blob: 5e842c5fe9cef4bedb4a5e868a20a7ffdd590623 [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#pragma clang diagnostic ignored "-Wextra"
//#define LOG_NDEBUG 0
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "SurfaceFlinger.h"
#include "TraceUtils.h"
#include <android-base/properties.h>
#include <android/configuration.h>
#include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
#include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h>
#include <android/hardware/configstore/1.1/types.h>
#include <android/hardware/power/Boost.h>
#include <android/native_window.h>
#include <android/os/BnSetInputWindowsListener.h>
#include <android/os/IInputFlinger.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <binder/PermissionCache.h>
#include <compositionengine/CompositionEngine.h>
#include <compositionengine/CompositionRefreshArgs.h>
#include <compositionengine/Display.h>
#include <compositionengine/DisplayColorProfile.h>
#include <compositionengine/DisplayCreationArgs.h>
#include <compositionengine/LayerFECompositionState.h>
#include <compositionengine/OutputLayer.h>
#include <compositionengine/RenderSurface.h>
#include <compositionengine/impl/OutputCompositionState.h>
#include <configstore/Utils.h>
#include <cutils/compiler.h>
#include <cutils/properties.h>
#include <ftl/future.h>
#include <gui/BufferQueue.h>
#include <gui/DebugEGLImageTracker.h>
#include <gui/IDisplayEventConnection.h>
#include <gui/IProducerListener.h>
#include <gui/LayerDebugInfo.h>
#include <gui/LayerMetadata.h>
#include <gui/LayerState.h>
#include <gui/Surface.h>
#include <hidl/ServiceManagement.h>
#include <layerproto/LayerProtoParser.h>
#include <log/log.h>
#include <private/android_filesystem_config.h>
#include <private/gui/SyncFeatures.h>
#include <renderengine/RenderEngine.h>
#include <statslog.h>
#include <sys/types.h>
#include <ui/ColorSpace.h>
#include <ui/DebugUtils.h>
#include <ui/DisplayId.h>
#include <ui/DisplayMode.h>
#include <ui/DisplayStatInfo.h>
#include <ui/DisplayState.h>
#include <ui/DynamicDisplayInfo.h>
#include <ui/GraphicBufferAllocator.h>
#include <ui/PixelFormat.h>
#include <ui/StaticDisplayInfo.h>
#include <utils/StopWatch.h>
#include <utils/String16.h>
#include <utils/String8.h>
#include <utils/Timers.h>
#include <utils/misc.h>
#include <algorithm>
#include <cerrno>
#include <cinttypes>
#include <cmath>
#include <cstdint>
#include <functional>
#include <mutex>
#include <optional>
#include <type_traits>
#include <unordered_map>
#include "BufferLayer.h"
#include "BufferQueueLayer.h"
#include "BufferStateLayer.h"
#include "Client.h"
#include "Colorizer.h"
#include "ContainerLayer.h"
#include "DisplayDevice.h"
#include "DisplayHardware/ComposerHal.h"
#include "DisplayHardware/DisplayIdentification.h"
#include "DisplayHardware/FramebufferSurface.h"
#include "DisplayHardware/HWComposer.h"
#include "DisplayHardware/Hal.h"
#include "DisplayHardware/VirtualDisplaySurface.h"
#include "DisplayRenderArea.h"
#include "EffectLayer.h"
#include "Effects/Daltonizer.h"
#include "FpsReporter.h"
#include "FrameTimeline/FrameTimeline.h"
#include "FrameTracer/FrameTracer.h"
#include "HdrLayerInfoReporter.h"
#include "Layer.h"
#include "LayerRenderArea.h"
#include "LayerVector.h"
#include "MonitoredProducer.h"
#include "NativeWindowSurface.h"
#include "RefreshRateOverlay.h"
#include "RegionSamplingThread.h"
#include "Scheduler/DispSyncSource.h"
#include "Scheduler/EventThread.h"
#include "Scheduler/LayerHistory.h"
#include "Scheduler/MessageQueue.h"
#include "Scheduler/Scheduler.h"
#include "Scheduler/VsyncConfiguration.h"
#include "Scheduler/VsyncController.h"
#include "StartPropertySetThread.h"
#include "SurfaceFlingerProperties.h"
#include "SurfaceInterceptor.h"
#include "TimeStats/TimeStats.h"
#include "android-base/parseint.h"
#include "android-base/stringprintf.h"
#include "android-base/strings.h"
#define MAIN_THREAD ACQUIRE(mStateLock) RELEASE(mStateLock)
#define ON_MAIN_THREAD(expr) \
[&] { \
LOG_FATAL_IF(std::this_thread::get_id() != mMainThreadId); \
UnnecessaryLock lock(mStateLock); \
return (expr); \
}()
#undef NO_THREAD_SAFETY_ANALYSIS
#define NO_THREAD_SAFETY_ANALYSIS \
_Pragma("GCC error \"Prefer MAIN_THREAD macros or {Conditional,Timed,Unnecessary}Lock.\"")
namespace android {
using namespace std::string_literals;
using namespace android::hardware::configstore;
using namespace android::hardware::configstore::V1_0;
using namespace android::sysprop;
using android::hardware::power::Boost;
using base::StringAppendF;
using ui::ColorMode;
using ui::Dataspace;
using ui::DisplayPrimaries;
using ui::RenderIntent;
namespace hal = android::hardware::graphics::composer::hal;
namespace {
#pragma clang diagnostic push
#pragma clang diagnostic error "-Wswitch-enum"
bool isWideColorMode(const ColorMode colorMode) {
switch (colorMode) {
case ColorMode::DISPLAY_P3:
case ColorMode::ADOBE_RGB:
case ColorMode::DCI_P3:
case ColorMode::BT2020:
case ColorMode::DISPLAY_BT2020:
case ColorMode::BT2100_PQ:
case ColorMode::BT2100_HLG:
return true;
case ColorMode::NATIVE:
case ColorMode::STANDARD_BT601_625:
case ColorMode::STANDARD_BT601_625_UNADJUSTED:
case ColorMode::STANDARD_BT601_525:
case ColorMode::STANDARD_BT601_525_UNADJUSTED:
case ColorMode::STANDARD_BT709:
case ColorMode::SRGB:
return false;
}
return false;
}
#pragma clang diagnostic pop
template <typename Mutex>
struct SCOPED_CAPABILITY ConditionalLockGuard {
ConditionalLockGuard(Mutex& mutex, bool lock) ACQUIRE(mutex) : mutex(mutex), lock(lock) {
if (lock) mutex.lock();
}
~ConditionalLockGuard() RELEASE() {
if (lock) mutex.unlock();
}
Mutex& mutex;
const bool lock;
};
using ConditionalLock = ConditionalLockGuard<Mutex>;
struct SCOPED_CAPABILITY TimedLock {
TimedLock(Mutex& mutex, nsecs_t timeout, const char* whence) ACQUIRE(mutex)
: mutex(mutex), status(mutex.timedLock(timeout)) {
ALOGE_IF(!locked(), "%s timed out locking: %s (%d)", whence, strerror(-status), status);
}
~TimedLock() RELEASE() {
if (locked()) mutex.unlock();
}
bool locked() const { return status == NO_ERROR; }
Mutex& mutex;
const status_t status;
};
struct SCOPED_CAPABILITY UnnecessaryLock {
explicit UnnecessaryLock(Mutex& mutex) ACQUIRE(mutex) {}
~UnnecessaryLock() RELEASE() {}
};
// TODO(b/141333600): Consolidate with DisplayMode::Builder::getDefaultDensity.
constexpr float FALLBACK_DENSITY = ACONFIGURATION_DENSITY_TV;
float getDensityFromProperty(const char* property, bool required) {
char value[PROPERTY_VALUE_MAX];
const float density = property_get(property, value, nullptr) > 0 ? std::atof(value) : 0.f;
if (!density && required) {
ALOGE("%s must be defined as a build property", property);
return FALLBACK_DENSITY;
}
return density;
}
// Currently we only support V0_SRGB and DISPLAY_P3 as composition preference.
bool validateCompositionDataspace(Dataspace dataspace) {
return dataspace == Dataspace::V0_SRGB || dataspace == Dataspace::DISPLAY_P3;
}
class FrameRateFlexibilityToken : public BBinder {
public:
FrameRateFlexibilityToken(std::function<void()> callback) : mCallback(callback) {}
virtual ~FrameRateFlexibilityToken() { mCallback(); }
private:
std::function<void()> mCallback;
};
enum Permission {
ACCESS_SURFACE_FLINGER = 0x1,
ROTATE_SURFACE_FLINGER = 0x2,
};
} // namespace anonymous
struct SetInputWindowsListener : os::BnSetInputWindowsListener {
explicit SetInputWindowsListener(std::function<void()> listenerCb) : mListenerCb(listenerCb) {}
binder::Status onSetInputWindowsFinished() override;
std::function<void()> mListenerCb;
};
binder::Status SetInputWindowsListener::onSetInputWindowsFinished() {
if (mListenerCb != nullptr) {
mListenerCb();
}
return binder::Status::ok();
}
// ---------------------------------------------------------------------------
const String16 sHardwareTest("android.permission.HARDWARE_TEST");
const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
const String16 sRotateSurfaceFlinger("android.permission.ROTATE_SURFACE_FLINGER");
const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
const String16 sControlDisplayBrightness("android.permission.CONTROL_DISPLAY_BRIGHTNESS");
const String16 sDump("android.permission.DUMP");
const char* KERNEL_IDLE_TIMER_PROP = "graphics.display.kernel_idle_timer.enabled";
// ---------------------------------------------------------------------------
int64_t SurfaceFlinger::dispSyncPresentTimeOffset;
bool SurfaceFlinger::useHwcForRgbToYuv;
uint64_t SurfaceFlinger::maxVirtualDisplaySize;
bool SurfaceFlinger::hasSyncFramework;
int64_t SurfaceFlinger::maxFrameBufferAcquiredBuffers;
uint32_t SurfaceFlinger::maxGraphicsWidth;
uint32_t SurfaceFlinger::maxGraphicsHeight;
bool SurfaceFlinger::hasWideColorDisplay;
ui::Rotation SurfaceFlinger::internalDisplayOrientation = ui::ROTATION_0;
bool SurfaceFlinger::useColorManagement;
bool SurfaceFlinger::useContextPriority;
Dataspace SurfaceFlinger::defaultCompositionDataspace = Dataspace::V0_SRGB;
ui::PixelFormat SurfaceFlinger::defaultCompositionPixelFormat = ui::PixelFormat::RGBA_8888;
Dataspace SurfaceFlinger::wideColorGamutCompositionDataspace = Dataspace::V0_SRGB;
ui::PixelFormat SurfaceFlinger::wideColorGamutCompositionPixelFormat = ui::PixelFormat::RGBA_8888;
bool SurfaceFlinger::useFrameRateApi;
std::string getHwcServiceName() {
char value[PROPERTY_VALUE_MAX] = {};
property_get("debug.sf.hwc_service_name", value, "default");
ALOGI("Using HWComposer service: '%s'", value);
return std::string(value);
}
bool useTrebleTestingOverride() {
char value[PROPERTY_VALUE_MAX] = {};
property_get("debug.sf.treble_testing_override", value, "false");
ALOGI("Treble testing override: '%s'", value);
return std::string(value) == "true";
}
std::string decodeDisplayColorSetting(DisplayColorSetting displayColorSetting) {
switch(displayColorSetting) {
case DisplayColorSetting::kManaged:
return std::string("Managed");
case DisplayColorSetting::kUnmanaged:
return std::string("Unmanaged");
case DisplayColorSetting::kEnhanced:
return std::string("Enhanced");
default:
return std::string("Unknown ") +
std::to_string(static_cast<int>(displayColorSetting));
}
}
bool callingThreadHasRotateSurfaceFlingerAccess() {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
return uid == AID_GRAPHICS || uid == AID_SYSTEM ||
PermissionCache::checkPermission(sRotateSurfaceFlinger, pid, uid);
}
SurfaceFlingerBE::SurfaceFlingerBE() : mHwcServiceName(getHwcServiceName()) {}
SurfaceFlinger::SurfaceFlinger(Factory& factory, SkipInitializationTag)
: mFactory(factory),
mInterceptor(mFactory.createSurfaceInterceptor()),
mTimeStats(std::make_shared<impl::TimeStats>()),
mFrameTracer(mFactory.createFrameTracer()),
mFrameTimeline(mFactory.createFrameTimeline(mTimeStats, getpid())),
mEventQueue(mFactory.createMessageQueue()),
mCompositionEngine(mFactory.createCompositionEngine()),
mInternalDisplayDensity(getDensityFromProperty("ro.sf.lcd_density", true)),
mEmulatedDisplayDensity(getDensityFromProperty("qemu.sf.lcd_density", false)) {
mSetInputWindowsListener = new SetInputWindowsListener([&]() { setInputWindowsFinished(); });
}
SurfaceFlinger::SurfaceFlinger(Factory& factory) : SurfaceFlinger(factory, SkipInitialization) {
ALOGI("SurfaceFlinger is starting");
hasSyncFramework = running_without_sync_framework(true);
dispSyncPresentTimeOffset = present_time_offset_from_vsync_ns(0);
useHwcForRgbToYuv = force_hwc_copy_for_virtual_displays(false);
maxVirtualDisplaySize = max_virtual_display_dimension(0);
maxFrameBufferAcquiredBuffers = max_frame_buffer_acquired_buffers(2);
maxGraphicsWidth = std::max(max_graphics_width(0), 0);
maxGraphicsHeight = std::max(max_graphics_height(0), 0);
hasWideColorDisplay = has_wide_color_display(false);
// Android 12 and beyond, color management in display pipeline is turned on
// by default.
useColorManagement = use_color_management(true);
mDefaultCompositionDataspace =
static_cast<ui::Dataspace>(default_composition_dataspace(Dataspace::V0_SRGB));
mWideColorGamutCompositionDataspace = static_cast<ui::Dataspace>(wcg_composition_dataspace(
hasWideColorDisplay ? Dataspace::DISPLAY_P3 : Dataspace::V0_SRGB));
defaultCompositionDataspace = mDefaultCompositionDataspace;
wideColorGamutCompositionDataspace = mWideColorGamutCompositionDataspace;
defaultCompositionPixelFormat = static_cast<ui::PixelFormat>(
default_composition_pixel_format(ui::PixelFormat::RGBA_8888));
wideColorGamutCompositionPixelFormat =
static_cast<ui::PixelFormat>(wcg_composition_pixel_format(ui::PixelFormat::RGBA_8888));
mColorSpaceAgnosticDataspace =
static_cast<ui::Dataspace>(color_space_agnostic_dataspace(Dataspace::UNKNOWN));
useContextPriority = use_context_priority(true);
using Values = SurfaceFlingerProperties::primary_display_orientation_values;
switch (primary_display_orientation(Values::ORIENTATION_0)) {
case Values::ORIENTATION_0:
break;
case Values::ORIENTATION_90:
internalDisplayOrientation = ui::ROTATION_90;
break;
case Values::ORIENTATION_180:
internalDisplayOrientation = ui::ROTATION_180;
break;
case Values::ORIENTATION_270:
internalDisplayOrientation = ui::ROTATION_270;
break;
}
ALOGV("Internal Display Orientation: %s", toCString(internalDisplayOrientation));
mInternalDisplayPrimaries = sysprop::getDisplayNativePrimaries();
// debugging stuff...
char value[PROPERTY_VALUE_MAX];
property_get("ro.bq.gpu_to_cpu_unsupported", value, "0");
mGpuToCpuSupported = !atoi(value);
property_get("ro.build.type", value, "user");
mIsUserBuild = strcmp(value, "user") == 0;
property_get("debug.sf.showupdates", value, "0");
mDebugRegion = atoi(value);
ALOGI_IF(mDebugRegion, "showupdates enabled");
// DDMS debugging deprecated (b/120782499)
property_get("debug.sf.ddms", value, "0");
int debugDdms = atoi(value);
ALOGI_IF(debugDdms, "DDMS debugging not supported");
property_get("debug.sf.enable_gl_backpressure", value, "0");
mPropagateBackpressureClientComposition = atoi(value);
ALOGI_IF(mPropagateBackpressureClientComposition,
"Enabling backpressure propagation for Client Composition");
property_get("debug.sf.enable_hwc_vds", value, "0");
mUseHwcVirtualDisplays = atoi(value);
ALOGI_IF(mUseHwcVirtualDisplays, "Enabling HWC virtual displays");
property_get("ro.surface_flinger.supports_background_blur", value, "0");
bool supportsBlurs = atoi(value);
mSupportsBlur = supportsBlurs;
ALOGI_IF(!mSupportsBlur, "Disabling blur effects, they are not supported.");
property_get("ro.sf.blurs_are_expensive", value, "0");
mBlursAreExpensive = atoi(value);
const size_t defaultListSize = ISurfaceComposer::MAX_LAYERS;
auto listSize = property_get_int32("debug.sf.max_igbp_list_size", int32_t(defaultListSize));
mMaxGraphicBufferProducerListSize = (listSize > 0) ? size_t(listSize) : defaultListSize;
mGraphicBufferProducerListSizeLogThreshold =
std::max(static_cast<int>(0.95 *
static_cast<double>(mMaxGraphicBufferProducerListSize)),
1);
property_get("debug.sf.luma_sampling", value, "1");
mLumaSampling = atoi(value);
property_get("debug.sf.disable_client_composition_cache", value, "0");
mDisableClientCompositionCache = atoi(value);
// We should be reading 'persist.sys.sf.color_saturation' here
// but since /data may be encrypted, we need to wait until after vold
// comes online to attempt to read the property. The property is
// instead read after the boot animation
if (useTrebleTestingOverride()) {
// Without the override SurfaceFlinger cannot connect to HIDL
// services that are not listed in the manifests. Considered
// deriving the setting from the set service name, but it
// would be brittle if the name that's not 'default' is used
// for production purposes later on.
android::hardware::details::setTrebleTestingOverride(true);
}
useFrameRateApi = use_frame_rate_api(true);
mKernelIdleTimerEnabled = mSupportKernelIdleTimer = sysprop::support_kernel_idle_timer(false);
base::SetProperty(KERNEL_IDLE_TIMER_PROP, mKernelIdleTimerEnabled ? "true" : "false");
mRefreshRateOverlaySpinner = property_get_bool("sf.debug.show_refresh_rate_overlay_spinner", 0);
}
SurfaceFlinger::~SurfaceFlinger() = default;
void SurfaceFlinger::onFirstRef() {
mEventQueue->init(this);
}
void SurfaceFlinger::binderDied(const wp<IBinder>&) {
// the window manager died on us. prepare its eulogy.
mBootFinished = false;
// Sever the link to inputflinger since its gone as well.
static_cast<void>(schedule([=] { mInputFlinger = nullptr; }));
// restore initial conditions (default device unblank, etc)
initializeDisplays();
// restart the boot-animation
startBootAnim();
}
void SurfaceFlinger::run() {
while (true) {
mEventQueue->waitMessage();
}
}
template <typename F, typename T>
inline std::future<T> SurfaceFlinger::schedule(F&& f) {
auto [task, future] = makeTask(std::move(f));
mEventQueue->postMessage(std::move(task));
return std::move(future);
}
sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() {
const sp<Client> client = new Client(this);
return client->initCheck() == NO_ERROR ? client : nullptr;
}
sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName, bool secure) {
// onTransact already checks for some permissions, but adding an additional check here.
// This is to ensure that only system and graphics can request to create a secure
// display. Secure displays can show secure content so we add an additional restriction on it.
const int uid = IPCThreadState::self()->getCallingUid();
if (secure && uid != AID_GRAPHICS && uid != AID_SYSTEM) {
ALOGE("Only privileged processes can create a secure display");
return nullptr;
}
class DisplayToken : public BBinder {
sp<SurfaceFlinger> flinger;
virtual ~DisplayToken() {
// no more references, this display must be terminated
Mutex::Autolock _l(flinger->mStateLock);
flinger->mCurrentState.displays.removeItem(this);
flinger->setTransactionFlags(eDisplayTransactionNeeded);
}
public:
explicit DisplayToken(const sp<SurfaceFlinger>& flinger)
: flinger(flinger) {
}
};
sp<BBinder> token = new DisplayToken(this);
Mutex::Autolock _l(mStateLock);
// Display ID is assigned when virtual display is allocated by HWC.
DisplayDeviceState state;
state.isSecure = secure;
state.displayName = displayName;
mCurrentState.displays.add(token, state);
mInterceptor->saveDisplayCreation(state);
return token;
}
void SurfaceFlinger::destroyDisplay(const sp<IBinder>& displayToken) {
Mutex::Autolock lock(mStateLock);
const ssize_t index = mCurrentState.displays.indexOfKey(displayToken);
if (index < 0) {
ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get());
return;
}
const DisplayDeviceState& state = mCurrentState.displays.valueAt(index);
if (state.physical) {
ALOGE("%s: Invalid operation on physical display", __FUNCTION__);
return;
}
mInterceptor->saveDisplayDeletion(state.sequenceId);
mCurrentState.displays.removeItemsAt(index);
setTransactionFlags(eDisplayTransactionNeeded);
}
std::vector<PhysicalDisplayId> SurfaceFlinger::getPhysicalDisplayIds() const {
Mutex::Autolock lock(mStateLock);
const auto internalDisplayId = getInternalDisplayIdLocked();
if (!internalDisplayId) {
return {};
}
std::vector<PhysicalDisplayId> displayIds;
displayIds.reserve(mPhysicalDisplayTokens.size());
displayIds.push_back(*internalDisplayId);
for (const auto& [id, token] : mPhysicalDisplayTokens) {
if (id != *internalDisplayId) {
displayIds.push_back(id);
}
}
return displayIds;
}
sp<IBinder> SurfaceFlinger::getPhysicalDisplayToken(PhysicalDisplayId displayId) const {
Mutex::Autolock lock(mStateLock);
return getPhysicalDisplayTokenLocked(displayId);
}
status_t SurfaceFlinger::getColorManagement(bool* outGetColorManagement) const {
if (!outGetColorManagement) {
return BAD_VALUE;
}
*outGetColorManagement = useColorManagement;
return NO_ERROR;
}
HWComposer& SurfaceFlinger::getHwComposer() const {
return mCompositionEngine->getHwComposer();
}
renderengine::RenderEngine& SurfaceFlinger::getRenderEngine() const {
return mCompositionEngine->getRenderEngine();
}
compositionengine::CompositionEngine& SurfaceFlinger::getCompositionEngine() const {
return *mCompositionEngine.get();
}
void SurfaceFlinger::bootFinished() {
if (mBootFinished == true) {
ALOGE("Extra call to bootFinished");
return;
}
mBootFinished = true;
if (mStartPropertySetThread->join() != NO_ERROR) {
ALOGE("Join StartPropertySetThread failed!");
}
const nsecs_t now = systemTime();
const nsecs_t duration = now - mBootTime;
ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
mFrameTracer->initialize();
mTimeStats->onBootFinished();
mFrameTimeline->onBootFinished();
// wait patiently for the window manager death
const String16 name("window");
mWindowManager = defaultServiceManager()->getService(name);
if (mWindowManager != 0) {
mWindowManager->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
}
// stop boot animation
// formerly we would just kill the process, but we now ask it to exit so it
// can choose where to stop the animation.
property_set("service.bootanim.exit", "1");
const int LOGTAG_SF_STOP_BOOTANIM = 60110;
LOG_EVENT_LONG(LOGTAG_SF_STOP_BOOTANIM,
ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
sp<IBinder> input(defaultServiceManager()->getService(String16("inputflinger")));
static_cast<void>(schedule([=] {
if (input == nullptr) {
ALOGE("Failed to link to input service");
} else {
mInputFlinger = interface_cast<os::IInputFlinger>(input);
}
readPersistentProperties();
mPowerAdvisor.onBootFinished();
mBootStage = BootStage::FINISHED;
if (property_get_bool("sf.debug.show_refresh_rate_overlay", false)) {
enableRefreshRateOverlay(true);
}
}));
}
uint32_t SurfaceFlinger::getNewTexture() {
{
std::lock_guard lock(mTexturePoolMutex);
if (!mTexturePool.empty()) {
uint32_t name = mTexturePool.back();
mTexturePool.pop_back();
ATRACE_INT("TexturePoolSize", mTexturePool.size());
return name;
}
// The pool was too small, so increase it for the future
++mTexturePoolSize;
}
// The pool was empty, so we need to get a new texture name directly using a
// blocking call to the main thread
return schedule([this] {
uint32_t name = 0;
getRenderEngine().genTextures(1, &name);
return name;
})
.get();
}
void SurfaceFlinger::deleteTextureAsync(uint32_t texture) {
std::lock_guard lock(mTexturePoolMutex);
// We don't change the pool size, so the fix-up logic in postComposition will decide whether
// to actually delete this or not based on mTexturePoolSize
mTexturePool.push_back(texture);
ATRACE_INT("TexturePoolSize", mTexturePool.size());
}
// Do not call property_set on main thread which will be blocked by init
// Use StartPropertySetThread instead.
void SurfaceFlinger::init() {
ALOGI( "SurfaceFlinger's main thread ready to run. "
"Initializing graphics H/W...");
Mutex::Autolock _l(mStateLock);
// Get a RenderEngine for the given display / config (can't fail)
// TODO(b/77156734): We need to stop casting and use HAL types when possible.
// Sending maxFrameBufferAcquiredBuffers as the cache size is tightly tuned to single-display.
mCompositionEngine->setRenderEngine(renderengine::RenderEngine::create(
renderengine::RenderEngineCreationArgs::Builder()
.setPixelFormat(static_cast<int32_t>(defaultCompositionPixelFormat))
.setImageCacheSize(maxFrameBufferAcquiredBuffers)
.setUseColorManagerment(useColorManagement)
.setEnableProtectedContext(enable_protected_contents(false))
.setPrecacheToneMapperShaderOnly(false)
.setSupportsBackgroundBlur(mSupportsBlur)
.setContextPriority(
useContextPriority
? renderengine::RenderEngine::ContextPriority::REALTIME
: renderengine::RenderEngine::ContextPriority::MEDIUM)
.build()));
mCompositionEngine->setTimeStats(mTimeStats);
mCompositionEngine->setHwComposer(getFactory().createHWComposer(getBE().mHwcServiceName));
mCompositionEngine->getHwComposer().setConfiguration(this, getBE().mComposerSequenceId);
// Process any initial hotplug and resulting display changes.
processDisplayHotplugEventsLocked();
const auto display = getDefaultDisplayDeviceLocked();
LOG_ALWAYS_FATAL_IF(!display, "Missing internal display after registering composer callback.");
const auto displayId = display->getPhysicalId();
LOG_ALWAYS_FATAL_IF(!getHwComposer().isConnected(displayId),
"Internal display is disconnected.");
// initialize our drawing state
mDrawingState = mCurrentState;
// set initial conditions (e.g. unblank default device)
initializeDisplays();
char primeShaderCache[PROPERTY_VALUE_MAX];
property_get("service.sf.prime_shader_cache", primeShaderCache, "1");
if (atoi(primeShaderCache)) {
getRenderEngine().primeCache();
}
getRenderEngine().onPrimaryDisplaySizeChanged(display->getSize());
// Inform native graphics APIs whether the present timestamp is supported:
const bool presentFenceReliable =
!getHwComposer().hasCapability(hal::Capability::PRESENT_FENCE_IS_NOT_RELIABLE);
mStartPropertySetThread = getFactory().createStartPropertySetThread(presentFenceReliable);
if (mStartPropertySetThread->Start() != NO_ERROR) {
ALOGE("Run StartPropertySetThread failed!");
}
ALOGV("Done initializing");
}
void SurfaceFlinger::readPersistentProperties() {
Mutex::Autolock _l(mStateLock);
char value[PROPERTY_VALUE_MAX];
property_get("persist.sys.sf.color_saturation", value, "1.0");
mGlobalSaturationFactor = atof(value);
updateColorMatrixLocked();
ALOGV("Saturation is set to %.2f", mGlobalSaturationFactor);
property_get("persist.sys.sf.native_mode", value, "0");
mDisplayColorSetting = static_cast<DisplayColorSetting>(atoi(value));
property_get("persist.sys.sf.color_mode", value, "0");
mForceColorMode = static_cast<ColorMode>(atoi(value));
property_get("persist.sys.sf.disable_blurs", value, "0");
bool disableBlurs = atoi(value);
mDisableBlurs = disableBlurs;
ALOGI_IF(disableBlurs, "Disabling blur effects, user preference.");
}
void SurfaceFlinger::startBootAnim() {
// Start boot animation service by setting a property mailbox
// if property setting thread is already running, Start() will be just a NOP
mStartPropertySetThread->Start();
// Wait until property was set
if (mStartPropertySetThread->join() != NO_ERROR) {
ALOGE("Join StartPropertySetThread failed!");
}
}
size_t SurfaceFlinger::getMaxTextureSize() const {
return getRenderEngine().getMaxTextureSize();
}
size_t SurfaceFlinger::getMaxViewportDims() const {
return getRenderEngine().getMaxViewportDims();
}
// ----------------------------------------------------------------------------
bool SurfaceFlinger::authenticateSurfaceTexture(
const sp<IGraphicBufferProducer>& bufferProducer) const {
Mutex::Autolock _l(mStateLock);
return authenticateSurfaceTextureLocked(bufferProducer);
}
bool SurfaceFlinger::authenticateSurfaceTextureLocked(
const sp<IGraphicBufferProducer>& bufferProducer) const {
sp<IBinder> surfaceTextureBinder(IInterface::asBinder(bufferProducer));
return mGraphicBufferProducerList.count(surfaceTextureBinder.get()) > 0;
}
status_t SurfaceFlinger::getSupportedFrameTimestamps(
std::vector<FrameEvent>* outSupported) const {
*outSupported = {
FrameEvent::REQUESTED_PRESENT,
FrameEvent::ACQUIRE,
FrameEvent::LATCH,
FrameEvent::FIRST_REFRESH_START,
FrameEvent::LAST_REFRESH_START,
FrameEvent::GPU_COMPOSITION_DONE,
FrameEvent::DEQUEUE_READY,
FrameEvent::RELEASE,
};
ConditionalLock _l(mStateLock,
std::this_thread::get_id() != mMainThreadId);
if (!getHwComposer().hasCapability(hal::Capability::PRESENT_FENCE_IS_NOT_RELIABLE)) {
outSupported->push_back(FrameEvent::DISPLAY_PRESENT);
}
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayState(const sp<IBinder>& displayToken, ui::DisplayState* state) {
if (!displayToken || !state) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return NAME_NOT_FOUND;
}
state->layerStack = display->getLayerStack();
state->orientation = display->getOrientation();
const Rect layerStackRect = display->getLayerStackSpaceRect();
state->layerStackSpaceRect =
layerStackRect.isValid() ? layerStackRect.getSize() : display->getSize();
return NO_ERROR;
}
status_t SurfaceFlinger::getStaticDisplayInfo(const sp<IBinder>& displayToken,
ui::StaticDisplayInfo* info) {
if (!displayToken || !info) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return NAME_NOT_FOUND;
}
if (const auto connectionType = display->getConnectionType())
info->connectionType = *connectionType;
else {
return INVALID_OPERATION;
}
if (mEmulatedDisplayDensity) {
info->density = mEmulatedDisplayDensity;
} else {
info->density = info->connectionType == ui::DisplayConnectionType::Internal
? mInternalDisplayDensity
: FALLBACK_DENSITY;
}
info->density /= ACONFIGURATION_DENSITY_MEDIUM;
info->secure = display->isSecure();
info->deviceProductInfo = display->getDeviceProductInfo();
return NO_ERROR;
}
status_t SurfaceFlinger::getDynamicDisplayInfo(const sp<IBinder>& displayToken,
ui::DynamicDisplayInfo* info) {
if (!displayToken || !info) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return NAME_NOT_FOUND;
}
info->activeDisplayModeId = static_cast<int32_t>(display->getActiveMode()->getId().value());
const auto& supportedModes = display->getSupportedModes();
info->supportedDisplayModes.clear();
info->supportedDisplayModes.reserve(supportedModes.size());
for (const auto& mode : supportedModes) {
ui::DisplayMode outMode;
outMode.id = static_cast<int32_t>(mode->getId().value());
auto width = mode->getWidth();
auto height = mode->getHeight();
auto xDpi = mode->getDpiX();
auto yDpi = mode->getDpiY();
if (display->isPrimary() &&
(internalDisplayOrientation == ui::ROTATION_90 ||
internalDisplayOrientation == ui::ROTATION_270)) {
std::swap(width, height);
std::swap(xDpi, yDpi);
}
outMode.resolution = ui::Size(width, height);
if (mEmulatedDisplayDensity) {
outMode.xDpi = mEmulatedDisplayDensity;
outMode.yDpi = mEmulatedDisplayDensity;
} else {
outMode.xDpi = xDpi;
outMode.yDpi = yDpi;
}
const nsecs_t period = mode->getVsyncPeriod();
outMode.refreshRate = Fps::fromPeriodNsecs(period).getValue();
const auto vsyncConfigSet =
mVsyncConfiguration->getConfigsForRefreshRate(Fps(outMode.refreshRate));
outMode.appVsyncOffset = vsyncConfigSet.late.appOffset;
outMode.sfVsyncOffset = vsyncConfigSet.late.sfOffset;
outMode.group = mode->getGroup();
// This is how far in advance a buffer must be queued for
// presentation at a given time. If you want a buffer to appear
// on the screen at time N, you must submit the buffer before
// (N - presentationDeadline).
