blob: c7001b98513ec3f74e67abd3bf218b48a3eb7fd1 [file] [log] [blame]
/*
* Copyright 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#undef LOG_TAG
#define LOG_TAG "RenderEngine"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "SkiaGLRenderEngine.h"
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <GrContextOptions.h>
#include <SkCanvas.h>
#include <SkColorFilter.h>
#include <SkColorMatrix.h>
#include <SkColorSpace.h>
#include <SkImage.h>
#include <SkImageFilters.h>
#include <SkRegion.h>
#include <SkShadowUtils.h>
#include <SkSurface.h>
#include <android-base/stringprintf.h>
#include <gl/GrGLInterface.h>
#include <sync/sync.h>
#include <ui/BlurRegion.h>
#include <ui/DebugUtils.h>
#include <ui/GraphicBuffer.h>
#include <utils/Trace.h>
#include "Cache.h"
#include <cmath>
#include <cstdint>
#include <memory>
#include "../gl/GLExtensions.h"
#include "ColorSpaces.h"
#include "SkBlendMode.h"
#include "SkImageInfo.h"
#include "filters/BlurFilter.h"
#include "filters/LinearEffect.h"
#include "log/log_main.h"
#include "skia/debug/SkiaCapture.h"
#include "system/graphics-base-v1.0.h"
bool checkGlError(const char* op, int lineNumber);
namespace android {
namespace renderengine {
namespace skia {
using base::StringAppendF;
static status_t selectConfigForAttribute(EGLDisplay dpy, EGLint const* attrs, EGLint attribute,
EGLint wanted, EGLConfig* outConfig) {
EGLint numConfigs = -1, n = 0;
eglGetConfigs(dpy, nullptr, 0, &numConfigs);
std::vector<EGLConfig> configs(numConfigs, EGL_NO_CONFIG_KHR);
eglChooseConfig(dpy, attrs, configs.data(), configs.size(), &n);
configs.resize(n);
if (!configs.empty()) {
if (attribute != EGL_NONE) {
for (EGLConfig config : configs) {
EGLint value = 0;
eglGetConfigAttrib(dpy, config, attribute, &value);
if (wanted == value) {
*outConfig = config;
return NO_ERROR;
}
}
} else {
// just pick the first one
*outConfig = configs[0];
return NO_ERROR;
}
}
return NAME_NOT_FOUND;
}
static status_t selectEGLConfig(EGLDisplay display, EGLint format, EGLint renderableType,
EGLConfig* config) {
// select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
// it is to be used with WIFI displays
status_t err;
EGLint wantedAttribute;
EGLint wantedAttributeValue;
std::vector<EGLint> attribs;
if (renderableType) {
const ui::PixelFormat pixelFormat = static_cast<ui::PixelFormat>(format);
const bool is1010102 = pixelFormat == ui::PixelFormat::RGBA_1010102;
// Default to 8 bits per channel.
const EGLint tmpAttribs[] = {
EGL_RENDERABLE_TYPE,
renderableType,
EGL_RECORDABLE_ANDROID,
EGL_TRUE,
EGL_SURFACE_TYPE,
EGL_WINDOW_BIT | EGL_PBUFFER_BIT,
EGL_FRAMEBUFFER_TARGET_ANDROID,
EGL_TRUE,
EGL_RED_SIZE,
is1010102 ? 10 : 8,
EGL_GREEN_SIZE,
is1010102 ? 10 : 8,
EGL_BLUE_SIZE,
is1010102 ? 10 : 8,
EGL_ALPHA_SIZE,
is1010102 ? 2 : 8,
EGL_NONE,
};
std::copy(tmpAttribs, tmpAttribs + (sizeof(tmpAttribs) / sizeof(EGLint)),
std::back_inserter(attribs));
wantedAttribute = EGL_NONE;
wantedAttributeValue = EGL_NONE;
} else {
// if no renderable type specified, fallback to a simplified query
wantedAttribute = EGL_NATIVE_VISUAL_ID;
wantedAttributeValue = format;
}
err = selectConfigForAttribute(display, attribs.data(), wantedAttribute, wantedAttributeValue,
config);
if (err == NO_ERROR) {
EGLint caveat;
if (eglGetConfigAttrib(display, *config, EGL_CONFIG_CAVEAT, &caveat))
ALOGW_IF(caveat == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
}
return err;
}
std::unique_ptr<SkiaGLRenderEngine> SkiaGLRenderEngine::create(
const RenderEngineCreationArgs& args) {
// initialize EGL for the default display
EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
if (!eglInitialize(display, nullptr, nullptr)) {
LOG_ALWAYS_FATAL("failed to initialize EGL");
}
const auto eglVersion = eglQueryString(display, EGL_VERSION);
if (!eglVersion) {
checkGlError(__FUNCTION__, __LINE__);
LOG_ALWAYS_FATAL("eglQueryString(EGL_VERSION) failed");
}
const auto eglExtensions = eglQueryString(display, EGL_EXTENSIONS);
if (!eglExtensions) {
checkGlError(__FUNCTION__, __LINE__);
LOG_ALWAYS_FATAL("eglQueryString(EGL_EXTENSIONS) failed");
}
auto& extensions = gl::GLExtensions::getInstance();
extensions.initWithEGLStrings(eglVersion, eglExtensions);
// The code assumes that ES2 or later is available if this extension is
// supported.
EGLConfig config = EGL_NO_CONFIG_KHR;
if (!extensions.hasNoConfigContext()) {
config = chooseEglConfig(display, args.pixelFormat, /*logConfig*/ true);
}
EGLContext protectedContext = EGL_NO_CONTEXT;
const std::optional<RenderEngine::ContextPriority> priority = createContextPriority(args);
if (args.enableProtectedContext && extensions.hasProtectedContent()) {
protectedContext =
createEglContext(display, config, nullptr, priority, Protection::PROTECTED);
ALOGE_IF(protectedContext == EGL_NO_CONTEXT, "Can't create protected context");
}
EGLContext ctxt =
createEglContext(display, config, protectedContext, priority, Protection::UNPROTECTED);
// if can't create a GL context, we can only abort.
