blob: ade62bf68f25aae3dc5b18fa36fa58c0f83223dd [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#undef LOG_TAG
#define LOG_TAG "BufferLayer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "BufferLayer.h"
#include "Colorizer.h"
#include "DisplayDevice.h"
#include "LayerRejecter.h"
#include <renderengine/RenderEngine.h>
#include <gui/BufferItem.h>
#include <gui/BufferQueue.h>
#include <gui/LayerDebugInfo.h>
#include <gui/Surface.h>
#include <ui/DebugUtils.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <utils/NativeHandle.h>
#include <utils/StopWatch.h>
#include <utils/Trace.h>
#include <cutils/compiler.h>
#include <cutils/native_handle.h>
#include <cutils/properties.h>
#include <math.h>
#include <stdlib.h>
#include <mutex>
namespace android {
BufferLayer::BufferLayer(const LayerCreationArgs& args)
: Layer(args), mTextureName(args.flinger->getNewTexture()) {
ALOGV("Creating Layer %s", args.name.string());
mTexture.init(renderengine::Texture::TEXTURE_EXTERNAL, mTextureName);
mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied);
mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow;
mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp;
}
BufferLayer::~BufferLayer() {
mFlinger->deleteTextureAsync(mTextureName);
if (!getBE().mHwcLayers.empty()) {
ALOGE("Found stale hardware composer layers when destroying "
"surface flinger layer %s",
mName.string());
destroyAllHwcLayers();
}
mTimeStats.onDestroy(getSequence());
}
void BufferLayer::useSurfaceDamage() {
if (mFlinger->mForceFullDamage) {
surfaceDamageRegion = Region::INVALID_REGION;
} else {
surfaceDamageRegion = getDrawingSurfaceDamage();
}
}
void BufferLayer::useEmptyDamage() {
surfaceDamageRegion.clear();
}
bool BufferLayer::isOpaque(const Layer::State& s) const {
// if we don't have a buffer or sidebandStream yet, we're translucent regardless of the
// layer's opaque flag.
if ((getBE().compositionInfo.hwc.sidebandStream == nullptr) && (mActiveBuffer == nullptr)) {
return false;
}
// if the layer has the opaque flag, then we're always opaque,
// otherwise we use the current buffer's format.
return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat());
}
bool BufferLayer::isVisible() const {
return !(isHiddenByPolicy()) && getAlpha() > 0.0f &&
(mActiveBuffer != nullptr || getBE().compositionInfo.hwc.sidebandStream != nullptr);
}
bool BufferLayer::isFixedSize() const {
return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE;
}
static constexpr mat4 inverseOrientation(uint32_t transform) {
const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1);
const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
mat4 tr;
if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
tr = tr * rot90;
}
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
tr = tr * flipH;
}
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
tr = tr * flipV;
}
return inverse(tr);
}
/*
* onDraw will draw the current layer onto the presentable buffer
*/
void BufferLayer::onDraw(const RenderArea& renderArea, const Region& clip,
bool useIdentityTransform) {
ATRACE_CALL();
if (CC_UNLIKELY(mActiveBuffer == 0)) {
// the texture has not been created yet, this Layer has
// in fact never been drawn into. This happens frequently with
// SurfaceView because the WindowManager can't know when the client
// has drawn the first time.
// If there is nothing under us, we paint the screen in black, otherwise
// we just skip this update.
// figure out if there is something below us
Region under;
bool finished = false;
mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) {
if (finished || layer == static_cast<BufferLayer const*>(this)) {
finished = true;
return;
}
under.orSelf(renderArea.getTransform().transform(layer->visibleRegion));
});
// if not everything below us is covered, we plug the holes!
Region holes(clip.subtract(under));
if (!holes.isEmpty()) {
clearWithOpenGL(renderArea, 0, 0, 0, 1);
}
return;
}
// Bind the current buffer to the GL texture, and wait for it to be
// ready for us to draw into.
status_t err = bindTextureImage();
if (err != NO_ERROR) {
ALOGW("onDraw: bindTextureImage failed (err=%d)", err);
// Go ahead and draw the buffer anyway; no matter what we do the screen
// is probably going to have something visibly wrong.
