered.
*/
TEST_F(InputDispatcherSingleWindowAnr, TwoGesturesWithAnr) {
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.pointer(PointerBuilder(0, ToolType::FINGER).x(10).y(10))
.build());
std::optional<uint32_t> sequenceNum = mWindow->receiveEvent(); // ACTION_DOWN
ASSERT_TRUE(sequenceNum);
const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow);
mWindow->finishEvent(*sequenceNum);
mWindow->consumeMotionEvent(WithMotionAction(ACTION_CANCEL));
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyWindowResponsiveWasCalled(mWindow->getToken(), mWindow->getPid());
// Now that the window is responsive, let's continue the gesture.
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN)
.pointer(PointerBuilder(0, ToolType::FINGER).x(11).y(11))
.build());
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.pointer(PointerBuilder(0, ToolType::FINGER).x(11).y(11))
.pointer(PointerBuilder(1, ToolType::FINGER).x(3).y(3))
.build());
mDispatcher->notifyMotion(MotionArgsBuilder(POINTER_1_UP, AINPUT_SOURCE_TOUCHSCREEN)
.pointer(PointerBuilder(0, ToolType::FINGER).x(11).y(11))
.pointer(PointerBuilder(1, ToolType::FINGER).x(3).y(3))
.build());
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN)
.pointer(PointerBuilder(0, ToolType::FINGER).x(11).y(11))
.build());
// We already canceled this pointer, so the window shouldn't get any new events.
mWindow->assertNoEvents();
// Start another one.
mDispatcher->notifyMotion(MotionArgsBuilder(ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.pointer(PointerBuilder(0, ToolType::FINGER).x(15).y(15))
.build());
mWindow->consumeMotionEvent(WithMotionAction(ACTION_DOWN));
}
class InputDispatcherMultiWindowAnr : public InputDispatcherTest {
virtual void SetUp() override {
InputDispatcherTest::SetUp();
mApplication = std::make_shared<FakeApplicationHandle>();
mApplication->setDispatchingTimeout(10ms);
mUnfocusedWindow = sp<FakeWindowHandle>::make(mApplication, mDispatcher, "Unfocused",
ADISPLAY_ID_DEFAULT);
mUnfocusedWindow->setFrame(Rect(0, 0, 30, 30));
// Adding FLAG_WATCH_OUTSIDE_TOUCH to receive ACTION_OUTSIDE when another window is tapped
mUnfocusedWindow->setWatchOutsideTouch(true);
mFocusedWindow = sp<FakeWindowHandle>::make(mApplication, mDispatcher, "Focused",
ADISPLAY_ID_DEFAULT);
mFocusedWindow->setDispatchingTimeout(30ms);
mFocusedWindow->setFrame(Rect(50, 50, 100, 100));
// Set focused application.
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, mApplication);
mFocusedWindow->setFocusable(true);
// Expect one focus window exist in display.
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mUnfocusedWindow, mFocusedWindow}}});
setFocusedWindow(mFocusedWindow);
mFocusedWindow->consumeFocusEvent(true);
}
virtual void TearDown() override {
InputDispatcherTest::TearDown();
mUnfocusedWindow.clear();
mFocusedWindow.clear();
}
protected:
std::shared_ptr<FakeApplicationHandle> mApplication;
sp<FakeWindowHandle> mUnfocusedWindow;
sp<FakeWindowHandle> mFocusedWindow;
static constexpr PointF UNFOCUSED_WINDOW_LOCATION = {20, 20};
static constexpr PointF FOCUSED_WINDOW_LOCATION = {75, 75};
static constexpr PointF LOCATION_OUTSIDE_ALL_WINDOWS = {40, 40};
void tapOnFocusedWindow() { tap(FOCUSED_WINDOW_LOCATION); }
void tapOnUnfocusedWindow() { tap(UNFOCUSED_WINDOW_LOCATION); }
private:
void tap(const PointF& location) {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
location));
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
location));
}
};
// If we have 2 windows that are both unresponsive, the one with the shortest timeout
// should be ANR'd first.
TEST_F(InputDispatcherMultiWindowAnr, TwoWindows_BothUnresponsive) {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
FOCUSED_WINDOW_LOCATION))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mFocusedWindow->consumeMotionDown();
mUnfocusedWindow->consumeEvent(InputEventType::MOTION, AMOTION_EVENT_ACTION_OUTSIDE,
ADISPLAY_ID_DEFAULT, /*flags=*/0);
// We consumed all events, so no ANR
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyAnrWasNotCalled();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
FOCUSED_WINDOW_LOCATION));
std::optional<uint32_t> unfocusedSequenceNum = mUnfocusedWindow->receiveEvent();
ASSERT_TRUE(unfocusedSequenceNum);
const std::chrono::duration timeout =
mFocusedWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mFocusedWindow);
// Because we injected two DOWN events in a row, CANCEL is enqueued for the first event
// sequence to make it consistent
mFocusedWindow->consumeMotionCancel();
mUnfocusedWindow->finishEvent(*unfocusedSequenceNum);
mFocusedWindow->consumeMotionDown();
// This cancel is generated because the connection was unresponsive
mFocusedWindow->consumeMotionCancel();
mFocusedWindow->assertNoEvents();
mUnfocusedWindow->assertNoEvents();
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyWindowResponsiveWasCalled(mFocusedWindow->getToken(),
mFocusedWindow->getPid());
mFakePolicy->assertNotifyAnrWasNotCalled();
}
// If we have 2 windows with identical timeouts that are both unresponsive,
// it doesn't matter which order they should have ANR.
// But we should receive ANR for both.
TEST_F(InputDispatcherMultiWindowAnr, TwoWindows_BothUnresponsiveWithSameTimeout) {
// Set the timeout for unfocused window to match the focused window
mUnfocusedWindow->setDispatchingTimeout(10ms);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mUnfocusedWindow, mFocusedWindow}}});
tapOnFocusedWindow();
// we should have ACTION_DOWN/ACTION_UP on focused window and ACTION_OUTSIDE on unfocused window
sp<IBinder> anrConnectionToken1, anrConnectionToken2;
ASSERT_NO_FATAL_FAILURE(anrConnectionToken1 = mFakePolicy->getUnresponsiveWindowToken(10ms));
ASSERT_NO_FATAL_FAILURE(anrConnectionToken2 = mFakePolicy->getUnresponsiveWindowToken(0ms));
// We don't know which window will ANR first. But both of them should happen eventually.
ASSERT_TRUE(mFocusedWindow->getToken() == anrConnectionToken1 ||
mFocusedWindow->getToken() == anrConnectionToken2);
ASSERT_TRUE(mUnfocusedWindow->getToken() == anrConnectionToken1 ||
mUnfocusedWindow->getToken() == anrConnectionToken2);
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyAnrWasNotCalled();
mFocusedWindow->consumeMotionDown();
mFocusedWindow->consumeMotionUp();
mUnfocusedWindow->consumeMotionOutside();
sp<IBinder> responsiveToken1, responsiveToken2;
ASSERT_NO_FATAL_FAILURE(responsiveToken1 = mFakePolicy->getResponsiveWindowToken());
ASSERT_NO_FATAL_FAILURE(responsiveToken2 = mFakePolicy->getResponsiveWindowToken());
// Both applications should be marked as responsive, in any order
ASSERT_TRUE(mFocusedWindow->getToken() == responsiveToken1 ||
mFocusedWindow->getToken() == responsiveToken2);
ASSERT_TRUE(mUnfocusedWindow->getToken() == responsiveToken1 ||
mUnfocusedWindow->getToken() == responsiveToken2);
mFakePolicy->assertNotifyAnrWasNotCalled();
}
// If a window is already not responding, the second tap on the same window should be ignored.
// We should also log an error to account for the dropped event (not tested here).
// At the same time, FLAG_WATCH_OUTSIDE_TOUCH targets should not receive any events.
TEST_F(InputDispatcherMultiWindowAnr, DuringAnr_SecondTapIsIgnored) {
tapOnFocusedWindow();
mUnfocusedWindow->consumeEvent(InputEventType::MOTION, AMOTION_EVENT_ACTION_OUTSIDE,
ADISPLAY_ID_DEFAULT, /*flags=*/0);
// Receive the events, but don't respond
std::optional<uint32_t> downEventSequenceNum = mFocusedWindow->receiveEvent(); // ACTION_DOWN
ASSERT_TRUE(downEventSequenceNum);
std::optional<uint32_t> upEventSequenceNum = mFocusedWindow->receiveEvent(); // ACTION_UP
ASSERT_TRUE(upEventSequenceNum);
const std::chrono::duration timeout =
mFocusedWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mFocusedWindow);
// Tap once again
// We cannot use "tapOnFocusedWindow" because it asserts the injection result to be success
ASSERT_EQ(InputEventInjectionResult::FAILED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
FOCUSED_WINDOW_LOCATION));
ASSERT_EQ(InputEventInjectionResult::FAILED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
FOCUSED_WINDOW_LOCATION));
// Unfocused window does not receive ACTION_OUTSIDE because the tapped window is not a
// valid touch target
mUnfocusedWindow->assertNoEvents();
// Consume the first tap
mFocusedWindow->finishEvent(*downEventSequenceNum);
mFocusedWindow->finishEvent(*upEventSequenceNum);
ASSERT_TRUE(mDispatcher->waitForIdle());
// The second tap did not go to the focused window
mFocusedWindow->assertNoEvents();
// Since all events are finished, connection should be deemed healthy again
mFakePolicy->assertNotifyWindowResponsiveWasCalled(mFocusedWindow->getToken(),
mFocusedWindow->getPid());
mFakePolicy->assertNotifyAnrWasNotCalled();
}
// If you tap outside of all windows, there will not be ANR
TEST_F(InputDispatcherMultiWindowAnr, TapOutsideAllWindows_DoesNotAnr) {
ASSERT_EQ(InputEventInjectionResult::FAILED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
LOCATION_OUTSIDE_ALL_WINDOWS));
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyAnrWasNotCalled();
}
// Since the focused window is paused, tapping on it should not produce any events
TEST_F(InputDispatcherMultiWindowAnr, Window_CanBePaused) {
mFocusedWindow->setPaused(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mUnfocusedWindow, mFocusedWindow}}});
ASSERT_EQ(InputEventInjectionResult::FAILED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
FOCUSED_WINDOW_LOCATION));
std::this_thread::sleep_for(mFocusedWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT));
ASSERT_TRUE(mDispatcher->waitForIdle());
// Should not ANR because the window is paused, and touches shouldn't go to it
mFakePolicy->assertNotifyAnrWasNotCalled();
mFocusedWindow->assertNoEvents();
mUnfocusedWindow->assertNoEvents();
}
/**
* If a window is processing a motion event, and then a key event comes in, the key event should
* not to to the focused window until the motion is processed.
* If a different window becomes focused at this time, the key should go to that window instead.
*
* Warning!!!
* This test depends on the value of android::inputdispatcher::KEY_WAITING_FOR_MOTION_TIMEOUT
* and the injection timeout that we specify when injecting the key.
* We must have the injection timeout (10ms) be smaller than
* KEY_WAITING_FOR_MOTION_TIMEOUT (currently 500ms).
*
* If that value changes, this test should also change.