//
// Normally it's one full refresh period (to give SF a chance to
// latch the buffer), but this can be reduced by configuring a
// VsyncController offset. Any additional delays introduced by the hardware
// composer or panel must be accounted for here.
//
// We add an additional 1ms to allow for processing time and
// differences between the ideal and actual refresh rate.
outMode.presentationDeadline = period - outMode.sfVsyncOffset + 1000000;
info->supportedDisplayModes.push_back(outMode);
}
info->activeColorMode = display->getCompositionDisplay()->getState().colorMode;
const auto displayId = display->getPhysicalId();
info->supportedColorModes = getDisplayColorModes(displayId);
info->hdrCapabilities = display->getHdrCapabilities();
info->autoLowLatencyModeSupported =
getHwComposer().hasDisplayCapability(displayId,
hal::DisplayCapability::AUTO_LOW_LATENCY_MODE);
std::vector<hal::ContentType> types;
getHwComposer().getSupportedContentTypes(displayId, &types);
info->gameContentTypeSupported = std::any_of(types.begin(), types.end(), [](auto type) {
return type == hal::ContentType::GAME;
});
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayStats(const sp<IBinder>&, DisplayStatInfo* stats) {
if (!stats) {
return BAD_VALUE;
}
*stats = mScheduler->getDisplayStatInfo(systemTime());
return NO_ERROR;
}
void SurfaceFlinger::setDesiredActiveMode(const ActiveModeInfo& info) {
ATRACE_CALL();
auto refreshRate = mRefreshRateConfigs->getRefreshRateFromModeId(info.modeId);
ALOGV("%s(%s)", __func__, refreshRate.getName().c_str());
std::lock_guard<std::mutex> lock(mActiveModeLock);
if (mDesiredActiveModeChanged) {
// If a mode change is pending, just cache the latest request in mDesiredActiveMode
const Scheduler::ModeEvent prevConfig = mDesiredActiveMode.event;
mDesiredActiveMode = info;
mDesiredActiveMode.event = mDesiredActiveMode.event | prevConfig;
} else {
// Check if we are already at the desired mode
const auto display = getDefaultDisplayDeviceLocked();
if (!display || display->getActiveMode()->getId() == refreshRate.getModeId()) {
return;
}
// Initiate a mode change.
mDesiredActiveModeChanged = true;
mDesiredActiveMode = info;
// This will trigger HWC refresh without resetting the idle timer.
repaintEverythingForHWC();
// Start receiving vsync samples now, so that we can detect a period
// switch.
mScheduler->resyncToHardwareVsync(true, refreshRate.getVsyncPeriod());
// As we called to set period, we will call to onRefreshRateChangeCompleted once
// VsyncController model is locked.
modulateVsync(&VsyncModulator::onRefreshRateChangeInitiated);
updatePhaseConfiguration(refreshRate.getFps());
mScheduler->setModeChangePending(true);
}
if (mRefreshRateOverlay) {
mRefreshRateOverlay->changeRefreshRate(refreshRate.getFps());
}
}
status_t SurfaceFlinger::setActiveMode(const sp<IBinder>& displayToken, int modeId) {
ATRACE_CALL();
if (!displayToken) {
return BAD_VALUE;
}
auto future = schedule([=]() -> status_t {
const auto display = ON_MAIN_THREAD(getDisplayDeviceLocked(displayToken));
if (!display) {
ALOGE("Attempt to set allowed display modes for invalid display token %p",
displayToken.get());
return NAME_NOT_FOUND;
}
if (display->isVirtual()) {
ALOGW("Attempt to set allowed display modes for virtual display");
return INVALID_OPERATION;
}
const auto mode = display->getMode(DisplayModeId{modeId});
if (!mode) {
ALOGW("Attempt to switch to an unsupported mode %d.", modeId);
return BAD_VALUE;
}
const auto fps = mode->getFps();
// Keep the old switching type.
const auto allowGroupSwitching =
mRefreshRateConfigs->getCurrentPolicy().allowGroupSwitching;
const scheduler::RefreshRateConfigs::Policy policy{mode->getId(),
allowGroupSwitching,
{fps, fps}};
constexpr bool kOverridePolicy = false;
return setDesiredDisplayModeSpecsInternal(display, policy, kOverridePolicy);
});
return future.get();
}
void SurfaceFlinger::setActiveModeInternal() {
ATRACE_CALL();
const auto display = getDefaultDisplayDeviceLocked();
if (!display) {
return;
}
const auto upcomingMode = display->getMode(mUpcomingActiveMode.modeId);
if (!upcomingMode) {
ALOGW("Upcoming active mode is no longer supported. Mode ID = %d",
mUpcomingActiveMode.modeId.value());
// TODO(b/159590486) Handle the error better. Some parts of SurfaceFlinger may
// have been already updated with the upcoming active mode.
return;
}
const Fps oldRefreshRate = display->getActiveMode()->getFps();
std::lock_guard<std::mutex> lock(mActiveModeLock);
mRefreshRateConfigs->setCurrentModeId(mUpcomingActiveMode.modeId);
display->setActiveMode(mUpcomingActiveMode.modeId);
const Fps refreshRate = upcomingMode->getFps();
mRefreshRateStats->setRefreshRate(refreshRate);
if (!refreshRate.equalsWithMargin(oldRefreshRate)) {
mTimeStats->incrementRefreshRateSwitches();
}
updatePhaseConfiguration(refreshRate);
ATRACE_INT("ActiveConfigFPS", refreshRate.getValue());
if (mUpcomingActiveMode.event != Scheduler::ModeEvent::None) {
const nsecs_t vsyncPeriod = refreshRate.getPeriodNsecs();
const auto physicalId = display->getPhysicalId();
mScheduler->onPrimaryDisplayModeChanged(mAppConnectionHandle, physicalId,
mUpcomingActiveMode.modeId, vsyncPeriod);
}
}
void SurfaceFlinger::clearDesiredActiveModeState() {
std::lock_guard<std::mutex> lock(mActiveModeLock);
mDesiredActiveMode.event = Scheduler::ModeEvent::None;
mDesiredActiveModeChanged = false;
mScheduler->setModeChangePending(false);
}
void SurfaceFlinger::desiredActiveModeChangeDone() {
const auto modeId = getDesiredActiveMode()->modeId;
clearDesiredActiveModeState();
const auto refreshRate = getDefaultDisplayDeviceLocked()->getMode(modeId)->getFps();
mScheduler->resyncToHardwareVsync(true, refreshRate.getPeriodNsecs());
updatePhaseConfiguration(refreshRate);
}
void SurfaceFlinger::performSetActiveMode() {
ATRACE_CALL();
ALOGV("%s", __FUNCTION__);
// Store the local variable to release the lock.
const auto desiredActiveMode = getDesiredActiveMode();
if (!desiredActiveMode) {
// No desired active mode pending to be applied
return;
}
const auto display = getDefaultDisplayDeviceLocked();
const auto desiredMode = display->getMode(desiredActiveMode->modeId);
if (!desiredMode) {
ALOGW("Desired display mode is no longer supported. Mode ID = %d",
desiredActiveMode->modeId.value());
clearDesiredActiveModeState();
return;
}
const auto refreshRate = desiredMode->getFps();
ALOGV("%s changing active mode to %d(%s)", __FUNCTION__, desiredMode->getId().value(),
to_string(refreshRate).c_str());
if (!display || display->getActiveMode()->getId() == desiredActiveMode->modeId) {
// display is not valid or we are already in the requested mode
// on both cases there is nothing left to do
desiredActiveModeChangeDone();
return;
}
// Desired active mode was set, it is different than the mode currently in use, however
// allowed modes might have changed by the time we process the refresh.
// Make sure the desired mode is still allowed
if (!isDisplayModeAllowed(desiredActiveMode->modeId)) {
desiredActiveModeChangeDone();
return;
}
mUpcomingActiveMode = *desiredActiveMode;
ATRACE_INT("ActiveModeFPS_HWC", refreshRate.getValue());
// TODO(b/142753666) use constrains
hal::VsyncPeriodChangeConstraints constraints;
constraints.desiredTimeNanos = systemTime();
constraints.seamlessRequired = false;
hal::VsyncPeriodChangeTimeline outTimeline;
const auto status =
display->initiateModeChange(mUpcomingActiveMode.modeId, constraints, &outTimeline);
if (status != NO_ERROR) {
// initiateModeChange may fail if a hotplug event is just about
// to be sent. We just log the error in this case.
ALOGW("initiateModeChange failed: %d", status);
return;
}
mScheduler->onNewVsyncPeriodChangeTimeline(outTimeline);
// Scheduler will submit an empty frame to HWC if needed.
mSetActiveModePending = true;
}
std::vector<ColorMode> SurfaceFlinger::getDisplayColorModes(PhysicalDisplayId displayId) {
auto modes = getHwComposer().getColorModes(displayId);
bool isInternalDisplay = displayId == getInternalDisplayIdLocked();
// If it's built-in display and the configuration claims it's not wide color capable,
// filter out all wide color modes. The typical reason why this happens is that the
// hardware is not good enough to support GPU composition of wide color, and thus the
// OEMs choose to disable this capability.
if (isInternalDisplay && !hasWideColorDisplay) {
const auto newEnd = std::remove_if(modes.begin(), modes.end(), isWideColorMode);
modes.erase(newEnd, modes.end());
}
return modes;
}
status_t SurfaceFlinger::getDisplayNativePrimaries(const sp<IBinder>& displayToken,
ui::DisplayPrimaries &primaries) {
if (!displayToken) {
return BAD_VALUE;
}
// Currently we only support this API for a single internal display.
if (getInternalDisplayToken() != displayToken) {
return NAME_NOT_FOUND;
}
memcpy(&primaries, &mInternalDisplayPrimaries, sizeof(ui::DisplayPrimaries));
return NO_ERROR;
}
status_t SurfaceFlinger::setActiveColorMode(const sp<IBinder>& displayToken, ColorMode mode) {
schedule([=]() MAIN_THREAD {
const auto displayId = getPhysicalDisplayIdLocked(displayToken);
if (!displayId) {
ALOGE("Invalid display token %p", displayToken.get());
return;
}
const auto modes = getDisplayColorModes(*displayId);
bool exists = std::find(std::begin(modes), std::end(modes), mode) != std::end(modes);
if (mode < ColorMode::NATIVE || !exists) {
ALOGE("Attempt to set invalid active color mode %s (%d) for display token %p",
decodeColorMode(mode).c_str(), mode, displayToken.get());
return;
}
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
ALOGE("Attempt to set active color mode %s (%d) for invalid display token %p",
decodeColorMode(mode).c_str(), mode, displayToken.get());
} else if (display->isVirtual()) {
ALOGW("Attempt to set active color mode %s (%d) for virtual display",
decodeColorMode(mode).c_str(), mode);
} else {
display->getCompositionDisplay()->setColorProfile(
compositionengine::Output::ColorProfile{mode, Dataspace::UNKNOWN,
RenderIntent::COLORIMETRIC,
Dataspace::UNKNOWN});
}
}).wait();
return NO_ERROR;
}
void SurfaceFlinger::setAutoLowLatencyMode(const sp<IBinder>& displayToken, bool on) {
static_cast<void>(schedule([=]() MAIN_THREAD {
if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) {
getHwComposer().setAutoLowLatencyMode(*displayId, on);
} else {
ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get());
}
}));
}
void SurfaceFlinger::setGameContentType(const sp<IBinder>& displayToken, bool on) {
static_cast<void>(schedule([=]() MAIN_THREAD {
if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) {
const auto type = on ? hal::ContentType::GAME : hal::ContentType::NONE;
getHwComposer().setContentType(*displayId, type);
} else {
ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get());
}
}));
}
status_t SurfaceFlinger::clearAnimationFrameStats() {
Mutex::Autolock _l(mStateLock);
mAnimFrameTracker.clearStats();
return NO_ERROR;
}
status_t SurfaceFlinger::getAnimationFrameStats(FrameStats* outStats) const {
Mutex::Autolock _l(mStateLock);
mAnimFrameTracker.getStats(outStats);
return NO_ERROR;
}
status_t SurfaceFlinger::overrideHdrTypes(const sp<IBinder>& displayToken,
const std::vector<ui::Hdr>& hdrTypes) {
Mutex::Autolock lock(mStateLock);
auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get());
return NAME_NOT_FOUND;
}
display->overrideHdrTypes(hdrTypes);
dispatchDisplayHotplugEvent(display->getPhysicalId(), true /* connected */);
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayedContentSamplingAttributes(const sp<IBinder>& displayToken,
ui::PixelFormat* outFormat,
ui::Dataspace* outDataspace,
uint8_t* outComponentMask) const {
if (!outFormat || !outDataspace || !outComponentMask) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto displayId = getPhysicalDisplayIdLocked(displayToken);
if (!displayId) {
return NAME_NOT_FOUND;
}
return getHwComposer().getDisplayedContentSamplingAttributes(*displayId, outFormat,
outDataspace, outComponentMask);
}
status_t SurfaceFlinger::setDisplayContentSamplingEnabled(const sp<IBinder>& displayToken,
bool enable, uint8_t componentMask,
uint64_t maxFrames) {
return schedule([=]() MAIN_THREAD -> status_t {
if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) {
return getHwComposer().setDisplayContentSamplingEnabled(*displayId, enable,
componentMask,
maxFrames);
} else {
ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get());
return NAME_NOT_FOUND;
}
})
.get();
}
status_t SurfaceFlinger::getDisplayedContentSample(const sp<IBinder>& displayToken,
uint64_t maxFrames, uint64_t timestamp,
DisplayedFrameStats* outStats) const {
Mutex::Autolock lock(mStateLock);
const auto displayId = getPhysicalDisplayIdLocked(displayToken);
if (!displayId) {
return NAME_NOT_FOUND;
}
return getHwComposer().getDisplayedContentSample(*displayId, maxFrames, timestamp, outStats);
}
status_t SurfaceFlinger::getProtectedContentSupport(bool* outSupported) const {
if (!outSupported) {
return BAD_VALUE;
}
*outSupported = getRenderEngine().supportsProtectedContent();
return NO_ERROR;
}
status_t SurfaceFlinger::isWideColorDisplay(const sp<IBinder>& displayToken,
bool* outIsWideColorDisplay) const {
if (!displayToken || !outIsWideColorDisplay) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return NAME_NOT_FOUND;
}
*outIsWideColorDisplay =
display->isPrimary() ? hasWideColorDisplay : display->hasWideColorGamut();
return NO_ERROR;
}
status_t SurfaceFlinger::enableVSyncInjections(bool enable) {
schedule([=] {
Mutex::Autolock lock(mStateLock);
if (const auto handle = mScheduler->enableVSyncInjection(enable)) {
mEventQueue->setInjector(enable ? mScheduler->getEventConnection(handle) : nullptr);
}
}).wait();
return NO_ERROR;
}
status_t SurfaceFlinger::injectVSync(nsecs_t when) {
Mutex::Autolock lock(mStateLock);
const DisplayStatInfo stats = mScheduler->getDisplayStatInfo(when);
const auto expectedPresent = calculateExpectedPresentTime(stats);
return mScheduler->injectVSync(when, /*expectedVSyncTime=*/expectedPresent,
/*deadlineTimestamp=*/expectedPresent)
? NO_ERROR
: BAD_VALUE;
}
status_t SurfaceFlinger::getLayerDebugInfo(std::vector<LayerDebugInfo>* outLayers) {
outLayers->clear();
schedule([=] {
const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked());
mDrawingState.traverseInZOrder([&](Layer* layer) {
outLayers->push_back(layer->getLayerDebugInfo(display.get()));
});
}).wait();
return NO_ERROR;
}
status_t SurfaceFlinger::getCompositionPreference(
Dataspace* outDataspace, ui::PixelFormat* outPixelFormat,
Dataspace* outWideColorGamutDataspace,
ui::PixelFormat* outWideColorGamutPixelFormat) const {
*outDataspace = mDefaultCompositionDataspace;
*outPixelFormat = defaultCompositionPixelFormat;
*outWideColorGamutDataspace = mWideColorGamutCompositionDataspace;
*outWideColorGamutPixelFormat = wideColorGamutCompositionPixelFormat;
return NO_ERROR;
}
status_t SurfaceFlinger::addRegionSamplingListener(const Rect& samplingArea,
const sp<IBinder>& stopLayerHandle,
const sp<IRegionSamplingListener>& listener) {
if (!listener || samplingArea == Rect::INVALID_RECT) {
return BAD_VALUE;
}
const wp<Layer> stopLayer = fromHandle(stopLayerHandle);
mRegionSamplingThread->addListener(samplingArea, stopLayer, listener);
return NO_ERROR;
}
status_t SurfaceFlinger::removeRegionSamplingListener(const sp<IRegionSamplingListener>& listener) {
if (!listener) {
return BAD_VALUE;
}
mRegionSamplingThread->removeListener(listener);
return NO_ERROR;
}
status_t SurfaceFlinger::addFpsListener(int32_t taskId, const sp<gui::IFpsListener>& listener) {
if (!listener) {
return BAD_VALUE;
}
mFpsReporter->addListener(listener, taskId);
return NO_ERROR;
}
status_t SurfaceFlinger::removeFpsListener(const sp<gui::IFpsListener>& listener) {
if (!listener) {
return BAD_VALUE;
}
mFpsReporter->removeListener(listener);
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayBrightnessSupport(const sp<IBinder>& displayToken,
bool* outSupport) const {
if (!displayToken || !outSupport) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto displayId = getPhysicalDisplayIdLocked(displayToken);
if (!displayId) {
return NAME_NOT_FOUND;
}
*outSupport =
getHwComposer().hasDisplayCapability(*displayId, hal::DisplayCapability::BRIGHTNESS);
return NO_ERROR;
}
status_t SurfaceFlinger::setDisplayBrightness(const sp<IBinder>& displayToken,
const gui::DisplayBrightness& brightness) {
if (!displayToken) {
return BAD_VALUE;
}
return ftl::chain(schedule([=]() MAIN_THREAD {
if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) {
return getHwComposer().setDisplayBrightness(*displayId,
brightness.displayBrightness);
} else {
ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get());
return ftl::yield<status_t>(NAME_NOT_FOUND);
}
}))
.then([](std::future<status_t> task) { return task; })
.get();
}
status_t SurfaceFlinger::addHdrLayerInfoListener(const sp<IBinder>& displayToken,
const sp<gui::IHdrLayerInfoListener>& listener) {
if (!displayToken) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return NAME_NOT_FOUND;
}
const auto displayId = display->getId();
sp<HdrLayerInfoReporter>& hdrInfoReporter = mHdrLayerInfoListeners[displayId];
if (!hdrInfoReporter) {
hdrInfoReporter = sp<HdrLayerInfoReporter>::make();
}
hdrInfoReporter->addListener(listener);
return OK;
}
status_t SurfaceFlinger::removeHdrLayerInfoListener(
const sp<IBinder>& displayToken, const sp<gui::IHdrLayerInfoListener>& listener) {
if (!displayToken) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return NAME_NOT_FOUND;
}
const auto displayId = display->getId();
sp<HdrLayerInfoReporter>& hdrInfoReporter = mHdrLayerInfoListeners[displayId];
if (hdrInfoReporter) {
hdrInfoReporter->removeListener(listener);
}
return OK;
}
status_t SurfaceFlinger::notifyPowerBoost(int32_t boostId) {
Boost powerBoost = static_cast<Boost>(boostId);
if (powerBoost == Boost::INTERACTION) {
mScheduler->notifyTouchEvent();
}
return NO_ERROR;
}
// ----------------------------------------------------------------------------
sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection(
ISurfaceComposer::VsyncSource vsyncSource,
ISurfaceComposer::EventRegistrationFlags eventRegistration) {
const auto& handle =
vsyncSource == eVsyncSourceSurfaceFlinger ? mSfConnectionHandle : mAppConnectionHandle;
return mScheduler->createDisplayEventConnection(handle, eventRegistration);
}
void SurfaceFlinger::signalTransaction() {
mScheduler->resetIdleTimer();
mPowerAdvisor.notifyDisplayUpdateImminent();
mEventQueue->invalidate();
}
void SurfaceFlinger::signalLayerUpdate() {
mScheduler->resetIdleTimer();
mPowerAdvisor.notifyDisplayUpdateImminent();
mEventQueue->invalidate();
}
void SurfaceFlinger::signalRefresh() {
mRefreshPending = true;
mEventQueue->refresh();
}
nsecs_t SurfaceFlinger::getVsyncPeriodFromHWC() const {
if (const auto display = getDefaultDisplayDeviceLocked()) {
return display->getVsyncPeriodFromHWC();
}
return 0;
}
void SurfaceFlinger::onVsyncReceived(int32_t sequenceId, hal::HWDisplayId hwcDisplayId,
int64_t timestamp,
std::optional<hal::VsyncPeriodNanos> vsyncPeriod) {
ATRACE_NAME("SF onVsync");
Mutex::Autolock lock(mStateLock);
// Ignore any vsyncs from a previous hardware composer.
if (sequenceId != getBE().mComposerSequenceId) {
return;
}
if (const auto displayId = getHwComposer().toPhysicalDisplayId(hwcDisplayId)) {
auto token = getPhysicalDisplayTokenLocked(*displayId);
auto display = getDisplayDeviceLocked(token);
display->onVsync(timestamp);
}
if (!getHwComposer().onVsync(hwcDisplayId, timestamp)) {
return;
}
if (hwcDisplayId != getHwComposer().getInternalHwcDisplayId()) {
// For now, we don't do anything with external display vsyncs.
return;
}
bool periodFlushed = false;
mScheduler->addResyncSample(timestamp, vsyncPeriod, &periodFlushed);
if (periodFlushed) {
modulateVsync(&VsyncModulator::onRefreshRateChangeCompleted);
}
}
void SurfaceFlinger::getCompositorTiming(CompositorTiming* compositorTiming) {
std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
*compositorTiming = getBE().mCompositorTiming;
}
bool SurfaceFlinger::isDisplayModeAllowed(DisplayModeId modeId) const {
return mRefreshRateConfigs->isModeAllowed(modeId);
}
void SurfaceFlinger::changeRefreshRateLocked(const RefreshRate& refreshRate,
Scheduler::ModeEvent event) {
const auto display = getDefaultDisplayDeviceLocked();
if (!display || mBootStage != BootStage::FINISHED) {
return;
}
ATRACE_CALL();
// Don't do any updating if the current fps is the same as the new one.
if (!isDisplayModeAllowed(refreshRate.getModeId())) {
ALOGV("Skipping mode %d as it is not part of allowed modes",
refreshRate.getModeId().value());
return;
}
setDesiredActiveMode({refreshRate.getModeId(), event});
}
void SurfaceFlinger::onHotplugReceived(int32_t sequenceId, hal::HWDisplayId hwcDisplayId,
hal::Connection connection) {
ALOGI("%s(%d, %" PRIu64 ", %s)", __FUNCTION__, sequenceId, hwcDisplayId,
connection == hal::Connection::CONNECTED ? "connected" : "disconnected");
// Ignore events that do not have the right sequenceId.
if (sequenceId != getBE().mComposerSequenceId) {
return;
}
// Only lock if we're not on the main thread. This function is normally
// called on a hwbinder thread, but for the primary display it's called on
// the main thread with the state lock already held, so don't attempt to
// acquire it here.
ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
mPendingHotplugEvents.emplace_back(HotplugEvent{hwcDisplayId, connection});
if (std::this_thread::get_id() == mMainThreadId) {
// Process all pending hot plug events immediately if we are on the main thread.
processDisplayHotplugEventsLocked();
}
setTransactionFlags(eDisplayTransactionNeeded);
}
void SurfaceFlinger::onVsyncPeriodTimingChangedReceived(
int32_t sequenceId, hal::HWDisplayId /*display*/,
const hal::VsyncPeriodChangeTimeline& updatedTimeline) {
Mutex::Autolock lock(mStateLock);
if (sequenceId != getBE().mComposerSequenceId) {
return;
}
mScheduler->onNewVsyncPeriodChangeTimeline(updatedTimeline);
}
void SurfaceFlinger::onSeamlessPossible(int32_t /*sequenceId*/, hal::HWDisplayId /*display*/) {
// TODO(b/142753666): use constraints when calling to setActiveModeWithConstraints and
// use this callback to know when to retry in case of SEAMLESS_NOT_POSSIBLE.