}
bool blackOutLayer = isProtected() || (isSecure() && !renderArea.isSecure());
auto& engine(mFlinger->getRenderEngine());
if (!blackOutLayer) {
// TODO: we could be more subtle with isFixedSize()
const bool useFiltering = needsFiltering(renderArea) || isFixedSize();
// Query the texture matrix given our current filtering mode.
float textureMatrix[16];
setFilteringEnabled(useFiltering);
getDrawingTransformMatrix(textureMatrix);
if (getTransformToDisplayInverse()) {
/*
* the code below applies the primary display's inverse transform to
* the texture transform
*/
uint32_t transform = DisplayDevice::getPrimaryDisplayOrientationTransform();
mat4 tr = inverseOrientation(transform);
/**
* TODO(b/36727915): This is basically a hack.
*
* Ensure that regardless of the parent transformation,
* this buffer is always transformed from native display
* orientation to display orientation. For example, in the case
* of a camera where the buffer remains in native orientation,
* we want the pixels to always be upright.
*/
sp<Layer> p = mDrawingParent.promote();
if (p != nullptr) {
const auto parentTransform = p->getTransform();
tr = tr * inverseOrientation(parentTransform.getOrientation());
}
// and finally apply it to the original texture matrix
const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
}
// Set things up for texturing.
mTexture.setDimensions(mActiveBuffer->getWidth(), mActiveBuffer->getHeight());
mTexture.setFiltering(useFiltering);
mTexture.setMatrix(textureMatrix);
engine.setupLayerTexturing(mTexture);
} else {
engine.setupLayerBlackedOut();
}
drawWithOpenGL(renderArea, useIdentityTransform);
engine.disableTexturing();
}
bool BufferLayer::isHdrY410() const {
// pixel format is HDR Y410 masquerading as RGBA_1010102
return (mCurrentDataSpace == ui::Dataspace::BT2020_ITU_PQ &&
getDrawingApi() == NATIVE_WINDOW_API_MEDIA &&
getBE().compositionInfo.mBuffer->getPixelFormat() == HAL_PIXEL_FORMAT_RGBA_1010102);
}
void BufferLayer::setPerFrameData(DisplayId displayId, const ui::Transform& transform,
const Rect& viewport, int32_t supportedPerFrameMetadata) {
RETURN_IF_NO_HWC_LAYER(displayId);
// Apply this display's projection's viewport to the visible region
// before giving it to the HWC HAL.
Region visible = transform.transform(visibleRegion.intersect(viewport));
auto& hwcInfo = getBE().mHwcLayers[displayId];
auto& hwcLayer = hwcInfo.layer;
auto error = hwcLayer->setVisibleRegion(visible);
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(),
to_string(error).c_str(), static_cast<int32_t>(error));
visible.dump(LOG_TAG);
}
getBE().compositionInfo.hwc.visibleRegion = visible;
error = hwcLayer->setSurfaceDamage(surfaceDamageRegion);
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(),
to_string(error).c_str(), static_cast<int32_t>(error));
surfaceDamageRegion.dump(LOG_TAG);
}
getBE().compositionInfo.hwc.surfaceDamage = surfaceDamageRegion;
// Sideband layers
if (getBE().compositionInfo.hwc.sidebandStream.get()) {
setCompositionType(displayId, HWC2::Composition::Sideband);
ALOGV("[%s] Requesting Sideband composition", mName.string());
error = hwcLayer->setSidebandStream(getBE().compositionInfo.hwc.sidebandStream->handle());
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", mName.string(),
getBE().compositionInfo.hwc.sidebandStream->handle(), to_string(error).c_str(),
static_cast<int32_t>(error));
}
getBE().compositionInfo.compositionType = HWC2::Composition::Sideband;
return;
}
// Device or Cursor layers
if (mPotentialCursor) {
ALOGV("[%s] Requesting Cursor composition", mName.string());
setCompositionType(displayId, HWC2::Composition::Cursor);
} else {
ALOGV("[%s] Requesting Device composition", mName.string());
setCompositionType(displayId, HWC2::Composition::Device);
}
ALOGV("setPerFrameData: dataspace = %d", mCurrentDataSpace);
error = hwcLayer->setDataspace(mCurrentDataSpace);
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(), mCurrentDataSpace,
to_string(error).c_str(), static_cast<int32_t>(error));
}
const HdrMetadata& metadata = getDrawingHdrMetadata();
error = hwcLayer->setPerFrameMetadata(supportedPerFrameMetadata, metadata);
if (error != HWC2::Error::None && error != HWC2::Error::Unsupported) {
ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", mName.string(),
to_string(error).c_str(), static_cast<int32_t>(error));
}
error = hwcLayer->setColorTransform(getColorTransform());
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to setColorTransform: %s (%d)", mName.string(),
to_string(error).c_str(), static_cast<int32_t>(error));
}
getBE().compositionInfo.hwc.dataspace = mCurrentDataSpace;
getBE().compositionInfo.hwc.hdrMetadata = getDrawingHdrMetadata();
getBE().compositionInfo.hwc.supportedPerFrameMetadata = supportedPerFrameMetadata;
getBE().compositionInfo.hwc.colorTransform = getColorTransform();
setHwcLayerBuffer(displayId);
}
bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) {
if (mBufferLatched) {
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime);
}
mRefreshPending = false;
return hasReadyFrame();
}
bool BufferLayer::onPostComposition(const std::optional<DisplayId>& displayId,
const std::shared_ptr<FenceTime>& glDoneFence,
const std::shared_ptr<FenceTime>& presentFence,
const CompositorTiming& compositorTiming) {
// mFrameLatencyNeeded is true when a new frame was latched for the
// composition.