LOG_ALWAYS_FATAL_IF(ctxt == EGL_NO_CONTEXT, "EGLContext creation failed");
EGLSurface placeholder = EGL_NO_SURFACE;
if (!extensions.hasSurfacelessContext()) {
placeholder = createPlaceholderEglPbufferSurface(display, config, args.pixelFormat,
Protection::UNPROTECTED);
LOG_ALWAYS_FATAL_IF(placeholder == EGL_NO_SURFACE, "can't create placeholder pbuffer");
}
EGLBoolean success = eglMakeCurrent(display, placeholder, placeholder, ctxt);
LOG_ALWAYS_FATAL_IF(!success, "can't make placeholder pbuffer current");
extensions.initWithGLStrings(glGetString(GL_VENDOR), glGetString(GL_RENDERER),
glGetString(GL_VERSION), glGetString(GL_EXTENSIONS));
EGLSurface protectedPlaceholder = EGL_NO_SURFACE;
if (protectedContext != EGL_NO_CONTEXT && !extensions.hasSurfacelessContext()) {
protectedPlaceholder = createPlaceholderEglPbufferSurface(display, config, args.pixelFormat,
Protection::PROTECTED);
ALOGE_IF(protectedPlaceholder == EGL_NO_SURFACE,
"can't create protected placeholder pbuffer");
}
// initialize the renderer while GL is current
std::unique_ptr<SkiaGLRenderEngine> engine =
std::make_unique<SkiaGLRenderEngine>(args, display, ctxt, placeholder, protectedContext,
protectedPlaceholder);
ALOGI("OpenGL ES informations:");
ALOGI("vendor : %s", extensions.getVendor());
ALOGI("renderer : %s", extensions.getRenderer());
ALOGI("version : %s", extensions.getVersion());
ALOGI("extensions: %s", extensions.getExtensions());
ALOGI("GL_MAX_TEXTURE_SIZE = %zu", engine->getMaxTextureSize());
ALOGI("GL_MAX_VIEWPORT_DIMS = %zu", engine->getMaxViewportDims());
return engine;
}
void SkiaGLRenderEngine::primeCache() {
Cache::primeShaderCache(this);
}
EGLConfig SkiaGLRenderEngine::chooseEglConfig(EGLDisplay display, int format, bool logConfig) {
status_t err;
EGLConfig config;
// First try to get an ES3 config
err = selectEGLConfig(display, format, EGL_OPENGL_ES3_BIT, &config);
if (err != NO_ERROR) {
// If ES3 fails, try to get an ES2 config
err = selectEGLConfig(display, format, EGL_OPENGL_ES2_BIT, &config);
if (err != NO_ERROR) {
// If ES2 still doesn't work, probably because we're on the emulator.
// try a simplified query
ALOGW("no suitable EGLConfig found, trying a simpler query");
err = selectEGLConfig(display, format, 0, &config);
if (err != NO_ERROR) {
// this EGL is too lame for android
LOG_ALWAYS_FATAL("no suitable EGLConfig found, giving up");
}
}
}
if (logConfig) {
// print some debugging info
EGLint r, g, b, a;
eglGetConfigAttrib(display, config, EGL_RED_SIZE, &r);
eglGetConfigAttrib(display, config, EGL_GREEN_SIZE, &g);
eglGetConfigAttrib(display, config, EGL_BLUE_SIZE, &b);
eglGetConfigAttrib(display, config, EGL_ALPHA_SIZE, &a);
ALOGI("EGL information:");
ALOGI("vendor : %s", eglQueryString(display, EGL_VENDOR));
ALOGI("version : %s", eglQueryString(display, EGL_VERSION));
ALOGI("extensions: %s", eglQueryString(display, EGL_EXTENSIONS));
ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS) ?: "Not Supported");
ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, config);
}
return config;
}
sk_sp<SkData> SkiaGLRenderEngine::SkSLCacheMonitor::load(const SkData& key) {
// This "cache" does not actually cache anything. It just allows us to
// monitor Skia's internal cache. So this method always returns null.
return nullptr;
}
void SkiaGLRenderEngine::SkSLCacheMonitor::store(const SkData& key, const SkData& data,
const SkString& description) {
mShadersCachedSinceLastCall++;
}
void SkiaGLRenderEngine::assertShadersCompiled(int numShaders) {
const int cached = mSkSLCacheMonitor.shadersCachedSinceLastCall();
LOG_ALWAYS_FATAL_IF(cached != numShaders, "Attempted to cache %i shaders; cached %i",
numShaders, cached);
}
SkiaGLRenderEngine::SkiaGLRenderEngine(const RenderEngineCreationArgs& args, EGLDisplay display,
EGLContext ctxt, EGLSurface placeholder,
EGLContext protectedContext, EGLSurface protectedPlaceholder)
: SkiaRenderEngine(args.renderEngineType),
mEGLDisplay(display),
mEGLContext(ctxt),
mPlaceholderSurface(placeholder),
mProtectedEGLContext(protectedContext),
mProtectedPlaceholderSurface(protectedPlaceholder),
mUseColorManagement(args.useColorManagement) {
sk_sp<const GrGLInterface> glInterface(GrGLCreateNativeInterface());
LOG_ALWAYS_FATAL_IF(!glInterface.get());
GrContextOptions options;
options.fPreferExternalImagesOverES3 = true;
options.fDisableDistanceFieldPaths = true;
options.fPersistentCache = &mSkSLCacheMonitor;
mGrContext = GrDirectContext::MakeGL(glInterface, options);
if (useProtectedContext(true)) {
mProtectedGrContext = GrDirectContext::MakeGL(glInterface, options);
useProtectedContext(false);
}
if (args.supportsBackgroundBlur) {
ALOGD("Background Blurs Enabled");
mBlurFilter = new BlurFilter();
}
mCapture = std::make_unique<SkiaCapture>();
}
SkiaGLRenderEngine::~SkiaGLRenderEngine() {
cleanFramebufferCache();
std::lock_guard<std::mutex> lock(mRenderingMutex);
if (mBlurFilter) {
delete mBlurFilter;
}
mCapture = nullptr;
mGrContext->flushAndSubmit(true);
mGrContext->abandonContext();
if (mProtectedGrContext) {
mProtectedGrContext->flushAndSubmit(true);
mProtectedGrContext->abandonContext();
}
if (mPlaceholderSurface != EGL_NO_SURFACE) {
eglDestroySurface(mEGLDisplay, mPlaceholderSurface);
}
if (mProtectedPlaceholderSurface != EGL_NO_SURFACE) {
eglDestroySurface(mEGLDisplay, mProtectedPlaceholderSurface);
}
if (mEGLContext != EGL_NO_CONTEXT) {
eglDestroyContext(mEGLDisplay, mEGLContext);
}
if (mProtectedEGLContext != EGL_NO_CONTEXT) {
eglDestroyContext(mEGLDisplay, mProtectedEGLContext);
}
eglMakeCurrent(mEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
eglTerminate(mEGLDisplay);
eglReleaseThread();
}
bool SkiaGLRenderEngine::supportsProtectedContent() const {
return mProtectedEGLContext != EGL_NO_CONTEXT;
}
bool SkiaGLRenderEngine::useProtectedContext(bool useProtectedContext) {
if (useProtectedContext == mInProtectedContext) {
return true;
}
if (useProtectedContext && !supportsProtectedContent()) {
return false;
}
const EGLSurface surface =
useProtectedContext ? mProtectedPlaceholderSurface : mPlaceholderSurface;
const EGLContext context = useProtectedContext ? mProtectedEGLContext : mEGLContext;
const bool success = eglMakeCurrent(mEGLDisplay, surface, surface, context) == EGL_TRUE;
if (success) {
mInProtectedContext = useProtectedContext;
}
return success;
}
base::unique_fd SkiaGLRenderEngine::flush() {
ATRACE_CALL();
if (!gl::GLExtensions::getInstance().hasNativeFenceSync()) {
return base::unique_fd();
}
EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, nullptr);
if (sync == EGL_NO_SYNC_KHR) {
ALOGW("failed to create EGL native fence sync: %#x", eglGetError());
return base::unique_fd();
}
// native fence fd will not be populated until flush() is done.