}
void SurfaceFlinger::onRefreshReceived(int sequenceId, hal::HWDisplayId /*hwcDisplayId*/) {
Mutex::Autolock lock(mStateLock);
if (sequenceId != getBE().mComposerSequenceId) {
return;
}
repaintEverythingForHWC();
}
void SurfaceFlinger::setVsyncEnabled(bool enabled) {
ATRACE_CALL();
// On main thread to avoid race conditions with display power state.
static_cast<void>(schedule([=]() MAIN_THREAD {
mHWCVsyncPendingState = enabled ? hal::Vsync::ENABLE : hal::Vsync::DISABLE;
if (const auto display = getDefaultDisplayDeviceLocked();
display && display->isPoweredOn()) {
getHwComposer().setVsyncEnabled(display->getPhysicalId(), mHWCVsyncPendingState);
}
}));
}
SurfaceFlinger::FenceWithFenceTime SurfaceFlinger::previousFrameFence() {
// We are storing the last 2 present fences. If sf's phase offset is to be
// woken up before the actual vsync but targeting the next vsync, we need to check
// fence N-2
return mVsyncModulator->getVsyncConfig().sfOffset > 0 ? mPreviousPresentFences[0]
: mPreviousPresentFences[1];
}
bool SurfaceFlinger::previousFramePending(int graceTimeMs) {
ATRACE_CALL();
const std::shared_ptr<FenceTime>& fence = previousFrameFence().fenceTime;
if (fence == FenceTime::NO_FENCE) {
return false;
}
const status_t status = fence->wait(graceTimeMs);
// This is the same as Fence::Status::Unsignaled, but it saves a getStatus() call,
// which calls wait(0) again internally
return status == -ETIME;
}
nsecs_t SurfaceFlinger::previousFramePresentTime() {
const std::shared_ptr<FenceTime>& fence = previousFrameFence().fenceTime;
if (fence == FenceTime::NO_FENCE) {
return Fence::SIGNAL_TIME_INVALID;
}
return fence->getSignalTime();
}
nsecs_t SurfaceFlinger::calculateExpectedPresentTime(DisplayStatInfo stats) const {
// Inflate the expected present time if we're targetting the next vsync.
return mVsyncModulator->getVsyncConfig().sfOffset > 0 ? stats.vsyncTime
: stats.vsyncTime + stats.vsyncPeriod;
}
void SurfaceFlinger::onMessageReceived(int32_t what, int64_t vsyncId, nsecs_t expectedVSyncTime) {
const auto vsyncIn = [&] {
if (!ATRACE_ENABLED()) return 0.f;
return (expectedVSyncTime - systemTime()) / 1e6f;
}();
ATRACE_FORMAT("onMessageReceived %" PRId64 " vsyncIn %.2fms", vsyncId, vsyncIn);
switch (what) {
case MessageQueue::INVALIDATE: {
onMessageInvalidate(vsyncId, expectedVSyncTime);
break;
}
case MessageQueue::REFRESH: {
onMessageRefresh();
break;
}
}
}
void SurfaceFlinger::onMessageInvalidate(int64_t vsyncId, nsecs_t expectedVSyncTime) {
ATRACE_CALL();
const nsecs_t frameStart = systemTime();
// calculate the expected present time once and use the cached
// value throughout this frame to make sure all layers are
// seeing this same value.
if (expectedVSyncTime >= frameStart) {
mExpectedPresentTime = expectedVSyncTime;
} else {
const DisplayStatInfo stats = mScheduler->getDisplayStatInfo(frameStart);
mExpectedPresentTime = calculateExpectedPresentTime(stats);
}
const nsecs_t lastScheduledPresentTime = mScheduledPresentTime;
mScheduledPresentTime = expectedVSyncTime;
// When Backpressure propagation is enabled we want to give a small grace period
// for the present fence to fire instead of just giving up on this frame to handle cases
// where present fence is just about to get signaled.
const int graceTimeForPresentFenceMs =
(mPropagateBackpressureClientComposition || !mHadClientComposition) ? 1 : 0;
// Pending frames may trigger backpressure propagation.
const TracedOrdinal<bool> framePending = {"PrevFramePending",
previousFramePending(graceTimeForPresentFenceMs)};
// Frame missed counts for metrics tracking.
// A frame is missed if the prior frame is still pending. If no longer pending,
// then we still count the frame as missed if the predicted present time
// was further in the past than when the fence actually fired.
// Add some slop to correct for drift. This should generally be
// smaller than a typical frame duration, but should not be so small
// that it reports reasonable drift as a missed frame.
const DisplayStatInfo stats = mScheduler->getDisplayStatInfo(systemTime());
const nsecs_t frameMissedSlop = stats.vsyncPeriod / 2;
const nsecs_t previousPresentTime = previousFramePresentTime();
const TracedOrdinal<bool> frameMissed = {"PrevFrameMissed",
framePending ||
(previousPresentTime >= 0 &&
(lastScheduledPresentTime <
previousPresentTime - frameMissedSlop))};
const TracedOrdinal<bool> hwcFrameMissed = {"PrevHwcFrameMissed",
mHadDeviceComposition && frameMissed};
const TracedOrdinal<bool> gpuFrameMissed = {"PrevGpuFrameMissed",
mHadClientComposition && frameMissed};
if (frameMissed) {
mFrameMissedCount++;
mTimeStats->incrementMissedFrames();
if (mMissedFrameJankCount == 0) {
mMissedFrameJankStart = systemTime();
}
mMissedFrameJankCount++;
}
if (hwcFrameMissed) {
mHwcFrameMissedCount++;
}
if (gpuFrameMissed) {
mGpuFrameMissedCount++;
}
// If we are in the middle of a mode change and the fence hasn't
// fired yet just wait for the next invalidate
if (mSetActiveModePending) {
if (framePending) {
mEventQueue->invalidate();
return;
}
// We received the present fence from the HWC, so we assume it successfully updated
// the mode, hence we update SF.
mSetActiveModePending = false;
ON_MAIN_THREAD(setActiveModeInternal());
}
if (framePending) {
if ((hwcFrameMissed && !gpuFrameMissed) || mPropagateBackpressureClientComposition) {
signalLayerUpdate();
return;
}
}
// Our jank window is always at least 100ms since we missed a
// frame...
static constexpr nsecs_t kMinJankyDuration =
std::chrono::duration_cast<std::chrono::nanoseconds>(100ms).count();
// ...but if it's larger than 1s then we missed the trace cutoff.
static constexpr nsecs_t kMaxJankyDuration =
std::chrono::duration_cast<std::chrono::nanoseconds>(1s).count();
nsecs_t jankDurationToUpload = -1;
// If we're in a user build then don't push any atoms
if (!mIsUserBuild && mMissedFrameJankCount > 0) {
const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked());
// Only report jank when the display is on, as displays in DOZE
// power mode may operate at a different frame rate than is
// reported in their config, which causes noticeable (but less
// severe) jank.
if (display && display->getPowerMode() == hal::PowerMode::ON) {
const nsecs_t currentTime = systemTime();
const nsecs_t jankDuration = currentTime - mMissedFrameJankStart;
if (jankDuration > kMinJankyDuration && jankDuration < kMaxJankyDuration) {
jankDurationToUpload = jankDuration;
}
// We either reported a jank event or we missed the trace
// window, so clear counters here.
if (jankDuration > kMinJankyDuration) {
mMissedFrameJankCount = 0;
mMissedFrameJankStart = 0;
}
}
}
if (mTracingEnabledChanged) {
mTracingEnabled = mTracing.isEnabled();
mTracingEnabledChanged = false;
}
if (mRefreshRateOverlaySpinner) {
if (Mutex::Autolock lock(mStateLock); mRefreshRateOverlay) {
mRefreshRateOverlay->onInvalidate();
}
}
bool refreshNeeded;
{
mTracePostComposition = mTracing.flagIsSet(SurfaceTracing::TRACE_COMPOSITION) ||
mTracing.flagIsSet(SurfaceTracing::TRACE_SYNC) ||
mTracing.flagIsSet(SurfaceTracing::TRACE_BUFFERS);
const bool tracePreComposition = mTracingEnabled && !mTracePostComposition;
ConditionalLockGuard<std::mutex> lock(mTracingLock, tracePreComposition);
mFrameTimeline->setSfWakeUp(vsyncId, frameStart, Fps::fromPeriodNsecs(stats.vsyncPeriod));
refreshNeeded = handleMessageTransaction();
refreshNeeded |= handleMessageInvalidate();
if (tracePreComposition) {
if (mVisibleRegionsDirty) {
mTracing.notifyLocked("visibleRegionsDirty");
}
}
}
// Layers need to get updated (in the previous line) before we can use them for
// choosing the refresh rate.
// Hold mStateLock as chooseRefreshRateForContent promotes wp<Layer> to sp<Layer>
// and may eventually call to ~Layer() if it holds the last reference
{
Mutex::Autolock _l(mStateLock);
mScheduler->chooseRefreshRateForContent();
}
ON_MAIN_THREAD(performSetActiveMode());
updateCursorAsync();
updateInputFlinger();
refreshNeeded |= mRepaintEverything;
if (refreshNeeded && CC_LIKELY(mBootStage != BootStage::BOOTLOADER)) {
mLastJankDuration = jankDurationToUpload;
// Signal a refresh if a transaction modified the window state,
// a new buffer was latched, or if HWC has requested a full
// repaint
if (mFrameStartTime <= 0) {
// We should only use the time of the first invalidate
// message that signals a refresh as the beginning of the
// frame. Otherwise the real frame time will be
// underestimated.
mFrameStartTime = frameStart;
}
// Run the refresh immediately after invalidate as there is no point going thru the message
// queue again, and to ensure that we actually refresh the screen instead of handling
// other messages that were queued us already in the MessageQueue.
mRefreshPending = true;
onMessageRefresh();
}
}
bool SurfaceFlinger::handleMessageTransaction() {
ATRACE_CALL();
if (getTransactionFlags(eTransactionFlushNeeded)) {
flushTransactionQueues();
}
uint32_t transactionFlags = peekTransactionFlags();
bool runHandleTransaction =
((transactionFlags & (~eTransactionFlushNeeded)) != 0) || mForceTraversal;
if (runHandleTransaction) {
handleTransaction(eTransactionMask);
}
if (transactionFlushNeeded()) {
setTransactionFlags(eTransactionFlushNeeded);
}
return runHandleTransaction;
}
void SurfaceFlinger::onMessageRefresh() {
ATRACE_CALL();
mRefreshPending = false;
compositionengine::CompositionRefreshArgs refreshArgs;
const auto& displays = ON_MAIN_THREAD(mDisplays);
refreshArgs.outputs.reserve(displays.size());
for (const auto& [_, display] : displays) {
refreshArgs.outputs.push_back(display->getCompositionDisplay());
}
mDrawingState.traverseInZOrder([&refreshArgs](Layer* layer) {
if (auto layerFE = layer->getCompositionEngineLayerFE())
refreshArgs.layers.push_back(layerFE);
});
refreshArgs.layersWithQueuedFrames.reserve(mLayersWithQueuedFrames.size());
for (auto layer : mLayersWithQueuedFrames) {
if (auto layerFE = layer->getCompositionEngineLayerFE())
refreshArgs.layersWithQueuedFrames.push_back(layerFE);
}
refreshArgs.repaintEverything = mRepaintEverything.exchange(false);
refreshArgs.outputColorSetting = useColorManagement
? mDisplayColorSetting
: compositionengine::OutputColorSetting::kUnmanaged;
refreshArgs.colorSpaceAgnosticDataspace = mColorSpaceAgnosticDataspace;
refreshArgs.forceOutputColorMode = mForceColorMode;
refreshArgs.updatingOutputGeometryThisFrame = mVisibleRegionsDirty;
refreshArgs.updatingGeometryThisFrame = mGeometryInvalid || mVisibleRegionsDirty;
refreshArgs.blursAreExpensive = mBlursAreExpensive;
refreshArgs.internalDisplayRotationFlags = DisplayDevice::getPrimaryDisplayRotationFlags();
if (CC_UNLIKELY(mDrawingState.colorMatrixChanged)) {
refreshArgs.colorTransformMatrix = mDrawingState.colorMatrix;
mDrawingState.colorMatrixChanged = false;
}
refreshArgs.devOptForceClientComposition = mDebugDisableHWC || mDebugRegion;
if (mDebugRegion != 0) {
refreshArgs.devOptFlashDirtyRegionsDelay =
std::chrono::milliseconds(mDebugRegion > 1 ? mDebugRegion : 0);
}
mGeometryInvalid = false;
// Store the present time just before calling to the composition engine so we could notify
// the scheduler.
const auto presentTime = systemTime();
mCompositionEngine->present(refreshArgs);
mTimeStats->recordFrameDuration(mFrameStartTime, systemTime());
// Reset the frame start time now that we've recorded this frame.
mFrameStartTime = 0;
mScheduler->onDisplayRefreshed(presentTime);
postFrame();
postComposition();
const bool prevFrameHadClientComposition = mHadClientComposition;
mHadClientComposition = std::any_of(displays.cbegin(), displays.cend(), [](const auto& pair) {
const auto& state = pair.second->getCompositionDisplay()->getState();
return state.usesClientComposition && !state.reusedClientComposition;
});
mHadDeviceComposition = std::any_of(displays.cbegin(), displays.cend(), [](const auto& pair) {
const auto& state = pair.second->getCompositionDisplay()->getState();
return state.usesDeviceComposition;
});
mReusedClientComposition =
std::any_of(displays.cbegin(), displays.cend(), [](const auto& pair) {
const auto& state = pair.second->getCompositionDisplay()->getState();
return state.reusedClientComposition;
});
// Only report a strategy change if we move in and out of client composition
if (prevFrameHadClientComposition != mHadClientComposition) {
mTimeStats->incrementCompositionStrategyChanges();
}
// TODO: b/160583065 Enable skip validation when SF caches all client composition layers
const bool usedGpuComposition = mHadClientComposition || mReusedClientComposition;
modulateVsync(&VsyncModulator::onDisplayRefresh, usedGpuComposition);
mLayersWithQueuedFrames.clear();
if (mTracingEnabled && mTracePostComposition) {
// This may block if SurfaceTracing is running in sync mode.
if (mVisibleRegionsDirty) {
mTracing.notify("visibleRegionsDirty");
} else if (mTracing.flagIsSet(SurfaceTracing::TRACE_BUFFERS)) {
mTracing.notify("bufferLatched");
}
}
mVisibleRegionsDirty = false;
if (mCompositionEngine->needsAnotherUpdate()) {
signalLayerUpdate();
}
}
bool SurfaceFlinger::handleMessageInvalidate() {
ATRACE_CALL();
bool refreshNeeded = handlePageFlip();
if (mVisibleRegionsDirty) {
computeLayerBounds();
}
for (auto& layer : mLayersPendingRefresh) {
Region visibleReg;
visibleReg.set(layer->getScreenBounds());
invalidateLayerStack(layer, visibleReg);
}
mLayersPendingRefresh.clear();
return refreshNeeded;
}
void SurfaceFlinger::updateCompositorTiming(const DisplayStatInfo& stats, nsecs_t compositeTime,
std::shared_ptr<FenceTime>& presentFenceTime) {
// Update queue of past composite+present times and determine the
// most recently known composite to present latency.
getBE().mCompositePresentTimes.push({compositeTime, presentFenceTime});
nsecs_t compositeToPresentLatency = -1;
while (!getBE().mCompositePresentTimes.empty()) {
SurfaceFlingerBE::CompositePresentTime& cpt = getBE().mCompositePresentTimes.front();
// Cached values should have been updated before calling this method,
// which helps avoid duplicate syscalls.
nsecs_t displayTime = cpt.display->getCachedSignalTime();
if (displayTime == Fence::SIGNAL_TIME_PENDING) {
break;
}
compositeToPresentLatency = displayTime - cpt.composite;
getBE().mCompositePresentTimes.pop();
}
// Don't let mCompositePresentTimes grow unbounded, just in case.
while (getBE().mCompositePresentTimes.size() > 16) {
getBE().mCompositePresentTimes.pop();
}
setCompositorTimingSnapped(stats, compositeToPresentLatency);
}
void SurfaceFlinger::setCompositorTimingSnapped(const DisplayStatInfo& stats,
nsecs_t compositeToPresentLatency) {
// Integer division and modulo round toward 0 not -inf, so we need to
// treat negative and positive offsets differently.
nsecs_t idealLatency = (mVsyncConfiguration->getCurrentConfigs().late.sfOffset > 0)
? (stats.vsyncPeriod -
(mVsyncConfiguration->getCurrentConfigs().late.sfOffset % stats.vsyncPeriod))
: ((-mVsyncConfiguration->getCurrentConfigs().late.sfOffset) % stats.vsyncPeriod);
// Just in case mVsyncConfiguration->getCurrentConfigs().late.sf == -vsyncInterval.
if (idealLatency <= 0) {
idealLatency = stats.vsyncPeriod;
}
// Snap the latency to a value that removes scheduling jitter from the
// composition and present times, which often have >1ms of jitter.
// Reducing jitter is important if an app attempts to extrapolate
// something (such as user input) to an accurate diasplay time.
// Snapping also allows an app to precisely calculate
// mVsyncConfiguration->getCurrentConfigs().late.sf with (presentLatency % interval).
nsecs_t bias = stats.vsyncPeriod / 2;
int64_t extraVsyncs = (compositeToPresentLatency - idealLatency + bias) / stats.vsyncPeriod;
nsecs_t snappedCompositeToPresentLatency =
(extraVsyncs > 0) ? idealLatency + (extraVsyncs * stats.vsyncPeriod) : idealLatency;
std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
getBE().mCompositorTiming.deadline = stats.vsyncTime - idealLatency;
getBE().mCompositorTiming.interval = stats.vsyncPeriod;
getBE().mCompositorTiming.presentLatency = snappedCompositeToPresentLatency;
}
void SurfaceFlinger::postComposition() {
ATRACE_CALL();
ALOGV("postComposition");
const auto* display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked()).get();
getBE().mGlCompositionDoneTimeline.updateSignalTimes();
std::shared_ptr<FenceTime> glCompositionDoneFenceTime;
if (display && display->getCompositionDisplay()->getState().usesClientComposition) {
glCompositionDoneFenceTime =
std::make_shared<FenceTime>(display->getCompositionDisplay()
->getRenderSurface()
->getClientTargetAcquireFence());
getBE().mGlCompositionDoneTimeline.push(glCompositionDoneFenceTime);
} else {
glCompositionDoneFenceTime = FenceTime::NO_FENCE;
}
getBE().mDisplayTimeline.updateSignalTimes();
mPreviousPresentFences[1] = mPreviousPresentFences[0];
mPreviousPresentFences[0].fence =
display ? getHwComposer().getPresentFence(display->getPhysicalId()) : Fence::NO_FENCE;
mPreviousPresentFences[0].fenceTime =
std::make_shared<FenceTime>(mPreviousPresentFences[0].fence);
getBE().mDisplayTimeline.push(mPreviousPresentFences[0].fenceTime);
// Set presentation information before calling Layer::releasePendingBuffer, such that jank
// information from previous' frame classification is already available when sending jank info
// to clients, so they get jank classification as early as possible.
mFrameTimeline->setSfPresent(systemTime(), mPreviousPresentFences[0].fenceTime,
glCompositionDoneFenceTime != FenceTime::NO_FENCE);
nsecs_t dequeueReadyTime = systemTime();
for (const auto& layer : mLayersWithQueuedFrames) {
layer->releasePendingBuffer(dequeueReadyTime);
}
const DisplayStatInfo stats = mScheduler->getDisplayStatInfo(systemTime());
// We use the CompositionEngine::getLastFrameRefreshTimestamp() which might
// be sampled a little later than when we started doing work for this frame,
// but that should be okay since updateCompositorTiming has snapping logic.
updateCompositorTiming(stats, mCompositionEngine->getLastFrameRefreshTimestamp(),
mPreviousPresentFences[0].fenceTime);
CompositorTiming compositorTiming;
{
std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
compositorTiming = getBE().mCompositorTiming;
}
mDrawingState.traverse([&](Layer* layer) {
const bool frameLatched =
layer->onPostComposition(display, glCompositionDoneFenceTime,
mPreviousPresentFences[0].fenceTime, compositorTiming);
if (frameLatched) {
recordBufferingStats(layer->getName(), layer->getOccupancyHistory(false));
}
});
std::vector<std::pair<std::shared_ptr<compositionengine::Display>, sp<HdrLayerInfoReporter>>>
hdrInfoListeners;
{
Mutex::Autolock lock(mStateLock);
if (mFpsReporter) {
mFpsReporter->dispatchLayerFps();
}
hdrInfoListeners.reserve(mHdrLayerInfoListeners.size());
for (auto& [key, value] : mHdrLayerInfoListeners) {
if (value && value->hasListeners()) {
auto listenersDisplay = getDisplayById(key);
if (listenersDisplay) {
hdrInfoListeners.emplace_back(listenersDisplay->getCompositionDisplay(), value);
}
}
}
}
for (auto& [compositionDisplay, listener] : hdrInfoListeners) {
HdrLayerInfoReporter::HdrLayerInfo info;
int32_t maxArea = 0;
mDrawingState.traverse([&, compositionDisplay = compositionDisplay](Layer* layer) {
if (layer->isVisible() &&
compositionDisplay->belongsInOutput(layer->getCompositionEngineLayerFE())) {
bool isHdr = false;
switch (layer->getDataSpace()) {
case ui::Dataspace::BT2020:
case ui::Dataspace::BT2020_HLG:
case ui::Dataspace::BT2020_PQ:
case ui::Dataspace::BT2020_ITU:
case ui::Dataspace::BT2020_ITU_HLG:
case ui::Dataspace::BT2020_ITU_PQ:
isHdr = true;
break;
default:
isHdr = false;
break;
}
if (isHdr) {
info.numberOfHdrLayers++;
auto bufferRect = layer->getCompositionState()->geomBufferSize;
int32_t area = bufferRect.width() * bufferRect.height();
if (area > maxArea) {
maxArea = area;
info.maxW = bufferRect.width();
info.maxH = bufferRect.height();
}
}
}
});
listener->dispatchHdrLayerInfo(info);
}
mTransactionCallbackInvoker.addPresentFence(mPreviousPresentFences[0].fence);
mTransactionCallbackInvoker.sendCallbacks();
if (display && display->isPrimary() && display->getPowerMode() == hal::PowerMode::ON &&
mPreviousPresentFences[0].fenceTime->isValid()) {
mScheduler->addPresentFence(mPreviousPresentFences[0].fenceTime);
}
const bool isDisplayConnected =
display && getHwComposer().isConnected(display->getPhysicalId());
if (!hasSyncFramework) {
if (isDisplayConnected && display->isPoweredOn()) {
mScheduler->enableHardwareVsync();
}
}
if (mAnimCompositionPending) {
mAnimCompositionPending = false;
if (mPreviousPresentFences[0].fenceTime->isValid()) {
mAnimFrameTracker.setActualPresentFence(mPreviousPresentFences[0].fenceTime);
} else if (isDisplayConnected) {
// The HWC doesn't support present fences, so use the refresh
// timestamp instead.
const nsecs_t presentTime = display->getRefreshTimestamp();
mAnimFrameTracker.setActualPresentTime(presentTime);
}
mAnimFrameTracker.advanceFrame();
}
mTimeStats->incrementTotalFrames();
if (mHadClientComposition) {
mTimeStats->incrementClientCompositionFrames();
}
if (mReusedClientComposition) {
mTimeStats->incrementClientCompositionReusedFrames();
}
mTimeStats->setPresentFenceGlobal(mPreviousPresentFences[0].fenceTime);
const size_t sfConnections = mScheduler->getEventThreadConnectionCount(mSfConnectionHandle);
const size_t appConnections = mScheduler->getEventThreadConnectionCount(mAppConnectionHandle);
mTimeStats->recordDisplayEventConnectionCount(sfConnections + appConnections);
if (mLastJankDuration > 0) {
ATRACE_NAME("Jank detected");
const int32_t jankyDurationMillis = mLastJankDuration / (1000 * 1000);
android::util::stats_write(android::util::DISPLAY_JANK_REPORTED, jankyDurationMillis,
mMissedFrameJankCount);
mLastJankDuration = -1;
}
if (isDisplayConnected && !display->isPoweredOn()) {
return;
}
nsecs_t currentTime = systemTime();
if (mHasPoweredOff) {
mHasPoweredOff = false;
} else {
nsecs_t elapsedTime = currentTime - getBE().mLastSwapTime;
size_t numPeriods = static_cast<size_t>(elapsedTime / stats.vsyncPeriod);
if (numPeriods < SurfaceFlingerBE::NUM_BUCKETS - 1) {
getBE().mFrameBuckets[numPeriods] += elapsedTime;
} else {
getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] += elapsedTime;
}
getBE().mTotalTime += elapsedTime;
}
getBE().mLastSwapTime = currentTime;
// Cleanup any outstanding resources due to rendering a prior frame.
getRenderEngine().cleanupPostRender();
{
std::lock_guard lock(mTexturePoolMutex);
if (mTexturePool.size() < mTexturePoolSize) {
const size_t refillCount = mTexturePoolSize - mTexturePool.size();
const size_t offset = mTexturePool.size();
mTexturePool.resize(mTexturePoolSize);
getRenderEngine().genTextures(refillCount, mTexturePool.data() + offset);
ATRACE_INT("TexturePoolSize", mTexturePool.size());
} else if (mTexturePool.size() > mTexturePoolSize) {
const size_t deleteCount = mTexturePool.size() - mTexturePoolSize;
const size_t offset = mTexturePoolSize;
getRenderEngine().deleteTextures(deleteCount, mTexturePool.data() + offset);
mTexturePool.resize(mTexturePoolSize);
ATRACE_INT("TexturePoolSize", mTexturePool.size());
}
}
if (mLumaSampling && mRegionSamplingThread) {
mRegionSamplingThread->notifyNewContent();
}
// Even though ATRACE_INT64 already checks if tracing is enabled, it doesn't prevent the
// side-effect of getTotalSize(), so we check that again here
if (ATRACE_ENABLED()) {
// getTotalSize returns the total number of buffers that were allocated by SurfaceFlinger
ATRACE_INT64("Total Buffer Size", GraphicBufferAllocator::get().getTotalSize());
}
}
FloatRect SurfaceFlinger::getLayerClipBoundsForDisplay(const DisplayDevice& displayDevice) const {
return displayDevice.getLayerStackSpaceRect().toFloatRect();
}
void SurfaceFlinger::computeLayerBounds() {
for (const auto& pair : ON_MAIN_THREAD(mDisplays)) {
const auto& displayDevice = pair.second;
const auto display = displayDevice->getCompositionDisplay();
for (const auto& layer : mDrawingState.layersSortedByZ) {
// only consider the layers on the given layer stack
if (!display->belongsInOutput(layer->getLayerStack(), layer->getPrimaryDisplayOnly())) {
continue;
}
layer->computeBounds(getLayerClipBoundsForDisplay(*displayDevice), ui::Transform(),
0.f /* shadowRadius */);
}
}
}
void SurfaceFlinger::postFrame() {
const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked());
if (display && getHwComposer().isConnected(display->getPhysicalId())) {
uint32_t flipCount = display->getPageFlipCount();
if (flipCount % LOG_FRAME_STATS_PERIOD == 0) {
logFrameStats();
}
}
}
void SurfaceFlinger::handleTransaction(uint32_t transactionFlags) {
ATRACE_CALL();
// here we keep a copy of the drawing state (that is the state that's
// going to be overwritten by handleTransactionLocked()) outside of
// mStateLock so that the side-effects of the State assignment
// don't happen with mStateLock held (which can cause deadlocks).
State drawingState(mDrawingState);
Mutex::Autolock _l(mStateLock);
mDebugInTransaction = systemTime();
// Here we're guaranteed that some transaction flags are set
// so we can call handleTransactionLocked() unconditionally.