if (!mFrameLatencyNeeded) return false;
// Update mFrameEventHistory.
{
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence, presentFence,
compositorTiming);
}
// Update mFrameTracker.
nsecs_t desiredPresentTime = getDesiredPresentTime();
mFrameTracker.setDesiredPresentTime(desiredPresentTime);
const int32_t layerID = getSequence();
mTimeStats.setDesiredTime(layerID, mCurrentFrameNumber, desiredPresentTime);
std::shared_ptr<FenceTime> frameReadyFence = getCurrentFenceTime();
if (frameReadyFence->isValid()) {
mFrameTracker.setFrameReadyFence(std::move(frameReadyFence));
} else {
// There was no fence for this frame, so assume that it was ready
// to be presented at the desired present time.
mFrameTracker.setFrameReadyTime(desiredPresentTime);
}
if (presentFence->isValid()) {
mTimeStats.setPresentFence(layerID, mCurrentFrameNumber, presentFence);
mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence));
} else if (displayId && mFlinger->getHwComposer().isConnected(*displayId)) {
// The HWC doesn't support present fences, so use the refresh
// timestamp instead.
const nsecs_t actualPresentTime = mFlinger->getHwComposer().getRefreshTimestamp(*displayId);
mTimeStats.setPresentTime(layerID, mCurrentFrameNumber, actualPresentTime);
mFrameTracker.setActualPresentTime(actualPresentTime);
}
mFrameTracker.advanceFrame();
mFrameLatencyNeeded = false;
return true;
}
Region BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime,
const sp<Fence>& releaseFence) {
ATRACE_CALL();
std::optional<Region> sidebandStreamDirtyRegion = latchSidebandStream(recomputeVisibleRegions);
if (sidebandStreamDirtyRegion) {
return *sidebandStreamDirtyRegion;
}
Region dirtyRegion;
if (!hasReadyFrame()) {
return dirtyRegion;
}
// if we've already called updateTexImage() without going through
// a composition step, we have to skip this layer at this point
// because we cannot call updateTeximage() without a corresponding
// compositionComplete() call.
// we'll trigger an update in onPreComposition().
if (mRefreshPending) {
return dirtyRegion;
}
// If the head buffer's acquire fence hasn't signaled yet, return and
// try again later
if (!fenceHasSignaled()) {
mFlinger->signalLayerUpdate();
return dirtyRegion;
}
// Capture the old state of the layer for comparisons later
const State& s(getDrawingState());
const bool oldOpacity = isOpaque(s);
sp<GraphicBuffer> oldBuffer = mActiveBuffer;
if (!allTransactionsSignaled()) {
mFlinger->signalLayerUpdate();
return dirtyRegion;
}
status_t err = updateTexImage(recomputeVisibleRegions, latchTime, releaseFence);
if (err != NO_ERROR) {
return dirtyRegion;
}
err = updateActiveBuffer();
if (err != NO_ERROR) {
return dirtyRegion;
}
mBufferLatched = true;
err = updateFrameNumber(latchTime);
if (err != NO_ERROR) {
return dirtyRegion;
}
mRefreshPending = true;
mFrameLatencyNeeded = true;
if (oldBuffer == nullptr) {
// the first time we receive a buffer, we need to trigger a
// geometry invalidation.