glFlush();
// get the fence fd
base::unique_fd fenceFd(eglDupNativeFenceFDANDROID(mEGLDisplay, sync));
eglDestroySyncKHR(mEGLDisplay, sync);
if (fenceFd == EGL_NO_NATIVE_FENCE_FD_ANDROID) {
ALOGW("failed to dup EGL native fence sync: %#x", eglGetError());
}
return fenceFd;
}
bool SkiaGLRenderEngine::waitFence(base::unique_fd fenceFd) {
if (!gl::GLExtensions::getInstance().hasNativeFenceSync() ||
!gl::GLExtensions::getInstance().hasWaitSync()) {
return false;
}
// release the fd and transfer the ownership to EGLSync
EGLint attribs[] = {EGL_SYNC_NATIVE_FENCE_FD_ANDROID, fenceFd.release(), EGL_NONE};
EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, attribs);
if (sync == EGL_NO_SYNC_KHR) {
ALOGE("failed to create EGL native fence sync: %#x", eglGetError());
return false;
}
// XXX: The spec draft is inconsistent as to whether this should return an
// EGLint or void. Ignore the return value for now, as it's not strictly
// needed.
eglWaitSyncKHR(mEGLDisplay, sync, 0);
EGLint error = eglGetError();
eglDestroySyncKHR(mEGLDisplay, sync);
if (error != EGL_SUCCESS) {
ALOGE("failed to wait for EGL native fence sync: %#x", error);
return false;
}
return true;
}
static float toDegrees(uint32_t transform) {
switch (transform) {
case ui::Transform::ROT_90:
return 90.0;
case ui::Transform::ROT_180:
return 180.0;
case ui::Transform::ROT_270:
return 270.0;
default:
return 0.0;
}
}
static SkColorMatrix toSkColorMatrix(const mat4& matrix) {
return SkColorMatrix(matrix[0][0], matrix[1][0], matrix[2][0], matrix[3][0], 0, matrix[0][1],
matrix[1][1], matrix[2][1], matrix[3][1], 0, matrix[0][2], matrix[1][2],
matrix[2][2], matrix[3][2], 0, matrix[0][3], matrix[1][3], matrix[2][3],
matrix[3][3], 0);
}
static bool needsToneMapping(ui::Dataspace sourceDataspace, ui::Dataspace destinationDataspace) {
int64_t sourceTransfer = sourceDataspace & HAL_DATASPACE_TRANSFER_MASK;
int64_t destTransfer = destinationDataspace & HAL_DATASPACE_TRANSFER_MASK;
// Treat unsupported dataspaces as srgb
if (destTransfer != HAL_DATASPACE_TRANSFER_LINEAR &&
destTransfer != HAL_DATASPACE_TRANSFER_HLG &&
destTransfer != HAL_DATASPACE_TRANSFER_ST2084) {
destTransfer = HAL_DATASPACE_TRANSFER_SRGB;
}
if (sourceTransfer != HAL_DATASPACE_TRANSFER_LINEAR &&
sourceTransfer != HAL_DATASPACE_TRANSFER_HLG &&
sourceTransfer != HAL_DATASPACE_TRANSFER_ST2084) {
sourceTransfer = HAL_DATASPACE_TRANSFER_SRGB;
}
const bool isSourceLinear = sourceTransfer == HAL_DATASPACE_TRANSFER_LINEAR;
const bool isSourceSRGB = sourceTransfer == HAL_DATASPACE_TRANSFER_SRGB;
const bool isDestLinear = destTransfer == HAL_DATASPACE_TRANSFER_LINEAR;
const bool isDestSRGB = destTransfer == HAL_DATASPACE_TRANSFER_SRGB;
return !(isSourceLinear && isDestSRGB) && !(isSourceSRGB && isDestLinear) &&
sourceTransfer != destTransfer;
}
void SkiaGLRenderEngine::cacheExternalTextureBuffer(const sp<GraphicBuffer>& buffer) {
// Only run this if RE is running on its own thread. This way the access to GL
// operations is guaranteed to be happening on the same thread.
if (mRenderEngineType != RenderEngineType::SKIA_GL_THREADED) {
return;
}
ATRACE_CALL();
// We need to switch the currently bound context if the buffer is protected but the current
// context is not. The current state must then be restored after the buffer is cached.