// We call getTransactionFlags(), which will also clear the flags,
// with mStateLock held to guarantee that mCurrentState won't change
// until the transaction is committed.
modulateVsync(&VsyncModulator::onTransactionCommit);
transactionFlags = getTransactionFlags(eTransactionMask);
handleTransactionLocked(transactionFlags);
mDebugInTransaction = 0;
invalidateHwcGeometry();
// here the transaction has been committed
}
void SurfaceFlinger::loadDisplayModes(PhysicalDisplayId displayId, DisplayModes& outModes,
DisplayModePtr& outActiveMode) const {
std::vector<HWComposer::HWCDisplayMode> hwcModes;
std::optional<hal::HWDisplayId> activeModeHwcId;
bool activeModeIsSupported;
int attempt = 0;
constexpr int kMaxAttempts = 3;
do {
hwcModes = getHwComposer().getModes(displayId);
activeModeHwcId = getHwComposer().getActiveMode(displayId);
LOG_ALWAYS_FATAL_IF(!activeModeHwcId, "HWC returned no active mode");
activeModeIsSupported =
std::any_of(hwcModes.begin(), hwcModes.end(),
[activeModeHwcId](const HWComposer::HWCDisplayMode& mode) {
return mode.hwcId == *activeModeHwcId;
});
} while (!activeModeIsSupported && ++attempt < kMaxAttempts);
LOG_ALWAYS_FATAL_IF(!activeModeIsSupported,
"After %d attempts HWC still returns an active mode which is not"
" supported. Active mode ID = %" PRIu64 " . Supported modes = %s",
kMaxAttempts, *activeModeHwcId, base::Join(hwcModes, ", ").c_str());
DisplayModes oldModes;
if (const auto token = getPhysicalDisplayTokenLocked(displayId)) {
oldModes = getDisplayDeviceLocked(token)->getSupportedModes();
}
int largestUsedModeId = -1; // Use int instead of DisplayModeId for signedness
for (const auto& mode : oldModes) {
const auto id = static_cast<int>(mode->getId().value());
if (id > largestUsedModeId) {
largestUsedModeId = id;
}
}
DisplayModes newModes;
int32_t nextModeId = largestUsedModeId + 1;
for (const auto& hwcMode : hwcModes) {
newModes.push_back(DisplayMode::Builder(hwcMode.hwcId)
.setId(DisplayModeId{nextModeId++})
.setWidth(hwcMode.width)
.setHeight(hwcMode.height)
.setVsyncPeriod(hwcMode.vsyncPeriod)
.setDpiX(hwcMode.dpiX)
.setDpiY(hwcMode.dpiY)
.setGroup(hwcMode.configGroup)
.build());
}
const bool modesAreSame =
std::equal(newModes.begin(), newModes.end(), oldModes.begin(), oldModes.end(),
[](DisplayModePtr left, DisplayModePtr right) {
return left->equalsExceptDisplayModeId(right);
});
if (modesAreSame) {
// The supported modes have not changed, keep the old IDs.
outModes = oldModes;
} else {
outModes = newModes;
}
outActiveMode = *std::find_if(outModes.begin(), outModes.end(),
[activeModeHwcId](const DisplayModePtr& mode) {
return mode->getHwcId() == *activeModeHwcId;
});
}
void SurfaceFlinger::processDisplayHotplugEventsLocked() {
for (const auto& event : mPendingHotplugEvents) {
std::optional<DisplayIdentificationInfo> info =
getHwComposer().onHotplug(event.hwcDisplayId, event.connection);
if (!info) {
continue;
}
const auto displayId = info->id;
const auto it = mPhysicalDisplayTokens.find(displayId);
if (event.connection == hal::Connection::CONNECTED) {
DisplayModes supportedModes;
DisplayModePtr activeMode;
loadDisplayModes(displayId, supportedModes, activeMode);
if (it == mPhysicalDisplayTokens.end()) {
ALOGV("Creating display %s", to_string(displayId).c_str());
DisplayDeviceState state;
state.physical = {.id = displayId,
.type = getHwComposer().getDisplayConnectionType(displayId),
.hwcDisplayId = event.hwcDisplayId,
.deviceProductInfo = std::move(info->deviceProductInfo),
.supportedModes = std::move(supportedModes),
.activeMode = activeMode};
state.isSecure = true; // All physical displays are currently considered secure.
state.displayName = std::move(info->name);
sp<IBinder> token = new BBinder();
mCurrentState.displays.add(token, state);
mPhysicalDisplayTokens.emplace(displayId, std::move(token));
if (event.hwcDisplayId == getHwComposer().getInternalHwcDisplayId()) {
initScheduler(state);
}
mInterceptor->saveDisplayCreation(state);
} else {
ALOGV("Recreating display %s", to_string(displayId).c_str());
const auto token = it->second;
auto& state = mCurrentState.displays.editValueFor(token);
state.sequenceId = DisplayDeviceState{}.sequenceId; // Generate new sequenceId
state.physical->supportedModes = std::move(supportedModes);
state.physical->activeMode = activeMode;
if (getHwComposer().updatesDeviceProductInfoOnHotplugReconnect()) {
state.physical->deviceProductInfo = std::move(info->deviceProductInfo);
}
}
} else {
ALOGV("Removing display %s", to_string(displayId).c_str());
const ssize_t index = mCurrentState.displays.indexOfKey(it->second);
if (index >= 0) {
const DisplayDeviceState& state = mCurrentState.displays.valueAt(index);
mInterceptor->saveDisplayDeletion(state.sequenceId);
mCurrentState.displays.removeItemsAt(index);
}
mPhysicalDisplayTokens.erase(it);
}
processDisplayChangesLocked();
}
mPendingHotplugEvents.clear();
}
void SurfaceFlinger::dispatchDisplayHotplugEvent(PhysicalDisplayId displayId, bool connected) {
ALOGI("Dispatching display hotplug event displayId=%s, connected=%d",
to_string(displayId).c_str(), connected);
mScheduler->onHotplugReceived(mAppConnectionHandle, displayId, connected);
mScheduler->onHotplugReceived(mSfConnectionHandle, displayId, connected);
}
sp<DisplayDevice> SurfaceFlinger::setupNewDisplayDeviceInternal(
const wp<IBinder>& displayToken,
std::shared_ptr<compositionengine::Display> compositionDisplay,
const DisplayDeviceState& state,
const sp<compositionengine::DisplaySurface>& displaySurface,
const sp<IGraphicBufferProducer>& producer) {
DisplayDeviceCreationArgs creationArgs(this, getHwComposer(), displayToken, compositionDisplay);
creationArgs.sequenceId = state.sequenceId;
creationArgs.isSecure = state.isSecure;
creationArgs.displaySurface = displaySurface;
creationArgs.hasWideColorGamut = false;
creationArgs.supportedPerFrameMetadata = 0;
if (const auto& physical = state.physical) {
creationArgs.connectionType = physical->type;
creationArgs.supportedModes = physical->supportedModes;
}
if (const auto id = PhysicalDisplayId::tryCast(compositionDisplay->getId())) {
creationArgs.isPrimary = id == getInternalDisplayIdLocked();
if (useColorManagement) {
std::vector<ColorMode> modes = getHwComposer().getColorModes(*id);
for (ColorMode colorMode : modes) {
if (isWideColorMode(colorMode)) {
creationArgs.hasWideColorGamut = true;
}
std::vector<RenderIntent> renderIntents =
getHwComposer().getRenderIntents(*id, colorMode);
creationArgs.hwcColorModes.emplace(colorMode, renderIntents);
}
}
}
if (const auto id = HalDisplayId::tryCast(compositionDisplay->getId())) {
getHwComposer().getHdrCapabilities(*id, &creationArgs.hdrCapabilities);
creationArgs.supportedPerFrameMetadata = getHwComposer().getSupportedPerFrameMetadata(*id);
}
auto nativeWindowSurface = getFactory().createNativeWindowSurface(producer);
auto nativeWindow = nativeWindowSurface->getNativeWindow();
creationArgs.nativeWindow = nativeWindow;
// Make sure that composition can never be stalled by a virtual display
// consumer that isn't processing buffers fast enough. We have to do this
// here, in case the display is composed entirely by HWC.
if (state.isVirtual()) {
nativeWindow->setSwapInterval(nativeWindow.get(), 0);
}
creationArgs.physicalOrientation =
creationArgs.isPrimary ? internalDisplayOrientation : ui::ROTATION_0;
// virtual displays are always considered enabled
creationArgs.initialPowerMode = state.isVirtual() ? hal::PowerMode::ON : hal::PowerMode::OFF;
sp<DisplayDevice> display = getFactory().createDisplayDevice(creationArgs);
if (maxFrameBufferAcquiredBuffers >= 3) {
nativeWindowSurface->preallocateBuffers();
}
ColorMode defaultColorMode = ColorMode::NATIVE;
Dataspace defaultDataSpace = Dataspace::UNKNOWN;
if (display->hasWideColorGamut()) {
defaultColorMode = ColorMode::SRGB;
defaultDataSpace = Dataspace::V0_SRGB;
}
display->getCompositionDisplay()->setColorProfile(
compositionengine::Output::ColorProfile{defaultColorMode, defaultDataSpace,
RenderIntent::COLORIMETRIC,
Dataspace::UNKNOWN});
if (!state.isVirtual()) {
display->setActiveMode(state.physical->activeMode->getId());
display->setDeviceProductInfo(state.physical->deviceProductInfo);
}
display->setLayerStack(state.layerStack);
display->setProjection(state.orientation, state.layerStackSpaceRect,
state.orientedDisplaySpaceRect);
display->setDisplayName(state.displayName);
return display;
}
void SurfaceFlinger::processDisplayAdded(const wp<IBinder>& displayToken,
const DisplayDeviceState& state) {
ui::Size resolution(0, 0);
ui::PixelFormat pixelFormat = static_cast<ui::PixelFormat>(PIXEL_FORMAT_UNKNOWN);
if (state.physical) {
resolution = state.physical->activeMode->getSize();
pixelFormat = static_cast<ui::PixelFormat>(PIXEL_FORMAT_RGBA_8888);
} else if (state.surface != nullptr) {
int status = state.surface->query(NATIVE_WINDOW_WIDTH, &resolution.width);
ALOGE_IF(status != NO_ERROR, "Unable to query width (%d)", status);
status = state.surface->query(NATIVE_WINDOW_HEIGHT, &resolution.height);
ALOGE_IF(status != NO_ERROR, "Unable to query height (%d)", status);
int intPixelFormat;
status = state.surface->query(NATIVE_WINDOW_FORMAT, &intPixelFormat);
ALOGE_IF(status != NO_ERROR, "Unable to query format (%d)", status);
pixelFormat = static_cast<ui::PixelFormat>(intPixelFormat);
} else {
// Virtual displays without a surface are dormant:
// they have external state (layer stack, projection,
// etc.) but no internal state (i.e. a DisplayDevice).
return;
}
compositionengine::DisplayCreationArgsBuilder builder;
if (const auto& physical = state.physical) {
builder.setPhysical({physical->id, physical->type});
}
builder.setPixels(resolution);
builder.setPixelFormat(pixelFormat);
builder.setIsSecure(state.isSecure);
builder.setLayerStackId(state.layerStack);
builder.setPowerAdvisor(&mPowerAdvisor);
builder.setUseHwcVirtualDisplays(mUseHwcVirtualDisplays);
builder.setGpuVirtualDisplayIdGenerator(mGpuVirtualDisplayIdGenerator);
builder.setName(state.displayName);
const auto compositionDisplay = getCompositionEngine().createDisplay(builder.build());
sp<compositionengine::DisplaySurface> displaySurface;
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferProducer> bqProducer;
sp<IGraphicBufferConsumer> bqConsumer;
getFactory().createBufferQueue(&bqProducer, &bqConsumer, /*consumerIsSurfaceFlinger =*/false);
DisplayId displayId = compositionDisplay->getId();
if (state.isVirtual()) {
const auto virtualId = VirtualDisplayId::tryCast(displayId);
LOG_FATAL_IF(!virtualId);
sp<VirtualDisplaySurface> vds =
new VirtualDisplaySurface(getHwComposer(), *virtualId, state.surface, bqProducer,
bqConsumer, state.displayName);
displaySurface = vds;
producer = vds;
} else {
ALOGE_IF(state.surface != nullptr,
"adding a supported display, but rendering "
"surface is provided (%p), ignoring it",
state.surface.get());
const auto physicalId = PhysicalDisplayId::tryCast(displayId);
LOG_FATAL_IF(!physicalId);
displaySurface = new FramebufferSurface(getHwComposer(), *physicalId, bqConsumer,
state.physical->activeMode->getSize(),
ui::Size(maxGraphicsWidth, maxGraphicsHeight));
producer = bqProducer;
}
LOG_FATAL_IF(!displaySurface);
const auto display = setupNewDisplayDeviceInternal(displayToken, compositionDisplay, state,
displaySurface, producer);
mDisplays.emplace(displayToken, display);
if (!state.isVirtual()) {
dispatchDisplayHotplugEvent(display->getPhysicalId(), true);
}
if (display->isPrimary()) {
mScheduler->onPrimaryDisplayAreaChanged(display->getWidth() * display->getHeight());
getRenderEngine().onPrimaryDisplaySizeChanged(display->getSize());
}
}
void SurfaceFlinger::processDisplayRemoved(const wp<IBinder>& displayToken) {
auto display = getDisplayDeviceLocked(displayToken);
if (display) {
display->disconnect();
if (!display->isVirtual()) {
dispatchDisplayHotplugEvent(display->getPhysicalId(), false);
}
}
mDisplays.erase(displayToken);
if (display && display->isVirtual()) {
static_cast<void>(schedule([display = std::move(display)] {
// Destroy the display without holding the mStateLock.
// This is a temporary solution until we can manage transaction queues without
// holding the mStateLock.
// With blast, the IGBP that is passed to the VirtualDisplaySurface is owned by the
// client. When the IGBP is disconnected, its buffer cache in SF will be cleared
// via SurfaceComposerClient::doUncacheBufferTransaction. This call from the client
// ends up running on the main thread causing a deadlock since setTransactionstate
// will try to acquire the mStateLock. Instead we extend the lifetime of
// DisplayDevice and destroy it in the main thread without holding the mStateLock.
// The display will be disconnected and removed from the mDisplays list so it will
// not be accessible.
}));
}
}
void SurfaceFlinger::processDisplayChanged(const wp<IBinder>& displayToken,
const DisplayDeviceState& currentState,
const DisplayDeviceState& drawingState) {
const sp<IBinder> currentBinder = IInterface::asBinder(currentState.surface);
const sp<IBinder> drawingBinder = IInterface::asBinder(drawingState.surface);
if (currentBinder != drawingBinder || currentState.sequenceId != drawingState.sequenceId) {
// changing the surface is like destroying and recreating the DisplayDevice
getRenderEngine().cleanFramebufferCache();
if (const auto display = getDisplayDeviceLocked(displayToken)) {
display->disconnect();
}
mDisplays.erase(displayToken);
if (const auto& physical = currentState.physical) {
getHwComposer().allocatePhysicalDisplay(physical->hwcDisplayId, physical->id);
}
processDisplayAdded(displayToken, currentState);
if (currentState.physical) {
const auto display = getDisplayDeviceLocked(displayToken);
setPowerModeInternal(display, hal::PowerMode::ON);
// TODO(b/175678251) Call a listener instead.
if (currentState.physical->hwcDisplayId == getHwComposer().getInternalHwcDisplayId()) {
mRefreshRateConfigs->updateDisplayModes(currentState.physical->supportedModes,
currentState.physical->activeMode->getId());
mVsyncConfiguration->reset();
updatePhaseConfiguration(mRefreshRateConfigs->getCurrentRefreshRate().getFps());
if (mRefreshRateOverlay) {
mRefreshRateOverlay->reset();
}
}
}
return;
}
if (const auto display = getDisplayDeviceLocked(displayToken)) {
if (currentState.layerStack != drawingState.layerStack) {
display->setLayerStack(currentState.layerStack);
}
if ((currentState.orientation != drawingState.orientation) ||
(currentState.layerStackSpaceRect != drawingState.layerStackSpaceRect) ||
(currentState.orientedDisplaySpaceRect != drawingState.orientedDisplaySpaceRect)) {
display->setProjection(currentState.orientation, currentState.layerStackSpaceRect,
currentState.orientedDisplaySpaceRect);
}
if (currentState.width != drawingState.width ||
currentState.height != drawingState.height) {
display->setDisplaySize(currentState.width, currentState.height);
if (display->isPrimary()) {
mScheduler->onPrimaryDisplayAreaChanged(currentState.width * currentState.height);
}
if (mRefreshRateOverlay) {
mRefreshRateOverlay->setViewport(display->getSize());
}
}
}
}
void SurfaceFlinger::processDisplayChangesLocked() {
// here we take advantage of Vector's copy-on-write semantics to
// improve performance by skipping the transaction entirely when
// know that the lists are identical
const KeyedVector<wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
const KeyedVector<wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
if (!curr.isIdenticalTo(draw)) {
mVisibleRegionsDirty = true;
// find the displays that were removed
// (ie: in drawing state but not in current state)
// also handle displays that changed
// (ie: displays that are in both lists)
for (size_t i = 0; i < draw.size(); i++) {
const wp<IBinder>& displayToken = draw.keyAt(i);
const ssize_t j = curr.indexOfKey(displayToken);
if (j < 0) {
// in drawing state but not in current state
processDisplayRemoved(displayToken);
} else {
// this display is in both lists. see if something changed.
const DisplayDeviceState& currentState = curr[j];
const DisplayDeviceState& drawingState = draw[i];
processDisplayChanged(displayToken, currentState, drawingState);
}
}
// find displays that were added
// (ie: in current state but not in drawing state)
for (size_t i = 0; i < curr.size(); i++) {
const wp<IBinder>& displayToken = curr.keyAt(i);
if (draw.indexOfKey(displayToken) < 0) {
processDisplayAdded(displayToken, curr[i]);
}
}
}
mDrawingState.displays = mCurrentState.displays;
}
void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags) {
const nsecs_t expectedPresentTime = mExpectedPresentTime.load();
// Notify all layers of available frames
mCurrentState.traverse([expectedPresentTime](Layer* layer) {
layer->notifyAvailableFrames(expectedPresentTime);
});
/*
* Traversal of the children
* (perform the transaction for each of them if needed)
*/
if ((transactionFlags & eTraversalNeeded) || mForceTraversal) {
mForceTraversal = false;
mCurrentState.traverse([&](Layer* layer) {
uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
if (!trFlags) return;
const uint32_t flags = layer->doTransaction(0);
if (flags & Layer::eVisibleRegion)
mVisibleRegionsDirty = true;
if (flags & Layer::eInputInfoChanged) {
mInputInfoChanged = true;
}
});
}
/*
* Perform display own transactions if needed
*/
if (transactionFlags & eDisplayTransactionNeeded) {
processDisplayChangesLocked();
processDisplayHotplugEventsLocked();
}
if (transactionFlags & (eTransformHintUpdateNeeded | eDisplayTransactionNeeded)) {
// The transform hint might have changed for some layers
// (either because a display has changed, or because a layer
// as changed).
//
// Walk through all the layers in currentLayers,
// and update their transform hint.
//
// If a layer is visible only on a single display, then that
// display is used to calculate the hint, otherwise we use the
// default display.
//
// NOTE: we do this here, rather than when presenting the display so that
// the hint is set before we acquire a buffer from the surface texture.
//
// NOTE: layer transactions have taken place already, so we use their
// drawing state. However, SurfaceFlinger's own transaction has not
// happened yet, so we must use the current state layer list
// (soon to become the drawing state list).
//
sp<const DisplayDevice> hintDisplay;
uint32_t currentlayerStack = 0;
bool first = true;
mCurrentState.traverse([&](Layer* layer) REQUIRES(mStateLock) {
// NOTE: we rely on the fact that layers are sorted by
// layerStack first (so we don't have to traverse the list
// of displays for every layer).
uint32_t layerStack = layer->getLayerStack();
if (first || currentlayerStack != layerStack) {
currentlayerStack = layerStack;
// figure out if this layerstack is mirrored
// (more than one display) if so, pick the default display,
// if not, pick the only display it's on.
hintDisplay = nullptr;
for (const auto& [token, display] : mDisplays) {
if (display->getCompositionDisplay()
->belongsInOutput(layer->getLayerStack(),
layer->getPrimaryDisplayOnly())) {
if (hintDisplay) {
hintDisplay = nullptr;
break;
} else {
hintDisplay = display;
}
}
}
}
if (!hintDisplay) {
// NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to
// redraw after transform hint changes. See bug 8508397.
// could be null when this layer is using a layerStack
// that is not visible on any display. Also can occur at
// screen off/on times.
hintDisplay = getDefaultDisplayDeviceLocked();
}
// could be null if there is no display available at all to get
// the transform hint from.
if (hintDisplay) {
layer->updateTransformHint(hintDisplay->getTransformHint());
}
first = false;
});
}
/*
* Perform our own transaction if needed
*/
if (mLayersAdded) {
mLayersAdded = false;
// Layers have been added.
mVisibleRegionsDirty = true;
}
// some layers might have been removed, so
// we need to update the regions they're exposing.
if (mLayersRemoved) {
mLayersRemoved = false;
mVisibleRegionsDirty = true;
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (mLayersPendingRemoval.indexOf(layer) >= 0) {
// this layer is not visible anymore
Region visibleReg;
visibleReg.set(layer->getScreenBounds());
invalidateLayerStack(layer, visibleReg);
}
});
}
commitTransaction();
}
void SurfaceFlinger::updateInputFlinger() {
ATRACE_CALL();
if (!mInputFlinger) {
return;
}
if (mVisibleRegionsDirty || mInputInfoChanged) {
mInputInfoChanged = false;
updateInputWindowInfo();
} else if (mInputWindowCommands.syncInputWindows) {
// If the caller requested to sync input windows, but there are no
// changes to input windows, notify immediately.
setInputWindowsFinished();
}
for (const auto& focusRequest : mInputWindowCommands.focusRequests) {
mInputFlinger->setFocusedWindow(focusRequest);
}
mInputWindowCommands.clear();
}
bool enablePerWindowInputRotation() {
static bool value =
android::base::GetBoolProperty("persist.debug.per_window_input_rotation", false);
return value;
}
void SurfaceFlinger::updateInputWindowInfo() {
std::vector<InputWindowInfo> inputInfos;
mDrawingState.traverseInReverseZOrder([&](Layer* layer) {
if (!layer->needsInputInfo()) return;
sp<DisplayDevice> display;
if (enablePerWindowInputRotation()) {
for (const auto& pair : ON_MAIN_THREAD(mDisplays)) {
const auto& displayDevice = pair.second;
if (!displayDevice->getCompositionDisplay()
->belongsInOutput(layer->getLayerStack(),
layer->getPrimaryDisplayOnly())) {
continue;
}
display = displayDevice;
}
}
// When calculating the screen bounds we ignore the transparent region since it may
// result in an unwanted offset.
inputInfos.push_back(layer->fillInputInfo(display));
});
mInputFlinger->setInputWindows(inputInfos,
mInputWindowCommands.syncInputWindows ? mSetInputWindowsListener
: nullptr);
}
void SurfaceFlinger::updateCursorAsync() {
compositionengine::CompositionRefreshArgs refreshArgs;
for (const auto& [_, display] : ON_MAIN_THREAD(mDisplays)) {
if (HalDisplayId::tryCast(display->getId())) {
refreshArgs.outputs.push_back(display->getCompositionDisplay());
}
}
mCompositionEngine->updateCursorAsync(refreshArgs);
}
void SurfaceFlinger::changeRefreshRate(const RefreshRate& refreshRate, Scheduler::ModeEvent event) {
// If this is called from the main thread mStateLock must be locked before
// Currently the only way to call this function from the main thread is from
// Scheduler::chooseRefreshRateForContent
ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
changeRefreshRateLocked(refreshRate, event);
}
void SurfaceFlinger::triggerOnFrameRateOverridesChanged() {
PhysicalDisplayId displayId = [&]() {
ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
return getDefaultDisplayDeviceLocked()->getPhysicalId();
}();
mScheduler->onFrameRateOverridesChanged(mAppConnectionHandle, displayId);
}
void SurfaceFlinger::initScheduler(const DisplayDeviceState& displayState) {
if (mScheduler) {
// In practice it's not allowed to hotplug in/out the primary display once it's been
// connected during startup, but some tests do it, so just warn and return.
ALOGW("Can't re-init scheduler");
return;
}
const auto displayId = displayState.physical->id;
mRefreshRateConfigs = std::make_unique<
scheduler::RefreshRateConfigs>(displayState.physical->supportedModes,
displayState.physical->activeMode->getId(),
android::sysprop::enable_frame_rate_override(false));
const auto currRefreshRate = displayState.physical->activeMode->getFps();
mRefreshRateStats = std::make_unique<scheduler::RefreshRateStats>(*mTimeStats, currRefreshRate,
hal::PowerMode::OFF);
mVsyncConfiguration = getFactory().createVsyncConfiguration(currRefreshRate);
mVsyncModulator.emplace(mVsyncConfiguration->getCurrentConfigs());
// start the EventThread
mScheduler = getFactory().createScheduler(*mRefreshRateConfigs, *this);
const auto configs = mVsyncConfiguration->getCurrentConfigs();
const nsecs_t vsyncPeriod = currRefreshRate.getPeriodNsecs();
mAppConnectionHandle =
mScheduler->createConnection("app", mFrameTimeline->getTokenManager(),
/*workDuration=*/configs.late.appWorkDuration,
/*readyDuration=*/configs.late.sfWorkDuration,
impl::EventThread::InterceptVSyncsCallback());
mSfConnectionHandle =
mScheduler->createConnection("appSf", mFrameTimeline->getTokenManager(),
/*workDuration=*/std::chrono::nanoseconds(vsyncPeriod),
/*readyDuration=*/configs.late.sfWorkDuration,
[this](nsecs_t timestamp) {
mInterceptor->saveVSyncEvent(timestamp);
});
mEventQueue->initVsync(mScheduler->getVsyncDispatch(), *mFrameTimeline->getTokenManager(),
configs.late.sfWorkDuration);
mRegionSamplingThread =
new RegionSamplingThread(*this, *mScheduler,
RegionSamplingThread::EnvironmentTimingTunables());
mFpsReporter = new FpsReporter(*mFrameTimeline, *this);
// Dispatch a mode change request for the primary display on scheduler
// initialization, so that the EventThreads always contain a reference to a
// prior configuration.
//
// This is a bit hacky, but this avoids a back-pointer into the main SF
// classes from EventThread, and there should be no run-time binder cost
// anyway since there are no connected apps at this point.
mScheduler->onPrimaryDisplayModeChanged(mAppConnectionHandle, displayId,
displayState.physical->activeMode->getId(),
vsyncPeriod);
static auto ignorePresentFences =
base::GetBoolProperty("debug.sf.vsync_reactor_ignore_present_fences"s, false);
mScheduler->setIgnorePresentFences(
ignorePresentFences ||
getHwComposer().hasCapability(hal::Capability::PRESENT_FENCE_IS_NOT_RELIABLE));
}
void SurfaceFlinger::updatePhaseConfiguration(const Fps& refreshRate) {
mVsyncConfiguration->setRefreshRateFps(refreshRate);
setVsyncConfig(mVsyncModulator->setVsyncConfigSet(mVsyncConfiguration->getCurrentConfigs()),
refreshRate.getPeriodNsecs());
}
void SurfaceFlinger::setVsyncConfig(const VsyncModulator::VsyncConfig& config,
nsecs_t vsyncPeriod) {
mScheduler->setDuration(mAppConnectionHandle,
/*workDuration=*/config.appWorkDuration,
/*readyDuration=*/config.sfWorkDuration);
mScheduler->setDuration(mSfConnectionHandle,
/*workDuration=*/std::chrono::nanoseconds(vsyncPeriod),
/*readyDuration=*/config.sfWorkDuration);
mEventQueue->setDuration(config.sfWorkDuration);
}
void SurfaceFlinger::commitTransaction() {
commitTransactionLocked();
signalSynchronousTransactions();
mAnimTransactionPending = false;
}
void SurfaceFlinger::commitTransactionLocked() {
if (!mLayersPendingRemoval.isEmpty()) {
// Notify removed layers now that they can't be drawn from
for (const auto& l : mLayersPendingRemoval) {
recordBufferingStats(l->getName(), l->getOccupancyHistory(true));
// Ensure any buffers set to display on any children are released.
if (l->isRemovedFromCurrentState()) {
l->latchAndReleaseBuffer();
}
// If the layer has been removed and has no parent, then it will not be reachable
// when traversing layers on screen. Add the layer to the offscreenLayers set to
// ensure we can copy its current to drawing state.
if (!l->getParent()) {
mOffscreenLayers.emplace(l.get());
}
}
mLayersPendingRemoval.clear();
}
// If this transaction is part of a window animation then the next frame
// we composite should be considered an animation as well.
mAnimCompositionPending = mAnimTransactionPending;
mDrawingState = mCurrentState;
// clear the "changed" flags in current state
mCurrentState.colorMatrixChanged = false;
for (const auto& rootLayer : mDrawingState.layersSortedByZ) {
rootLayer->commitChildList();
}
// TODO(b/163019109): See if this traversal is needed at all...
if (!mOffscreenLayers.empty()) {
mDrawingState.traverse([&](Layer* layer) {
// If the layer can be reached when traversing mDrawingState, then the layer is no
// longer offscreen. Remove the layer from the offscreenLayer set.
if (mOffscreenLayers.count(layer)) {
mOffscreenLayers.erase(layer);
}
});
}
commitOffscreenLayers();
mDrawingState.traverse([&](Layer* layer) { layer->updateMirrorInfo(); });
}
void SurfaceFlinger::commitOffscreenLayers() {
for (Layer* offscreenLayer : mOffscreenLayers) {
offscreenLayer->traverse(LayerVector::StateSet::Drawing, [](Layer* layer) {
uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
if (!trFlags) return;
layer->doTransaction(0);
layer->commitChildList();
});
}
}
void SurfaceFlinger::invalidateLayerStack(const sp<const Layer>& layer, const Region& dirty) {
for (const auto& [token, displayDevice] : ON_MAIN_THREAD(mDisplays)) {
auto display = displayDevice->getCompositionDisplay();
if (display->belongsInOutput(layer->getLayerStack(), layer->getPrimaryDisplayOnly())) {
display->editState().dirtyRegion.orSelf(dirty);
}
}
}
bool SurfaceFlinger::handlePageFlip() {
ATRACE_CALL();
ALOGV("handlePageFlip");
nsecs_t latchTime = systemTime();
bool visibleRegions = false;
bool frameQueued = false;
bool newDataLatched = false;
const nsecs_t expectedPresentTime = mExpectedPresentTime.load();
// Store the set of layers that need updates. This set must not change as
// buffers are being latched, as this could result in a deadlock.
// Example: Two producers share the same command stream and:
// 1.) Layer 0 is latched
// 2.) Layer 0 gets a new frame
// 2.) Layer 1 gets a new frame
// 3.) Layer 1 is latched.