*/
TEST_F(InputDispatcherMultiWindowAnr, PendingKey_GoesToNewlyFocusedWindow) {
// Set a long ANR timeout to prevent it from triggering
mFocusedWindow->setDispatchingTimeout(2s);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mFocusedWindow, mUnfocusedWindow}}});
tapOnUnfocusedWindow();
std::optional<uint32_t> downSequenceNum = mUnfocusedWindow->receiveEvent();
ASSERT_TRUE(downSequenceNum);
std::optional<uint32_t> upSequenceNum = mUnfocusedWindow->receiveEvent();
ASSERT_TRUE(upSequenceNum);
// Don't finish the events yet, and send a key
// Injection will succeed because we will eventually give up and send the key to the focused
// window even if motions are still being processed.
InputEventInjectionResult result =
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, /*repeatCount=*/0, ADISPLAY_ID_DEFAULT,
InputEventInjectionSync::NONE, /*injectionTimeout=*/10ms);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, result);
// Key will not be sent to the window, yet, because the window is still processing events
// and the key remains pending, waiting for the touch events to be processed
std::optional<uint32_t> keySequenceNum = mFocusedWindow->receiveEvent();
ASSERT_FALSE(keySequenceNum);
// Switch the focus to the "unfocused" window that we tapped. Expect the key to go there
mFocusedWindow->setFocusable(false);
mUnfocusedWindow->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mFocusedWindow, mUnfocusedWindow}}});
setFocusedWindow(mUnfocusedWindow);
// Focus events should precede the key events
mUnfocusedWindow->consumeFocusEvent(true);
mFocusedWindow->consumeFocusEvent(false);
// Finish the tap events, which should unblock dispatcher
mUnfocusedWindow->finishEvent(*downSequenceNum);
mUnfocusedWindow->finishEvent(*upSequenceNum);
// Now that all queues are cleared and no backlog in the connections, the key event
// can finally go to the newly focused "mUnfocusedWindow".
mUnfocusedWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT);
mFocusedWindow->assertNoEvents();
mUnfocusedWindow->assertNoEvents();
mFakePolicy->assertNotifyAnrWasNotCalled();
}
// When the touch stream is split across 2 windows, and one of them does not respond,
// then ANR should be raised and the touch should be canceled for the unresponsive window.
// The other window should not be affected by that.
TEST_F(InputDispatcherMultiWindowAnr, SplitTouch_SingleWindowAnr) {
// Touch Window 1
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{FOCUSED_WINDOW_LOCATION}));
mUnfocusedWindow->consumeEvent(InputEventType::MOTION, AMOTION_EVENT_ACTION_OUTSIDE,
ADISPLAY_ID_DEFAULT, /*flags=*/0);
// Touch Window 2
mDispatcher->notifyMotion(
generateMotionArgs(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{FOCUSED_WINDOW_LOCATION, UNFOCUSED_WINDOW_LOCATION}));
const std::chrono::duration timeout =
mFocusedWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mFocusedWindow);
mUnfocusedWindow->consumeMotionDown();
mFocusedWindow->consumeMotionDown();
// Focused window may or may not receive ACTION_MOVE
// But it should definitely receive ACTION_CANCEL due to the ANR
InputEvent* event;
std::optional<int32_t> moveOrCancelSequenceNum = mFocusedWindow->receiveEvent(&event);
ASSERT_TRUE(moveOrCancelSequenceNum);
mFocusedWindow->finishEvent(*moveOrCancelSequenceNum);
ASSERT_NE(nullptr, event);
ASSERT_EQ(event->getType(), InputEventType::MOTION);
MotionEvent& motionEvent = static_cast<MotionEvent&>(*event);
if (motionEvent.getAction() == AMOTION_EVENT_ACTION_MOVE) {
mFocusedWindow->consumeMotionCancel();
} else {
ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionEvent.getAction());
}
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyWindowResponsiveWasCalled(mFocusedWindow->getToken(),
mFocusedWindow->getPid());
mUnfocusedWindow->assertNoEvents();
mFocusedWindow->assertNoEvents();
mFakePolicy->assertNotifyAnrWasNotCalled();
}
/**
* If we have no focused window, and a key comes in, we start the ANR timer.
* The focused application should add a focused window before the timer runs out to prevent ANR.
*
* If the user touches another application during this time, the key should be dropped.
* Next, if a new focused window comes in, without toggling the focused application,
* then no ANR should occur.
*
* Normally, we would expect the new focused window to be accompanied by 'setFocusedApplication',
* but in some cases the policy may not update the focused application.
*/
TEST_F(InputDispatcherMultiWindowAnr, FocusedWindowWithoutSetFocusedApplication_NoAnr) {
std::shared_ptr<FakeApplicationHandle> focusedApplication =
std::make_shared<FakeApplicationHandle>();
focusedApplication->setDispatchingTimeout(60ms);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, focusedApplication);
// The application that owns 'mFocusedWindow' and 'mUnfocusedWindow' is not focused.
mFocusedWindow->setFocusable(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mFocusedWindow, mUnfocusedWindow}}});
mFocusedWindow->consumeFocusEvent(false);
// Send a key. The ANR timer should start because there is no focused window.
// 'focusedApplication' will get blamed if this timer completes.
// Key will not be sent anywhere because we have no focused window. It will remain pending.
InputEventInjectionResult result =
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, /*repeatCount=*/0, ADISPLAY_ID_DEFAULT,
InputEventInjectionSync::NONE, /*injectionTimeout=*/10ms,
/*allowKeyRepeat=*/false);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, result);
// Wait until dispatcher starts the "no focused window" timer. If we don't wait here,
// then the injected touches won't cause the focused event to get dropped.
// The dispatcher only checks for whether the queue should be pruned upon queueing.
// If we inject the touch right away and the ANR timer hasn't started, the touch event would
// simply be added to the queue without 'shouldPruneInboundQueueLocked' returning 'true'.
// For this test, it means that the key would get delivered to the window once it becomes
// focused.
std::this_thread::sleep_for(10ms);
// Touch unfocused window. This should force the pending key to get dropped.
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{UNFOCUSED_WINDOW_LOCATION}));
// We do not consume the motion right away, because that would require dispatcher to first
// process (== drop) the key event, and by that time, ANR will be raised.
// Set the focused window first.
mFocusedWindow->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mFocusedWindow, mUnfocusedWindow}}});
setFocusedWindow(mFocusedWindow);
mFocusedWindow->consumeFocusEvent(true);
// We do not call "setFocusedApplication" here, even though the newly focused window belongs
// to another application. This could be a bug / behaviour in the policy.
mUnfocusedWindow->consumeMotionDown();
ASSERT_TRUE(mDispatcher->waitForIdle());
// Should not ANR because we actually have a focused window. It was just added too slowly.
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertNotifyAnrWasNotCalled());
}
// These tests ensure we cannot send touch events to a window that's positioned behind a window
// that has feature NO_INPUT_CHANNEL.
// Layout:
// Top (closest to user)
// mNoInputWindow (above all windows)
// mBottomWindow
// Bottom (furthest from user)
class InputDispatcherMultiWindowOcclusionTests : public InputDispatcherTest {
virtual void SetUp() override {
InputDispatcherTest::SetUp();
mApplication = std::make_shared<FakeApplicationHandle>();
mNoInputWindow =
sp<FakeWindowHandle>::make(mApplication, mDispatcher,
"Window without input channel", ADISPLAY_ID_DEFAULT,
/*token=*/std::make_optional<sp<IBinder>>(nullptr));
mNoInputWindow->setNoInputChannel(true);
mNoInputWindow->setFrame(Rect(0, 0, 100, 100));
// It's perfectly valid for this window to not have an associated input channel
mBottomWindow = sp<FakeWindowHandle>::make(mApplication, mDispatcher, "Bottom window",
ADISPLAY_ID_DEFAULT);
mBottomWindow->setFrame(Rect(0, 0, 100, 100));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mNoInputWindow, mBottomWindow}}});
}
protected:
std::shared_ptr<FakeApplicationHandle> mApplication;
sp<FakeWindowHandle> mNoInputWindow;
sp<FakeWindowHandle> mBottomWindow;
};
TEST_F(InputDispatcherMultiWindowOcclusionTests, NoInputChannelFeature_DropsTouches) {
PointF touchedPoint = {10, 10};
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{touchedPoint}));
mNoInputWindow->assertNoEvents();
// Even though the window 'mNoInputWindow' positioned above 'mBottomWindow' does not have
// an input channel, it is not marked as FLAG_NOT_TOUCHABLE,
// and therefore should prevent mBottomWindow from receiving touches
mBottomWindow->assertNoEvents();
}
/**
* If a window has feature NO_INPUT_CHANNEL, and somehow (by mistake) still has an input channel,
* ensure that this window does not receive any touches, and blocks touches to windows underneath.
*/
TEST_F(InputDispatcherMultiWindowOcclusionTests,
NoInputChannelFeature_DropsTouchesWithValidChannel) {
mNoInputWindow = sp<FakeWindowHandle>::make(mApplication, mDispatcher,
"Window with input channel and NO_INPUT_CHANNEL",
ADISPLAY_ID_DEFAULT);
mNoInputWindow->setNoInputChannel(true);
mNoInputWindow->setFrame(Rect(0, 0, 100, 100));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mNoInputWindow, mBottomWindow}}});
PointF touchedPoint = {10, 10};
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{touchedPoint}));
mNoInputWindow->assertNoEvents();
mBottomWindow->assertNoEvents();
}
class InputDispatcherMirrorWindowFocusTests : public InputDispatcherTest {
protected:
std::shared_ptr<FakeApplicationHandle> mApp;
sp<FakeWindowHandle> mWindow;
sp<FakeWindowHandle> mMirror;
virtual void SetUp() override {
InputDispatcherTest::SetUp();
mApp = std::make_shared<FakeApplicationHandle>();
mWindow = sp<FakeWindowHandle>::make(mApp, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT);
mMirror = sp<FakeWindowHandle>::make(mApp, mDispatcher, "TestWindowMirror",
ADISPLAY_ID_DEFAULT, mWindow->getToken());
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, mApp);
mWindow->setFocusable(true);
mMirror->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mMirror}}});
}
};
TEST_F(InputDispatcherMirrorWindowFocusTests, CanGetFocus) {
// Request focus on a mirrored window
setFocusedWindow(mMirror);
// window gets focused
mWindow->consumeFocusEvent(true);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyDown(ADISPLAY_ID_NONE);
}
// A focused & mirrored window remains focused only if the window and its mirror are both
// focusable.
TEST_F(InputDispatcherMirrorWindowFocusTests, FocusedIfAllWindowsFocusable) {
setFocusedWindow(mMirror);
// window gets focused
mWindow->consumeFocusEvent(true);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyDown(ADISPLAY_ID_NONE);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyUp(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyUp(ADISPLAY_ID_NONE);
mMirror->setFocusable(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mMirror}}});
// window loses focus since one of the windows associated with the token in not focusable
mWindow->consumeFocusEvent(false);
ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::TIMED_OUT";
mWindow->assertNoEvents();
}
// A focused & mirrored window remains focused until the window and its mirror both become
// invisible.
TEST_F(InputDispatcherMirrorWindowFocusTests, FocusedIfAnyWindowVisible) {
setFocusedWindow(mMirror);
// window gets focused
mWindow->consumeFocusEvent(true);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyDown(ADISPLAY_ID_NONE);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyUp(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyUp(ADISPLAY_ID_NONE);
mMirror->setVisible(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mMirror}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyDown(ADISPLAY_ID_NONE);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyUp(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyUp(ADISPLAY_ID_NONE);
mWindow->setVisible(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mMirror}}});
// window loses focus only after all windows associated with the token become invisible.
mWindow->consumeFocusEvent(false);
ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::TIMED_OUT";
mWindow->assertNoEvents();
}
// A focused & mirrored window remains focused until both windows are removed.