const bool protectedContextState = mInProtectedContext;
if (!useProtectedContext(protectedContextState ||
(buffer->getUsage() & GRALLOC_USAGE_PROTECTED))) {
ALOGE("Attempting to cache a buffer into a different context than what is currently bound");
return;
}
auto grContext = mInProtectedContext ? mProtectedGrContext : mGrContext;
auto& cache = mInProtectedContext ? mProtectedTextureCache : mTextureCache;
std::lock_guard<std::mutex> lock(mRenderingMutex);
auto iter = cache.find(buffer->getId());
if (iter != cache.end()) {
ALOGV("Texture already exists in cache.");
} else {
std::shared_ptr<AutoBackendTexture::LocalRef> imageTextureRef =
std::make_shared<AutoBackendTexture::LocalRef>();
imageTextureRef->setTexture(
new AutoBackendTexture(grContext.get(), buffer->toAHardwareBuffer()));
cache.insert({buffer->getId(), imageTextureRef});
}
// restore the original state of the protected context if necessary
useProtectedContext(protectedContextState);
}
void SkiaGLRenderEngine::unbindExternalTextureBuffer(uint64_t bufferId) {
ATRACE_CALL();
std::lock_guard<std::mutex> lock(mRenderingMutex);
mTextureCache.erase(bufferId);
mProtectedTextureCache.erase(bufferId);
}
sk_sp<SkShader> SkiaGLRenderEngine::createRuntimeEffectShader(sk_sp<SkShader> shader,
const LayerSettings* layer,
const DisplaySettings& display,
bool undoPremultipliedAlpha,
bool requiresLinearEffect) {
if (layer->stretchEffect.hasEffect()) {
// TODO: Implement
}
if (requiresLinearEffect) {
const ui::Dataspace inputDataspace =
mUseColorManagement ? layer->sourceDataspace : ui::Dataspace::UNKNOWN;
const ui::Dataspace outputDataspace =
mUseColorManagement ? display.outputDataspace : ui::Dataspace::UNKNOWN;
LinearEffect effect = LinearEffect{.inputDataspace = inputDataspace,
.outputDataspace = outputDataspace,
.undoPremultipliedAlpha = undoPremultipliedAlpha};
auto effectIter = mRuntimeEffects.find(effect);
sk_sp<SkRuntimeEffect> runtimeEffect = nullptr;
if (effectIter == mRuntimeEffects.end()) {
runtimeEffect = buildRuntimeEffect(effect);
mRuntimeEffects.insert({effect, runtimeEffect});
} else {
runtimeEffect = effectIter->second;
}
return createLinearEffectShader(shader, effect, runtimeEffect, layer->colorTransform,
display.maxLuminance,
layer->source.buffer.maxMasteringLuminance,
layer->source.buffer.maxContentLuminance);
}
return shader;
}
void SkiaGLRenderEngine::initCanvas(SkCanvas* canvas, const DisplaySettings& display) {
if (CC_UNLIKELY(mCapture->isCaptureRunning())) {
// Record display settings when capture is running.
std::stringstream displaySettings;
PrintTo(display, &displaySettings);
// Store the DisplaySettings in additional information.
canvas->drawAnnotation(SkRect::MakeEmpty(), "DisplaySettings",
SkData::MakeWithCString(displaySettings.str().c_str()));
}
// Before doing any drawing, let's make sure that we'll start at the origin of the display.
// Some displays don't start at 0,0 for example when we're mirroring the screen. Also, virtual
// displays might have different scaling when compared to the physical screen.
canvas->clipRect(getSkRect(display.physicalDisplay));
canvas->translate(display.physicalDisplay.left, display.physicalDisplay.top);
const auto clipWidth = display.clip.width();
const auto clipHeight = display.clip.height();
auto rotatedClipWidth = clipWidth;
auto rotatedClipHeight = clipHeight;
// Scale is contingent on the rotation result.
if (display.orientation & ui::Transform::ROT_90) {
std::swap(rotatedClipWidth, rotatedClipHeight);
}
const auto scaleX = static_cast<SkScalar>(display.physicalDisplay.width()) /
static_cast<SkScalar>(rotatedClipWidth);
const auto scaleY = static_cast<SkScalar>(display.physicalDisplay.height()) /
static_cast<SkScalar>(rotatedClipHeight);
canvas->scale(scaleX, scaleY);
// Canvas rotation is done by centering the clip window at the origin, rotating, translating
// back so that the top left corner of the clip is at (0, 0).
canvas->translate(rotatedClipWidth / 2, rotatedClipHeight / 2);
canvas->rotate(toDegrees(display.orientation));
canvas->translate(-clipWidth / 2, -clipHeight / 2);
canvas->translate(-display.clip.left, -display.clip.top);
}
class AutoSaveRestore {
public:
AutoSaveRestore(SkCanvas* canvas) : mCanvas(canvas) { mSaveCount = canvas->save(); }
~AutoSaveRestore() { restore(); }
void replace(SkCanvas* canvas) {
mCanvas = canvas;
mSaveCount = canvas->save();
}
void restore() {
if (mCanvas) {
mCanvas->restoreToCount(mSaveCount);
mCanvas = nullptr;
}
}
private:
SkCanvas* mCanvas;
int mSaveCount;
};
status_t SkiaGLRenderEngine::drawLayers(const DisplaySettings& display,
const std::vector<const LayerSettings*>& layers,
const sp<GraphicBuffer>& buffer,
const bool useFramebufferCache,
base::unique_fd&& bufferFence, base::unique_fd* drawFence) {
ATRACE_NAME("SkiaGL::drawLayers");
std::lock_guard<std::mutex> lock(mRenderingMutex);
if (layers.empty()) {
ALOGV("Drawing empty layer stack");
return NO_ERROR;
}
if (bufferFence.get() >= 0) {
// Duplicate the fence for passing to waitFence.