// Display is now waiting on Layer 1's frame, which is behind layer 0's
// second frame. But layer 0's second frame could be waiting on display.
mDrawingState.traverse([&](Layer* layer) {
if (layer->hasReadyFrame()) {
frameQueued = true;
if (layer->shouldPresentNow(expectedPresentTime)) {
mLayersWithQueuedFrames.emplace(layer);
} else {
ATRACE_NAME("!layer->shouldPresentNow()");
layer->useEmptyDamage();
}
} else {
layer->useEmptyDamage();
}
});
// The client can continue submitting buffers for offscreen layers, but they will not
// be shown on screen. Therefore, we need to latch and release buffers of offscreen
// layers to ensure dequeueBuffer doesn't block indefinitely.
for (Layer* offscreenLayer : mOffscreenLayers) {
offscreenLayer->traverse(LayerVector::StateSet::Drawing,
[&](Layer* l) { l->latchAndReleaseBuffer(); });
}
if (!mLayersWithQueuedFrames.empty()) {
// mStateLock is needed for latchBuffer as LayerRejecter::reject()
// writes to Layer current state. See also b/119481871
Mutex::Autolock lock(mStateLock);
for (const auto& layer : mLayersWithQueuedFrames) {
if (layer->latchBuffer(visibleRegions, latchTime, expectedPresentTime)) {
mLayersPendingRefresh.push_back(layer);
}
layer->useSurfaceDamage();
if (layer->isBufferLatched()) {
newDataLatched = true;
}
}
}
mVisibleRegionsDirty |= visibleRegions;
// If we will need to wake up at some time in the future to deal with a
// queued frame that shouldn't be displayed during this vsync period, wake
// up during the next vsync period to check again.
if (frameQueued && (mLayersWithQueuedFrames.empty() || !newDataLatched)) {
signalLayerUpdate();
}
// enter boot animation on first buffer latch
if (CC_UNLIKELY(mBootStage == BootStage::BOOTLOADER && newDataLatched)) {
ALOGI("Enter boot animation");
mBootStage = BootStage::BOOTANIMATION;
}
mDrawingState.traverse([&](Layer* layer) { layer->updateCloneBufferInfo(); });
// Only continue with the refresh if there is actually new work to do
return !mLayersWithQueuedFrames.empty() && newDataLatched;
}
void SurfaceFlinger::invalidateHwcGeometry() {
mGeometryInvalid = true;
}
status_t SurfaceFlinger::addClientLayer(const sp<Client>& client, const sp<IBinder>& handle,
const sp<IGraphicBufferProducer>& gbc, const sp<Layer>& lbc,
const sp<IBinder>& parentHandle,
const sp<Layer>& parentLayer, bool addToCurrentState,
uint32_t* outTransformHint) {
// add this layer to the current state list
{
Mutex::Autolock _l(mStateLock);
sp<Layer> parent;
if (parentHandle != nullptr) {
parent = fromHandleLocked(parentHandle).promote();
if (parent == nullptr) {
return NAME_NOT_FOUND;
}
} else {
parent = parentLayer;
}
if (mNumLayers >= ISurfaceComposer::MAX_LAYERS) {
ALOGE("AddClientLayer failed, mNumLayers (%zu) >= MAX_LAYERS (%zu)", mNumLayers.load(),
ISurfaceComposer::MAX_LAYERS);
return NO_MEMORY;
}
mLayersByLocalBinderToken.emplace(handle->localBinder(), lbc);
if (parent == nullptr && addToCurrentState) {
mCurrentState.layersSortedByZ.add(lbc);
} else if (parent == nullptr) {
lbc->onRemovedFromCurrentState();
} else if (parent->isRemovedFromCurrentState()) {
parent->addChild(lbc);
lbc->onRemovedFromCurrentState();
} else {
parent->addChild(lbc);
}
if (gbc != nullptr) {
mGraphicBufferProducerList.insert(IInterface::asBinder(gbc).get());
LOG_ALWAYS_FATAL_IF(mGraphicBufferProducerList.size() >
mMaxGraphicBufferProducerListSize,
"Suspected IGBP leak: %zu IGBPs (%zu max), %zu Layers",
mGraphicBufferProducerList.size(),
mMaxGraphicBufferProducerListSize, mNumLayers.load());
if (mGraphicBufferProducerList.size() > mGraphicBufferProducerListSizeLogThreshold) {
ALOGW("Suspected IGBP leak: %zu IGBPs (%zu max), %zu Layers",
mGraphicBufferProducerList.size(), mMaxGraphicBufferProducerListSize,
mNumLayers.load());
}
}
if (const auto display = getDefaultDisplayDeviceLocked()) {
lbc->updateTransformHint(display->getTransformHint());
}
if (outTransformHint) {
*outTransformHint = lbc->getTransformHint();
}
mLayersAdded = true;
}
// attach this layer to the client
client->attachLayer(handle, lbc);
return NO_ERROR;
}
void SurfaceFlinger::removeGraphicBufferProducerAsync(const wp<IBinder>& binder) {
static_cast<void>(schedule([=] {
Mutex::Autolock lock(mStateLock);
mGraphicBufferProducerList.erase(binder);
}));
}
uint32_t SurfaceFlinger::peekTransactionFlags() {
return mTransactionFlags;
}
uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags) {
return mTransactionFlags.fetch_and(~flags) & flags;
}
uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags) {
return setTransactionFlags(flags, TransactionSchedule::Late);
}
uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags, TransactionSchedule schedule) {
uint32_t old = mTransactionFlags.fetch_or(flags);
modulateVsync(&VsyncModulator::setTransactionSchedule, schedule);
if ((old & flags) == 0) signalTransaction();
return old;
}
void SurfaceFlinger::setTraversalNeeded() {
mForceTraversal = true;
}
void SurfaceFlinger::flushTransactionQueues() {
// to prevent onHandleDestroyed from being called while the lock is held,
// we must keep a copy of the transactions (specifically the composer
// states) around outside the scope of the lock
std::vector<const TransactionState> transactions;
// Layer handles that have transactions with buffers that are ready to be applied.
std::unordered_set<sp<IBinder>, ISurfaceComposer::SpHash<IBinder>> bufferLayersReadyToPresent;
{
Mutex::Autolock _l(mStateLock);
{
Mutex::Autolock _l(mQueueLock);
// Collect transactions from pending transaction queue.
auto it = mPendingTransactionQueues.begin();
while (it != mPendingTransactionQueues.end()) {
auto& [applyToken, transactionQueue] = *it;
while (!transactionQueue.empty()) {
auto& transaction = transactionQueue.front();
if (!transactionIsReadyToBeApplied(transaction.frameTimelineInfo,
transaction.isAutoTimestamp,
transaction.desiredPresentTime,
transaction.originUid, transaction.states,
bufferLayersReadyToPresent)) {
setTransactionFlags(eTransactionFlushNeeded);
break;
}
transaction.traverseStatesWithBuffers([&](const layer_state_t& state) {
bufferLayersReadyToPresent.insert(state.surface);
});
transactions.emplace_back(std::move(transaction));
transactionQueue.pop();
}
if (transactionQueue.empty()) {
it = mPendingTransactionQueues.erase(it);
mTransactionQueueCV.broadcast();
} else {
it = std::next(it, 1);
}
}
// Collect transactions from current transaction queue or queue to pending transactions.
// Case 1: push to pending when transactionIsReadyToBeApplied is false.
// Case 2: push to pending when there exist a pending queue.
// Case 3: others are ready to apply.
while (!mTransactionQueue.empty()) {
auto& transaction = mTransactionQueue.front();
bool pendingTransactions = mPendingTransactionQueues.find(transaction.applyToken) !=
mPendingTransactionQueues.end();
if (pendingTransactions ||
!transactionIsReadyToBeApplied(transaction.frameTimelineInfo,
transaction.isAutoTimestamp,
transaction.desiredPresentTime,
transaction.originUid, transaction.states,
bufferLayersReadyToPresent)) {
mPendingTransactionQueues[transaction.applyToken].push(std::move(transaction));
} else {
transaction.traverseStatesWithBuffers([&](const layer_state_t& state) {
bufferLayersReadyToPresent.insert(state.surface);
});
transactions.emplace_back(std::move(transaction));
}
mTransactionQueue.pop();
ATRACE_INT("TransactionQueue", mTransactionQueue.size());
}
}
// Now apply all transactions.
for (const auto& transaction : transactions) {
applyTransactionState(transaction.frameTimelineInfo, transaction.states,
transaction.displays, transaction.flags,
transaction.inputWindowCommands, transaction.desiredPresentTime,
transaction.isAutoTimestamp, transaction.buffer,
transaction.postTime, transaction.permissions,
transaction.hasListenerCallbacks, transaction.listenerCallbacks,
transaction.originPid, transaction.originUid, transaction.id);
if (transaction.transactionCommittedSignal) {
mTransactionCommittedSignals.emplace_back(
std::move(transaction.transactionCommittedSignal));
}
}
}
}
bool SurfaceFlinger::transactionFlushNeeded() {
Mutex::Autolock _l(mQueueLock);
return !mPendingTransactionQueues.empty() || !mTransactionQueue.empty();
}
bool SurfaceFlinger::frameIsEarly(nsecs_t expectedPresentTime, int64_t vsyncId) const {
// The amount of time SF can delay a frame if it is considered early based
// on the VsyncModulator::VsyncConfig::appWorkDuration
constexpr static std::chrono::nanoseconds kEarlyLatchMaxThreshold = 100ms;
const auto currentVsyncPeriod = mScheduler->getDisplayStatInfo(systemTime()).vsyncPeriod;
const auto earlyLatchVsyncThreshold = currentVsyncPeriod / 2;
const auto prediction = mFrameTimeline->getTokenManager()->getPredictionsForToken(vsyncId);
if (!prediction.has_value()) {
return false;
}
if (std::abs(prediction->presentTime - expectedPresentTime) >=
kEarlyLatchMaxThreshold.count()) {
return false;
}
return prediction->presentTime >= expectedPresentTime &&
prediction->presentTime - expectedPresentTime >= earlyLatchVsyncThreshold;
}
bool SurfaceFlinger::transactionIsReadyToBeApplied(
const FrameTimelineInfo& info, bool isAutoTimestamp, int64_t desiredPresentTime,
uid_t originUid, const Vector<ComposerState>& states,
const std::unordered_set<sp<IBinder>, ISurfaceComposer::SpHash<IBinder>>&
bufferLayersReadyToPresent) const {
ATRACE_CALL();
const nsecs_t expectedPresentTime = mExpectedPresentTime.load();
// Do not present if the desiredPresentTime has not passed unless it is more than one second
// in the future. We ignore timestamps more than 1 second in the future for stability reasons.
if (!isAutoTimestamp && desiredPresentTime >= expectedPresentTime &&
desiredPresentTime < expectedPresentTime + s2ns(1)) {
ATRACE_NAME("not current");
return false;
}
if (!mScheduler->isVsyncValid(expectedPresentTime, originUid)) {
ATRACE_NAME("!isVsyncValid");
return false;
}
// If the client didn't specify desiredPresentTime, use the vsyncId to determine the expected
// present time of this transaction.
if (isAutoTimestamp && frameIsEarly(expectedPresentTime, info.vsyncId)) {
ATRACE_NAME("frameIsEarly");
return false;
}
for (const ComposerState& state : states) {
const layer_state_t& s = state.state;
const bool acquireFenceChanged = (s.what & layer_state_t::eAcquireFenceChanged);
if (acquireFenceChanged && s.acquireFence &&
s.acquireFence->getStatus() == Fence::Status::Unsignaled) {
ATRACE_NAME("fence unsignaled");
return false;
}
sp<Layer> layer = nullptr;
if (s.surface) {
layer = fromHandleLocked(s.surface).promote();
} else if (s.hasBufferChanges()) {
ALOGW("Transaction with buffer, but no Layer?");
continue;
}
if (!layer) {
continue;
}
ATRACE_NAME(layer->getName().c_str());
if (s.hasBufferChanges()) {
// If backpressure is enabled and we already have a buffer to commit, keep the
// transaction in the queue.
const bool hasPendingBuffer =
bufferLayersReadyToPresent.find(s.surface) != bufferLayersReadyToPresent.end();
if (layer->backpressureEnabled() && hasPendingBuffer && isAutoTimestamp) {
ATRACE_NAME("hasPendingBuffer");
return false;
}
}
}
return true;
}
void SurfaceFlinger::queueTransaction(TransactionState& state) {
Mutex::Autolock _l(mQueueLock);
// If its TransactionQueue already has a pending TransactionState or if it is pending
auto itr = mPendingTransactionQueues.find(state.applyToken);
// if this is an animation frame, wait until prior animation frame has
// been applied by SF
if (state.flags & eAnimation) {
while (itr != mPendingTransactionQueues.end()) {
status_t err = mTransactionQueueCV.waitRelative(mQueueLock, s2ns(5));
if (CC_UNLIKELY(err != NO_ERROR)) {
ALOGW_IF(err == TIMED_OUT,
"setTransactionState timed out "
"waiting for animation frame to apply");
break;
}
itr = mPendingTransactionQueues.find(state.applyToken);
}
}
// Generate a CountDownLatch pending state if this is a synchronous transaction.
if ((state.flags & eSynchronous) || state.inputWindowCommands.syncInputWindows) {
state.transactionCommittedSignal = std::make_shared<CountDownLatch>(
(state.inputWindowCommands.syncInputWindows ? 2 : 1));
}
mTransactionQueue.emplace(state);
ATRACE_INT("TransactionQueue", mTransactionQueue.size());
const auto schedule = [](uint32_t flags) {
if (flags & eEarlyWakeupEnd) return TransactionSchedule::EarlyEnd;
if (flags & eEarlyWakeupStart) return TransactionSchedule::EarlyStart;
return TransactionSchedule::Late;
}(state.flags);
setTransactionFlags(eTransactionFlushNeeded, schedule);
}
void SurfaceFlinger::waitForSynchronousTransaction(
const CountDownLatch& transactionCommittedSignal) {
// applyTransactionState is called on the main SF thread. While a given process may wish
// to wait on synchronous transactions, the main SF thread should apply the transaction and
// set the value to notify this after committed.
if (!transactionCommittedSignal.wait_until(std::chrono::seconds(5))) {
ALOGE("setTransactionState timed out!");
}
}
void SurfaceFlinger::signalSynchronousTransactions() {
for (auto it = mTransactionCommittedSignals.begin();
it != mTransactionCommittedSignals.end();) {
if ((*it)->countDown() == 0) {
it = mTransactionCommittedSignals.erase(it);
} else {
it++;
}
}
}
status_t SurfaceFlinger::setTransactionState(
const FrameTimelineInfo& frameTimelineInfo, const Vector<ComposerState>& states,
const Vector<DisplayState>& displays, uint32_t flags, const sp<IBinder>& applyToken,
const InputWindowCommands& inputWindowCommands, int64_t desiredPresentTime,
bool isAutoTimestamp, const client_cache_t& uncacheBuffer, bool hasListenerCallbacks,
const std::vector<ListenerCallbacks>& listenerCallbacks, uint64_t transactionId) {
ATRACE_CALL();
uint32_t permissions =
callingThreadHasUnscopedSurfaceFlingerAccess() ? Permission::ACCESS_SURFACE_FLINGER : 0;
// Avoid checking for rotation permissions if the caller already has ACCESS_SURFACE_FLINGER
// permissions.
if ((permissions & Permission::ACCESS_SURFACE_FLINGER) ||
callingThreadHasRotateSurfaceFlingerAccess()) {
permissions |= Permission::ROTATE_SURFACE_FLINGER;
}
if (!(permissions & Permission::ACCESS_SURFACE_FLINGER) &&
(flags & (eEarlyWakeupStart | eEarlyWakeupEnd))) {
ALOGE("Only WindowManager is allowed to use eEarlyWakeup[Start|End] flags");
flags &= ~(eEarlyWakeupStart | eEarlyWakeupEnd);
}
const int64_t postTime = systemTime();
IPCThreadState* ipc = IPCThreadState::self();
const int originPid = ipc->getCallingPid();
const int originUid = ipc->getCallingUid();
TransactionState state{frameTimelineInfo, states,
displays, flags,
applyToken, inputWindowCommands,
desiredPresentTime, isAutoTimestamp,
uncacheBuffer, postTime,
permissions, hasListenerCallbacks,
listenerCallbacks, originPid,
originUid, transactionId};
// Check for incoming buffer updates and increment the pending buffer count.
state.traverseStatesWithBuffers([&](const layer_state_t& state) {
mBufferCountTracker.increment(state.surface->localBinder());
});
queueTransaction(state);
// Check the pending state to make sure the transaction is synchronous.
if (state.transactionCommittedSignal) {
waitForSynchronousTransaction(*state.transactionCommittedSignal);
}
return NO_ERROR;
}
void SurfaceFlinger::applyTransactionState(const FrameTimelineInfo& frameTimelineInfo,
const Vector<ComposerState>& states,
const Vector<DisplayState>& displays, uint32_t flags,
const InputWindowCommands& inputWindowCommands,
const int64_t desiredPresentTime, bool isAutoTimestamp,
const client_cache_t& uncacheBuffer,
const int64_t postTime, uint32_t permissions,
bool hasListenerCallbacks,
const std::vector<ListenerCallbacks>& listenerCallbacks,
int originPid, int originUid, uint64_t transactionId) {
uint32_t transactionFlags = 0;
for (const DisplayState& display : displays) {
transactionFlags |= setDisplayStateLocked(display);
}
// start and end registration for listeners w/ no surface so they can get their callback. Note
// that listeners with SurfaceControls will start registration during setClientStateLocked
// below.
for (const auto& listener : listenerCallbacks) {
mTransactionCallbackInvoker.startRegistration(listener);
mTransactionCallbackInvoker.endRegistration(listener);
}
std::unordered_set<ListenerCallbacks, ListenerCallbacksHash> listenerCallbacksWithSurfaces;
uint32_t clientStateFlags = 0;
for (const ComposerState& state : states) {
clientStateFlags |=
setClientStateLocked(frameTimelineInfo, state, desiredPresentTime, isAutoTimestamp,
postTime, permissions, listenerCallbacksWithSurfaces);
if ((flags & eAnimation) && state.state.surface) {
if (const auto layer = fromHandleLocked(state.state.surface).promote(); layer) {
mScheduler->recordLayerHistory(layer.get(),
isAutoTimestamp ? 0 : desiredPresentTime,
LayerHistory::LayerUpdateType::AnimationTX);
}
}
}
for (const auto& listenerCallback : listenerCallbacksWithSurfaces) {
mTransactionCallbackInvoker.endRegistration(listenerCallback);
}
// If the state doesn't require a traversal and there are callbacks, send them now
if (!(clientStateFlags & eTraversalNeeded) && hasListenerCallbacks) {
mTransactionCallbackInvoker.sendCallbacks();
}
transactionFlags |= clientStateFlags;
if (permissions & Permission::ACCESS_SURFACE_FLINGER) {
transactionFlags |= addInputWindowCommands(inputWindowCommands);
} else if (!inputWindowCommands.empty()) {
ALOGE("Only privileged callers are allowed to send input commands.");
}
if (uncacheBuffer.isValid()) {
ClientCache::getInstance().erase(uncacheBuffer);
getRenderEngine().unbindExternalTextureBuffer(uncacheBuffer.id);
}
// If a synchronous transaction is explicitly requested without any changes, force a transaction
// anyway. This can be used as a flush mechanism for previous async transactions.
// Empty animation transaction can be used to simulate back-pressure, so also force a
// transaction for empty animation transactions.
if (transactionFlags == 0 &&
((flags & eSynchronous) || (flags & eAnimation))) {
transactionFlags = eTransactionNeeded;
}
if (transactionFlags) {
if (mInterceptor->isEnabled()) {
mInterceptor->saveTransaction(states, mCurrentState.displays, displays, flags,
originPid, originUid, transactionId);
}
// We are on the main thread, we are about to preform a traversal. Clear the traversal bit
// so we don't have to wake up again next frame to preform an unnecessary traversal.
if (transactionFlags & eTraversalNeeded) {
transactionFlags = transactionFlags & (~eTraversalNeeded);
mForceTraversal = true;
}
if (transactionFlags) {
setTransactionFlags(transactionFlags);
}
if (flags & eAnimation) {
mAnimTransactionPending = true;
}
}
}
uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s) {
const ssize_t index = mCurrentState.displays.indexOfKey(s.token);
if (index < 0) return 0;
uint32_t flags = 0;
DisplayDeviceState& state = mCurrentState.displays.editValueAt(index);
const uint32_t what = s.what;
if (what & DisplayState::eSurfaceChanged) {
if (IInterface::asBinder(state.surface) != IInterface::asBinder(s.surface)) {
state.surface = s.surface;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eLayerStackChanged) {
if (state.layerStack != s.layerStack) {
state.layerStack = s.layerStack;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eDisplayProjectionChanged) {
if (state.orientation != s.orientation) {
state.orientation = s.orientation;
flags |= eDisplayTransactionNeeded;
}
if (state.orientedDisplaySpaceRect != s.orientedDisplaySpaceRect) {
state.orientedDisplaySpaceRect = s.orientedDisplaySpaceRect;
flags |= eDisplayTransactionNeeded;
}
if (state.layerStackSpaceRect != s.layerStackSpaceRect) {
state.layerStackSpaceRect = s.layerStackSpaceRect;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eDisplaySizeChanged) {
if (state.width != s.width) {
state.width = s.width;
flags |= eDisplayTransactionNeeded;
}
if (state.height != s.height) {
state.height = s.height;
flags |= eDisplayTransactionNeeded;
}
}
return flags;
}
bool SurfaceFlinger::callingThreadHasUnscopedSurfaceFlingerAccess(bool usePermissionCache) {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS && uid != AID_SYSTEM) &&
(usePermissionCache ? !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)
: !checkPermission(sAccessSurfaceFlinger, pid, uid))) {
return false;
}
return true;
}
uint32_t SurfaceFlinger::setClientStateLocked(
const FrameTimelineInfo& frameTimelineInfo, const ComposerState& composerState,
int64_t desiredPresentTime, bool isAutoTimestamp, int64_t postTime, uint32_t permissions,
std::unordered_set<ListenerCallbacks, ListenerCallbacksHash>& listenerCallbacks) {
const layer_state_t& s = composerState.state;
const bool privileged = permissions & Permission::ACCESS_SURFACE_FLINGER;
for (auto& listener : s.listeners) {
// note that startRegistration will not re-register if the listener has
// already be registered for a prior surface control
mTransactionCallbackInvoker.startRegistration(listener);
listenerCallbacks.insert(listener);
}
sp<Layer> layer = nullptr;
if (s.surface) {
layer = fromHandleLocked(s.surface).promote();
} else {
// The client may provide us a null handle. Treat it as if the layer was removed.
ALOGW("Attempt to set client state with a null layer handle");
}
if (layer == nullptr) {
for (auto& [listener, callbackIds] : s.listeners) {
mTransactionCallbackInvoker.registerUnpresentedCallbackHandle(
new CallbackHandle(listener, callbackIds, s.surface));
}
return 0;
}
uint32_t flags = 0;
const uint64_t what = s.what;
// If we are deferring transaction, make sure to push the pending state, as otherwise the
// pending state will also be deferred.
if (what & layer_state_t::eDeferTransaction_legacy) {
layer->pushPendingState();
}
// Only set by BLAST adapter layers
if (what & layer_state_t::eProducerDisconnect) {
layer->onDisconnect();
}
if (what & layer_state_t::ePositionChanged) {
if (layer->setPosition(s.x, s.y)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eLayerChanged) {
// NOTE: index needs to be calculated before we update the state
const auto& p = layer->getParent();
if (p == nullptr) {
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
if (layer->setLayer(s.z) && idx >= 0) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded;
}
} else {
if (p->setChildLayer(layer, s.z)) {
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
}
if (what & layer_state_t::eRelativeLayerChanged) {
// NOTE: index needs to be calculated before we update the state
const auto& p = layer->getParent();
const auto& relativeHandle = s.relativeLayerSurfaceControl ?
s.relativeLayerSurfaceControl->getHandle() : nullptr;
if (p == nullptr) {
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
if (layer->setRelativeLayer(relativeHandle, s.z) &&
idx >= 0) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded;
}
} else {
if (p->setChildRelativeLayer(layer, relativeHandle, s.z)) {
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
}
if (what & layer_state_t::eSizeChanged) {
if (layer->setSize(s.w, s.h)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eAlphaChanged) {
if (layer->setAlpha(s.alpha))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eColorChanged) {
if (layer->setColor(s.color))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eColorTransformChanged) {
if (layer->setColorTransform(s.colorTransform)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eBackgroundColorChanged) {
if (layer->setBackgroundColor(s.color, s.bgColorAlpha, s.bgColorDataspace)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eMatrixChanged) {
// TODO: b/109894387
//
// SurfaceFlinger's renderer is not prepared to handle cropping in the face of arbitrary
// rotation. To see the problem observe that if we have a square parent, and a child
// of the same size, then we rotate the child 45 degrees around it's center, the child
// must now be cropped to a non rectangular 8 sided region.
//
// Of course we can fix this in the future. For now, we are lucky, SurfaceControl is
// private API, and arbitrary rotation is used in limited use cases, for instance:
// - WindowManager only uses rotation in one case, which is on a top level layer in which
// cropping is not an issue.
// - Launcher, as a privileged app, uses this to transition an application to PiP
// (picture-in-picture) mode.
//
// However given that abuse of rotation matrices could lead to surfaces extending outside
// of cropped areas, we need to prevent non-root clients without permission
// ACCESS_SURFACE_FLINGER nor ROTATE_SURFACE_FLINGER
// (a.k.a. everyone except WindowManager / tests / Launcher) from setting non rectangle
// preserving transformations.
const bool allowNonRectPreservingTransforms =
permissions & Permission::ROTATE_SURFACE_FLINGER;
if (layer->setMatrix(s.matrix, allowNonRectPreservingTransforms)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eTransparentRegionChanged) {
if (layer->setTransparentRegionHint(s.transparentRegion))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eFlagsChanged) {
if (layer->setFlags(s.flags, s.mask))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eCornerRadiusChanged) {
if (layer->setCornerRadius(s.cornerRadius))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eBackgroundBlurRadiusChanged && !mDisableBlurs && mSupportsBlur) {
if (layer->setBackgroundBlurRadius(s.backgroundBlurRadius)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eBlurRegionsChanged) {
if (layer->setBlurRegions(s.blurRegions)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eLayerStackChanged) {
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
// We only allow setting layer stacks for top level layers,
// everything else inherits layer stack from its parent.
if (layer->hasParent()) {
ALOGE("Attempt to set layer stack on layer with parent (%s) is invalid",
layer->getDebugName());
} else if (idx < 0) {
ALOGE("Attempt to set layer stack on layer without parent (%s) that "
"that also does not appear in the top level layer list. Something"
" has gone wrong.",
layer->getDebugName());
} else if (layer->setLayerStack(s.layerStack)) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded | eTraversalNeeded | eTransformHintUpdateNeeded;
}
}
if (what & layer_state_t::eDeferTransaction_legacy) {
layer->deferTransactionUntil_legacy(s.barrierSurfaceControl_legacy->getHandle(),
s.barrierFrameNumber);
// We don't trigger a traversal here because if no other state is
// changed, we don't want this to cause any more work
}
if (what & layer_state_t::eReparentChildren) {
if (layer->reparentChildren(s.reparentSurfaceControl->getHandle())) {
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
if (what & layer_state_t::eTransformChanged) {
if (layer->setTransform(s.transform)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eTransformToDisplayInverseChanged) {
if (layer->setTransformToDisplayInverse(s.transformToDisplayInverse))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eCropChanged) {
if (layer->setCrop(s.crop)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eFrameChanged) {
if (layer->setFrame(s.orientedDisplaySpaceRect)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eAcquireFenceChanged) {
if (layer->setAcquireFence(s.acquireFence)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eDataspaceChanged) {
if (layer->setDataspace(s.dataspace)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eHdrMetadataChanged) {
if (layer->setHdrMetadata(s.hdrMetadata)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eSurfaceDamageRegionChanged) {
if (layer->setSurfaceDamageRegion(s.surfaceDamageRegion)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eApiChanged) {
if (layer->setApi(s.api)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eSidebandStreamChanged) {
if (layer->setSidebandStream(s.sidebandStream)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eInputInfoChanged) {
if (privileged) {
layer->setInputInfo(*s.inputHandle->getInfo());
flags |= eTraversalNeeded;
} else {
ALOGE("Attempt to update InputWindowInfo without permission ACCESS_SURFACE_FLINGER");
}
}
std::optional<nsecs_t> dequeueBufferTimestamp;
if (what & layer_state_t::eMetadataChanged) {
dequeueBufferTimestamp = s.metadata.getInt64(METADATA_DEQUEUE_TIME);
if (layer->setMetadata(s.metadata)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eColorSpaceAgnosticChanged) {
if (layer->setColorSpaceAgnostic(s.colorSpaceAgnostic)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eShadowRadiusChanged) {
if (layer->setShadowRadius(s.shadowRadius)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eFrameRateSelectionPriority) {
if (privileged && layer->setFrameRateSelectionPriority(s.frameRateSelectionPriority)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eFrameRateChanged) {
if (ValidateFrameRate(s.frameRate, s.frameRateCompatibility, s.changeFrameRateStrategy,
"SurfaceFlinger::setClientStateLocked", privileged)) {
const auto compatibility =
Layer::FrameRate::convertCompatibility(s.frameRateCompatibility);
const auto strategy =
Layer::FrameRate::convertChangeFrameRateStrategy(s.changeFrameRateStrategy);
if (layer->setFrameRate(Layer::FrameRate(Fps(s.frameRate), compatibility, strategy))) {
flags |= eTraversalNeeded;
}
}
}
if (what & layer_state_t::eFixedTransformHintChanged) {
if (layer->setFixedTransformHint(s.fixedTransformHint)) {
flags |= eTraversalNeeded | eTransformHintUpdateNeeded;
}
}
if (what & layer_state_t::eAutoRefreshChanged) {
layer->setAutoRefresh(s.autoRefresh);
}
if (what & layer_state_t::eStretchChanged) {
if (layer->setStretchEffect(s.stretchEffect)) {
flags |= eTraversalNeeded;
}
}
// This has to happen after we reparent children because when we reparent to null we remove
// child layers from current state and remove its relative z. If the children are reparented in
// the same transaction, then we have to make sure we reparent the children first so we do not
// lose its relative z order.