TEST_F(InputDispatcherMirrorWindowFocusTests, FocusedWhileWindowsAlive) {
setFocusedWindow(mMirror);
// window gets focused
mWindow->consumeFocusEvent(true);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyDown(ADISPLAY_ID_NONE);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyUp(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyUp(ADISPLAY_ID_NONE);
// single window is removed but the window token remains focused
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mMirror}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyDown(ADISPLAY_ID_NONE);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyUp(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyUp(ADISPLAY_ID_NONE);
// Both windows are removed
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {}}});
mWindow->consumeFocusEvent(false);
ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::TIMED_OUT";
mWindow->assertNoEvents();
}
// Focus request can be pending until one window becomes visible.
TEST_F(InputDispatcherMirrorWindowFocusTests, DeferFocusWhenInvisible) {
// Request focus on an invisible mirror.
mWindow->setVisible(false);
mMirror->setVisible(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mMirror}}});
setFocusedWindow(mMirror);
// Injected key goes to pending queue.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, /*repeatCount=*/0, ADISPLAY_ID_DEFAULT,
InputEventInjectionSync::NONE));
mMirror->setVisible(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mMirror}}});
// window gets focused
mWindow->consumeFocusEvent(true);
// window gets the pending key event
mWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT);
}
class InputDispatcherPointerCaptureTests : public InputDispatcherTest {
protected:
std::shared_ptr<FakeApplicationHandle> mApp;
sp<FakeWindowHandle> mWindow;
sp<FakeWindowHandle> mSecondWindow;
void SetUp() override {
InputDispatcherTest::SetUp();
mApp = std::make_shared<FakeApplicationHandle>();
mWindow = sp<FakeWindowHandle>::make(mApp, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT);
mWindow->setFocusable(true);
mSecondWindow =
sp<FakeWindowHandle>::make(mApp, mDispatcher, "TestWindow2", ADISPLAY_ID_DEFAULT);
mSecondWindow->setFocusable(true);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, mApp);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mSecondWindow}}});
setFocusedWindow(mWindow);
mWindow->consumeFocusEvent(true);
}
void notifyPointerCaptureChanged(const PointerCaptureRequest& request) {
mDispatcher->notifyPointerCaptureChanged(generatePointerCaptureChangedArgs(request));
}
PointerCaptureRequest requestAndVerifyPointerCapture(const sp<FakeWindowHandle>& window,
bool enabled) {
mDispatcher->requestPointerCapture(window->getToken(), enabled);
auto request = mFakePolicy->assertSetPointerCaptureCalled(enabled);
notifyPointerCaptureChanged(request);
window->consumeCaptureEvent(enabled);
return request;
}
};
TEST_F(InputDispatcherPointerCaptureTests, EnablePointerCaptureWhenFocused) {
// Ensure that capture cannot be obtained for unfocused windows.
mDispatcher->requestPointerCapture(mSecondWindow->getToken(), true);
mFakePolicy->assertSetPointerCaptureNotCalled();
mSecondWindow->assertNoEvents();
// Ensure that capture can be enabled from the focus window.
requestAndVerifyPointerCapture(mWindow, true);
// Ensure that capture cannot be disabled from a window that does not have capture.
mDispatcher->requestPointerCapture(mSecondWindow->getToken(), false);
mFakePolicy->assertSetPointerCaptureNotCalled();
// Ensure that capture can be disabled from the window with capture.
requestAndVerifyPointerCapture(mWindow, false);
}
TEST_F(InputDispatcherPointerCaptureTests, DisablesPointerCaptureAfterWindowLosesFocus) {
auto request = requestAndVerifyPointerCapture(mWindow, true);
setFocusedWindow(mSecondWindow);
// Ensure that the capture disabled event was sent first.
mWindow->consumeCaptureEvent(false);
mWindow->consumeFocusEvent(false);
mSecondWindow->consumeFocusEvent(true);
mFakePolicy->assertSetPointerCaptureCalled(false);
// Ensure that additional state changes from InputReader are not sent to the window.
notifyPointerCaptureChanged({});
notifyPointerCaptureChanged(request);
notifyPointerCaptureChanged({});
mWindow->assertNoEvents();
mSecondWindow->assertNoEvents();
mFakePolicy->assertSetPointerCaptureNotCalled();
}
TEST_F(InputDispatcherPointerCaptureTests, UnexpectedStateChangeDisablesPointerCapture) {
auto request = requestAndVerifyPointerCapture(mWindow, true);
// InputReader unexpectedly disables and enables pointer capture.
notifyPointerCaptureChanged({});
notifyPointerCaptureChanged(request);
// Ensure that Pointer Capture is disabled.
mFakePolicy->assertSetPointerCaptureCalled(false);
mWindow->consumeCaptureEvent(false);
mWindow->assertNoEvents();
}
TEST_F(InputDispatcherPointerCaptureTests, OutOfOrderRequests) {
requestAndVerifyPointerCapture(mWindow, true);
// The first window loses focus.
setFocusedWindow(mSecondWindow);
mFakePolicy->assertSetPointerCaptureCalled(false);
mWindow->consumeCaptureEvent(false);
// Request Pointer Capture from the second window before the notification from InputReader
// arrives.
mDispatcher->requestPointerCapture(mSecondWindow->getToken(), true);
auto request = mFakePolicy->assertSetPointerCaptureCalled(true);
// InputReader notifies Pointer Capture was disabled (because of the focus change).
notifyPointerCaptureChanged({});
// InputReader notifies Pointer Capture was enabled (because of mSecondWindow's request).
notifyPointerCaptureChanged(request);
mSecondWindow->consumeFocusEvent(true);
mSecondWindow->consumeCaptureEvent(true);
}
TEST_F(InputDispatcherPointerCaptureTests, EnableRequestFollowsSequenceNumbers) {
// App repeatedly enables and disables capture.
mDispatcher->requestPointerCapture(mWindow->getToken(), true);
auto firstRequest = mFakePolicy->assertSetPointerCaptureCalled(true);
mDispatcher->requestPointerCapture(mWindow->getToken(), false);
mFakePolicy->assertSetPointerCaptureCalled(false);
mDispatcher->requestPointerCapture(mWindow->getToken(), true);
auto secondRequest = mFakePolicy->assertSetPointerCaptureCalled(true);
// InputReader notifies that PointerCapture has been enabled for the first request. Since the
// first request is now stale, this should do nothing.
notifyPointerCaptureChanged(firstRequest);
mWindow->assertNoEvents();
// InputReader notifies that the second request was enabled.
notifyPointerCaptureChanged(secondRequest);
mWindow->consumeCaptureEvent(true);
}
TEST_F(InputDispatcherPointerCaptureTests, RapidToggleRequests) {
requestAndVerifyPointerCapture(mWindow, true);
// App toggles pointer capture off and on.
mDispatcher->requestPointerCapture(mWindow->getToken(), false);
mFakePolicy->assertSetPointerCaptureCalled(false);
mDispatcher->requestPointerCapture(mWindow->getToken(), true);
auto enableRequest = mFakePolicy->assertSetPointerCaptureCalled(true);
// InputReader notifies that the latest "enable" request was processed, while skipping over the
// preceding "disable" request.
notifyPointerCaptureChanged(enableRequest);
// Since pointer capture was never disabled during the rapid toggle, the window does not receive
// any notifications.
mWindow->assertNoEvents();
}
class InputDispatcherUntrustedTouchesTest : public InputDispatcherTest {
protected:
constexpr static const float MAXIMUM_OBSCURING_OPACITY = 0.8;
constexpr static const float OPACITY_ABOVE_THRESHOLD = 0.9;
static_assert(OPACITY_ABOVE_THRESHOLD > MAXIMUM_OBSCURING_OPACITY);
constexpr static const float OPACITY_BELOW_THRESHOLD = 0.7;
static_assert(OPACITY_BELOW_THRESHOLD < MAXIMUM_OBSCURING_OPACITY);
// When combined twice, ie 1 - (1 - 0.5)*(1 - 0.5) = 0.75 < 8, is still below the threshold
constexpr static const float OPACITY_FAR_BELOW_THRESHOLD = 0.5;
static_assert(OPACITY_FAR_BELOW_THRESHOLD < MAXIMUM_OBSCURING_OPACITY);
static_assert(1 - (1 - OPACITY_FAR_BELOW_THRESHOLD) * (1 - OPACITY_FAR_BELOW_THRESHOLD) <
MAXIMUM_OBSCURING_OPACITY);
static const int32_t TOUCHED_APP_UID = 10001;
static const int32_t APP_B_UID = 10002;
static const int32_t APP_C_UID = 10003;
sp<FakeWindowHandle> mTouchWindow;
virtual void SetUp() override {
InputDispatcherTest::SetUp();
mTouchWindow = getWindow(TOUCHED_APP_UID, "Touched");
mDispatcher->setMaximumObscuringOpacityForTouch(MAXIMUM_OBSCURING_OPACITY);
}
virtual void TearDown() override {
InputDispatcherTest::TearDown();
mTouchWindow.clear();
}
sp<FakeWindowHandle> getOccludingWindow(int32_t uid, std::string name, TouchOcclusionMode mode,
float alpha = 1.0f) {
sp<FakeWindowHandle> window = getWindow(uid, name);
window->setTouchable(false);
window->setTouchOcclusionMode(mode);
window->setAlpha(alpha);
return window;
}
sp<FakeWindowHandle> getWindow(int32_t uid, std::string name) {
std::shared_ptr<FakeApplicationHandle> app = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(app, mDispatcher, name, ADISPLAY_ID_DEFAULT);
// Generate an arbitrary PID based on the UID
window->setOwnerInfo(1777 + (uid % 10000), uid);
return window;
}
void touch(const std::vector<PointF>& points = {PointF{100, 200}}) {
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
points));
}
};
TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithBlockUntrustedOcclusionMode_BlocksTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->assertNoEvents();
}
TEST_F(InputDispatcherUntrustedTouchesTest,
WindowWithBlockUntrustedOcclusionModeWithOpacityBelowThreshold_BlocksTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED, 0.7f);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->assertNoEvents();
}
TEST_F(InputDispatcherUntrustedTouchesTest,
WindowWithBlockUntrustedOcclusionMode_DoesNotReceiveTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
w->assertNoEvents();
}
TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithAllowOcclusionMode_AllowsTouch) {
const sp<FakeWindowHandle>& w = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::ALLOW);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest, TouchOutsideOccludingWindow_AllowsTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED);
w->setFrame(Rect(0, 0, 50, 50));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch({PointF{100, 100}});
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest, WindowFromSameUid_AllowsTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(TOUCHED_APP_UID, "A", TouchOcclusionMode::BLOCK_UNTRUSTED);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithZeroOpacity_AllowsTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED, 0.0f);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithZeroOpacity_DoesNotReceiveTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED, 0.0f);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
w->assertNoEvents();
}
/**
* This is important to make sure apps can't indirectly learn the position of touches (outside vs
* inside) while letting them pass-through. Note that even though touch passes through the occluding
* window, the occluding window will still receive ACTION_OUTSIDE event.