base::unique_fd bufferFenceDup(dup(bufferFence.get()));
if (bufferFenceDup < 0 || !waitFence(std::move(bufferFenceDup))) {
ATRACE_NAME("Waiting before draw");
sync_wait(bufferFence.get(), -1);
}
}
if (buffer == nullptr) {
ALOGE("No output buffer provided. Aborting GPU composition.");
return BAD_VALUE;
}
validateOutputBufferUsage(buffer);
auto grContext = mInProtectedContext ? mProtectedGrContext : mGrContext;
auto& cache = mInProtectedContext ? mProtectedTextureCache : mTextureCache;
AHardwareBuffer_Desc bufferDesc;
AHardwareBuffer_describe(buffer->toAHardwareBuffer(), &bufferDesc);
std::shared_ptr<AutoBackendTexture::LocalRef> surfaceTextureRef = nullptr;
if (useFramebufferCache) {
auto iter = cache.find(buffer->getId());
if (iter != cache.end()) {
ALOGV("Cache hit!");
ATRACE_NAME("Cache hit");
surfaceTextureRef = iter->second;
}
}
if (surfaceTextureRef == nullptr || surfaceTextureRef->getTexture() == nullptr) {
ATRACE_NAME("Cache miss");
surfaceTextureRef = std::make_shared<AutoBackendTexture::LocalRef>();
surfaceTextureRef->setTexture(
new AutoBackendTexture(grContext.get(), buffer->toAHardwareBuffer()));
if (useFramebufferCache) {
ALOGD("Adding to cache");
cache.insert({buffer->getId(), surfaceTextureRef});
}
}
const ui::Dataspace dstDataspace =
mUseColorManagement ? display.outputDataspace : ui::Dataspace::UNKNOWN;
sk_sp<SkSurface> dstSurface =
surfaceTextureRef->getTexture()->getOrCreateSurface(dstDataspace, grContext.get());
SkCanvas* dstCanvas = mCapture->tryCapture(dstSurface.get());
if (dstCanvas == nullptr) {
ALOGE("Cannot acquire canvas from Skia.");
return BAD_VALUE;
}
// Find if any layers have requested blur, we'll use that info to decide when to render to an
// offscreen buffer and when to render to the native buffer.
sk_sp<SkSurface> activeSurface(dstSurface);
SkCanvas* canvas = dstCanvas;
SkiaCapture::OffscreenState offscreenCaptureState;
const LayerSettings* blurCompositionLayer = nullptr;
if (mBlurFilter) {
bool requiresCompositionLayer = false;
for (const auto& layer : layers) {
if (layer->backgroundBlurRadius > 0 &&
layer->backgroundBlurRadius < BlurFilter::kMaxCrossFadeRadius) {
requiresCompositionLayer = true;
}
for (auto region : layer->blurRegions) {
if (region.blurRadius < BlurFilter::kMaxCrossFadeRadius) {
requiresCompositionLayer = true;
}
}
if (requiresCompositionLayer) {
activeSurface = dstSurface->makeSurface(dstSurface->imageInfo());
canvas = mCapture->tryOffscreenCapture(activeSurface.get(), &offscreenCaptureState);
blurCompositionLayer = layer;
break;
}
}
}
AutoSaveRestore surfaceAutoSaveRestore(canvas);
// Clear the entire canvas with a transparent black to prevent ghost images.
canvas->clear(SK_ColorTRANSPARENT);
initCanvas(canvas, display);
// TODO: clearRegion was required for SurfaceView when a buffer is not yet available but the
// view is still on-screen. The clear region could be re-specified as a black color layer,
// however.
if (!display.clearRegion.isEmpty()) {
ATRACE_NAME("ClearRegion");
size_t numRects = 0;
Rect const* rects = display.clearRegion.getArray(&numRects);
SkIRect skRects[numRects];
for (int i = 0; i < numRects; ++i) {
skRects[i] =
SkIRect::MakeLTRB(rects[i].left, rects[i].top, rects[i].right, rects[i].bottom);
}
SkRegion clearRegion;
SkPaint paint;
sk_sp<SkShader> shader =
SkShaders::Color(SkColor4f{.fR = 0., .fG = 0., .fB = 0., .fA = 1.0},
toSkColorSpace(dstDataspace));
paint.setShader(shader);
clearRegion.setRects(skRects, numRects);
canvas->drawRegion(clearRegion, paint);
}
// setup color filter if necessary
sk_sp<SkColorFilter> displayColorTransform;
if (display.colorTransform != mat4()) {
displayColorTransform = SkColorFilters::Matrix(toSkColorMatrix(display.colorTransform));
}
for (const auto& layer : layers) {
ATRACE_NAME("DrawLayer");
sk_sp<SkImage> blurInput;
if (blurCompositionLayer == layer) {
LOG_ALWAYS_FATAL_IF(activeSurface == dstSurface);
LOG_ALWAYS_FATAL_IF(canvas == dstCanvas);
// save a snapshot of the activeSurface to use as input to the blur shaders
blurInput = activeSurface->makeImageSnapshot();
// TODO we could skip this step if we know the blur will cover the entire image
// blit the offscreen framebuffer into the destination AHB
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
if (CC_UNLIKELY(mCapture->isCaptureRunning())) {
uint64_t id = mCapture->endOffscreenCapture(&offscreenCaptureState);
dstCanvas->drawAnnotation(SkRect::Make(dstCanvas->imageInfo().dimensions()),
String8::format("SurfaceID|%" PRId64, id).c_str(),
nullptr);
dstCanvas->drawImage(blurInput, 0, 0, SkSamplingOptions(), &paint);
} else {
activeSurface->draw(dstCanvas, 0, 0, SkSamplingOptions(), &paint);
}
// assign dstCanvas to canvas and ensure that the canvas state is up to date
canvas = dstCanvas;
surfaceAutoSaveRestore.replace(canvas);
initCanvas(canvas, display);
LOG_ALWAYS_FATAL_IF(activeSurface->getCanvas()->getSaveCount() !=
dstSurface->getCanvas()->getSaveCount());
LOG_ALWAYS_FATAL_IF(activeSurface->getCanvas()->getTotalMatrix() !=
dstSurface->getCanvas()->getTotalMatrix());
// assign dstSurface to activeSurface
activeSurface = dstSurface;
}
SkAutoCanvasRestore layerAutoSaveRestore(canvas, true);
if (CC_UNLIKELY(mCapture->isCaptureRunning())) {
// Record the name of the layer if the capture is running.
std::stringstream layerSettings;
PrintTo(*layer, &layerSettings);
// Store the LayerSettings in additional information.