if (what & layer_state_t::eReparent) {
bool hadParent = layer->hasParent();
auto parentHandle = (s.parentSurfaceControlForChild)
? s.parentSurfaceControlForChild->getHandle()
: nullptr;
if (layer->reparent(parentHandle)) {
if (!hadParent) {
mCurrentState.layersSortedByZ.remove(layer);
}
flags |= eTransactionNeeded | eTraversalNeeded;
}
}
std::vector<sp<CallbackHandle>> callbackHandles;
if ((what & layer_state_t::eHasListenerCallbacksChanged) && (!s.listeners.empty())) {
for (auto& [listener, callbackIds] : s.listeners) {
callbackHandles.emplace_back(new CallbackHandle(listener, callbackIds, s.surface));
}
}
bool bufferChanged = what & layer_state_t::eBufferChanged;
bool cacheIdChanged = what & layer_state_t::eCachedBufferChanged;
sp<GraphicBuffer> buffer;
if (bufferChanged && cacheIdChanged && s.buffer != nullptr) {
buffer = s.buffer;
bool success = ClientCache::getInstance().add(s.cachedBuffer, s.buffer);
if (success) {
getRenderEngine().cacheExternalTextureBuffer(s.buffer);
success = ClientCache::getInstance()
.registerErasedRecipient(s.cachedBuffer,
wp<ClientCache::ErasedRecipient>(this));
if (!success) {
getRenderEngine().unbindExternalTextureBuffer(s.buffer->getId());
}
}
} else if (cacheIdChanged) {
buffer = ClientCache::getInstance().get(s.cachedBuffer);
} else if (bufferChanged) {
buffer = s.buffer;
}
if (buffer) {
const bool frameNumberChanged = what & layer_state_t::eFrameNumberChanged;
const uint64_t frameNumber = frameNumberChanged
? s.frameNumber
: layer->getHeadFrameNumber(-1 /* expectedPresentTime */) + 1;
if (layer->setBuffer(buffer, s.acquireFence, postTime, desiredPresentTime, isAutoTimestamp,
s.cachedBuffer, frameNumber, dequeueBufferTimestamp, frameTimelineInfo,
s.releaseBufferListener)) {
flags |= eTraversalNeeded;
}
} else if (frameTimelineInfo.vsyncId != FrameTimelineInfo::INVALID_VSYNC_ID) {
layer->setFrameTimelineVsyncForBufferlessTransaction(frameTimelineInfo, postTime);
}
if (layer->setTransactionCompletedListeners(callbackHandles)) flags |= eTraversalNeeded;
// Do not put anything that updates layer state or modifies flags after
// setTransactionCompletedListener
return flags;
}
uint32_t SurfaceFlinger::addInputWindowCommands(const InputWindowCommands& inputWindowCommands) {
bool hasChanges = mInputWindowCommands.merge(inputWindowCommands);
return hasChanges ? eTraversalNeeded : 0;
}
status_t SurfaceFlinger::mirrorLayer(const sp<Client>& client, const sp<IBinder>& mirrorFromHandle,
sp<IBinder>* outHandle, int32_t* outLayerId) {
if (!mirrorFromHandle) {
return NAME_NOT_FOUND;
}
sp<Layer> mirrorLayer;
sp<Layer> mirrorFrom;
std::string uniqueName = getUniqueLayerName("MirrorRoot");
{
Mutex::Autolock _l(mStateLock);
mirrorFrom = fromHandleLocked(mirrorFromHandle).promote();
if (!mirrorFrom) {
return NAME_NOT_FOUND;
}
status_t result = createContainerLayer(client, std::move(uniqueName), -1, -1, 0,
LayerMetadata(), outHandle, &mirrorLayer);
if (result != NO_ERROR) {
return result;
}
mirrorLayer->mClonedChild = mirrorFrom->createClone();
}
*outLayerId = mirrorLayer->sequence;
return addClientLayer(client, *outHandle, nullptr, mirrorLayer, nullptr, nullptr, false,
nullptr /* outTransformHint */);
}
status_t SurfaceFlinger::createLayer(const String8& name, const sp<Client>& client, uint32_t w,
uint32_t h, PixelFormat format, uint32_t flags,
LayerMetadata metadata, sp<IBinder>* handle,
sp<IGraphicBufferProducer>* gbp,
const sp<IBinder>& parentHandle, int32_t* outLayerId,
const sp<Layer>& parentLayer, uint32_t* outTransformHint) {
if (int32_t(w|h) < 0) {
ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
int(w), int(h));
return BAD_VALUE;
}
ALOG_ASSERT(parentLayer == nullptr || parentHandle == nullptr,
"Expected only one of parentLayer or parentHandle to be non-null. "
"Programmer error?");
status_t result = NO_ERROR;
sp<Layer> layer;
std::string uniqueName = getUniqueLayerName(name.string());
switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
case ISurfaceComposerClient::eFXSurfaceBufferQueue:
result = createBufferQueueLayer(client, std::move(uniqueName), w, h, flags,
std::move(metadata), format, handle, gbp, &layer);
break;
case ISurfaceComposerClient::eFXSurfaceBufferState: {
result = createBufferStateLayer(client, std::move(uniqueName), w, h, flags,
std::move(metadata), handle, &layer);
std::atomic<int32_t>* pendingBufferCounter = layer->getPendingBufferCounter();
if (pendingBufferCounter) {
std::string counterName = layer->getPendingBufferCounterName();
mBufferCountTracker.add((*handle)->localBinder(), counterName,
pendingBufferCounter);
}
} break;
case ISurfaceComposerClient::eFXSurfaceEffect:
// check if buffer size is set for color layer.
if (w > 0 || h > 0) {
ALOGE("createLayer() failed, w or h cannot be set for color layer (w=%d, h=%d)",
int(w), int(h));
return BAD_VALUE;
}
result = createEffectLayer(client, std::move(uniqueName), w, h, flags,
std::move(metadata), handle, &layer);
break;
case ISurfaceComposerClient::eFXSurfaceContainer:
// check if buffer size is set for container layer.
if (w > 0 || h > 0) {
ALOGE("createLayer() failed, w or h cannot be set for container layer (w=%d, h=%d)",
int(w), int(h));
return BAD_VALUE;
}
result = createContainerLayer(client, std::move(uniqueName), w, h, flags,
std::move(metadata), handle, &layer);
break;
default:
result = BAD_VALUE;
break;
}
if (result != NO_ERROR) {
return result;
}
bool addToCurrentState = callingThreadHasUnscopedSurfaceFlingerAccess();
result = addClientLayer(client, *handle, *gbp, layer, parentHandle, parentLayer,
addToCurrentState, outTransformHint);
if (result != NO_ERROR) {
return result;
}
mInterceptor->saveSurfaceCreation(layer);
setTransactionFlags(eTransactionNeeded);
*outLayerId = layer->sequence;
return result;
}
std::string SurfaceFlinger::getUniqueLayerName(const char* name) {
unsigned dupeCounter = 0;
// Tack on our counter whether there is a hit or not, so everyone gets a tag
std::string uniqueName = base::StringPrintf("%s#%u", name, dupeCounter);
// Grab the state lock since we're accessing mCurrentState
Mutex::Autolock lock(mStateLock);
// Loop over layers until we're sure there is no matching name
bool matchFound = true;
while (matchFound) {
matchFound = false;
mCurrentState.traverse([&](Layer* layer) {
if (layer->getName() == uniqueName) {
matchFound = true;
uniqueName = base::StringPrintf("%s#%u", name, ++dupeCounter);
}
});
}
ALOGV_IF(dupeCounter > 0, "duplicate layer name: changing %s to %s", name, uniqueName.c_str());
return uniqueName;
}
status_t SurfaceFlinger::createBufferQueueLayer(const sp<Client>& client, std::string name,
uint32_t w, uint32_t h, uint32_t flags,
LayerMetadata metadata, PixelFormat& format,
sp<IBinder>* handle,
sp<IGraphicBufferProducer>* gbp,
sp<Layer>* outLayer) {
// initialize the surfaces
switch (format) {
case PIXEL_FORMAT_TRANSPARENT:
case PIXEL_FORMAT_TRANSLUCENT:
format = PIXEL_FORMAT_RGBA_8888;
break;
case PIXEL_FORMAT_OPAQUE:
format = PIXEL_FORMAT_RGBX_8888;
break;
}
sp<BufferQueueLayer> layer;
LayerCreationArgs args(this, client, std::move(name), w, h, flags, std::move(metadata));
args.textureName = getNewTexture();
{
// Grab the SF state lock during this since it's the only safe way to access
// RenderEngine when creating a BufferLayerConsumer
// TODO: Check if this lock is still needed here
Mutex::Autolock lock(mStateLock);
layer = getFactory().createBufferQueueLayer(args);
}
status_t err = layer->setDefaultBufferProperties(w, h, format);
if (err == NO_ERROR) {
*handle = layer->getHandle();
*gbp = layer->getProducer();
*outLayer = layer;
}
ALOGE_IF(err, "createBufferQueueLayer() failed (%s)", strerror(-err));
return err;
}
status_t SurfaceFlinger::createBufferStateLayer(const sp<Client>& client, std::string name,
uint32_t w, uint32_t h, uint32_t flags,
LayerMetadata metadata, sp<IBinder>* handle,
sp<Layer>* outLayer) {
LayerCreationArgs args(this, client, std::move(name), w, h, flags, std::move(metadata));
args.textureName = getNewTexture();
sp<BufferStateLayer> layer;
{
// TODO (b/173538294): Investigate why we need mStateLock here and above in
// createBufferQueue layer. Is it the renderengine::Image?
Mutex::Autolock lock(mStateLock);
layer = getFactory().createBufferStateLayer(args);
}
*handle = layer->getHandle();
*outLayer = layer;
return NO_ERROR;
}
status_t SurfaceFlinger::createEffectLayer(const sp<Client>& client, std::string name, uint32_t w,
uint32_t h, uint32_t flags, LayerMetadata metadata,
sp<IBinder>* handle, sp<Layer>* outLayer) {
*outLayer = getFactory().createEffectLayer(
{this, client, std::move(name), w, h, flags, std::move(metadata)});
*handle = (*outLayer)->getHandle();
return NO_ERROR;
}
status_t SurfaceFlinger::createContainerLayer(const sp<Client>& client, std::string name,
uint32_t w, uint32_t h, uint32_t flags,
LayerMetadata metadata, sp<IBinder>* handle,
sp<Layer>* outLayer) {
*outLayer = getFactory().createContainerLayer(
{this, client, std::move(name), w, h, flags, std::move(metadata)});
*handle = (*outLayer)->getHandle();
return NO_ERROR;
}
void SurfaceFlinger::markLayerPendingRemovalLocked(const sp<Layer>& layer) {
mLayersPendingRemoval.add(layer);
mLayersRemoved = true;
setTransactionFlags(eTransactionNeeded);
}
void SurfaceFlinger::onHandleDestroyed(sp<Layer>& layer) {
Mutex::Autolock lock(mStateLock);
// If a layer has a parent, we allow it to out-live it's handle
// with the idea that the parent holds a reference and will eventually
// be cleaned up. However no one cleans up the top-level so we do so
// here.
if (layer->getParent() == nullptr) {
mCurrentState.layersSortedByZ.remove(layer);
}
markLayerPendingRemovalLocked(layer);
auto it = mLayersByLocalBinderToken.begin();
while (it != mLayersByLocalBinderToken.end()) {
if (it->second == layer) {
mBufferCountTracker.remove(it->first->localBinder());
it = mLayersByLocalBinderToken.erase(it);
} else {
it++;
}
}
layer.clear();
}
// ---------------------------------------------------------------------------
void SurfaceFlinger::onInitializeDisplays() {
const auto display = getDefaultDisplayDeviceLocked();
if (!display) return;
const sp<IBinder> token = display->getDisplayToken().promote();
LOG_ALWAYS_FATAL_IF(token == nullptr);
// reset screen orientation and use primary layer stack
Vector<ComposerState> state;
Vector<DisplayState> displays;
DisplayState d;
d.what = DisplayState::eDisplayProjectionChanged |
DisplayState::eLayerStackChanged;
d.token = token;
d.layerStack = 0;
d.orientation = ui::ROTATION_0;
d.orientedDisplaySpaceRect.makeInvalid();
d.layerStackSpaceRect.makeInvalid();
d.width = 0;
d.height = 0;
displays.add(d);
// It should be on the main thread, apply it directly.
applyTransactionState(FrameTimelineInfo{}, state, displays, 0, mInputWindowCommands,
systemTime(), true, {}, systemTime(), true, false, {}, getpid(), getuid(),
0 /* Undefined transactionId */);
setPowerModeInternal(display, hal::PowerMode::ON);
const nsecs_t vsyncPeriod = mRefreshRateConfigs->getCurrentRefreshRate().getVsyncPeriod();
mAnimFrameTracker.setDisplayRefreshPeriod(vsyncPeriod);
// Use phase of 0 since phase is not known.
// Use latency of 0, which will snap to the ideal latency.
DisplayStatInfo stats{0 /* vsyncTime */, vsyncPeriod};
setCompositorTimingSnapped(stats, 0);
}
void SurfaceFlinger::initializeDisplays() {
// Async since we may be called from the main thread.
static_cast<void>(schedule([this]() MAIN_THREAD { onInitializeDisplays(); }));
}
void SurfaceFlinger::setPowerModeInternal(const sp<DisplayDevice>& display, hal::PowerMode mode) {
if (display->isVirtual()) {
ALOGE("%s: Invalid operation on virtual display", __FUNCTION__);
return;
}
const auto displayId = display->getPhysicalId();
ALOGD("Setting power mode %d on display %s", mode, to_string(displayId).c_str());
const hal::PowerMode currentMode = display->getPowerMode();
if (mode == currentMode) {
return;
}
display->setPowerMode(mode);
if (mInterceptor->isEnabled()) {
mInterceptor->savePowerModeUpdate(display->getSequenceId(), static_cast<int32_t>(mode));
}
const auto vsyncPeriod = mRefreshRateConfigs->getCurrentRefreshRate().getVsyncPeriod();
if (currentMode == hal::PowerMode::OFF) {
if (SurfaceFlinger::setSchedFifo(true) != NO_ERROR) {
ALOGW("Couldn't set SCHED_FIFO on display on: %s\n", strerror(errno));
}
getHwComposer().setPowerMode(displayId, mode);
if (display->isPrimary() && mode != hal::PowerMode::DOZE_SUSPEND) {
getHwComposer().setVsyncEnabled(displayId, mHWCVsyncPendingState);
mScheduler->onScreenAcquired(mAppConnectionHandle);
mScheduler->resyncToHardwareVsync(true, vsyncPeriod);
}
mVisibleRegionsDirty = true;
mHasPoweredOff = true;
repaintEverything();
} else if (mode == hal::PowerMode::OFF) {
// Turn off the display
if (SurfaceFlinger::setSchedFifo(false) != NO_ERROR) {
ALOGW("Couldn't set SCHED_OTHER on display off: %s\n", strerror(errno));
}
if (display->isPrimary() && currentMode != hal::PowerMode::DOZE_SUSPEND) {
mScheduler->disableHardwareVsync(true);
mScheduler->onScreenReleased(mAppConnectionHandle);
}
// Make sure HWVsync is disabled before turning off the display
getHwComposer().setVsyncEnabled(displayId, hal::Vsync::DISABLE);
getHwComposer().setPowerMode(displayId, mode);
mVisibleRegionsDirty = true;
// from this point on, SF will stop drawing on this display
} else if (mode == hal::PowerMode::DOZE || mode == hal::PowerMode::ON) {
// Update display while dozing
getHwComposer().setPowerMode(displayId, mode);
if (display->isPrimary() && currentMode == hal::PowerMode::DOZE_SUSPEND) {
mScheduler->onScreenAcquired(mAppConnectionHandle);
mScheduler->resyncToHardwareVsync(true, vsyncPeriod);
}
} else if (mode == hal::PowerMode::DOZE_SUSPEND) {
// Leave display going to doze
if (display->isPrimary()) {
mScheduler->disableHardwareVsync(true);
mScheduler->onScreenReleased(mAppConnectionHandle);
}
getHwComposer().setPowerMode(displayId, mode);
} else {
ALOGE("Attempting to set unknown power mode: %d\n", mode);
getHwComposer().setPowerMode(displayId, mode);
}
if (display->isPrimary()) {
mTimeStats->setPowerMode(mode);
mRefreshRateStats->setPowerMode(mode);
mScheduler->setDisplayPowerState(mode == hal::PowerMode::ON);
}
ALOGD("Finished setting power mode %d on display %s", mode, to_string(displayId).c_str());
}
void SurfaceFlinger::setPowerMode(const sp<IBinder>& displayToken, int mode) {
schedule([=]() MAIN_THREAD {
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
ALOGE("Attempt to set power mode %d for invalid display token %p", mode,
displayToken.get());
} else if (display->isVirtual()) {
ALOGW("Attempt to set power mode %d for virtual display", mode);
} else {
setPowerModeInternal(display, static_cast<hal::PowerMode>(mode));
}
}).wait();
}
status_t SurfaceFlinger::doDump(int fd, const DumpArgs& args, bool asProto) {
std::string result;
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_SHELL) &&
!PermissionCache::checkPermission(sDump, pid, uid)) {
StringAppendF(&result, "Permission Denial: can't dump SurfaceFlinger from pid=%d, uid=%d\n",
pid, uid);
} else {
static const std::unordered_map<std::string, Dumper> dumpers = {
{"--display-id"s, dumper(&SurfaceFlinger::dumpDisplayIdentificationData)},
{"--dispsync"s, dumper([this](std::string& s) { mScheduler->dumpVsync(s); })},
{"--edid"s, argsDumper(&SurfaceFlinger::dumpRawDisplayIdentificationData)},
{"--frame-events"s, dumper(&SurfaceFlinger::dumpFrameEventsLocked)},
{"--latency"s, argsDumper(&SurfaceFlinger::dumpStatsLocked)},
{"--latency-clear"s, argsDumper(&SurfaceFlinger::clearStatsLocked)},
{"--list"s, dumper(&SurfaceFlinger::listLayersLocked)},
{"--planner"s, argsDumper(&SurfaceFlinger::dumpPlannerInfo)},
{"--static-screen"s, dumper(&SurfaceFlinger::dumpStaticScreenStats)},
{"--timestats"s, protoDumper(&SurfaceFlinger::dumpTimeStats)},
{"--vsync"s, dumper(&SurfaceFlinger::dumpVSync)},
{"--wide-color"s, dumper(&SurfaceFlinger::dumpWideColorInfo)},
{"--frametimeline"s, argsDumper(&SurfaceFlinger::dumpFrameTimeline)},
};
const auto flag = args.empty() ? ""s : std::string(String8(args[0]));
bool dumpLayers = true;
{
TimedLock lock(mStateLock, s2ns(1), __FUNCTION__);
if (!lock.locked()) {
StringAppendF(&result, "Dumping without lock after timeout: %s (%d)\n",
strerror(-lock.status), lock.status);
}
if (const auto it = dumpers.find(flag); it != dumpers.end()) {
(it->second)(args, asProto, result);
dumpLayers = false;
} else if (!asProto) {
dumpAllLocked(args, result);
}
}
if (dumpLayers) {
const LayersProto layersProto = dumpProtoFromMainThread();
if (asProto) {
result.append(layersProto.SerializeAsString());
} else {
// Dump info that we need to access from the main thread
const auto layerTree = LayerProtoParser::generateLayerTree(layersProto);
result.append(LayerProtoParser::layerTreeToString(layerTree));
result.append("\n");
dumpOffscreenLayers(result);
}
}
}
write(fd, result.c_str(), result.size());
return NO_ERROR;
}
status_t SurfaceFlinger::dumpCritical(int fd, const DumpArgs&, bool asProto) {
if (asProto && mTracing.isEnabled()) {
mTracing.writeToFile();
}
return doDump(fd, DumpArgs(), asProto);
}
void SurfaceFlinger::listLayersLocked(std::string& result) const {
mCurrentState.traverseInZOrder(
[&](Layer* layer) { StringAppendF(&result, "%s\n", layer->getDebugName()); });
}
void SurfaceFlinger::dumpStatsLocked(const DumpArgs& args, std::string& result) const {
StringAppendF(&result, "%" PRId64 "\n", getVsyncPeriodFromHWC());
if (args.size() > 1) {
const auto name = String8(args[1]);
mCurrentState.traverseInZOrder([&](Layer* layer) {
if (layer->getName() == name.string()) {
layer->dumpFrameStats(result);
}
});
} else {
mAnimFrameTracker.dumpStats(result);
}
}
void SurfaceFlinger::clearStatsLocked(const DumpArgs& args, std::string&) {
const bool clearAll = args.size() < 2;
const auto name = clearAll ? String8() : String8(args[1]);
mCurrentState.traverse([&](Layer* layer) {
if (clearAll || layer->getName() == name.string()) {
layer->clearFrameStats();
}
});
mAnimFrameTracker.clearStats();
}
void SurfaceFlinger::dumpTimeStats(const DumpArgs& args, bool asProto, std::string& result) const {
mTimeStats->parseArgs(asProto, args, result);
}
void SurfaceFlinger::dumpFrameTimeline(const DumpArgs& args, std::string& result) const {
mFrameTimeline->parseArgs(args, result);
}
// This should only be called from the main thread. Otherwise it would need
// the lock and should use mCurrentState rather than mDrawingState.
void SurfaceFlinger::logFrameStats() {
mDrawingState.traverse([&](Layer* layer) {
layer->logFrameStats();
});
mAnimFrameTracker.logAndResetStats("<win-anim>");
}
void SurfaceFlinger::appendSfConfigString(std::string& result) const {
result.append(" [sf");
StringAppendF(&result, " PRESENT_TIME_OFFSET=%" PRId64, dispSyncPresentTimeOffset);
StringAppendF(&result, " FORCE_HWC_FOR_RBG_TO_YUV=%d", useHwcForRgbToYuv);
StringAppendF(&result, " MAX_VIRT_DISPLAY_DIM=%" PRIu64, maxVirtualDisplaySize);
StringAppendF(&result, " RUNNING_WITHOUT_SYNC_FRAMEWORK=%d", !hasSyncFramework);
StringAppendF(&result, " NUM_FRAMEBUFFER_SURFACE_BUFFERS=%" PRId64,
maxFrameBufferAcquiredBuffers);
result.append("]");
}
void SurfaceFlinger::dumpVSync(std::string& result) const {
mScheduler->dump(result);
mRefreshRateStats->dump(result);
result.append("\n");
mVsyncConfiguration->dump(result);
StringAppendF(&result,
" present offset: %9" PRId64 " ns\t VSYNC period: %9" PRId64 " ns\n\n",
dispSyncPresentTimeOffset, getVsyncPeriodFromHWC());
mRefreshRateConfigs->dump(result);
StringAppendF(&result, "(mode override by backdoor: %s)\n\n",
mDebugDisplayModeSetByBackdoor ? "yes" : "no");
mScheduler->dump(mAppConnectionHandle, result);
mScheduler->dumpVsync(result);
}
void SurfaceFlinger::dumpPlannerInfo(const DumpArgs& args, std::string& result) const {
for (const auto& [token, display] : mDisplays) {
const auto compositionDisplay = display->getCompositionDisplay();
compositionDisplay->dumpPlannerInfo(args, result);
}
}
void SurfaceFlinger::dumpStaticScreenStats(std::string& result) const {
result.append("Static screen stats:\n");
for (size_t b = 0; b < SurfaceFlingerBE::NUM_BUCKETS - 1; ++b) {
float bucketTimeSec = getBE().mFrameBuckets[b] / 1e9;
float percent = 100.0f *
static_cast<float>(getBE().mFrameBuckets[b]) / getBE().mTotalTime;
StringAppendF(&result, " < %zd frames: %.3f s (%.1f%%)\n", b + 1, bucketTimeSec, percent);
}
float bucketTimeSec = getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] / 1e9;
float percent = 100.0f *
static_cast<float>(getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1]) / getBE().mTotalTime;
StringAppendF(&result, " %zd+ frames: %.3f s (%.1f%%)\n", SurfaceFlingerBE::NUM_BUCKETS - 1,
bucketTimeSec, percent);
}
void SurfaceFlinger::recordBufferingStats(const std::string& layerName,
std::vector<OccupancyTracker::Segment>&& history) {
Mutex::Autolock lock(getBE().mBufferingStatsMutex);
auto& stats = getBE().mBufferingStats[layerName];
for (const auto& segment : history) {
if (!segment.usedThirdBuffer) {
stats.twoBufferTime += segment.totalTime;
}
if (segment.occupancyAverage < 1.0f) {
stats.doubleBufferedTime += segment.totalTime;
} else if (segment.occupancyAverage < 2.0f) {
stats.tripleBufferedTime += segment.totalTime;
}
++stats.numSegments;
stats.totalTime += segment.totalTime;
}
}
void SurfaceFlinger::dumpFrameEventsLocked(std::string& result) {
result.append("Layer frame timestamps:\n");
// Traverse all layers to dump frame-events for each layer
mCurrentState.traverseInZOrder(
[&] (Layer* layer) { layer->dumpFrameEvents(result); });
}
void SurfaceFlinger::dumpBufferingStats(std::string& result) const {
result.append("Buffering stats:\n");
result.append(" [Layer name] <Active time> <Two buffer> "
"<Double buffered> <Triple buffered>\n");
Mutex::Autolock lock(getBE().mBufferingStatsMutex);
typedef std::tuple<std::string, float, float, float> BufferTuple;
std::map<float, BufferTuple, std::greater<float>> sorted;
for (const auto& statsPair : getBE().mBufferingStats) {
const char* name = statsPair.first.c_str();
const SurfaceFlingerBE::BufferingStats& stats = statsPair.second;
if (stats.numSegments == 0) {
continue;
}
float activeTime = ns2ms(stats.totalTime) / 1000.0f;
float twoBufferRatio = static_cast<float>(stats.twoBufferTime) /
stats.totalTime;
float doubleBufferRatio = static_cast<float>(
stats.doubleBufferedTime) / stats.totalTime;
float tripleBufferRatio = static_cast<float>(
stats.tripleBufferedTime) / stats.totalTime;
sorted.insert({activeTime, {name, twoBufferRatio,
doubleBufferRatio, tripleBufferRatio}});
}
for (const auto& sortedPair : sorted) {
float activeTime = sortedPair.first;
const BufferTuple& values = sortedPair.second;
StringAppendF(&result, " [%s] %.2f %.3f %.3f %.3f\n", std::get<0>(values).c_str(),
activeTime, std::get<1>(values), std::get<2>(values), std::get<3>(values));
}
result.append("\n");
}
void SurfaceFlinger::dumpDisplayIdentificationData(std::string& result) const {
for (const auto& [token, display] : mDisplays) {
const auto displayId = PhysicalDisplayId::tryCast(display->getId());
if (!displayId) {
continue;
}
const auto hwcDisplayId = getHwComposer().fromPhysicalDisplayId(*displayId);
if (!hwcDisplayId) {
continue;
}
StringAppendF(&result,
"Display %s (HWC display %" PRIu64 "): ", to_string(*displayId).c_str(),
*hwcDisplayId);
uint8_t port;
DisplayIdentificationData data;
if (!getHwComposer().getDisplayIdentificationData(*hwcDisplayId, &port, &data)) {
result.append("no identification data\n");
continue;
}
if (!isEdid(data)) {
result.append("unknown identification data\n");
continue;
}
const auto edid = parseEdid(data);
if (!edid) {
result.append("invalid EDID\n");
continue;
}
StringAppendF(&result, "port=%u pnpId=%s displayName=\"", port, edid->pnpId.data());
result.append(edid->displayName.data(), edid->displayName.length());
result.append("\"\n");
}
}
void SurfaceFlinger::dumpRawDisplayIdentificationData(const DumpArgs& args,
std::string& result) const {
hal::HWDisplayId hwcDisplayId;
uint8_t port;
DisplayIdentificationData data;
if (args.size() > 1 && base::ParseUint(String8(args[1]), &hwcDisplayId) &&
getHwComposer().getDisplayIdentificationData(hwcDisplayId, &port, &data)) {
result.append(reinterpret_cast<const char*>(data.data()), data.size());
}
}
void SurfaceFlinger::dumpWideColorInfo(std::string& result) const {
StringAppendF(&result, "Device has wide color built-in display: %d\n", hasWideColorDisplay);
StringAppendF(&result, "Device uses color management: %d\n", useColorManagement);
StringAppendF(&result, "DisplayColorSetting: %s\n",
decodeDisplayColorSetting(mDisplayColorSetting).c_str());
// TODO: print out if wide-color mode is active or not
for (const auto& [token, display] : mDisplays) {
const auto displayId = PhysicalDisplayId::tryCast(display->getId());
if (!displayId) {
continue;
}
StringAppendF(&result, "Display %s color modes:\n", to_string(*displayId).c_str());
std::vector<ColorMode> modes = getHwComposer().getColorModes(*displayId);
for (auto&& mode : modes) {
StringAppendF(&result, " %s (%d)\n", decodeColorMode(mode).c_str(), mode);
}
ColorMode currentMode = display->getCompositionDisplay()->getState().colorMode;
StringAppendF(&result, " Current color mode: %s (%d)\n",
decodeColorMode(currentMode).c_str(), currentMode);
}
result.append("\n");
}
LayersProto SurfaceFlinger::dumpDrawingStateProto(uint32_t traceFlags) const {
// If context is SurfaceTracing thread, mTracingLock blocks display transactions on main thread.
const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked());
LayersProto layersProto;
for (const sp<Layer>& layer : mDrawingState.layersSortedByZ) {
layer->writeToProto(layersProto, traceFlags, display.get());
}
return layersProto;
}
void SurfaceFlinger::dumpHwc(std::string& result) const {
getHwComposer().dump(result);
}
void SurfaceFlinger::dumpOffscreenLayersProto(LayersProto& layersProto, uint32_t traceFlags) const {
// Add a fake invisible root layer to the proto output and parent all the offscreen layers to
// it.