recomputeVisibleRegions = true;
}
ui::Dataspace dataSpace = getDrawingDataSpace();
// treat modern dataspaces as legacy dataspaces whenever possible, until
// we can trust the buffer producers
switch (dataSpace) {
case ui::Dataspace::V0_SRGB:
dataSpace = ui::Dataspace::SRGB;
break;
case ui::Dataspace::V0_SRGB_LINEAR:
dataSpace = ui::Dataspace::SRGB_LINEAR;
break;
case ui::Dataspace::V0_JFIF:
dataSpace = ui::Dataspace::JFIF;
break;
case ui::Dataspace::V0_BT601_625:
dataSpace = ui::Dataspace::BT601_625;
break;
case ui::Dataspace::V0_BT601_525:
dataSpace = ui::Dataspace::BT601_525;
break;
case ui::Dataspace::V0_BT709:
dataSpace = ui::Dataspace::BT709;
break;
default:
break;
}
mCurrentDataSpace = dataSpace;
Rect crop(getDrawingCrop());
const uint32_t transform(getDrawingTransform());
const uint32_t scalingMode(getDrawingScalingMode());
if ((crop != mCurrentCrop) || (transform != mCurrentTransform) ||
(scalingMode != mCurrentScalingMode)) {
mCurrentCrop = crop;
mCurrentTransform = transform;
mCurrentScalingMode = scalingMode;
recomputeVisibleRegions = true;
}
if (oldBuffer != nullptr) {
uint32_t bufWidth = mActiveBuffer->getWidth();
uint32_t bufHeight = mActiveBuffer->getHeight();
if (bufWidth != uint32_t(oldBuffer->width) || bufHeight != uint32_t(oldBuffer->height)) {
recomputeVisibleRegions = true;
}
}
if (oldOpacity != isOpaque(s)) {
recomputeVisibleRegions = true;
}
// Remove any sync points corresponding to the buffer which was just
// latched
{
Mutex::Autolock lock(mLocalSyncPointMutex);
auto point = mLocalSyncPoints.begin();
while (point != mLocalSyncPoints.end()) {
if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) {
// This sync point must have been added since we started
// latching. Don't drop it yet.
++point;
continue;
}
if ((*point)->getFrameNumber() <= mCurrentFrameNumber) {
point = mLocalSyncPoints.erase(point);
} else {
++point;
}
}
}
// FIXME: postedRegion should be dirty & bounds
// transform the dirty region to window-manager space
return getTransform().transform(Region(Rect(getActiveWidth(s), getActiveHeight(s))));
}
// transaction
void BufferLayer::notifyAvailableFrames() {
auto headFrameNumber = getHeadFrameNumber();
bool headFenceSignaled = fenceHasSignaled();
Mutex::Autolock lock(mLocalSyncPointMutex);
for (auto& point : mLocalSyncPoints) {
if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled) {
point->setFrameAvailable();
}
}
}
bool BufferLayer::hasReadyFrame() const {
return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh();
}
uint32_t BufferLayer::getEffectiveScalingMode() const {
if (mOverrideScalingMode >= 0) {
return mOverrideScalingMode;
}
return mCurrentScalingMode;
}
bool BufferLayer::isProtected() const {
const sp<GraphicBuffer>& buffer(mActiveBuffer);
return (buffer != 0) && (buffer->getUsage() & GRALLOC_USAGE_PROTECTED);
}
bool BufferLayer::latchUnsignaledBuffers() {
static bool propertyLoaded = false;
static bool latch = false;
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (!propertyLoaded) {
char value[PROPERTY_VALUE_MAX] = {};
property_get("debug.sf.latch_unsignaled", value, "0");
latch = atoi(value);
propertyLoaded = true;
}
return latch;
}
// h/w composer set-up
bool BufferLayer::allTransactionsSignaled() {
auto headFrameNumber = getHeadFrameNumber();
bool matchingFramesFound = false;
bool allTransactionsApplied = true;
Mutex::Autolock lock(mLocalSyncPointMutex);
for (auto& point : mLocalSyncPoints) {
if (point->getFrameNumber() > headFrameNumber) {
break;
}
matchingFramesFound = true;
if (!point->frameIsAvailable()) {
// We haven't notified the remote layer that the frame for
// this point is available yet. Notify it now, and then
// abort this attempt to latch.
point->setFrameAvailable();
allTransactionsApplied = false;
break;
}
allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied();
}
return !matchingFramesFound || allTransactionsApplied;
}
// As documented in libhardware header, formats in the range
// 0x100 - 0x1FF are specific to the HAL implementation, and
// are known to have no alpha channel
// TODO: move definition for device-specific range into
// hardware.h, instead of using hard-coded values here.