canvas->drawAnnotation(SkRect::MakeEmpty(), layer->name.c_str(),
SkData::MakeWithCString(layerSettings.str().c_str()));
}
// Layers have a local transform that should be applied to them
canvas->concat(getSkM44(layer->geometry.positionTransform).asM33());
const auto bounds = getSkRect(layer->geometry.boundaries);
if (mBlurFilter && layerHasBlur(layer)) {
std::unordered_map<uint32_t, sk_sp<SkImage>> cachedBlurs;
// if multiple layers have blur, then we need to take a snapshot now because
// only the lowest layer will have blurImage populated earlier
if (!blurInput) {
blurInput = activeSurface->makeImageSnapshot();
}
// rect to be blurred in the coordinate space of blurInput
const auto blurRect = canvas->getTotalMatrix().mapRect(bounds);
if (layer->backgroundBlurRadius > 0) {
ATRACE_NAME("BackgroundBlur");
auto blurredImage =
mBlurFilter->generate(grContext.get(), layer->backgroundBlurRadius,
blurInput, blurRect);
cachedBlurs[layer->backgroundBlurRadius] = blurredImage;
mBlurFilter->drawBlurRegion(canvas, getBlurRegion(layer), blurRect, blurredImage,
blurInput);
}
for (auto region : layer->blurRegions) {
if (cachedBlurs[region.blurRadius] == nullptr) {
ATRACE_NAME("BlurRegion");
cachedBlurs[region.blurRadius] =
mBlurFilter->generate(grContext.get(), region.blurRadius, blurInput,
blurRect);
}
mBlurFilter->drawBlurRegion(canvas, region, blurRect,
cachedBlurs[region.blurRadius], blurInput);
}
}
// Shadows are assumed to live only on their own layer - it's not valid
// to draw the boundary rectangles when there is already a caster shadow
// TODO(b/175915334): consider relaxing this restriction to enable more flexible
// composition - using a well-defined invalid color is long-term less error-prone.
if (layer->shadow.length > 0) {
const auto rect = layer->geometry.roundedCornersRadius > 0
? getSkRect(layer->geometry.roundedCornersCrop)
: bounds;
// This would require a new parameter/flag to SkShadowUtils::DrawShadow
LOG_ALWAYS_FATAL_IF(layer->disableBlending, "Cannot disableBlending with a shadow");
drawShadow(canvas, rect, layer->geometry.roundedCornersRadius, layer->shadow);
continue;
}
const bool requiresLinearEffect = layer->colorTransform != mat4() ||
(mUseColorManagement &&
needsToneMapping(layer->sourceDataspace, display.outputDataspace));
// quick abort from drawing the remaining portion of the layer
if (layer->alpha == 0 && !requiresLinearEffect && !layer->disableBlending &&
(!displayColorTransform || displayColorTransform->isAlphaUnchanged())) {
continue;
}
// If we need to map to linear space or color management is disabled, then mark the source
// image with the same colorspace as the destination surface so that Skia's color
// management is a no-op.
const ui::Dataspace layerDataspace = (!mUseColorManagement || requiresLinearEffect)
? dstDataspace
: layer->sourceDataspace;
SkPaint paint;
if (layer->source.buffer.buffer) {
ATRACE_NAME("DrawImage");
validateInputBufferUsage(layer->source.buffer.buffer);
const auto& item = layer->source.buffer;
std::shared_ptr<AutoBackendTexture::LocalRef> imageTextureRef = nullptr;
auto iter = cache.find(item.buffer->getId());
if (iter != cache.end()) {
imageTextureRef = iter->second;
} else {
imageTextureRef = std::make_shared<AutoBackendTexture::LocalRef>();
imageTextureRef->setTexture(
new AutoBackendTexture(grContext.get(), item.buffer->toAHardwareBuffer()));
cache.insert({item.buffer->getId(), imageTextureRef});
}
sk_sp<SkImage> image =
imageTextureRef->getTexture()->makeImage(layerDataspace,
item.usePremultipliedAlpha
? kPremul_SkAlphaType
: kUnpremul_SkAlphaType,
grContext.get());
auto texMatrix = getSkM44(item.textureTransform).asM33();
// textureTansform was intended to be passed directly into a shader, so when
// building the total matrix with the textureTransform we need to first
// normalize it, then apply the textureTransform, then scale back up.
texMatrix.preScale(1.0f / bounds.width(), 1.0f / bounds.height());
texMatrix.postScale(image->width(), image->height());
SkMatrix matrix;
if (!texMatrix.invert(&matrix)) {
matrix = texMatrix;
}
// The shader does not respect the translation, so we add it to the texture
// transform for the SkImage. This will make sure that the correct layer contents
// are drawn in the correct part of the screen.
matrix.postTranslate(layer->geometry.boundaries.left, layer->geometry.boundaries.top);
sk_sp<SkShader> shader;
if (layer->source.buffer.useTextureFiltering) {
shader = image->makeShader(SkTileMode::kClamp, SkTileMode::kClamp,
SkSamplingOptions(
{SkFilterMode::kLinear, SkMipmapMode::kNone}),
&matrix);
} else {
shader = image->makeShader(SkSamplingOptions(), matrix);
}
// Handle opaque images - it's a little nonstandard how we do this.
// Fundamentally we need to support SurfaceControl.Builder#setOpaque:
// https://developer.android.com/reference/android/view/SurfaceControl.Builder#setOpaque(boolean)
// The important language is that when isOpaque is set, opacity is not sampled from the
// alpha channel, but blending may still be supported on a transaction via setAlpha. So,
// here's the conundrum:
// 1. We can't force the SkImage alpha type to kOpaque_SkAlphaType, because it's treated
// as an internal hint - composition is undefined when there are alpha bits present.
// 2. We can try to lie about the pixel layout, but that only works for RGBA8888
// buffers, i.e., treating them as RGBx8888 instead. But we can't do the same for
// RGBA1010102 because RGBx1010102 is not supported as a pixel layout for SkImages. It's
// also not clear what to use for F16 either, and lying about the pixel layout is a bit
// of a hack anyways.
// 3. We can't change the blendmode to src, because while this satisfies the requirement
// for ignoring the alpha channel, it doesn't quite satisfy the blending requirement
// because src always clobbers the destination content.