LayerProto* rootProto = layersProto.add_layers();
const int32_t offscreenRootLayerId = INT32_MAX - 2;
rootProto->set_id(offscreenRootLayerId);
rootProto->set_name("Offscreen Root");
rootProto->set_parent(-1);
for (Layer* offscreenLayer : mOffscreenLayers) {
// Add layer as child of the fake root
rootProto->add_children(offscreenLayer->sequence);
// Add layer
LayerProto* layerProto =
offscreenLayer->writeToProto(layersProto, traceFlags, nullptr /*device*/);
layerProto->set_parent(offscreenRootLayerId);
}
}
LayersProto SurfaceFlinger::dumpProtoFromMainThread(uint32_t traceFlags) {
return schedule([=] { return dumpDrawingStateProto(traceFlags); }).get();
}
void SurfaceFlinger::dumpOffscreenLayers(std::string& result) {
result.append("Offscreen Layers:\n");
result.append(schedule([this] {
std::string result;
for (Layer* offscreenLayer : mOffscreenLayers) {
offscreenLayer->traverse(LayerVector::StateSet::Drawing,
[&](Layer* layer) {
layer->dumpCallingUidPid(result);
});
}
return result;
}).get());
}
void SurfaceFlinger::dumpAllLocked(const DumpArgs& args, std::string& result) const {
const bool colorize = !args.empty() && args[0] == String16("--color");
Colorizer colorizer(colorize);
// figure out if we're stuck somewhere
const nsecs_t now = systemTime();
const nsecs_t inTransaction(mDebugInTransaction);
nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
/*
* Dump library configuration.
*/
colorizer.bold(result);
result.append("Build configuration:");
colorizer.reset(result);
appendSfConfigString(result);
result.append("\n");
result.append("\nDisplay identification data:\n");
dumpDisplayIdentificationData(result);
result.append("\nWide-Color information:\n");
dumpWideColorInfo(result);
colorizer.bold(result);
result.append("Sync configuration: ");
colorizer.reset(result);
result.append(SyncFeatures::getInstance().toString());
result.append("\n\n");
colorizer.bold(result);
result.append("Scheduler:\n");
colorizer.reset(result);
dumpVSync(result);
result.append("\n");
dumpStaticScreenStats(result);
result.append("\n");
StringAppendF(&result, "Total missed frame count: %u\n", mFrameMissedCount.load());
StringAppendF(&result, "HWC missed frame count: %u\n", mHwcFrameMissedCount.load());
StringAppendF(&result, "GPU missed frame count: %u\n\n", mGpuFrameMissedCount.load());
dumpBufferingStats(result);
/*
* Dump the visible layer list
*/
colorizer.bold(result);
StringAppendF(&result, "Visible layers (count = %zu)\n", mNumLayers.load());
StringAppendF(&result, "GraphicBufferProducers: %zu, max %zu\n",
mGraphicBufferProducerList.size(), mMaxGraphicBufferProducerListSize);
colorizer.reset(result);
{
StringAppendF(&result, "Composition layers\n");
mDrawingState.traverseInZOrder([&](Layer* layer) {
auto* compositionState = layer->getCompositionState();
if (!compositionState || !compositionState->isVisible) return;
android::base::StringAppendF(&result, "* Layer %p (%s)\n", layer,
layer->getDebugName() ? layer->getDebugName()
: "<unknown>");
compositionState->dump(result);
});
}
/*
* Dump Display state
*/
colorizer.bold(result);
StringAppendF(&result, "Displays (%zu entries)\n", mDisplays.size());
colorizer.reset(result);
for (const auto& [token, display] : mDisplays) {
display->dump(result);
}
result.append("\n");
/*
* Dump CompositionEngine state
*/
mCompositionEngine->dump(result);
/*
* Dump SurfaceFlinger global state
*/
colorizer.bold(result);
result.append("SurfaceFlinger global state:\n");
colorizer.reset(result);
getRenderEngine().dump(result);
result.append("ClientCache state:\n");
ClientCache::getInstance().dump(result);
DebugEGLImageTracker::getInstance()->dump(result);
if (const auto display = getDefaultDisplayDeviceLocked()) {
display->getCompositionDisplay()->getState().undefinedRegion.dump(result,
"undefinedRegion");
StringAppendF(&result, " orientation=%s, isPoweredOn=%d\n",
toCString(display->getOrientation()), display->isPoweredOn());
}
StringAppendF(&result,
" transaction-flags : %08x\n"
" gpu_to_cpu_unsupported : %d\n",
mTransactionFlags.load(), !mGpuToCpuSupported);
if (const auto display = getDefaultDisplayDeviceLocked()) {
std::string fps, xDpi, yDpi;
if (const auto activeMode = display->getActiveMode()) {
fps = to_string(activeMode->getFps());
xDpi = base::StringPrintf("%.2f", activeMode->getDpiX());
yDpi = base::StringPrintf("%.2f", activeMode->getDpiY());
} else {
fps = "unknown";
xDpi = "unknown";
yDpi = "unknown";
}
StringAppendF(&result,
" refresh-rate : %s\n"
" x-dpi : %s\n"
" y-dpi : %s\n",
fps.c_str(), xDpi.c_str(), yDpi.c_str());
}
StringAppendF(&result, " transaction time: %f us\n", inTransactionDuration / 1000.0);
/*
* Tracing state
*/
mTracing.dump(result);
result.append("\n");
/*
* HWC layer minidump
*/
for (const auto& [token, display] : mDisplays) {
const auto displayId = HalDisplayId::tryCast(display->getId());
if (!displayId) {
continue;
}
StringAppendF(&result, "Display %s HWC layers:\n", to_string(*displayId).c_str());
Layer::miniDumpHeader(result);
const DisplayDevice& ref = *display;
mCurrentState.traverseInZOrder([&](Layer* layer) { layer->miniDump(result, ref); });
result.append("\n");
}
/*
* Dump HWComposer state
*/
colorizer.bold(result);
result.append("h/w composer state:\n");
colorizer.reset(result);
bool hwcDisabled = mDebugDisableHWC || mDebugRegion;
StringAppendF(&result, " h/w composer %s\n", hwcDisabled ? "disabled" : "enabled");
getHwComposer().dump(result);
/*
* Dump gralloc state
*/
const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
alloc.dump(result);
result.append(mTimeStats->miniDump());
result.append("\n");
}
mat4 SurfaceFlinger::calculateColorMatrix(float saturation) {
if (saturation == 1) {
return mat4();
}
float3 luminance{0.213f, 0.715f, 0.072f};
luminance *= 1.0f - saturation;
mat4 saturationMatrix = mat4(vec4{luminance.r + saturation, luminance.r, luminance.r, 0.0f},
vec4{luminance.g, luminance.g + saturation, luminance.g, 0.0f},
vec4{luminance.b, luminance.b, luminance.b + saturation, 0.0f},
vec4{0.0f, 0.0f, 0.0f, 1.0f});
return saturationMatrix;
}
void SurfaceFlinger::updateColorMatrixLocked() {
mat4 colorMatrix =
mClientColorMatrix * calculateColorMatrix(mGlobalSaturationFactor) * mDaltonizer();
if (mCurrentState.colorMatrix != colorMatrix) {
mCurrentState.colorMatrix = colorMatrix;
mCurrentState.colorMatrixChanged = true;
setTransactionFlags(eTransactionNeeded);
}
}
status_t SurfaceFlinger::CheckTransactCodeCredentials(uint32_t code) {
#pragma clang diagnostic push
#pragma clang diagnostic error "-Wswitch-enum"
switch (static_cast<ISurfaceComposerTag>(code)) {
// These methods should at minimum make sure that the client requested
// access to SF.
case BOOT_FINISHED:
case CLEAR_ANIMATION_FRAME_STATS:
case CREATE_DISPLAY:
case DESTROY_DISPLAY:
case ENABLE_VSYNC_INJECTIONS:
case GET_ANIMATION_FRAME_STATS:
case OVERRIDE_HDR_TYPES:
case GET_HDR_CAPABILITIES:
case SET_DESIRED_DISPLAY_MODE_SPECS:
case GET_DESIRED_DISPLAY_MODE_SPECS:
case SET_ACTIVE_COLOR_MODE:
case GET_AUTO_LOW_LATENCY_MODE_SUPPORT:
case SET_AUTO_LOW_LATENCY_MODE:
case GET_GAME_CONTENT_TYPE_SUPPORT:
case SET_GAME_CONTENT_TYPE:
case INJECT_VSYNC:
case SET_POWER_MODE:
case GET_DISPLAYED_CONTENT_SAMPLING_ATTRIBUTES:
case SET_DISPLAY_CONTENT_SAMPLING_ENABLED:
case GET_DISPLAYED_CONTENT_SAMPLE:
case NOTIFY_POWER_BOOST:
case SET_GLOBAL_SHADOW_SETTINGS:
case ACQUIRE_FRAME_RATE_FLEXIBILITY_TOKEN: {
// ACQUIRE_FRAME_RATE_FLEXIBILITY_TOKEN and OVERRIDE_HDR_TYPES are used by CTS tests,
// which acquire the necessary permission dynamically. Don't use the permission cache
// for this check.
bool usePermissionCache =
code != ACQUIRE_FRAME_RATE_FLEXIBILITY_TOKEN && code != OVERRIDE_HDR_TYPES;
if (!callingThreadHasUnscopedSurfaceFlingerAccess(usePermissionCache)) {
IPCThreadState* ipc = IPCThreadState::self();
ALOGE("Permission Denial: can't access SurfaceFlinger pid=%d, uid=%d",
ipc->getCallingPid(), ipc->getCallingUid());
return PERMISSION_DENIED;
}
return OK;
}
case GET_LAYER_DEBUG_INFO: {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_SHELL) && !PermissionCache::checkPermission(sDump, pid, uid)) {
ALOGE("Layer debug info permission denied for pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
return OK;
}
// Used by apps to hook Choreographer to SurfaceFlinger.
case CREATE_DISPLAY_EVENT_CONNECTION:
// The following calls are currently used by clients that do not
// request necessary permissions. However, they do not expose any secret
// information, so it is OK to pass them.
case AUTHENTICATE_SURFACE:
case GET_ACTIVE_COLOR_MODE:
case GET_ACTIVE_DISPLAY_MODE:
case GET_PHYSICAL_DISPLAY_IDS:
case GET_PHYSICAL_DISPLAY_TOKEN:
case GET_DISPLAY_COLOR_MODES:
case GET_DISPLAY_NATIVE_PRIMARIES:
case GET_STATIC_DISPLAY_INFO:
case GET_DYNAMIC_DISPLAY_INFO:
case GET_DISPLAY_MODES:
case GET_DISPLAY_STATE:
case GET_DISPLAY_STATS:
case GET_SUPPORTED_FRAME_TIMESTAMPS:
// Calling setTransactionState is safe, because you need to have been
// granted a reference to Client* and Handle* to do anything with it.
case SET_TRANSACTION_STATE:
case CREATE_CONNECTION:
case GET_COLOR_MANAGEMENT:
case GET_COMPOSITION_PREFERENCE:
case GET_PROTECTED_CONTENT_SUPPORT:
case IS_WIDE_COLOR_DISPLAY:
// setFrameRate() is deliberately available for apps to call without any
// special permissions.
case SET_FRAME_RATE:
case GET_DISPLAY_BRIGHTNESS_SUPPORT:
// captureLayers and captureDisplay will handle the permission check in the function
case CAPTURE_LAYERS:
case CAPTURE_DISPLAY:
case SET_DISPLAY_BRIGHTNESS:
case SET_FRAME_TIMELINE_INFO:
case GET_GPU_CONTEXT_PRIORITY:
case GET_EXTRA_BUFFER_COUNT: {
// This is not sensitive information, so should not require permission control.
return OK;
}
case ADD_HDR_LAYER_INFO_LISTENER:
case REMOVE_HDR_LAYER_INFO_LISTENER: {
// TODO (b/183985553): Should getting & setting brightness be part of this...?
// codes that require permission check
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS) &&
!PermissionCache::checkPermission(sControlDisplayBrightness, pid, uid)) {
ALOGE("Permission Denial: can't control brightness pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
return OK;
}
case ADD_FPS_LISTENER:
case REMOVE_FPS_LISTENER:
case ADD_REGION_SAMPLING_LISTENER:
case REMOVE_REGION_SAMPLING_LISTENER: {
// codes that require permission check
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS) &&
!PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
ALOGE("Permission Denial: can't read framebuffer pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
return OK;
}
case ADD_TRANSACTION_TRACE_LISTENER:
case CAPTURE_DISPLAY_BY_ID: {
IPCThreadState* ipc = IPCThreadState::self();
const int uid = ipc->getCallingUid();
if (uid == AID_ROOT || uid == AID_GRAPHICS || uid == AID_SYSTEM || uid == AID_SHELL) {
return OK;
}
return PERMISSION_DENIED;
}
}
// These codes are used for the IBinder protocol to either interrogate the recipient
// side of the transaction for its canonical interface descriptor or to dump its state.
// We let them pass by default.
if (code == IBinder::INTERFACE_TRANSACTION || code == IBinder::DUMP_TRANSACTION ||
code == IBinder::PING_TRANSACTION || code == IBinder::SHELL_COMMAND_TRANSACTION ||
code == IBinder::SYSPROPS_TRANSACTION) {
return OK;
}
// Numbers from 1000 to 1038 are currently used for backdoors. The code
// in onTransact verifies that the user is root, and has access to use SF.
if (code >= 1000 && code <= 1039) {
ALOGV("Accessing SurfaceFlinger through backdoor code: %u", code);
return OK;
}
ALOGE("Permission Denial: SurfaceFlinger did not recognize request code: %u", code);
return PERMISSION_DENIED;
#pragma clang diagnostic pop
}
status_t SurfaceFlinger::onTransact(uint32_t code, const Parcel& data, Parcel* reply,
uint32_t flags) {
status_t credentialCheck = CheckTransactCodeCredentials(code);
if (credentialCheck != OK) {
return credentialCheck;
}
status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
CHECK_INTERFACE(ISurfaceComposer, data, reply);
IPCThreadState* ipc = IPCThreadState::self();
const int uid = ipc->getCallingUid();
if (CC_UNLIKELY(uid != AID_SYSTEM
&& !PermissionCache::checkCallingPermission(sHardwareTest))) {
const int pid = ipc->getCallingPid();
ALOGE("Permission Denial: "
"can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
int n;
switch (code) {
case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
return NO_ERROR;
case 1002: // SHOW_UPDATES
n = data.readInt32();
mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
case 1004:{ // repaint everything
repaintEverything();
return NO_ERROR;
}
case 1005:{ // force transaction
Mutex::Autolock _l(mStateLock);
setTransactionFlags(
eTransactionNeeded|
eDisplayTransactionNeeded|
eTraversalNeeded);
return NO_ERROR;
}
case 1006:{ // send empty update
signalRefresh();
return NO_ERROR;
}
case 1008: // toggle use of hw composer
n = data.readInt32();
mDebugDisableHWC = n != 0;
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
case 1009: // toggle use of transform hint
n = data.readInt32();
mDebugDisableTransformHint = n != 0;
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
case 1010: // interrogate.
reply->writeInt32(0);
reply->writeInt32(0);
reply->writeInt32(mDebugRegion);
reply->writeInt32(0);
reply->writeInt32(mDebugDisableHWC);
return NO_ERROR;
case 1013: {
const auto display = getDefaultDisplayDevice();
if (!display) {
return NAME_NOT_FOUND;
}
reply->writeInt32(display->getPageFlipCount());
return NO_ERROR;
}
case 1014: {
Mutex::Autolock _l(mStateLock);
// daltonize
n = data.readInt32();
switch (n % 10) {
case 1:
mDaltonizer.setType(ColorBlindnessType::Protanomaly);
break;
case 2:
mDaltonizer.setType(ColorBlindnessType::Deuteranomaly);
break;
case 3:
mDaltonizer.setType(ColorBlindnessType::Tritanomaly);
break;
default:
mDaltonizer.setType(ColorBlindnessType::None);
break;
}
if (n >= 10) {
mDaltonizer.setMode(ColorBlindnessMode::Correction);
} else {
mDaltonizer.setMode(ColorBlindnessMode::Simulation);
}
updateColorMatrixLocked();
return NO_ERROR;
}
case 1015: {
Mutex::Autolock _l(mStateLock);
// apply a color matrix
n = data.readInt32();
if (n) {
// color matrix is sent as a column-major mat4 matrix
for (size_t i = 0 ; i < 4; i++) {
for (size_t j = 0; j < 4; j++) {
mClientColorMatrix[i][j] = data.readFloat();
}
}
} else {
mClientColorMatrix = mat4();
}
// Check that supplied matrix's last row is {0,0,0,1} so we can avoid
// the division by w in the fragment shader
float4 lastRow(transpose(mClientColorMatrix)[3]);
if (any(greaterThan(abs(lastRow - float4{0, 0, 0, 1}), float4{1e-4f}))) {
ALOGE("The color transform's last row must be (0, 0, 0, 1)");
}
updateColorMatrixLocked();
return NO_ERROR;
}
case 1016: { // Unused.
return NAME_NOT_FOUND;
}
case 1017: {
n = data.readInt32();
mForceFullDamage = n != 0;
return NO_ERROR;
}
case 1018: { // Modify Choreographer's duration
n = data.readInt32();
mScheduler->setDuration(mAppConnectionHandle, std::chrono::nanoseconds(n), 0ns);
return NO_ERROR;
}
case 1019: { // Modify SurfaceFlinger's duration
n = data.readInt32();
mScheduler->setDuration(mSfConnectionHandle, std::chrono::nanoseconds(n), 0ns);
return NO_ERROR;
}
case 1020: { // Layer updates interceptor
n = data.readInt32();
if (n) {
ALOGV("Interceptor enabled");
mInterceptor->enable(mDrawingState.layersSortedByZ, mDrawingState.displays);
}
else{
ALOGV("Interceptor disabled");
mInterceptor->disable();
}
return NO_ERROR;
}
case 1021: { // Disable HWC virtual displays
n = data.readInt32();
mUseHwcVirtualDisplays = !n;
return NO_ERROR;
}
case 1022: { // Set saturation boost
Mutex::Autolock _l(mStateLock);
mGlobalSaturationFactor = std::max(0.0f, std::min(data.readFloat(), 2.0f));
updateColorMatrixLocked();
return NO_ERROR;
}
case 1023: { // Set native mode
int32_t colorMode;
mDisplayColorSetting = static_cast<DisplayColorSetting>(data.readInt32());
if (data.readInt32(&colorMode) == NO_ERROR) {
mForceColorMode = static_cast<ColorMode>(colorMode);
}
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
}
// Deprecate, use 1030 to check whether the device is color managed.
case 1024: {
return NAME_NOT_FOUND;
}
case 1025: { // Set layer tracing
n = data.readInt32();
bool tracingEnabledChanged;
if (n) {
ALOGD("LayerTracing enabled");
tracingEnabledChanged = mTracing.enable();
if (tracingEnabledChanged) {
schedule([&]() MAIN_THREAD { mTracing.notify("start"); }).wait();
}
} else {
ALOGD("LayerTracing disabled");
tracingEnabledChanged = mTracing.disable();
}
mTracingEnabledChanged = tracingEnabledChanged;
reply->writeInt32(NO_ERROR);
return NO_ERROR;
}
case 1026: { // Get layer tracing status
reply->writeBool(mTracing.isEnabled());
return NO_ERROR;
}
// Is a DisplayColorSetting supported?
case 1027: {
const auto display = getDefaultDisplayDevice();
if (!display) {
return NAME_NOT_FOUND;
}
DisplayColorSetting setting = static_cast<DisplayColorSetting>(data.readInt32());
switch (setting) {
case DisplayColorSetting::kManaged:
reply->writeBool(useColorManagement);
break;
case DisplayColorSetting::kUnmanaged:
reply->writeBool(true);
break;
case DisplayColorSetting::kEnhanced:
reply->writeBool(display->hasRenderIntent(RenderIntent::ENHANCE));
break;
default: // vendor display color setting
reply->writeBool(
display->hasRenderIntent(static_cast<RenderIntent>(setting)));
break;
}
return NO_ERROR;
}
case 1028: { // Unused.
return NAME_NOT_FOUND;
}
// Set buffer size for SF tracing (value in KB)
case 1029: {
n = data.readInt32();
if (n <= 0 || n > MAX_TRACING_MEMORY) {
ALOGW("Invalid buffer size: %d KB", n);
reply->writeInt32(BAD_VALUE);
return BAD_VALUE;
}
ALOGD("Updating trace buffer to %d KB", n);
mTracing.setBufferSize(n * 1024);
reply->writeInt32(NO_ERROR);
return NO_ERROR;
}
// Is device color managed?
case 1030: {
reply->writeBool(useColorManagement);
return NO_ERROR;
}
// Override default composition data space
// adb shell service call SurfaceFlinger 1031 i32 1 DATASPACE_NUMBER DATASPACE_NUMBER \
// && adb shell stop zygote && adb shell start zygote
// to restore: adb shell service call SurfaceFlinger 1031 i32 0 && \
// adb shell stop zygote && adb shell start zygote
case 1031: {
Mutex::Autolock _l(mStateLock);
n = data.readInt32();
if (n) {
n = data.readInt32();
if (n) {
Dataspace dataspace = static_cast<Dataspace>(n);
if (!validateCompositionDataspace(dataspace)) {
return BAD_VALUE;
}
mDefaultCompositionDataspace = dataspace;
}
n = data.readInt32();
if (n) {
Dataspace dataspace = static_cast<Dataspace>(n);
if (!validateCompositionDataspace(dataspace)) {
return BAD_VALUE;
}
mWideColorGamutCompositionDataspace = dataspace;
}
} else {
// restore composition data space.
mDefaultCompositionDataspace = defaultCompositionDataspace;
mWideColorGamutCompositionDataspace = wideColorGamutCompositionDataspace;
}
return NO_ERROR;
}
// Set trace flags
case 1033: {
n = data.readUint32();
ALOGD("Updating trace flags to 0x%x", n);
mTracing.setTraceFlags(n);
reply->writeInt32(NO_ERROR);
return NO_ERROR;
}
case 1034: {
switch (n = data.readInt32()) {
case 0:
case 1:
enableRefreshRateOverlay(static_cast<bool>(n));
break;
default: {
Mutex::Autolock lock(mStateLock);
reply->writeBool(mRefreshRateOverlay != nullptr);
}
}
return NO_ERROR;
}
case 1035: {
const int modeId = data.readInt32();
mDebugDisplayModeSetByBackdoor = false;
const auto displayId = getInternalDisplayId();
if (!displayId) {
ALOGE("No internal display found.");
return NO_ERROR;
}
status_t result = setActiveMode(getPhysicalDisplayToken(*displayId), modeId);
if (result != NO_ERROR) {
return result;
}
mDebugDisplayModeSetByBackdoor = true;
return NO_ERROR;
}
case 1036: {
if (data.readInt32() > 0) {
status_t result =
acquireFrameRateFlexibilityToken(&mDebugFrameRateFlexibilityToken);
if (result != NO_ERROR) {
return result;
}
} else {
mDebugFrameRateFlexibilityToken = nullptr;
}
return NO_ERROR;
}
// Inject a hotplug connected event for the primary display. This will deallocate and
// reallocate the display state including framebuffers.
case 1037: {
std::optional<hal::HWDisplayId> hwcId;
{
Mutex::Autolock lock(mStateLock);
hwcId = getHwComposer().getInternalHwcDisplayId();
}
onHotplugReceived(getBE().mComposerSequenceId, *hwcId, hal::Connection::CONNECTED);
return NO_ERROR;
}
// Modify the max number of display frames stored within FrameTimeline
case 1038: {
n = data.readInt32();
if (n < 0 || n > MAX_ALLOWED_DISPLAY_FRAMES) {
ALOGW("Invalid max size. Maximum allowed is %d", MAX_ALLOWED_DISPLAY_FRAMES);
return BAD_VALUE;
}
if (n == 0) {
// restore to default
mFrameTimeline->reset();
return NO_ERROR;
}
mFrameTimeline->setMaxDisplayFrames(n);
return NO_ERROR;
}
case 1039: {
PhysicalDisplayId displayId = [&]() {
Mutex::Autolock lock(mStateLock);
return getDefaultDisplayDeviceLocked()->getPhysicalId();
}();
auto inUid = static_cast<uid_t>(data.readInt32());
const auto refreshRate = data.readFloat();
mScheduler->setPreferredRefreshRateForUid(FrameRateOverride{inUid, refreshRate});
mScheduler->onFrameRateOverridesChanged(mAppConnectionHandle, displayId);
return NO_ERROR;
}
}
}
return err;
}
void SurfaceFlinger::repaintEverything() {
mRepaintEverything = true;
signalTransaction();
}
void SurfaceFlinger::repaintEverythingForHWC() {
mRepaintEverything = true;
mPowerAdvisor.notifyDisplayUpdateImminent();
mEventQueue->invalidate();
}
void SurfaceFlinger::kernelTimerChanged(bool expired) {
static bool updateOverlay =
property_get_bool("debug.sf.kernel_idle_timer_update_overlay", true);
if (!updateOverlay) return;
if (Mutex::Autolock lock(mStateLock); !mRefreshRateOverlay) return;
// Update the overlay on the main thread to avoid race conditions with
// mRefreshRateConfigs->getCurrentRefreshRate()
static_cast<void>(schedule([=] {
const auto desiredActiveMode = getDesiredActiveMode();
const std::optional<DisplayModeId> desiredModeId =
desiredActiveMode ? std::make_optional(desiredActiveMode->modeId) : std::nullopt;
const bool timerExpired = mKernelIdleTimerEnabled && expired;
const auto newRefreshRate =
mRefreshRateConfigs->onKernelTimerChanged(desiredModeId, timerExpired);
if (newRefreshRate) {
if (Mutex::Autolock lock(mStateLock); mRefreshRateOverlay) {
mRefreshRateOverlay->changeRefreshRate(*newRefreshRate);
}
mEventQueue->invalidate();
}
}));
}
void SurfaceFlinger::toggleKernelIdleTimer() {
using KernelIdleTimerAction = scheduler::RefreshRateConfigs::KernelIdleTimerAction;
// If the support for kernel idle timer is disabled in SF code, don't do anything.
if (!mSupportKernelIdleTimer) {
return;
}
const KernelIdleTimerAction action = mRefreshRateConfigs->getIdleTimerAction();
switch (action) {
case KernelIdleTimerAction::TurnOff:
if (mKernelIdleTimerEnabled) {
ATRACE_INT("KernelIdleTimer", 0);
base::SetProperty(KERNEL_IDLE_TIMER_PROP, "false");
mKernelIdleTimerEnabled = false;
}
break;
case KernelIdleTimerAction::TurnOn:
if (!mKernelIdleTimerEnabled) {
ATRACE_INT("KernelIdleTimer", 1);
base::SetProperty(KERNEL_IDLE_TIMER_PROP, "true");
mKernelIdleTimerEnabled = true;
}
break;
case KernelIdleTimerAction::NoChange:
break;
}
}
// A simple RAII class to disconnect from an ANativeWindow* when it goes out of scope
class WindowDisconnector {
public:
WindowDisconnector(ANativeWindow* window, int api) : mWindow(window), mApi(api) {}
~WindowDisconnector() {
native_window_api_disconnect(mWindow, mApi);
}
private:
ANativeWindow* mWindow;
const int mApi;
};
static Dataspace pickDataspaceFromColorMode(const ColorMode colorMode) {
switch (colorMode) {
case ColorMode::DISPLAY_P3:
case ColorMode::BT2100_PQ:
case ColorMode::BT2100_HLG:
case ColorMode::DISPLAY_BT2020:
return Dataspace::DISPLAY_P3;
default:
return Dataspace::V0_SRGB;
}
}
static status_t validateScreenshotPermissions(const CaptureArgs& captureArgs) {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if (uid == AID_GRAPHICS || PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
return OK;
}
// If the caller doesn't have the correct permissions but is only attempting to screenshot
// itself, we allow it to continue.
if (captureArgs.uid == uid) {
return OK;
}
ALOGE("Permission Denial: can't take screenshot pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
status_t SurfaceFlinger::setSchedFifo(bool enabled) {
static constexpr int kFifoPriority = 2;
static constexpr int kOtherPriority = 0;
struct sched_param param = {0};
int sched_policy;
if (enabled) {
sched_policy = SCHED_FIFO;
param.sched_priority = kFifoPriority;
} else {
sched_policy = SCHED_OTHER;
param.sched_priority = kOtherPriority;
}
if (sched_setscheduler(0, sched_policy, &param) != 0) {
return -errno;
}
return NO_ERROR;
}
sp<DisplayDevice> SurfaceFlinger::getDisplayByIdOrLayerStack(uint64_t displayOrLayerStack) {
if (const sp<IBinder> displayToken =
getPhysicalDisplayTokenLocked(PhysicalDisplayId{displayOrLayerStack})) {
return getDisplayDeviceLocked(displayToken);
}
// Couldn't find display by displayId. Try to get display by layerStack since virtual displays
// may not have a displayId.