*/
TEST_F(InputDispatcherUntrustedTouchesTest,
WindowWithZeroOpacityAndWatchOutside_ReceivesOutsideEvent) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED, 0.0f);
w->setWatchOutsideTouch(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
w->consumeMotionOutside();
}
TEST_F(InputDispatcherUntrustedTouchesTest, OutsideEvent_HasZeroCoordinates) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED, 0.0f);
w->setWatchOutsideTouch(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
w->consumeMotionOutsideWithZeroedCoords();
}
TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithOpacityBelowThreshold_AllowsTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY,
OPACITY_BELOW_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithOpacityAtThreshold_AllowsTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY,
MAXIMUM_OBSCURING_OPACITY);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithOpacityAboveThreshold_BlocksTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY,
OPACITY_ABOVE_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->assertNoEvents();
}
TEST_F(InputDispatcherUntrustedTouchesTest, WindowsWithCombinedOpacityAboveThreshold_BlocksTouch) {
// Resulting opacity = 1 - (1 - 0.7)*(1 - 0.7) = .91
const sp<FakeWindowHandle>& w1 =
getOccludingWindow(APP_B_UID, "B1", TouchOcclusionMode::USE_OPACITY,
OPACITY_BELOW_THRESHOLD);
const sp<FakeWindowHandle>& w2 =
getOccludingWindow(APP_B_UID, "B2", TouchOcclusionMode::USE_OPACITY,
OPACITY_BELOW_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w1, w2, mTouchWindow}}});
touch();
mTouchWindow->assertNoEvents();
}
TEST_F(InputDispatcherUntrustedTouchesTest, WindowsWithCombinedOpacityBelowThreshold_AllowsTouch) {
// Resulting opacity = 1 - (1 - 0.5)*(1 - 0.5) = .75
const sp<FakeWindowHandle>& w1 =
getOccludingWindow(APP_B_UID, "B1", TouchOcclusionMode::USE_OPACITY,
OPACITY_FAR_BELOW_THRESHOLD);
const sp<FakeWindowHandle>& w2 =
getOccludingWindow(APP_B_UID, "B2", TouchOcclusionMode::USE_OPACITY,
OPACITY_FAR_BELOW_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w1, w2, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest,
WindowsFromDifferentAppsEachBelowThreshold_AllowsTouch) {
const sp<FakeWindowHandle>& wB =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY,
OPACITY_BELOW_THRESHOLD);
const sp<FakeWindowHandle>& wC =
getOccludingWindow(APP_C_UID, "C", TouchOcclusionMode::USE_OPACITY,
OPACITY_BELOW_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {wB, wC, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest, WindowsFromDifferentAppsOneAboveThreshold_BlocksTouch) {
const sp<FakeWindowHandle>& wB =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY,
OPACITY_BELOW_THRESHOLD);
const sp<FakeWindowHandle>& wC =
getOccludingWindow(APP_C_UID, "C", TouchOcclusionMode::USE_OPACITY,
OPACITY_ABOVE_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {wB, wC, mTouchWindow}}});
touch();
mTouchWindow->assertNoEvents();
}
TEST_F(InputDispatcherUntrustedTouchesTest,
WindowWithOpacityAboveThresholdAndSelfWindow_BlocksTouch) {
const sp<FakeWindowHandle>& wA =
getOccludingWindow(TOUCHED_APP_UID, "T", TouchOcclusionMode::USE_OPACITY,
OPACITY_BELOW_THRESHOLD);
const sp<FakeWindowHandle>& wB =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY,
OPACITY_ABOVE_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {wA, wB, mTouchWindow}}});
touch();
mTouchWindow->assertNoEvents();
}
TEST_F(InputDispatcherUntrustedTouchesTest,
WindowWithOpacityBelowThresholdAndSelfWindow_AllowsTouch) {
const sp<FakeWindowHandle>& wA =
getOccludingWindow(TOUCHED_APP_UID, "T", TouchOcclusionMode::USE_OPACITY,
OPACITY_ABOVE_THRESHOLD);
const sp<FakeWindowHandle>& wB =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY,
OPACITY_BELOW_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {wA, wB, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest, SelfWindowWithOpacityAboveThreshold_AllowsTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(TOUCHED_APP_UID, "T", TouchOcclusionMode::USE_OPACITY,
OPACITY_ABOVE_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest, SelfWindowWithBlockUntrustedMode_AllowsTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(TOUCHED_APP_UID, "T", TouchOcclusionMode::BLOCK_UNTRUSTED);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest,
OpacityThresholdIs0AndWindowAboveThreshold_BlocksTouch) {
mDispatcher->setMaximumObscuringOpacityForTouch(0.0f);
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY, 0.1f);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->assertNoEvents();
}
TEST_F(InputDispatcherUntrustedTouchesTest, OpacityThresholdIs0AndWindowAtThreshold_AllowsTouch) {
mDispatcher->setMaximumObscuringOpacityForTouch(0.0f);
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY, 0.0f);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest,
OpacityThresholdIs1AndWindowBelowThreshold_AllowsTouch) {
mDispatcher->setMaximumObscuringOpacityForTouch(1.0f);
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY,
OPACITY_ABOVE_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest,
WindowWithBlockUntrustedModeAndWindowWithOpacityBelowFromSameApp_BlocksTouch) {
const sp<FakeWindowHandle>& w1 =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED,
OPACITY_BELOW_THRESHOLD);
const sp<FakeWindowHandle>& w2 =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY,
OPACITY_BELOW_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w1, w2, mTouchWindow}}});
touch();
mTouchWindow->assertNoEvents();
}
/**
* Window B of BLOCK_UNTRUSTED occlusion mode is enough to block the touch, we're testing that the
* addition of another window (C) of USE_OPACITY occlusion mode and opacity below the threshold
* (which alone would result in allowing touches) does not affect the blocking behavior.
*/
TEST_F(InputDispatcherUntrustedTouchesTest,
WindowWithBlockUntrustedModeAndWindowWithOpacityBelowFromDifferentApps_BlocksTouch) {
const sp<FakeWindowHandle>& wB =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED,
OPACITY_BELOW_THRESHOLD);
const sp<FakeWindowHandle>& wC =
getOccludingWindow(APP_C_UID, "C", TouchOcclusionMode::USE_OPACITY,
OPACITY_BELOW_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {wB, wC, mTouchWindow}}});
touch();
mTouchWindow->assertNoEvents();
}
/**
* This test is testing that a window from a different UID but with same application token doesn't
* block the touch. Apps can share the application token for close UI collaboration for example.
*/
TEST_F(InputDispatcherUntrustedTouchesTest,
WindowWithSameApplicationTokenFromDifferentApp_AllowsTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED);
w->setApplicationToken(mTouchWindow->getApplicationToken());
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
class InputDispatcherDragTests : public InputDispatcherTest {
protected:
std::shared_ptr<FakeApplicationHandle> mApp;
sp<FakeWindowHandle> mWindow;
sp<FakeWindowHandle> mSecondWindow;
sp<FakeWindowHandle> mDragWindow;
sp<FakeWindowHandle> mSpyWindow;
// Mouse would force no-split, set the id as non-zero to verify if drag state could track it.
static constexpr int32_t MOUSE_POINTER_ID = 1;
void SetUp() override {
InputDispatcherTest::SetUp();
mApp = std::make_shared<FakeApplicationHandle>();
mWindow = sp<FakeWindowHandle>::make(mApp, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT);
mWindow->setFrame(Rect(0, 0, 100, 100));
mSecondWindow =
sp<FakeWindowHandle>::make(mApp, mDispatcher, "TestWindow2", ADISPLAY_ID_DEFAULT);
mSecondWindow->setFrame(Rect(100, 0, 200, 100));
mSpyWindow =
sp<FakeWindowHandle>::make(mApp, mDispatcher, "SpyWindow", ADISPLAY_ID_DEFAULT);
mSpyWindow->setSpy(true);
mSpyWindow->setTrustedOverlay(true);
mSpyWindow->setFrame(Rect(0, 0, 200, 100));
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, mApp);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mSpyWindow, mWindow, mSecondWindow}}});
}
void injectDown(int fromSource = AINPUT_SOURCE_TOUCHSCREEN) {
switch (fromSource) {
case AINPUT_SOURCE_TOUCHSCREEN:
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
break;
case AINPUT_SOURCE_STYLUS:
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(
mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_STYLUS)
.buttonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY)
.pointer(PointerBuilder(0, ToolType::STYLUS)
.x(50)
.y(50))
.build()));
break;
case AINPUT_SOURCE_MOUSE:
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(
mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_MOUSE)
.buttonState(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(MOUSE_POINTER_ID,
ToolType::MOUSE)
.x(50)
.y(50))
.build()));
break;
default:
FAIL() << "Source " << fromSource << " doesn't support drag and drop";
}
// Window should receive motion event.
mWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT);
// Spy window should also receive motion event
mSpyWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT);
}
// Start performing drag, we will create a drag window and transfer touch to it.
// @param sendDown : if true, send a motion down on first window before perform drag and drop.
// Returns true on success.
bool startDrag(bool sendDown = true, int fromSource = AINPUT_SOURCE_TOUCHSCREEN) {
if (sendDown) {
injectDown(fromSource);
}
// The drag window covers the entire display
mDragWindow =
sp<FakeWindowHandle>::make(mApp, mDispatcher, "DragWindow", ADISPLAY_ID_DEFAULT);
mDragWindow->setTouchableRegion(Region{{0, 0, 0, 0}});
mDispatcher->setInputWindows(
{{ADISPLAY_ID_DEFAULT, {mDragWindow, mSpyWindow, mWindow, mSecondWindow}}});
// Transfer touch focus to the drag window
bool transferred =
mDispatcher->transferTouchFocus(mWindow->getToken(), mDragWindow->getToken(),
/*isDragDrop=*/true);
if (transferred) {
mWindow->consumeMotionCancel();
mDragWindow->consumeMotionDown();
}
return transferred;
}
};
TEST_F(InputDispatcherDragTests, DragEnterAndDragExit) {
startDrag();
// Move on window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->consumeDragEvent(false, 50, 50);
mSecondWindow->assertNoEvents();
// Move to another window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {150, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->consumeDragEvent(true, 150, 50);
mSecondWindow->consumeDragEvent(false, 50, 50);
// Move back to original window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->consumeDragEvent(false, 50, 50);
mSecondWindow->consumeDragEvent(true, -50, 50);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionUp(ADISPLAY_ID_DEFAULT);
mWindow->assertNoEvents();
mSecondWindow->assertNoEvents();
}
TEST_F(InputDispatcherDragTests, DragEnterAndPointerDownPilfersPointers) {
startDrag();
// No cancel event after drag start
mSpyWindow->assertNoEvents();
const MotionEvent secondFingerDownEvent =
MotionEventBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/*id=*/0, ToolType::FINGER).x(50).y(50))
.pointer(PointerBuilder(/*id=*/1, ToolType::FINGER).x(60).y(60))
.build();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, secondFingerDownEvent, INJECT_EVENT_TIMEOUT,
InputEventInjectionSync::WAIT_FOR_RESULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
// Receives cancel for first pointer after next pointer down
mSpyWindow->consumeMotionCancel();
mSpyWindow->consumeMotionDown();
mSpyWindow->assertNoEvents();
}
TEST_F(InputDispatcherDragTests, DragAndDrop) {
startDrag();
// Move on window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->consumeDragEvent(false, 50, 50);
mSecondWindow->assertNoEvents();
// Move to another window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {150, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->consumeDragEvent(true, 150, 50);
mSecondWindow->consumeDragEvent(false, 50, 50);
// drop to another window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{150, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionUp(ADISPLAY_ID_DEFAULT);
mFakePolicy->assertDropTargetEquals(*mDispatcher, mSecondWindow->getToken());
mWindow->assertNoEvents();
mSecondWindow->assertNoEvents();
}
TEST_F(InputDispatcherDragTests, StylusDragAndDrop) {
startDrag(true, AINPUT_SOURCE_STYLUS);
// Move on window and keep button pressed.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_STYLUS)
.buttonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY)
.pointer(PointerBuilder(0, ToolType::STYLUS).x(50).y(50))
.build()))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->consumeDragEvent(false, 50, 50);
mSecondWindow->assertNoEvents();
// Move to another window and release button, expect to drop item.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_STYLUS)
.buttonState(0)
.pointer(PointerBuilder(0, ToolType::STYLUS).x(150).y(50))
.build()))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->assertNoEvents();
mSecondWindow->assertNoEvents();
mFakePolicy->assertDropTargetEquals(*mDispatcher, mSecondWindow->getToken());
// nothing to the window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_STYLUS)
.buttonState(0)
.pointer(PointerBuilder(0, ToolType::STYLUS).x(150).y(50))
.build()))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionUp(ADISPLAY_ID_DEFAULT);
mWindow->assertNoEvents();
mSecondWindow->assertNoEvents();
}
TEST_F(InputDispatcherDragTests, DragAndDropOnInvalidWindow) {
startDrag();
// Set second window invisible.