//
// So, what we do here instead is an additive blend mode where we compose the input
// image with a solid black. This might need to be reassess if this does not support
// FP16 incredibly well, but FP16 end-to-end isn't well supported anyway at the moment.
if (item.isOpaque) {
shader = SkShaders::Blend(SkBlendMode::kPlus, shader,
SkShaders::Color(SkColors::kBlack,
toSkColorSpace(layerDataspace)));
}
paint.setShader(createRuntimeEffectShader(shader, layer, display,
!item.isOpaque && item.usePremultipliedAlpha,
requiresLinearEffect));
paint.setAlphaf(layer->alpha);
} else {
ATRACE_NAME("DrawColor");
const auto color = layer->source.solidColor;
sk_sp<SkShader> shader = SkShaders::Color(SkColor4f{.fR = color.r,
.fG = color.g,
.fB = color.b,
.fA = layer->alpha},
toSkColorSpace(layerDataspace));
paint.setShader(createRuntimeEffectShader(shader, layer, display,
/* undoPremultipliedAlpha */ false,
requiresLinearEffect));
}
if (layer->disableBlending) {
paint.setBlendMode(SkBlendMode::kSrc);
}
paint.setColorFilter(displayColorTransform);
if (layer->geometry.roundedCornersRadius > 0) {
paint.setAntiAlias(true);
canvas->drawRRect(getRoundedRect(layer), paint);
} else {
canvas->drawRect(bounds, paint);
}
}
surfaceAutoSaveRestore.restore();
mCapture->endCapture();
{
ATRACE_NAME("flush surface");
LOG_ALWAYS_FATAL_IF(activeSurface != dstSurface);
activeSurface->flush();
}
if (drawFence != nullptr) {
*drawFence = flush();
}
// If flush failed or we don't support native fences, we need to force the
// gl command stream to be executed.
bool requireSync = drawFence == nullptr || drawFence->get() < 0;
if (requireSync) {
ATRACE_BEGIN("Submit(sync=true)");
} else {
ATRACE_BEGIN("Submit(sync=false)");
}
bool success = grContext->submit(requireSync);
ATRACE_END();
if (!success) {
ALOGE("Failed to flush RenderEngine commands");
// Chances are, something illegal happened (either the caller passed
// us bad parameters, or we messed up our shader generation).
return INVALID_OPERATION;
}
// checkErrors();
return NO_ERROR;
}
inline SkRect SkiaGLRenderEngine::getSkRect(const FloatRect& rect) {
return SkRect::MakeLTRB(rect.left, rect.top, rect.right, rect.bottom);
}
inline SkRect SkiaGLRenderEngine::getSkRect(const Rect& rect) {
return SkRect::MakeLTRB(rect.left, rect.top, rect.right, rect.bottom);
}
inline SkRRect SkiaGLRenderEngine::getRoundedRect(const LayerSettings* layer) {
const auto rect = getSkRect(layer->geometry.roundedCornersCrop);
const auto cornerRadius = layer->geometry.roundedCornersRadius;
return SkRRect::MakeRectXY(rect, cornerRadius, cornerRadius);
}
inline BlurRegion SkiaGLRenderEngine::getBlurRegion(const LayerSettings* layer) {
const auto rect = getSkRect(layer->geometry.boundaries);
const auto cornersRadius = layer->geometry.roundedCornersRadius;
return BlurRegion{.blurRadius = static_cast<uint32_t>(layer->backgroundBlurRadius),
.cornerRadiusTL = cornersRadius,
.cornerRadiusTR = cornersRadius,
.cornerRadiusBL = cornersRadius,
.cornerRadiusBR = cornersRadius,
.alpha = 1,
.left = static_cast<int>(rect.fLeft),
.top = static_cast<int>(rect.fTop),
.right = static_cast<int>(rect.fRight),
.bottom = static_cast<int>(rect.fBottom)};
}
inline bool SkiaGLRenderEngine::layerHasBlur(const LayerSettings* layer) {
return layer->backgroundBlurRadius > 0 || layer->blurRegions.size();
}
inline SkColor SkiaGLRenderEngine::getSkColor(const vec4& color) {
return SkColorSetARGB(color.a * 255, color.r * 255, color.g * 255, color.b * 255);
}
inline SkM44 SkiaGLRenderEngine::getSkM44(const mat4& matrix) {
return SkM44(matrix[0][0], matrix[1][0], matrix[2][0], matrix[3][0],
matrix[0][1], matrix[1][1], matrix[2][1], matrix[3][1],
matrix[0][2], matrix[1][2], matrix[2][2], matrix[3][2],
matrix[0][3], matrix[1][3], matrix[2][3], matrix[3][3]);
}
inline SkPoint3 SkiaGLRenderEngine::getSkPoint3(const vec3& vector) {
return SkPoint3::Make(vector.x, vector.y, vector.z);
}
size_t SkiaGLRenderEngine::getMaxTextureSize() const {
return mGrContext->maxTextureSize();
}
size_t SkiaGLRenderEngine::getMaxViewportDims() const {
return mGrContext->maxRenderTargetSize();
}
void SkiaGLRenderEngine::drawShadow(SkCanvas* canvas, const SkRect& casterRect, float cornerRadius,
const ShadowSettings& settings) {
ATRACE_CALL();
const float casterZ = settings.length / 2.0f;
const auto shadowShape = cornerRadius > 0
? SkPath::RRect(SkRRect::MakeRectXY(casterRect, cornerRadius, cornerRadius))
: SkPath::Rect(casterRect);
const auto flags =
settings.casterIsTranslucent ? kTransparentOccluder_ShadowFlag : kNone_ShadowFlag;
SkShadowUtils::DrawShadow(canvas, shadowShape, SkPoint3::Make(0, 0, casterZ),
getSkPoint3(settings.lightPos), settings.lightRadius,
getSkColor(settings.ambientColor), getSkColor(settings.spotColor),
flags);
}
EGLContext SkiaGLRenderEngine::createEglContext(EGLDisplay display, EGLConfig config,
EGLContext shareContext,
std::optional<ContextPriority> contextPriority,
Protection protection) {
EGLint renderableType = 0;
if (config == EGL_NO_CONFIG_KHR) {
renderableType = EGL_OPENGL_ES3_BIT;
} else if (!eglGetConfigAttrib(display, config, EGL_RENDERABLE_TYPE, &renderableType)) {
LOG_ALWAYS_FATAL("can't query EGLConfig RENDERABLE_TYPE");
}
EGLint contextClientVersion = 0;
if (renderableType & EGL_OPENGL_ES3_BIT) {
contextClientVersion = 3;
} else if (renderableType & EGL_OPENGL_ES2_BIT) {
contextClientVersion = 2;
} else if (renderableType & EGL_OPENGL_ES_BIT) {
contextClientVersion = 1;
} else {
LOG_ALWAYS_FATAL("no supported EGL_RENDERABLE_TYPEs");
}
std::vector<EGLint> contextAttributes;
contextAttributes.reserve(7);
contextAttributes.push_back(EGL_CONTEXT_CLIENT_VERSION);
contextAttributes.push_back(contextClientVersion);
if (contextPriority) {
contextAttributes.push_back(EGL_CONTEXT_PRIORITY_LEVEL_IMG);
switch (*contextPriority) {
case ContextPriority::REALTIME:
contextAttributes.push_back(EGL_CONTEXT_PRIORITY_REALTIME_NV);
break;
case ContextPriority::MEDIUM:
contextAttributes.push_back(EGL_CONTEXT_PRIORITY_MEDIUM_IMG);
break;
case ContextPriority::LOW:
contextAttributes.push_back(EGL_CONTEXT_PRIORITY_LOW_IMG);
break;
case ContextPriority::HIGH:
default:
contextAttributes.push_back(EGL_CONTEXT_PRIORITY_HIGH_IMG);
break;
}
}
if (protection == Protection::PROTECTED) {
contextAttributes.push_back(EGL_PROTECTED_CONTENT_EXT);
contextAttributes.push_back(EGL_TRUE);
}
contextAttributes.push_back(EGL_NONE);
EGLContext context = eglCreateContext(display, config, shareContext, contextAttributes.data());
if (contextClientVersion == 3 && context == EGL_NO_CONTEXT) {
// eglGetConfigAttrib indicated we can create GLES 3 context, but we failed, thus
// EGL_NO_CONTEXT so that we can abort.