#define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
bool BufferLayer::getOpacityForFormat(uint32_t format) {
if (HARDWARE_IS_DEVICE_FORMAT(format)) {
return true;
}
switch (format) {
case HAL_PIXEL_FORMAT_RGBA_8888:
case HAL_PIXEL_FORMAT_BGRA_8888:
case HAL_PIXEL_FORMAT_RGBA_FP16:
case HAL_PIXEL_FORMAT_RGBA_1010102:
return false;
}
// in all other case, we have no blending (also for unknown formats)
return true;
}
bool BufferLayer::needsFiltering(const RenderArea& renderArea) const {
return mNeedsFiltering || renderArea.needsFiltering();
}
void BufferLayer::drawWithOpenGL(const RenderArea& renderArea, bool useIdentityTransform) const {
ATRACE_CALL();
const State& s(getDrawingState());
computeGeometry(renderArea, getBE().mMesh, useIdentityTransform);
/*
* NOTE: the way we compute the texture coordinates here produces
* different results than when we take the HWC path -- in the later case
* the "source crop" is rounded to texel boundaries.
* This can produce significantly different results when the texture
* is scaled by a large amount.
*
* The GL code below is more logical (imho), and the difference with
* HWC is due to a limitation of the HWC API to integers -- a question
* is suspend is whether we should ignore this problem or revert to
* GL composition when a buffer scaling is applied (maybe with some
* minimal value)? Or, we could make GL behave like HWC -- but this feel
* like more of a hack.
*/
const Rect bounds{computeBounds()}; // Rounds from FloatRect
ui::Transform t = getTransform();
Rect win = bounds;
float left = float(win.left) / float(getActiveWidth(s));
float top = float(win.top) / float(getActiveHeight(s));
float right = float(win.right) / float(getActiveWidth(s));
float bottom = float(win.bottom) / float(getActiveHeight(s));
// TODO: we probably want to generate the texture coords with the mesh
// here we assume that we only have 4 vertices
renderengine::Mesh::VertexArray<vec2> texCoords(getBE().mMesh.getTexCoordArray<vec2>());
// flip texcoords vertically because BufferLayerConsumer expects them to be in GL convention
texCoords[0] = vec2(left, 1.0f - top);
texCoords[1] = vec2(left, 1.0f - bottom);
texCoords[2] = vec2(right, 1.0f - bottom);
texCoords[3] = vec2(right, 1.0f - top);
auto& engine(mFlinger->getRenderEngine());
engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(s), false /* disableTexture */,
getColor());
engine.setSourceDataSpace(mCurrentDataSpace);
if (isHdrY410()) {
engine.setSourceY410BT2020(true);
}
engine.drawMesh(getBE().mMesh);
engine.disableBlending();
engine.setSourceY410BT2020(false);
}
uint64_t BufferLayer::getHeadFrameNumber() const {
if (hasFrameUpdate()) {
return getFrameNumber();
} else {
return mCurrentFrameNumber;
}
}
Rect BufferLayer::getBufferSize(const State& s) const {
// If we have a sideband stream, or we are scaling the buffer then return the layer size since
// we cannot determine the buffer size.
if ((s.sidebandStream != nullptr) ||
(getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
return Rect(getActiveWidth(s), getActiveHeight(s));
}
if (mActiveBuffer == nullptr) {
return Rect::INVALID_RECT;
}
uint32_t bufWidth = mActiveBuffer->getWidth();
uint32_t bufHeight = mActiveBuffer->getHeight();
// Undo any transformations on the buffer and return the result.
if (mCurrentTransform & ui::Transform::ROT_90) {
std::swap(bufWidth, bufHeight);
}
if (getTransformToDisplayInverse()) {
uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform();
if (invTransform & ui::Transform::ROT_90) {
std::swap(bufWidth, bufHeight);
}
}
return Rect(bufWidth, bufHeight);
}
} // namespace android
#if defined(__gl_h_)
#error "don't include gl/gl.h in this file"
#endif
#if defined(__gl2_h_)
#error "don't include gl2/gl2.h in this file"
#endif