mSecondWindow->setVisible(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mDragWindow, mWindow, mSecondWindow}}});
// Move on window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->consumeDragEvent(false, 50, 50);
mSecondWindow->assertNoEvents();
// Move to another window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {150, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->consumeDragEvent(true, 150, 50);
mSecondWindow->assertNoEvents();
// drop to another window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{150, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionUp(ADISPLAY_ID_DEFAULT);
mFakePolicy->assertDropTargetEquals(*mDispatcher, nullptr);
mWindow->assertNoEvents();
mSecondWindow->assertNoEvents();
}
TEST_F(InputDispatcherDragTests, NoDragAndDropWhenMultiFingers) {
// Ensure window could track pointerIds if it didn't support split touch.
mWindow->setPreventSplitting(true);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT);
const MotionEvent secondFingerDownEvent =
MotionEventBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.displayId(ADISPLAY_ID_DEFAULT)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/*id=*/0, ToolType::FINGER).x(50).y(50))
.pointer(PointerBuilder(/*id=*/1, ToolType::FINGER).x(75).y(50))
.build();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, secondFingerDownEvent, INJECT_EVENT_TIMEOUT,
InputEventInjectionSync::WAIT_FOR_RESULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeMotionPointerDown(/*pointerIndex=*/1);
// Should not perform drag and drop when window has multi fingers.
ASSERT_FALSE(startDrag(false));
}
TEST_F(InputDispatcherDragTests, DragAndDropWhenSplitTouch) {
// First down on second window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{150, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mSecondWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT);
// Second down on first window.
const MotionEvent secondFingerDownEvent =
MotionEventBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.displayId(ADISPLAY_ID_DEFAULT)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/*id=*/0, ToolType::FINGER).x(150).y(50))
.pointer(PointerBuilder(/*id=*/1, ToolType::FINGER).x(50).y(50))
.build();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, secondFingerDownEvent, INJECT_EVENT_TIMEOUT,
InputEventInjectionSync::WAIT_FOR_RESULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT);
// Perform drag and drop from first window.
ASSERT_TRUE(startDrag(false));
// Move on window.
const MotionEvent secondFingerMoveEvent =
MotionEventBuilder(AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/*id=*/0, ToolType::FINGER).x(150).y(50))
.pointer(PointerBuilder(/*id=*/1, ToolType::FINGER).x(50).y(50))
.build();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, secondFingerMoveEvent, INJECT_EVENT_TIMEOUT,
InputEventInjectionSync::WAIT_FOR_RESULT));
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->consumeDragEvent(false, 50, 50);
mSecondWindow->consumeMotionMove();
// Release the drag pointer should perform drop.
const MotionEvent secondFingerUpEvent =
MotionEventBuilder(POINTER_1_UP, AINPUT_SOURCE_TOUCHSCREEN)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/*id=*/0, ToolType::FINGER).x(150).y(50))
.pointer(PointerBuilder(/*id=*/1, ToolType::FINGER).x(50).y(50))
.build();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, secondFingerUpEvent, INJECT_EVENT_TIMEOUT,
InputEventInjectionSync::WAIT_FOR_RESULT));
mDragWindow->consumeMotionUp(ADISPLAY_ID_DEFAULT);
mFakePolicy->assertDropTargetEquals(*mDispatcher, mWindow->getToken());
mWindow->assertNoEvents();
mSecondWindow->consumeMotionMove();
}
TEST_F(InputDispatcherDragTests, DragAndDropWhenMultiDisplays) {
startDrag();
// Update window of second display.
sp<FakeWindowHandle> windowInSecondary =
sp<FakeWindowHandle>::make(mApp, mDispatcher, "D_2", SECOND_DISPLAY_ID);
mDispatcher->setInputWindows({{SECOND_DISPLAY_ID, {windowInSecondary}}});
// Let second display has a touch state.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN)
.displayId(SECOND_DISPLAY_ID)
.pointer(PointerBuilder(0, ToolType::FINGER).x(100).y(100))
.build()));
windowInSecondary->consumeEvent(InputEventType::MOTION, AMOTION_EVENT_ACTION_DOWN,
SECOND_DISPLAY_ID, /*expectedFlag=*/0);
// Update window again.
mDispatcher->setInputWindows({{SECOND_DISPLAY_ID, {windowInSecondary}}});
// Move on window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->consumeDragEvent(false, 50, 50);
mSecondWindow->assertNoEvents();
// Move to another window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {150, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->consumeDragEvent(true, 150, 50);
mSecondWindow->consumeDragEvent(false, 50, 50);
// drop to another window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{150, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionUp(ADISPLAY_ID_DEFAULT);
mFakePolicy->assertDropTargetEquals(*mDispatcher, mSecondWindow->getToken());
mWindow->assertNoEvents();
mSecondWindow->assertNoEvents();
}
TEST_F(InputDispatcherDragTests, MouseDragAndDrop) {
startDrag(true, AINPUT_SOURCE_MOUSE);
// Move on window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_MOUSE)
.buttonState(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(MOUSE_POINTER_ID,
ToolType::MOUSE)
.x(50)
.y(50))
.build()))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->consumeDragEvent(false, 50, 50);
mSecondWindow->assertNoEvents();
// Move to another window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_MOUSE)
.buttonState(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(MOUSE_POINTER_ID,
ToolType::MOUSE)
.x(150)
.y(50))
.build()))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->consumeDragEvent(true, 150, 50);
mSecondWindow->consumeDragEvent(false, 50, 50);
// drop to another window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_MOUSE)
.buttonState(0)
.pointer(PointerBuilder(MOUSE_POINTER_ID,
ToolType::MOUSE)
.x(150)
.y(50))
.build()))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionUp(ADISPLAY_ID_DEFAULT);
mFakePolicy->assertDropTargetEquals(*mDispatcher, mSecondWindow->getToken());
mWindow->assertNoEvents();
mSecondWindow->assertNoEvents();
}
class InputDispatcherDropInputFeatureTest : public InputDispatcherTest {};
TEST_F(InputDispatcherDropInputFeatureTest, WindowDropsInput) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Test window", ADISPLAY_ID_DEFAULT);
window->setDropInput(true);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(/*hasFocus=*/true, /*inTouchMode=*/true);
// With the flag set, window should not get any input
mDispatcher->notifyKey(generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT));
window->assertNoEvents();
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT));
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT));
window->assertNoEvents();
// With the flag cleared, the window should get input
window->setDropInput(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
mDispatcher->notifyKey(generateKeyArgs(AKEY_EVENT_ACTION_UP, ADISPLAY_ID_DEFAULT));
window->consumeKeyUp(ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT));
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
window->assertNoEvents();
}
TEST_F(InputDispatcherDropInputFeatureTest, ObscuredWindowDropsInput) {
std::shared_ptr<FakeApplicationHandle> obscuringApplication =
std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> obscuringWindow =
sp<FakeWindowHandle>::make(obscuringApplication, mDispatcher, "obscuringWindow",
ADISPLAY_ID_DEFAULT);
obscuringWindow->setFrame(Rect(0, 0, 50, 50));
obscuringWindow->setOwnerInfo(111, 111);
obscuringWindow->setTouchable(false);
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Test window", ADISPLAY_ID_DEFAULT);
window->setDropInputIfObscured(true);
window->setOwnerInfo(222, 222);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {obscuringWindow, window}}});
setFocusedWindow(window);
window->consumeFocusEvent(/*hasFocus=*/true, /*inTouchMode=*/true);
// With the flag set, window should not get any input
mDispatcher->notifyKey(generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT));
window->assertNoEvents();
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT));
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT));
window->assertNoEvents();
// With the flag cleared, the window should get input
window->setDropInputIfObscured(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {obscuringWindow, window}}});
mDispatcher->notifyKey(generateKeyArgs(AKEY_EVENT_ACTION_UP, ADISPLAY_ID_DEFAULT));
window->consumeKeyUp(ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT));
window->consumeMotionDown(ADISPLAY_ID_DEFAULT, AMOTION_EVENT_FLAG_WINDOW_IS_PARTIALLY_OBSCURED);
window->assertNoEvents();
}
TEST_F(InputDispatcherDropInputFeatureTest, UnobscuredWindowGetsInput) {
std::shared_ptr<FakeApplicationHandle> obscuringApplication =
std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> obscuringWindow =
sp<FakeWindowHandle>::make(obscuringApplication, mDispatcher, "obscuringWindow",
ADISPLAY_ID_DEFAULT);
obscuringWindow->setFrame(Rect(0, 0, 50, 50));
obscuringWindow->setOwnerInfo(111, 111);
obscuringWindow->setTouchable(false);
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window = sp<FakeWindowHandle>::make(application, mDispatcher,
"Test window", ADISPLAY_ID_DEFAULT);
window->setDropInputIfObscured(true);
window->setOwnerInfo(222, 222);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {obscuringWindow, window}}});
setFocusedWindow(window);
window->consumeFocusEvent(/*hasFocus=*/true, /*inTouchMode=*/true);
// With the flag set, window should not get any input
mDispatcher->notifyKey(generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT));
window->assertNoEvents();
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT));
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT));
window->assertNoEvents();
// When the window is no longer obscured because it went on top, it should get input
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window, obscuringWindow}}});
mDispatcher->notifyKey(generateKeyArgs(AKEY_EVENT_ACTION_UP, ADISPLAY_ID_DEFAULT));
window->consumeKeyUp(ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(generateMotionArgs(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT));
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
window->assertNoEvents();
}
class InputDispatcherTouchModeChangedTests : public InputDispatcherTest {
protected:
std::shared_ptr<FakeApplicationHandle> mApp;
std::shared_ptr<FakeApplicationHandle> mSecondaryApp;
sp<FakeWindowHandle> mWindow;
sp<FakeWindowHandle> mSecondWindow;
sp<FakeWindowHandle> mThirdWindow;
void SetUp() override {
InputDispatcherTest::SetUp();
mApp = std::make_shared<FakeApplicationHandle>();
mSecondaryApp = std::make_shared<FakeApplicationHandle>();
mWindow = sp<FakeWindowHandle>::make(mApp, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT);
mWindow->setFocusable(true);
setFocusedWindow(mWindow);
mSecondWindow =
sp<FakeWindowHandle>::make(mApp, mDispatcher, "TestWindow2", ADISPLAY_ID_DEFAULT);
mSecondWindow->setFocusable(true);
mThirdWindow =
sp<FakeWindowHandle>::make(mSecondaryApp, mDispatcher,
"TestWindow3_SecondaryDisplay", SECOND_DISPLAY_ID);
mThirdWindow->setFocusable(true);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, mApp);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mSecondWindow}},
{SECOND_DISPLAY_ID, {mThirdWindow}}});
mThirdWindow->setOwnerInfo(SECONDARY_WINDOW_PID, SECONDARY_WINDOW_UID);
mWindow->consumeFocusEvent(true);
// Set main display initial touch mode to InputDispatcher::kDefaultInTouchMode.