if (config != EGL_NO_CONFIG_KHR) {
return context;
}
// If |config| is EGL_NO_CONFIG_KHR, we speculatively try to create GLES 3 context, so we
// should try to fall back to GLES 2.
contextAttributes[1] = 2;
context = eglCreateContext(display, config, shareContext, contextAttributes.data());
}
return context;
}
std::optional<RenderEngine::ContextPriority> SkiaGLRenderEngine::createContextPriority(
const RenderEngineCreationArgs& args) {
if (!gl::GLExtensions::getInstance().hasContextPriority()) {
return std::nullopt;
}
switch (args.contextPriority) {
case RenderEngine::ContextPriority::REALTIME:
if (gl::GLExtensions::getInstance().hasRealtimePriority()) {
return RenderEngine::ContextPriority::REALTIME;
} else {
ALOGI("Realtime priority unsupported, degrading gracefully to high priority");
return RenderEngine::ContextPriority::HIGH;
}
case RenderEngine::ContextPriority::HIGH:
case RenderEngine::ContextPriority::MEDIUM:
case RenderEngine::ContextPriority::LOW:
return args.contextPriority;
default:
return std::nullopt;
}
}
EGLSurface SkiaGLRenderEngine::createPlaceholderEglPbufferSurface(EGLDisplay display,
EGLConfig config, int hwcFormat,
Protection protection) {
EGLConfig placeholderConfig = config;
if (placeholderConfig == EGL_NO_CONFIG_KHR) {
placeholderConfig = chooseEglConfig(display, hwcFormat, /*logConfig*/ true);
}
std::vector<EGLint> attributes;
attributes.reserve(7);
attributes.push_back(EGL_WIDTH);
attributes.push_back(1);
attributes.push_back(EGL_HEIGHT);
attributes.push_back(1);
if (protection == Protection::PROTECTED) {
attributes.push_back(EGL_PROTECTED_CONTENT_EXT);
attributes.push_back(EGL_TRUE);
}
attributes.push_back(EGL_NONE);
return eglCreatePbufferSurface(display, placeholderConfig, attributes.data());
}
void SkiaGLRenderEngine::cleanFramebufferCache() {
// TODO(b/180767535) Remove this method and use b/180767535 instead, which would allow
// SF to control texture lifecycle more tightly rather than through custom hooks into RE.
std::lock_guard<std::mutex> lock(mRenderingMutex);
mRuntimeEffects.clear();
mProtectedTextureCache.clear();
mTextureCache.clear();
}
int SkiaGLRenderEngine::getContextPriority() {
int value;
eglQueryContext(mEGLDisplay, mEGLContext, EGL_CONTEXT_PRIORITY_LEVEL_IMG, &value);
return value;
}
void SkiaGLRenderEngine::dump(std::string& result) {
const gl::GLExtensions& extensions = gl::GLExtensions::getInstance();
StringAppendF(&result, "\n ------------RE-----------------\n");
StringAppendF(&result, "EGL implementation : %s\n", extensions.getEGLVersion());
StringAppendF(&result, "%s\n", extensions.getEGLExtensions());
StringAppendF(&result, "GLES: %s, %s, %s\n", extensions.getVendor(), extensions.getRenderer(),
extensions.getVersion());
StringAppendF(&result, "%s\n", extensions.getExtensions());
StringAppendF(&result, "RenderEngine supports protected context: %d\n",
supportsProtectedContent());
StringAppendF(&result, "RenderEngine is in protected context: %d\n", mInProtectedContext);
StringAppendF(&result, "RenderEngine shaders cached since last dump/primeCache: %d\n",
mSkSLCacheMonitor.shadersCachedSinceLastCall());
{
std::lock_guard<std::mutex> lock(mRenderingMutex);
StringAppendF(&result, "RenderEngine texture cache size: %zu\n", mTextureCache.size());
StringAppendF(&result, "Dumping buffer ids...\n");
// TODO(178539829): It would be nice to know which layer these are coming from and what
// the texture sizes are.
for (const auto& [id, unused] : mTextureCache) {
StringAppendF(&result, "- 0x%" PRIx64 "\n", id);
}
StringAppendF(&result, "\n");
StringAppendF(&result, "RenderEngine protected texture cache size: %zu\n",
mProtectedTextureCache.size());
StringAppendF(&result, "Dumping buffer ids...\n");
for (const auto& [id, unused] : mProtectedTextureCache) {
StringAppendF(&result, "- 0x%" PRIx64 "\n", id);
}
StringAppendF(&result, "\n");
StringAppendF(&result, "RenderEngine runtime effects: %zu\n", mRuntimeEffects.size());
for (const auto& [linearEffect, unused] : mRuntimeEffects) {
StringAppendF(&result, "- inputDataspace: %s\n",
dataspaceDetails(
static_cast<android_dataspace>(linearEffect.inputDataspace))
.c_str());
StringAppendF(&result, "- outputDataspace: %s\n",
dataspaceDetails(
static_cast<android_dataspace>(linearEffect.outputDataspace))
.c_str());
StringAppendF(&result, "undoPremultipliedAlpha: %s\n",
linearEffect.undoPremultipliedAlpha ? "true" : "false");
}
}
StringAppendF(&result, "\n");
}
} // namespace skia
} // namespace renderengine
} // namespace android