if (mDispatcher->setInTouchMode(InputDispatcher::kDefaultInTouchMode, WINDOW_PID,
WINDOW_UID, /*hasPermission=*/true, ADISPLAY_ID_DEFAULT)) {
mWindow->consumeTouchModeEvent(InputDispatcher::kDefaultInTouchMode);
mSecondWindow->consumeTouchModeEvent(InputDispatcher::kDefaultInTouchMode);
mThirdWindow->assertNoEvents();
}
// Set secondary display initial touch mode to InputDispatcher::kDefaultInTouchMode.
if (mDispatcher->setInTouchMode(InputDispatcher::kDefaultInTouchMode, SECONDARY_WINDOW_PID,
SECONDARY_WINDOW_UID, /*hasPermission=*/true,
SECOND_DISPLAY_ID)) {
mWindow->assertNoEvents();
mSecondWindow->assertNoEvents();
mThirdWindow->consumeTouchModeEvent(InputDispatcher::kDefaultInTouchMode);
}
}
void changeAndVerifyTouchModeInMainDisplayOnly(bool inTouchMode, int32_t pid, int32_t uid,
bool hasPermission) {
ASSERT_TRUE(mDispatcher->setInTouchMode(inTouchMode, pid, uid, hasPermission,
ADISPLAY_ID_DEFAULT));
mWindow->consumeTouchModeEvent(inTouchMode);
mSecondWindow->consumeTouchModeEvent(inTouchMode);
mThirdWindow->assertNoEvents();
}
};
TEST_F(InputDispatcherTouchModeChangedTests, FocusedWindowCanChangeTouchMode) {
const WindowInfo& windowInfo = *mWindow->getInfo();
changeAndVerifyTouchModeInMainDisplayOnly(!InputDispatcher::kDefaultInTouchMode,
windowInfo.ownerPid, windowInfo.ownerUid,
/* hasPermission=*/false);
}
TEST_F(InputDispatcherTouchModeChangedTests, NonFocusedWindowOwnerCannotChangeTouchMode) {
const WindowInfo& windowInfo = *mWindow->getInfo();
int32_t ownerPid = windowInfo.ownerPid;
int32_t ownerUid = windowInfo.ownerUid;
mWindow->setOwnerInfo(/* pid */ -1, /* uid */ -1);
ASSERT_FALSE(mDispatcher->setInTouchMode(InputDispatcher::kDefaultInTouchMode, ownerPid,
ownerUid, /*hasPermission=*/false,
ADISPLAY_ID_DEFAULT));
mWindow->assertNoEvents();
mSecondWindow->assertNoEvents();
}
TEST_F(InputDispatcherTouchModeChangedTests, NonWindowOwnerMayChangeTouchModeOnPermissionGranted) {
const WindowInfo& windowInfo = *mWindow->getInfo();
int32_t ownerPid = windowInfo.ownerPid;
int32_t ownerUid = windowInfo.ownerUid;
mWindow->setOwnerInfo(/* pid */ -1, /* uid */ -1);
changeAndVerifyTouchModeInMainDisplayOnly(!InputDispatcher::kDefaultInTouchMode, ownerPid,
ownerUid, /*hasPermission=*/true);
}
TEST_F(InputDispatcherTouchModeChangedTests, EventIsNotGeneratedIfNotChangingTouchMode) {
const WindowInfo& windowInfo = *mWindow->getInfo();
ASSERT_FALSE(mDispatcher->setInTouchMode(InputDispatcher::kDefaultInTouchMode,
windowInfo.ownerPid, windowInfo.ownerUid,
/*hasPermission=*/true, ADISPLAY_ID_DEFAULT));
mWindow->assertNoEvents();
mSecondWindow->assertNoEvents();
}
TEST_F(InputDispatcherTouchModeChangedTests, ChangeTouchOnSecondaryDisplayOnly) {
const WindowInfo& windowInfo = *mThirdWindow->getInfo();
ASSERT_TRUE(mDispatcher->setInTouchMode(!InputDispatcher::kDefaultInTouchMode,
windowInfo.ownerPid, windowInfo.ownerUid,
/*hasPermission=*/true, SECOND_DISPLAY_ID));
mWindow->assertNoEvents();
mSecondWindow->assertNoEvents();
mThirdWindow->consumeTouchModeEvent(!InputDispatcher::kDefaultInTouchMode);
}
TEST_F(InputDispatcherTouchModeChangedTests, CanChangeTouchModeWhenOwningLastInteractedWindow) {
// Interact with the window first.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher, ADISPLAY_ID_DEFAULT))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT);
// Then remove focus.
mWindow->setFocusable(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
// Assert that caller can switch touch mode by owning one of the last interacted window.
const WindowInfo& windowInfo = *mWindow->getInfo();
ASSERT_TRUE(mDispatcher->setInTouchMode(!InputDispatcher::kDefaultInTouchMode,
windowInfo.ownerPid, windowInfo.ownerUid,
/*hasPermission=*/false, ADISPLAY_ID_DEFAULT));
}
class InputDispatcherSpyWindowTest : public InputDispatcherTest {
public:
sp<FakeWindowHandle> createSpy() {
std::shared_ptr<FakeApplicationHandle> application =
std::make_shared<FakeApplicationHandle>();
std::string name = "Fake Spy ";
name += std::to_string(mSpyCount++);
sp<FakeWindowHandle> spy = sp<FakeWindowHandle>::make(application, mDispatcher,
name.c_str(), ADISPLAY_ID_DEFAULT);
spy->setSpy(true);
spy->setTrustedOverlay(true);
return spy;
}
sp<FakeWindowHandle> createForeground() {
std::shared_ptr<FakeApplicationHandle> application =
std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Fake Window",
ADISPLAY_ID_DEFAULT);
window->setFocusable(true);
return window;
}
private:
int mSpyCount{0};
};
using InputDispatcherSpyWindowDeathTest = InputDispatcherSpyWindowTest;
/**
* Adding a spy window that is not a trusted overlay causes Dispatcher to abort.
*/
TEST_F(InputDispatcherSpyWindowDeathTest, UntrustedSpy_AbortsDispatcher) {
ScopedSilentDeath _silentDeath;
auto spy = createSpy();
spy->setTrustedOverlay(false);
ASSERT_DEATH(mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spy}}}),
".* not a trusted overlay");
}
/**
* Input injection into a display with a spy window but no foreground windows should succeed.
*/
TEST_F(InputDispatcherSpyWindowTest, NoForegroundWindow) {
auto spy = createSpy();
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spy}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
spy->consumeMotionDown(ADISPLAY_ID_DEFAULT);
}
/**
* Verify the order in which different input windows receive events. The touched foreground window
* (if there is one) should always receive the event first. When there are multiple spy windows, the
* spy windows will receive the event according to their Z-order, where the top-most spy window will
* receive events before ones belows it.
*
* Here, we set up a scenario with four windows in the following Z order from the top:
* spy1, spy2, window, spy3.
* We then inject an event and verify that the foreground "window" receives it first, followed by
* "spy1" and "spy2". The "spy3" does not receive the event because it is underneath the foreground
* window.
*/
TEST_F(InputDispatcherSpyWindowTest, ReceivesInputInOrder) {
auto window = createForeground();
auto spy1 = createSpy();
auto spy2 = createSpy();
auto spy3 = createSpy();
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spy1, spy2, window, spy3}}});
const std::vector<sp<FakeWindowHandle>> channels{spy1, spy2, window, spy3};
const size_t numChannels = channels.size();
base::unique_fd epollFd(epoll_create1(EPOLL_CLOEXEC));
if (!epollFd.ok()) {
FAIL() << "Failed to create epoll fd";
}
for (size_t i = 0; i < numChannels; i++) {
struct epoll_event event = {.events = EPOLLIN, .data.u64 = i};
if (epoll_ctl(epollFd.get(), EPOLL_CTL_ADD, channels[i]->getChannelFd(), &event) < 0) {
FAIL() << "Failed to add fd to epoll";
}
}
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
std::vector<size_t> eventOrder;
std::vector<struct epoll_event> events(numChannels);
for (;;) {
const int nFds = epoll_wait(epollFd.get(), events.data(), static_cast<int>(numChannels),
(100ms).count());
if (nFds < 0) {
FAIL() << "Failed to call epoll_wait";
}
if (nFds == 0) {
break; // epoll_wait timed out
}
for (int i = 0; i < nFds; i++) {
ASSERT_EQ(static_cast<uint32_t>(EPOLLIN), events[i].events);
eventOrder.push_back(static_cast<size_t>(events[i].data.u64));
channels[i]->consumeMotionDown();
}
}
// Verify the order in which the events were received.
EXPECT_EQ(3u, eventOrder.size());
EXPECT_EQ(2u, eventOrder[0]); // index 2: window
EXPECT_EQ(0u, eventOrder[1]); // index 0: spy1
EXPECT_EQ(1u, eventOrder[2]); // index 1: spy2
}
/**
* A spy window using the NOT_TOUCHABLE flag does not receive events.
*/
TEST_F(InputDispatcherSpyWindowTest, NotTouchable) {
auto window = createForeground();
auto spy = createSpy();
spy->setTouchable(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spy, window}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
spy->assertNoEvents();
}
/**
* A spy window will only receive gestures that originate within its touchable region. Gestures that
* have their ACTION_DOWN outside of the touchable region of the spy window will not be dispatched
* to the window.
*/
TEST_F(InputDispatcherSpyWindowTest, TouchableRegion) {
auto window = createForeground();
auto spy = createSpy();
spy->setTouchableRegion(Region{{0, 0, 20, 20}});
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spy, window}}});
// Inject an event outside the spy window's touchable region.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionDown();
spy->assertNoEvents();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionUp();
spy->assertNoEvents();
// Inject an event inside the spy window's touchable region.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{5, 10}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionDown();
spy->consumeMotionDown();
}
/**
* A spy window can listen for touches outside its touchable region using the WATCH_OUTSIDE_TOUCHES
* flag, but it will get zero-ed out coordinates if the foreground has a different owner.
*/
TEST_F(InputDispatcherSpyWindowTest, WatchOutsideTouches) {
auto window = createForeground();
window->setOwnerInfo(12, 34);
auto spy = createSpy();
spy->setWatchOutsideTouch(true);
spy->setOwnerInfo(56, 78);
spy->setFrame(Rect{0, 0, 20, 20});
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spy, window}}});
// Inject an event outside the spy window's frame and touchable region.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{100, 200}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionDown();
spy->consumeMotionOutsideWithZeroedCoords();
}
/**
* Even when a spy window spans over multiple foreground windows, the spy should receive all
* pointers that are down within its bounds.
*/
TEST_F(InputDispatcherSpyWindowTest, ReceivesMultiplePointers) {
auto windowLeft = createForeground();
windowLeft->setFrame({0, 0, 100, 200});
auto windowRight = createForeground();
windowRight->setFrame({100, 0, 200, 200});
auto spy = createSpy();
spy->setFrame({0, 0, 200, 200});
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spy, windowLeft, windowRight}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
windowLeft->consumeMotionDown();
spy->consumeMotionDown();
const MotionEvent secondFingerDownEvent =
MotionEventBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/*id=*/0, ToolType::FINGER).x(50).y(50))
.pointer(PointerBuilder(/*id=*/1, ToolType::FINGER).x(150).y(50))
.build();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, secondFingerDownEvent, INJECT_EVENT_TIMEOUT,
InputEventInjectionSync::WAIT_FOR_RESULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
windowRight->consumeMotionDown();
spy->consumeMotionPointerDown(/*pointerIndex=*/1);
}
/**
* When the first pointer lands outside the spy window and the second pointer lands inside it, the
* the spy should receive the second pointer with ACTION_DOWN.
*/
TEST_F(InputDispatcherSpyWindowTest, ReceivesSecondPointerAsDown) {
auto window = createForeground();
window->setFrame({0, 0, 200, 200});
auto spyRight = createSpy();
spyRight->setFrame({100, 0, 200, 200});
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spyRight, window}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionDown();
spyRight->assertNoEvents();
const MotionEvent secondFingerDownEvent =
MotionEventBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/*id=*/0, ToolType::FINGER).x(50).y(50))
.pointer(PointerBuilder(/*id=*/1, ToolType::FINGER).x(150).y(50))
.build();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, secondFingerDownEvent, INJECT_EVENT_TIMEOUT,
InputEventInjectionSync::WAIT_FOR_RESULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionPointerDown(/*pointerIndex=*/1);
spyRight->consumeMotionDown();
}
/**
* The spy window should not be able to affect whether or not touches are split. Only the foreground
* windows should be allowed to control split touch.
*/
TEST_F(InputDispatcherSpyWindowTest, SplitIfNoForegroundWindowTouched) {
// This spy window prevents touch splitting. However, we still expect to split touches
// because a foreground window has not disabled splitting.
auto spy = createSpy();
spy->setPreventSplitting(true);
auto window = createForeground();
window->setFrame(Rect(0, 0, 100, 100));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spy, window}}});
// First finger down, no window touched.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{100, 200}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
spy->consumeMotionDown(ADISPLAY_ID_DEFAULT);
window->assertNoEvents();
// Second finger down on window, the window should receive touch down.
const MotionEvent secondFingerDownEvent =
MotionEventBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.displayId(ADISPLAY_ID_DEFAULT)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/*id=*/0, ToolType::FINGER).x(100).y(200))
.pointer(PointerBuilder(/*id=*/1, ToolType::FINGER).x(50).y(50))
.build();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, secondFingerDownEvent, INJECT_EVENT_TIMEOUT,
InputEventInjectionSync::WAIT_FOR_RESULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
spy->consumeMotionPointerDown(/*pointerIndex=*/1);
}
/**
* A spy window will usually be implemented as an un-focusable window. Verify that these windows
* do not receive key events.
*/
TEST_F(InputDispatcherSpyWindowTest, UnfocusableSpyDoesNotReceiveKeyEvents) {
auto spy = createSpy();
spy->setFocusable(false);
auto window = createForeground();
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spy, window}}});
setFocusedWindow(window);
window->consumeFocusEvent(true);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
window->consumeKeyDown(ADISPLAY_ID_NONE);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyUp(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
window->consumeKeyUp(ADISPLAY_ID_NONE);
spy->assertNoEvents();
}
using InputDispatcherPilferPointersTest = InputDispatcherSpyWindowTest;
/**
* A spy window can pilfer pointers. When this happens, touch gestures used by the spy window that
* are currently sent to any other windows - including other spy windows - will also be cancelled.
*/
TEST_F(InputDispatcherPilferPointersTest, PilferPointers) {
auto window = createForeground();
auto spy1 = createSpy();
auto spy2 = createSpy();
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spy1, spy2, window}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionDown();
spy1->consumeMotionDown();
spy2->consumeMotionDown();
// Pilfer pointers from the second spy window.
EXPECT_EQ(OK, mDispatcher->pilferPointers(spy2->getToken()));
spy2->assertNoEvents();
spy1->consumeMotionCancel();
window->consumeMotionCancel();
// The rest of the gesture should only be sent to the second spy window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
spy2->consumeMotionMove();
spy1->assertNoEvents();
window->assertNoEvents();
}
/**
* A spy window can pilfer pointers for a gesture even after the foreground window has been removed
* in the middle of the gesture.
*/
TEST_F(InputDispatcherPilferPointersTest, CanPilferAfterWindowIsRemovedMidStream) {
auto window = createForeground();
auto spy = createSpy();
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spy, window}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
spy->consumeMotionDown(ADISPLAY_ID_DEFAULT);
window->releaseChannel();
EXPECT_EQ(OK, mDispatcher->pilferPointers(spy->getToken()));
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
spy->consumeMotionUp(ADISPLAY_ID_DEFAULT);
}
/**
* After a spy window pilfers pointers, new pointers that go down in its bounds should be sent to
* the spy, but not to any other windows.
*/
TEST_F(InputDispatcherPilferPointersTest, ContinuesToReceiveGestureAfterPilfer) {
auto spy = createSpy();
auto window = createForeground();
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spy, window}}});
// First finger down on the window and the spy.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{100, 200}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
spy->consumeMotionDown();
window->consumeMotionDown();
// Spy window pilfers the pointers.
EXPECT_EQ(OK, mDispatcher->pilferPointers(spy->getToken()));
window->consumeMotionCancel();
// Second finger down on the window and spy, but the window should not receive the pointer down.
const MotionEvent secondFingerDownEvent =
MotionEventBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.displayId(ADISPLAY_ID_DEFAULT)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/*id=*/0, ToolType::FINGER).x(100).y(200))
.pointer(PointerBuilder(/*id=*/1, ToolType::FINGER).x(50).y(50))
.build();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, secondFingerDownEvent, INJECT_EVENT_TIMEOUT,
InputEventInjectionSync::WAIT_FOR_RESULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
spy->consumeMotionPointerDown(/*pointerIndex=*/1);
// Third finger goes down outside all windows, so injection should fail.
const MotionEvent thirdFingerDownEvent =
MotionEventBuilder(POINTER_2_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.displayId(ADISPLAY_ID_DEFAULT)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/*id=*/0, ToolType::FINGER).x(100).y(200))
.pointer(PointerBuilder(/*id=*/1, ToolType::FINGER).x(50).y(50))
.pointer(PointerBuilder(/*id=*/2, ToolType::FINGER).x(-5).y(-5))
.build();
ASSERT_EQ(InputEventInjectionResult::FAILED,
injectMotionEvent(mDispatcher, thirdFingerDownEvent, INJECT_EVENT_TIMEOUT,
InputEventInjectionSync::WAIT_FOR_RESULT))
<< "Inject motion event should return InputEventInjectionResult::FAILED";
spy->assertNoEvents();
window->assertNoEvents();
}
/**
* After a spy window pilfers pointers, only the pointers used by the spy should be canceled
*/
TEST_F(InputDispatcherPilferPointersTest, PartiallyPilferRequiredPointers) {
auto spy = createSpy();
spy->setFrame(Rect(0, 0, 100, 100));
auto window = createForeground();
window->setFrame(Rect(0, 0, 200, 200));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spy, window}}});
// First finger down on the window only
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{150, 150}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionDown();
// Second finger down on the spy and window
const MotionEvent secondFingerDownEvent =
MotionEventBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.displayId(ADISPLAY_ID_DEFAULT)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/*id=*/0, ToolType::FINGER).x(150).y(150))
.pointer(PointerBuilder(/*id=*/1, ToolType::FINGER).x(10).y(10))
.build();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, secondFingerDownEvent, INJECT_EVENT_TIMEOUT,
InputEventInjectionSync::WAIT_FOR_RESULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
spy->consumeMotionDown();
window->consumeMotionPointerDown(1);
// Third finger down on the spy and window
const MotionEvent thirdFingerDownEvent =
MotionEventBuilder(POINTER_2_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.displayId(ADISPLAY_ID_DEFAULT)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/*id=*/0, ToolType::FINGER).x(150).y(150))
.pointer(PointerBuilder(/*id=*/1, ToolType::FINGER).x(10).y(10))
.pointer(PointerBuilder(/*id=*/2, ToolType::FINGER).x(50).y(50))
.build();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, thirdFingerDownEvent, INJECT_EVENT_TIMEOUT,
InputEventInjectionSync::WAIT_FOR_RESULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
spy->consumeMotionPointerDown(1);
window->consumeMotionPointerDown(2);
// Spy window pilfers the pointers.
EXPECT_EQ(OK, mDispatcher->pilferPointers(spy->getToken()));
window->consumeMotionPointerUp(/* idx */ 2, ADISPLAY_ID_DEFAULT, AMOTION_EVENT_FLAG_CANCELED);
window->consumeMotionPointerUp(/* idx */ 1, ADISPLAY_ID_DEFAULT, AMOTION_EVENT_FLAG_CANCELED);
spy->assertNoEvents();
window->assertNoEvents();
}
/**
* After a spy window pilfers pointers, all pilfered pointers that have already been dispatched to
* other windows should be canceled. If this results in the cancellation of all pointers for some
* window, then that window should receive ACTION_CANCEL.
*/
TEST_F(InputDispatcherPilferPointersTest, PilferAllRequiredPointers) {
auto spy = createSpy();
spy->setFrame(Rect(0, 0, 100, 100));
auto window = createForeground();
window->setFrame(Rect(0, 0, 200, 200));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spy, window}}});
// First finger down on both spy and window
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{10, 10}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionDown();
spy->consumeMotionDown();
// Second finger down on the spy and window
const MotionEvent secondFingerDownEvent =
MotionEventBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.displayId(ADISPLAY_ID_DEFAULT)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/*id=*/0, ToolType::FINGER).x(10).y(10))
.pointer(PointerBuilder(/*id=*/1, ToolType::FINGER).x(50).y(50))
.build();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, secondFingerDownEvent, INJECT_EVENT_TIMEOUT,
InputEventInjectionSync::WAIT_FOR_RESULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
spy->consumeMotionPointerDown(1);
window->consumeMotionPointerDown(1);
// Spy window pilfers the pointers.
EXPECT_EQ(OK, mDispatcher->pilferPointers(spy->getToken()));
window->consumeMotionCancel();
spy->assertNoEvents();
window->assertNoEvents();
}
/**
* After a spy window pilfers pointers, new pointers that are not touching the spy window can still
* be sent to other windows
*/
TEST_F(InputDispatcherPilferPointersTest, CanReceivePointersAfterPilfer) {
auto spy = createSpy();
spy->setFrame(Rect(0, 0, 100, 100));
auto window = createForeground();
window->setFrame(Rect(0, 0, 200, 200));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spy, window}}});
// First finger down on both window and spy
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{10, 10}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionDown();
spy->consumeMotionDown();
// Spy window pilfers the pointers.
EXPECT_EQ(OK, mDispatcher->pilferPointers(spy->getToken()));
window->consumeMotionCancel();
// Second finger down on the window only
const MotionEvent secondFingerDownEvent =
MotionEventBuilder(POINTER_1_DOWN, AINPUT_SOURCE_TOUCHSCREEN)
.displayId(ADISPLAY_ID_DEFAULT)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/*id=*/0, ToolType::FINGER).x(10).y(10))
.pointer(PointerBuilder(/*id=*/1, ToolType::FINGER).x(150).y(150))
.build();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, secondFingerDownEvent, INJECT_EVENT_TIMEOUT,
InputEventInjectionSync::WAIT_FOR_RESULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionDown();
window->assertNoEvents();
// TODO(b/232530217): do not send the unnecessary MOVE event and delete the next line
spy->consumeMotionMove();
spy->assertNoEvents();
}
class InputDispatcherStylusInterceptorTest : public InputDispatcherTest {
public:
std::pair<sp<FakeWindowHandle>, sp<FakeWindowHandle>> setupStylusOverlayScenario() {
std::shared_ptr<FakeApplicationHandle> overlayApplication =
std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> overlay =
sp<FakeWindowHandle>::make(overlayApplication, mDispatcher,
"Stylus interceptor window", ADISPLAY_ID_DEFAULT);
overlay->setFocusable(false);
overlay->setOwnerInfo(111, 111);
overlay->setTouchable(false);
overlay->setInterceptsStylus(true);
overlay->setTrustedOverlay(true);
std::shared_ptr<FakeApplicationHandle> application =
std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(application, mDispatcher, "Application window",
ADISPLAY_ID_DEFAULT);
window->setFocusable(true);
window->setOwnerInfo(222, 222);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {overlay, window}}});
setFocusedWindow(window);
window->consumeFocusEvent(/*hasFocus=*/true, /*inTouchMode=*/true);
return {std::move(overlay), std::move(window)};
}
void sendFingerEvent(int32_t action) {
mDispatcher->notifyMotion(
generateMotionArgs(action, AINPUT_SOURCE_TOUCHSCREEN | AINPUT_SOURCE_STYLUS,
ADISPLAY_ID_DEFAULT, {PointF{20, 20}}));
}
void sendStylusEvent(int32_t action) {
NotifyMotionArgs motionArgs =
generateMotionArgs(action, AINPUT_SOURCE_TOUCHSCREEN | AINPUT_SOURCE_STYLUS,
ADISPLAY_ID_DEFAULT, {PointF{30, 40}});
motionArgs.pointerProperties[0].toolType = ToolType::STYLUS;
mDispatcher->notifyMotion(motionArgs);
}
};
using InputDispatcherStylusInterceptorDeathTest = InputDispatcherStylusInterceptorTest;
TEST_F(InputDispatcherStylusInterceptorDeathTest, UntrustedOverlay_AbortsDispatcher) {
ScopedSilentDeath _silentDeath;
auto [overlay, window] = setupStylusOverlayScenario();
overlay->setTrustedOverlay(false);
// Configuring an untrusted overlay as a stylus interceptor should cause Dispatcher to abort.
ASSERT_DEATH(mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {overlay, window}}}),
".* not a trusted overlay");
}
TEST_F(InputDispatcherStylusInterceptorTest, ConsmesOnlyStylusEvents) {
auto [overlay, window] = setupStylusOverlayScenario();
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {overlay, window}}});
sendStylusEvent(AMOTION_EVENT_ACTION_DOWN);
overlay->consumeMotionDown();
sendStylusEvent(AMOTION_EVENT_ACTION_UP);
overlay->consumeMotionUp();
sendFingerEvent(AMOTION_EVENT_ACTION_DOWN);
window->consumeMotionDown();
sendFingerEvent(AMOTION_EVENT_ACTION_UP);
window->consumeMotionUp();
overlay->assertNoEvents();
window->assertNoEvents();
}
TEST_F(InputDispatcherStylusInterceptorTest, SpyWindowStylusInterceptor) {
auto [overlay, window] = setupStylusOverlayScenario();
overlay->setSpy(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {overlay, window}}});
sendStylusEvent(AMOTION_EVENT_ACTION_DOWN);
overlay->consumeMotionDown();
window->consumeMotionDown();
sendStylusEvent(AMOTION_EVENT_ACTION_UP);
overlay->consumeMotionUp();
window->consumeMotionUp();
sendFingerEvent(AMOTION_EVENT_ACTION_DOWN);
window->consumeMotionDown();
sendFingerEvent(AMOTION_EVENT_ACTION_UP);
window->consumeMotionUp();
overlay->assertNoEvents();
window->assertNoEvents();
}
/**
* Set up a scenario to test the behavior used by the stylus handwriting detection feature.
* The scenario is as follows:
* - The stylus interceptor overlay is configured as a spy window.
* - The stylus interceptor spy receives the start of a new stylus gesture.
* - It pilfers pointers and then configures itself to no longer be a spy.
* - The stylus interceptor continues to receive the rest of the gesture.
*/
TEST_F(InputDispatcherStylusInterceptorTest, StylusHandwritingScenario) {
auto [overlay, window] = setupStylusOverlayScenario();
overlay->setSpy(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {overlay, window}}});
sendStylusEvent(AMOTION_EVENT_ACTION_DOWN);
overlay->consumeMotionDown();
window->consumeMotionDown();
// The interceptor pilfers the pointers.
EXPECT_EQ(OK, mDispatcher->pilferPointers(overlay->getToken()));
window->consumeMotionCancel();
// The interceptor configures itself so that it is no longer a spy.
overlay->setSpy(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {overlay, window}}});
// It continues to receive the rest of the stylus gesture.
sendStylusEvent(AMOTION_EVENT_ACTION_MOVE);
overlay->consumeMotionMove();
sendStylusEvent(AMOTION_EVENT_ACTION_UP);
overlay->consumeMotionUp();
window->assertNoEvents();
}
struct User {
int32_t mPid;
int32_t mUid;
uint32_t mPolicyFlags{DEFAULT_POLICY_FLAGS};
std::unique_ptr<InputDispatcher>& mDispatcher;
User(std::unique_ptr<InputDispatcher>& dispatcher, int32_t pid, int32_t uid)
: mPid(pid), mUid(uid), mDispatcher(dispatcher) {}
InputEventInjectionResult injectTargetedMotion(int32_t action) const {
return injectMotionEvent(mDispatcher, action, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {100, 200},
{AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION},
INJECT_EVENT_TIMEOUT, InputEventInjectionSync::WAIT_FOR_RESULT,
systemTime(SYSTEM_TIME_MONOTONIC), {mUid}, mPolicyFlags);
}
InputEventInjectionResult injectTargetedKey(int32_t action) const {
return inputdispatcher::injectKey(mDispatcher, action, /*repeatCount=*/0, ADISPLAY_ID_NONE,
InputEventInjectionSync::WAIT_FOR_RESULT,
INJECT_EVENT_TIMEOUT, /*allowKeyRepeat=*/false, {mUid},
mPolicyFlags);
}
sp<FakeWindowHandle> createWindow() const {
std::shared_ptr<FakeApplicationHandle> overlayApplication =
std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
sp<FakeWindowHandle>::make(overlayApplication, mDispatcher, "Owned Window",
ADISPLAY_ID_DEFAULT);
window->setOwnerInfo(mPid, mUid);
return window;
}
};
using InputDispatcherTargetedInjectionTest = InputDispatcherTest;
TEST_F(InputDispatcherTargetedInjectionTest, CanInjectIntoOwnedWindow) {
auto owner = User(mDispatcher, 10, 11);
auto window = owner.createWindow();
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
EXPECT_EQ(InputEventInjectionResult::SUCCEEDED,
owner.injectTargetedMotion(AMOTION_EVENT_ACTION_DOWN));
window->consumeMotionDown();
setFocusedWindow(window);
window->consumeFocusEvent(true);
EXPECT_EQ(InputEventInjectionResult::SUCCEEDED,
owner.injectTargetedKey(AKEY_EVENT_ACTION_DOWN));
window->consumeKeyDown(ADISPLAY_ID_NONE);
}
TEST_F(InputDispatcherTargetedInjectionTest, CannotInjectIntoUnownedWindow) {
auto owner = User(mDispatcher, 10, 11);
auto window = owner.createWindow();
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
auto rando = User(mDispatcher, 20, 21);
EXPECT_EQ(InputEventInjectionResult::TARGET_MISMATCH,
rando.injectTargetedMotion(AMOTION_EVENT_ACTION_DOWN));
setFocusedWindow(window);
window->consumeFocusEvent(true);
EXPECT_EQ(InputEventInjectionResult::TARGET_MISMATCH,
rando.injectTargetedKey(AKEY_EVENT_ACTION_DOWN));
window->assertNoEvents();
}
TEST_F(InputDispatcherTargetedInjectionTest, CanInjectIntoOwnedSpyWindow) {
auto owner = User(mDispatcher, 10, 11);
auto window = owner.createWindow();
auto spy = owner.createWindow();
spy->setSpy(true);
spy->setTrustedOverlay(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {spy, window}}});
EXPECT_EQ(InputEventInjectionResult::SUCCEEDED,
owner.injectTargetedMotion(AMOTION_EVENT_ACTION_DOWN));
spy->consumeMotionDown();
window->consumeMotionDown();
}
TEST_F(InputDispatcherTargetedInjectionTest, CannotInjectIntoUnownedSpyWindow) {
auto owner = User(mDispatcher, 10, 11);
auto window = owner.createWindow();
auto rando = User(mDispatcher, 20, 21);
auto randosSpy = rando.createWindow();
randosSpy->setSpy(true);
randosSpy->setTrustedOverlay(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {randosSpy, window}}});
// The event is targeted at owner's window, so injection should succeed, but the spy should
// not receive the event.
EXPECT_EQ(InputEventInjectionResult::SUCCEEDED,
owner.injectTargetedMotion(AMOTION_EVENT_ACTION_DOWN));
randosSpy->assertNoEvents();
window->consumeMotionDown();
}
TEST_F(InputDispatcherTargetedInjectionTest, CanInjectIntoAnyWindowWhenNotTargeting) {
auto owner = User(mDispatcher, 10, 11);
auto window = owner.createWindow();
auto rando = User(mDispatcher, 20, 21);
auto randosSpy = rando.createWindow();
randosSpy->setSpy(true);
randosSpy->setTrustedOverlay(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {randosSpy, window}}});
// A user that has injection permission can inject into any window.
EXPECT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT));
randosSpy->consumeMotionDown();
window->consumeMotionDown();
setFocusedWindow(randosSpy);
randosSpy->consumeFocusEvent(true);
EXPECT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher));
randosSpy->consumeKeyDown(ADISPLAY_ID_NONE);
window->assertNoEvents();
}
TEST_F(InputDispatcherTargetedInjectionTest, CannotGenerateActionOutsideToOtherUids) {
auto owner = User(mDispatcher, 10, 11);
auto window = owner.createWindow();
auto rando = User(mDispatcher, 20, 21);
auto randosWindow = rando.createWindow();
randosWindow->setFrame(Rect{-10, -10, -5, -5});
randosWindow->setWatchOutsideTouch(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {randosWindow, window}}});
// Do not allow generation of ACTION_OUTSIDE events into windows owned by different uids.
EXPECT_EQ(InputEventInjectionResult::SUCCEEDED,
owner.injectTargetedMotion(AMOTION_EVENT_ACTION_DOWN));
window->consumeMotionDown();
randosWindow->assertNoEvents();
}
} // namespace android::inputdispatcher