return getDisplayByLayerStack(displayOrLayerStack);
}
sp<DisplayDevice> SurfaceFlinger::getDisplayById(DisplayId displayId) const {
for (const auto& [token, display] : mDisplays) {
if (display->getId() == displayId) {
return display;
}
}
return nullptr;
}
sp<DisplayDevice> SurfaceFlinger::getDisplayByLayerStack(uint64_t layerStack) {
for (const auto& [token, display] : mDisplays) {
if (display->getLayerStack() == layerStack) {
return display;
}
}
return nullptr;
}
status_t SurfaceFlinger::captureDisplay(const DisplayCaptureArgs& args,
const sp<IScreenCaptureListener>& captureListener) {
ATRACE_CALL();
status_t validate = validateScreenshotPermissions(args);
if (validate != OK) {
return validate;
}
if (!args.displayToken) return BAD_VALUE;
wp<DisplayDevice> displayWeak;
ui::LayerStack layerStack;
ui::Size reqSize(args.width, args.height);
ui::Dataspace dataspace;
{
Mutex::Autolock lock(mStateLock);
sp<DisplayDevice> display = getDisplayDeviceLocked(args.displayToken);
if (!display) return NAME_NOT_FOUND;
displayWeak = display;
layerStack = display->getLayerStack();
// set the requested width/height to the logical display layer stack rect size by default
if (args.width == 0 || args.height == 0) {
reqSize = display->getLayerStackSpaceRect().getSize();
}
// The dataspace is depended on the color mode of display, that could use non-native mode
// (ex. displayP3) to enhance the content, but some cases are checking native RGB in bytes,
// and failed if display is not in native mode. This provide a way to force using native
// colors when capture.
dataspace = args.dataspace;
if (dataspace == ui::Dataspace::UNKNOWN) {
const ui::ColorMode colorMode = display->getCompositionDisplay()->getState().colorMode;
dataspace = pickDataspaceFromColorMode(colorMode);
}
}
RenderAreaFuture renderAreaFuture = ftl::defer([=] {
return DisplayRenderArea::create(displayWeak, args.sourceCrop, reqSize, dataspace,
args.useIdentityTransform, args.captureSecureLayers);
});
auto traverseLayers = [this, args, layerStack](const LayerVector::Visitor& visitor) {
traverseLayersInLayerStack(layerStack, args.uid, visitor);
};
return captureScreenCommon(std::move(renderAreaFuture), traverseLayers, reqSize,
args.pixelFormat, args.allowProtected, args.grayscale,
captureListener);
}
status_t SurfaceFlinger::captureDisplay(uint64_t displayOrLayerStack,
const sp<IScreenCaptureListener>& captureListener) {
ui::LayerStack layerStack;
wp<DisplayDevice> displayWeak;
ui::Size size;
ui::Dataspace dataspace;
{
Mutex::Autolock lock(mStateLock);
sp<DisplayDevice> display = getDisplayByIdOrLayerStack(displayOrLayerStack);
if (!display) {
return NAME_NOT_FOUND;
}
layerStack = display->getLayerStack();
displayWeak = display;
size = display->getLayerStackSpaceRect().getSize();
dataspace =
pickDataspaceFromColorMode(display->getCompositionDisplay()->getState().colorMode);
}
RenderAreaFuture renderAreaFuture = ftl::defer([=] {
return DisplayRenderArea::create(displayWeak, Rect(), size, dataspace,
false /* useIdentityTransform */,
false /* captureSecureLayers */);
});
auto traverseLayers = [this, layerStack](const LayerVector::Visitor& visitor) {
traverseLayersInLayerStack(layerStack, CaptureArgs::UNSET_UID, visitor);
};
return captureScreenCommon(std::move(renderAreaFuture), traverseLayers, size,
ui::PixelFormat::RGBA_8888, false /* allowProtected */,
false /* grayscale */, captureListener);
}
status_t SurfaceFlinger::captureLayers(const LayerCaptureArgs& args,
const sp<IScreenCaptureListener>& captureListener) {
ATRACE_CALL();
status_t validate = validateScreenshotPermissions(args);
if (validate != OK) {
return validate;
}
ui::Size reqSize;
sp<Layer> parent;
Rect crop(args.sourceCrop);
std::unordered_set<sp<Layer>, ISurfaceComposer::SpHash<Layer>> excludeLayers;
Rect layerStackSpaceRect;
ui::Dataspace dataspace;
bool captureSecureLayers;
{
Mutex::Autolock lock(mStateLock);
parent = fromHandleLocked(args.layerHandle).promote();
if (parent == nullptr || parent->isRemovedFromCurrentState()) {
ALOGE("captureLayers called with an invalid or removed parent");
return NAME_NOT_FOUND;
}
const int uid = IPCThreadState::self()->getCallingUid();
const bool forSystem = uid == AID_GRAPHICS || uid == AID_SYSTEM;
if (!forSystem && parent->getCurrentState().flags & layer_state_t::eLayerSecure) {
ALOGW("Attempting to capture secure layer: PERMISSION_DENIED");
return PERMISSION_DENIED;
}
Rect parentSourceBounds = parent->getCroppedBufferSize(parent->getCurrentState());
if (args.sourceCrop.width() <= 0) {
crop.left = 0;
crop.right = parentSourceBounds.getWidth();
}
if (args.sourceCrop.height() <= 0) {
crop.top = 0;
crop.bottom = parentSourceBounds.getHeight();
}
if (crop.isEmpty() || args.frameScaleX <= 0.0f || args.frameScaleY <= 0.0f) {
// Error out if the layer has no source bounds (i.e. they are boundless) and a source
// crop was not specified, or an invalid frame scale was provided.
return BAD_VALUE;
}
reqSize = ui::Size(crop.width() * args.frameScaleX, crop.height() * args.frameScaleY);
for (const auto& handle : args.excludeHandles) {
sp<Layer> excludeLayer = fromHandleLocked(handle).promote();
if (excludeLayer != nullptr) {
excludeLayers.emplace(excludeLayer);
} else {
ALOGW("Invalid layer handle passed as excludeLayer to captureLayers");
return NAME_NOT_FOUND;
}
}
const auto display = getDisplayByLayerStack(parent->getLayerStack());
if (!display) {
return NAME_NOT_FOUND;
}
layerStackSpaceRect = display->getLayerStackSpaceRect();
// The dataspace is depended on the color mode of display, that could use non-native mode
// (ex. displayP3) to enhance the content, but some cases are checking native RGB in bytes,
// and failed if display is not in native mode. This provide a way to force using native
// colors when capture.
dataspace = args.dataspace;
if (dataspace == ui::Dataspace::UNKNOWN) {
const ui::ColorMode colorMode = display->getCompositionDisplay()->getState().colorMode;
dataspace = pickDataspaceFromColorMode(colorMode);
}
captureSecureLayers = args.captureSecureLayers && display->isSecure();
} // mStateLock
// really small crop or frameScale
if (reqSize.width <= 0) {
reqSize.width = 1;
}
if (reqSize.height <= 0) {
reqSize.height = 1;
}
bool childrenOnly = args.childrenOnly;
RenderAreaFuture renderAreaFuture = ftl::defer([=]() -> std::unique_ptr<RenderArea> {
return std::make_unique<LayerRenderArea>(*this, parent, crop, reqSize, dataspace,
childrenOnly, layerStackSpaceRect,
captureSecureLayers);
});
auto traverseLayers = [parent, args, excludeLayers](const LayerVector::Visitor& visitor) {
parent->traverseChildrenInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
if (!layer->isVisible()) {
return;
} else if (args.childrenOnly && layer == parent.get()) {
return;
} else if (args.uid != CaptureArgs::UNSET_UID && args.uid != layer->getOwnerUid()) {
return;
}
sp<Layer> p = layer;
while (p != nullptr) {
if (excludeLayers.count(p) != 0) {
return;
}
p = p->getParent();
}
visitor(layer);
});
};
return captureScreenCommon(std::move(renderAreaFuture), traverseLayers, reqSize,
args.pixelFormat, args.allowProtected, args.grayscale,
captureListener);
}
status_t SurfaceFlinger::captureScreenCommon(RenderAreaFuture renderAreaFuture,
TraverseLayersFunction traverseLayers,
ui::Size bufferSize, ui::PixelFormat reqPixelFormat,
bool allowProtected, bool grayscale,
const sp<IScreenCaptureListener>& captureListener) {
ATRACE_CALL();
// Loop over all visible layers to see whether there's any protected layer. A protected layer is
// typically a layer with DRM contents, or have the GRALLOC_USAGE_PROTECTED set on the buffer.
// A protected layer has no implication on whether it's secure, which is explicitly set by
// application to avoid being screenshot or drawn via unsecure display.
const bool supportsProtected = getRenderEngine().supportsProtectedContent();
bool hasProtectedLayer = false;
if (allowProtected && supportsProtected) {
hasProtectedLayer = schedule([=]() {
bool protectedLayerFound = false;
traverseLayers([&](Layer* layer) {
protectedLayerFound = protectedLayerFound ||
(layer->isVisible() && layer->isProtected());
});
return protectedLayerFound;
}).get();
}
const uint32_t usage = GRALLOC_USAGE_HW_COMPOSER | GRALLOC_USAGE_HW_RENDER |
GRALLOC_USAGE_HW_TEXTURE |
(hasProtectedLayer && allowProtected && supportsProtected
? GRALLOC_USAGE_PROTECTED
: GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN);
sp<GraphicBuffer> buffer =
getFactory().createGraphicBuffer(bufferSize.getWidth(), bufferSize.getHeight(),
static_cast<android_pixel_format>(reqPixelFormat),
1 /* layerCount */, usage, "screenshot");
const status_t bufferStatus = buffer->initCheck();
LOG_ALWAYS_FATAL_IF(bufferStatus != OK, "captureScreenCommon: Buffer failed to allocate: %d",
bufferStatus);
return captureScreenCommon(std::move(renderAreaFuture), traverseLayers, buffer,
false /* regionSampling */, grayscale, captureListener);
}
status_t SurfaceFlinger::captureScreenCommon(RenderAreaFuture renderAreaFuture,
TraverseLayersFunction traverseLayers,
sp<GraphicBuffer>& buffer, bool regionSampling,
bool grayscale,
const sp<IScreenCaptureListener>& captureListener) {
ATRACE_CALL();
if (captureListener == nullptr) {
ALOGE("capture screen must provide a capture listener callback");
return BAD_VALUE;
}
const int uid = IPCThreadState::self()->getCallingUid();
const bool forSystem = uid == AID_GRAPHICS || uid == AID_SYSTEM;
static_cast<void>(schedule([=, renderAreaFuture = std::move(renderAreaFuture)]() mutable {
if (mRefreshPending) {
ALOGW("Skipping screenshot for now");
captureScreenCommon(std::move(renderAreaFuture), traverseLayers, buffer, regionSampling,
grayscale, captureListener);
return;
}
ScreenCaptureResults captureResults;
std::unique_ptr<RenderArea> renderArea = renderAreaFuture.get();
if (!renderArea) {
ALOGW("Skipping screen capture because of invalid render area.");
captureResults.result = NO_MEMORY;
captureListener->onScreenCaptureCompleted(captureResults);
return;
}
status_t result = NO_ERROR;
renderArea->render([&] {
result = renderScreenImplLocked(*renderArea, traverseLayers, buffer, forSystem,
regionSampling, grayscale, captureResults);
});
// TODO(b/180767535): Remove this once we optimize buffer lifecycle for RenderEngine
// Only do this when we're not doing region sampling, to allow the region sampling thread to
// manage buffer lifecycle itself.
if (!regionSampling &&
getRenderEngine().getRenderEngineType() ==
renderengine::RenderEngine::RenderEngineType::SKIA_GL_THREADED) {
getRenderEngine().unbindExternalTextureBuffer(buffer->getId());
}
captureResults.result = result;
captureListener->onScreenCaptureCompleted(captureResults);
}));
return NO_ERROR;
}
status_t SurfaceFlinger::renderScreenImplLocked(const RenderArea& renderArea,
TraverseLayersFunction traverseLayers,
const sp<GraphicBuffer>& buffer, bool forSystem,
bool regionSampling, bool grayscale,
ScreenCaptureResults& captureResults) {
ATRACE_CALL();
traverseLayers([&](Layer* layer) {
captureResults.capturedSecureLayers =
captureResults.capturedSecureLayers || (layer->isVisible() && layer->isSecure());
});
const bool useProtected = buffer->getUsage() & GRALLOC_USAGE_PROTECTED;
// We allow the system server to take screenshots of secure layers for
// use in situations like the Screen-rotation animation and place
// the impetus on WindowManager to not persist them.
if (captureResults.capturedSecureLayers && !forSystem) {
ALOGW("FB is protected: PERMISSION_DENIED");
return PERMISSION_DENIED;
}
captureResults.buffer = buffer;
captureResults.capturedDataspace = renderArea.getReqDataSpace();
const auto reqWidth = renderArea.getReqWidth();
const auto reqHeight = renderArea.getReqHeight();
const auto sourceCrop = renderArea.getSourceCrop();
const auto transform = renderArea.getTransform();
const auto rotation = renderArea.getRotationFlags();
const auto& layerStackSpaceRect = renderArea.getLayerStackSpaceRect();
renderengine::DisplaySettings clientCompositionDisplay;
std::vector<compositionengine::LayerFE::LayerSettings> clientCompositionLayers;
// assume that bounds are never offset, and that they are the same as the
// buffer bounds.
clientCompositionDisplay.physicalDisplay = Rect(reqWidth, reqHeight);
clientCompositionDisplay.clip = sourceCrop;
clientCompositionDisplay.orientation = rotation;
clientCompositionDisplay.outputDataspace = renderArea.getReqDataSpace();
clientCompositionDisplay.maxLuminance = DisplayDevice::sDefaultMaxLumiance;
const float colorSaturation = grayscale ? 0 : 1;
clientCompositionDisplay.colorTransform = calculateColorMatrix(colorSaturation);
const float alpha = RenderArea::getCaptureFillValue(renderArea.getCaptureFill());
compositionengine::LayerFE::LayerSettings fillLayer;
fillLayer.source.buffer.buffer = nullptr;
fillLayer.source.solidColor = half3(0.0, 0.0, 0.0);
fillLayer.geometry.boundaries =
FloatRect(sourceCrop.left, sourceCrop.top, sourceCrop.right, sourceCrop.bottom);
fillLayer.alpha = half(alpha);
clientCompositionLayers.push_back(fillLayer);
const auto display = renderArea.getDisplayDevice();
std::vector<Layer*> renderedLayers;
Region clearRegion = Region::INVALID_REGION;
bool disableBlurs = false;
traverseLayers([&](Layer* layer) {
disableBlurs |= layer->getCurrentState().sidebandStream != nullptr;
Region clip(renderArea.getBounds());
compositionengine::LayerFE::ClientCompositionTargetSettings targetSettings{
clip,
layer->needsFilteringForScreenshots(display.get(), transform) ||
renderArea.needsFiltering(),
renderArea.isSecure(),
useProtected,
clearRegion,
layerStackSpaceRect,
clientCompositionDisplay.outputDataspace,
true, /* realContentIsVisible */
false, /* clearContent */
disableBlurs,
};
std::vector<compositionengine::LayerFE::LayerSettings> results =
layer->prepareClientCompositionList(targetSettings);
if (results.size() > 0) {
for (auto& settings : results) {
settings.geometry.positionTransform =
transform.asMatrix4() * settings.geometry.positionTransform;
// There's no need to process blurs when we're executing region sampling,
// we're just trying to understand what we're drawing, and doing so without
// blurs is already a pretty good approximation.
if (regionSampling) {
settings.backgroundBlurRadius = 0;
}
}
clientCompositionLayers.insert(clientCompositionLayers.end(),
std::make_move_iterator(results.begin()),
std::make_move_iterator(results.end()));
renderedLayers.push_back(layer);
}
});
std::vector<const renderengine::LayerSettings*> clientCompositionLayerPointers(
clientCompositionLayers.size());
std::transform(clientCompositionLayers.begin(), clientCompositionLayers.end(),
clientCompositionLayerPointers.begin(),
std::pointer_traits<renderengine::LayerSettings*>::pointer_to);
clientCompositionDisplay.clearRegion = clearRegion;
// Use an empty fence for the buffer fence, since we just created the buffer so
// there is no need for synchronization with the GPU.
base::unique_fd bufferFence;
base::unique_fd drawFence;
getRenderEngine().useProtectedContext(useProtected);
// TODO(b/180767535): Remove this once we optimize buffer lifecycle for RenderEngine
const bool useFramebufferCache = getRenderEngine().getRenderEngineType() ==
renderengine::RenderEngine::RenderEngineType::SKIA_GL_THREADED;
getRenderEngine().drawLayers(clientCompositionDisplay, clientCompositionLayerPointers, buffer,
useFramebufferCache, std::move(bufferFence), &drawFence);
if (drawFence >= 0) {
sp<Fence> releaseFence = new Fence(dup(drawFence));
for (auto* layer : renderedLayers) {
layer->onLayerDisplayed(releaseFence);
}
}
captureResults.fence = new Fence(drawFence.release());
// Always switch back to unprotected context.
getRenderEngine().useProtectedContext(false);
return NO_ERROR;
}
void SurfaceFlinger::setInputWindowsFinished() {
Mutex::Autolock _l(mStateLock);
signalSynchronousTransactions();
}
// ---------------------------------------------------------------------------
void SurfaceFlinger::State::traverse(const LayerVector::Visitor& visitor) const {
layersSortedByZ.traverse(visitor);
}
void SurfaceFlinger::State::traverseInZOrder(const LayerVector::Visitor& visitor) const {
layersSortedByZ.traverseInZOrder(stateSet, visitor);
}
void SurfaceFlinger::State::traverseInReverseZOrder(const LayerVector::Visitor& visitor) const {
layersSortedByZ.traverseInReverseZOrder(stateSet, visitor);
}
void SurfaceFlinger::traverseLayersInLayerStack(ui::LayerStack layerStack, const int32_t uid,
const LayerVector::Visitor& visitor) {
// We loop through the first level of layers without traversing,
// as we need to determine which layers belong to the requested display.
for (const auto& layer : mDrawingState.layersSortedByZ) {
if (!layer->belongsToDisplay(layerStack)) {
continue;
}
// relative layers are traversed in Layer::traverseInZOrder
layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
if (layer->getPrimaryDisplayOnly()) {
return;
}
if (!layer->isVisible()) {
return;
}
if (uid != CaptureArgs::UNSET_UID && layer->getOwnerUid() != uid) {
return;
}
visitor(layer);
});
}
}
status_t SurfaceFlinger::setDesiredDisplayModeSpecsInternal(
const sp<DisplayDevice>& display,
const std::optional<scheduler::RefreshRateConfigs::Policy>& policy, bool overridePolicy) {
Mutex::Autolock lock(mStateLock);
LOG_ALWAYS_FATAL_IF(!display->isPrimary() && overridePolicy,
"Can only set override policy on the primary display");
LOG_ALWAYS_FATAL_IF(!policy && !overridePolicy, "Can only clear the override policy");
if (!display->isPrimary()) {
// TODO(b/144711714): For non-primary displays we should be able to set an active mode
// as well. For now, just call directly to initiateModeChange but ideally
// it should go thru setDesiredActiveMode, similar to primary display.
ALOGV("%s for non-primary display", __func__);
const auto displayId = display->getPhysicalId();
hal::VsyncPeriodChangeConstraints constraints;
constraints.desiredTimeNanos = systemTime();
constraints.seamlessRequired = false;
hal::VsyncPeriodChangeTimeline timeline = {0, 0, 0};
if (display->initiateModeChange(policy->defaultMode, constraints, &timeline) != NO_ERROR) {
return BAD_VALUE;
}
if (timeline.refreshRequired) {
repaintEverythingForHWC();
}
display->setActiveMode(policy->defaultMode);
const nsecs_t vsyncPeriod = display->getMode(policy->defaultMode)->getVsyncPeriod();
mScheduler->onNonPrimaryDisplayModeChanged(mAppConnectionHandle, displayId,
policy->defaultMode, vsyncPeriod);
return NO_ERROR;
}
if (mDebugDisplayModeSetByBackdoor) {
// ignore this request as mode is overridden by backdoor
return NO_ERROR;
}
status_t setPolicyResult = overridePolicy
? mRefreshRateConfigs->setOverridePolicy(policy)
: mRefreshRateConfigs->setDisplayManagerPolicy(*policy);
if (setPolicyResult < 0) {
return BAD_VALUE;
}
if (setPolicyResult == scheduler::RefreshRateConfigs::CURRENT_POLICY_UNCHANGED) {
return NO_ERROR;
}
scheduler::RefreshRateConfigs::Policy currentPolicy = mRefreshRateConfigs->getCurrentPolicy();
ALOGV("Setting desired display mode specs: %s", currentPolicy.toString().c_str());
// TODO(b/140204874): Leave the event in until we do proper testing with all apps that might
// be depending in this callback.
const auto activeMode = display->getActiveMode();
const nsecs_t vsyncPeriod = activeMode->getVsyncPeriod();
const auto physicalId = display->getPhysicalId();
mScheduler->onPrimaryDisplayModeChanged(mAppConnectionHandle, physicalId, activeMode->getId(),
vsyncPeriod);
toggleKernelIdleTimer();
auto modeId = mScheduler->getPreferredModeId();
auto preferredRefreshRate = modeId
? mRefreshRateConfigs->getRefreshRateFromModeId(*modeId)
// NOTE: Choose the default mode ID, if Scheduler doesn't have one in mind.
: mRefreshRateConfigs->getRefreshRateFromModeId(currentPolicy.defaultMode);
ALOGV("trying to switch to Scheduler preferred mode %d (%s)",
preferredRefreshRate.getModeId().value(), preferredRefreshRate.getName().c_str());
if (isDisplayModeAllowed(preferredRefreshRate.getModeId())) {
ALOGV("switching to Scheduler preferred display mode %d",
preferredRefreshRate.getModeId().value());
setDesiredActiveMode({preferredRefreshRate.getModeId(), Scheduler::ModeEvent::Changed});
} else {
LOG_ALWAYS_FATAL("Desired display mode not allowed: %d",
preferredRefreshRate.getModeId().value());
}
return NO_ERROR;
}
status_t SurfaceFlinger::setDesiredDisplayModeSpecs(
const sp<IBinder>& displayToken, ui::DisplayModeId defaultMode, bool allowGroupSwitching,
float primaryRefreshRateMin, float primaryRefreshRateMax, float appRequestRefreshRateMin,
float appRequestRefreshRateMax) {
ATRACE_CALL();
if (!displayToken) {
return BAD_VALUE;
}
auto future = schedule([=]() -> status_t {
const auto display = ON_MAIN_THREAD(getDisplayDeviceLocked(displayToken));
if (!display) {
ALOGE("Attempt to set desired display modes for invalid display token %p",
displayToken.get());
return NAME_NOT_FOUND;
} else if (display->isVirtual()) {
ALOGW("Attempt to set desired display modes for virtual display");
return INVALID_OPERATION;
} else {
using Policy = scheduler::RefreshRateConfigs::Policy;
const Policy policy{DisplayModeId(defaultMode),
allowGroupSwitching,
{Fps(primaryRefreshRateMin), Fps(primaryRefreshRateMax)},
{Fps(appRequestRefreshRateMin), Fps(appRequestRefreshRateMax)}};
constexpr bool kOverridePolicy = false;
return setDesiredDisplayModeSpecsInternal(display, policy, kOverridePolicy);
}
});
return future.get();
}
status_t SurfaceFlinger::getDesiredDisplayModeSpecs(const sp<IBinder>& displayToken,
ui::DisplayModeId* outDefaultMode,
bool* outAllowGroupSwitching,
float* outPrimaryRefreshRateMin,
float* outPrimaryRefreshRateMax,
float* outAppRequestRefreshRateMin,
float* outAppRequestRefreshRateMax) {
ATRACE_CALL();
if (!displayToken || !outDefaultMode || !outPrimaryRefreshRateMin ||
!outPrimaryRefreshRateMax || !outAppRequestRefreshRateMin || !outAppRequestRefreshRateMax) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return NAME_NOT_FOUND;
}
if (display->isPrimary()) {
scheduler::RefreshRateConfigs::Policy policy =
mRefreshRateConfigs->getDisplayManagerPolicy();
*outDefaultMode = policy.defaultMode.value();
*outAllowGroupSwitching = policy.allowGroupSwitching;
*outPrimaryRefreshRateMin = policy.primaryRange.min.getValue();
*outPrimaryRefreshRateMax = policy.primaryRange.max.getValue();
*outAppRequestRefreshRateMin = policy.appRequestRange.min.getValue();
*outAppRequestRefreshRateMax = policy.appRequestRange.max.getValue();
return NO_ERROR;
} else if (display->isVirtual()) {
return INVALID_OPERATION;
} else {
const auto activeMode = display->getActiveMode();
*outDefaultMode = activeMode->getId().value();
*outAllowGroupSwitching = false;
auto vsyncPeriod = activeMode->getVsyncPeriod();
*outPrimaryRefreshRateMin = Fps::fromPeriodNsecs(vsyncPeriod).getValue();
*outPrimaryRefreshRateMax = Fps::fromPeriodNsecs(vsyncPeriod).getValue();
*outAppRequestRefreshRateMin = Fps::fromPeriodNsecs(vsyncPeriod).getValue();
*outAppRequestRefreshRateMax = Fps::fromPeriodNsecs(vsyncPeriod).getValue();
return NO_ERROR;
}
}
wp<Layer> SurfaceFlinger::fromHandle(const sp<IBinder>& handle) {
Mutex::Autolock _l(mStateLock);
return fromHandleLocked(handle);
}
wp<Layer> SurfaceFlinger::fromHandleLocked(const sp<IBinder>& handle) const {
BBinder* b = nullptr;
if (handle) {
b = handle->localBinder();
}
if (b == nullptr) {
return nullptr;
}
auto it = mLayersByLocalBinderToken.find(b);
if (it != mLayersByLocalBinderToken.end()) {
return it->second;
}
return nullptr;
}
void SurfaceFlinger::onLayerFirstRef(Layer* layer) {
mNumLayers++;
mScheduler->registerLayer(layer);
}
void SurfaceFlinger::onLayerDestroyed(Layer* layer) {
mScheduler->deregisterLayer(layer);
mNumLayers--;
removeFromOffscreenLayers(layer);
}
// WARNING: ONLY CALL THIS FROM LAYER DTOR
// Here we add children in the current state to offscreen layers and remove the
// layer itself from the offscreen layer list. Since
// this is the dtor, it is safe to access the current state. This keeps us
// from dangling children layers such that they are not reachable from the
// Drawing state nor the offscreen layer list
// See b/141111965
void SurfaceFlinger::removeFromOffscreenLayers(Layer* layer) {
for (auto& child : layer->getCurrentChildren()) {
mOffscreenLayers.emplace(child.get());
}
mOffscreenLayers.erase(layer);
}
void SurfaceFlinger::bufferErased(const client_cache_t& clientCacheId) {
getRenderEngine().unbindExternalTextureBuffer(clientCacheId.id);
}
status_t SurfaceFlinger::setGlobalShadowSettings(const half4& ambientColor, const half4& spotColor,
float lightPosY, float lightPosZ,
float lightRadius) {
Mutex::Autolock _l(mStateLock);
mCurrentState.globalShadowSettings.ambientColor = vec4(ambientColor);
mCurrentState.globalShadowSettings.spotColor = vec4(spotColor);
mCurrentState.globalShadowSettings.lightPos.y = lightPosY;
mCurrentState.globalShadowSettings.lightPos.z = lightPosZ;
mCurrentState.globalShadowSettings.lightRadius = lightRadius;
// these values are overridden when calculating the shadow settings for a layer.
mCurrentState.globalShadowSettings.lightPos.x = 0.f;
mCurrentState.globalShadowSettings.length = 0.f;
return NO_ERROR;
}
const std::unordered_map<std::string, uint32_t>& SurfaceFlinger::getGenericLayerMetadataKeyMap()
const {
// TODO(b/149500060): Remove this fixed/static mapping. Please prefer taking
// on the work to remove the table in that bug rather than adding more to
// it.
static const std::unordered_map<std::string, uint32_t> genericLayerMetadataKeyMap{
{"org.chromium.arc.V1_0.TaskId", METADATA_TASK_ID},
{"org.chromium.arc.V1_0.CursorInfo", METADATA_MOUSE_CURSOR},
};
return genericLayerMetadataKeyMap;
}
status_t SurfaceFlinger::setFrameRate(const sp<IGraphicBufferProducer>& surface, float frameRate,
int8_t compatibility, int8_t changeFrameRateStrategy) {
if (!ValidateFrameRate(frameRate, compatibility, changeFrameRateStrategy,
"SurfaceFlinger::setFrameRate")) {
return BAD_VALUE;
}
static_cast<void>(schedule([=] {
Mutex::Autolock lock(mStateLock);
if (authenticateSurfaceTextureLocked(surface)) {
sp<Layer> layer = (static_cast<MonitoredProducer*>(surface.get()))->getLayer();
if (layer == nullptr) {
ALOGE("Attempt to set frame rate on a layer that no longer exists");
return BAD_VALUE;
}
const auto strategy =
Layer::FrameRate::convertChangeFrameRateStrategy(changeFrameRateStrategy);
if (layer->setFrameRate(
Layer::FrameRate(Fps{frameRate},
Layer::FrameRate::convertCompatibility(compatibility),
strategy))) {
setTransactionFlags(eTraversalNeeded);
}
} else {
ALOGE("Attempt to set frame rate on an unrecognized IGraphicBufferProducer");
return BAD_VALUE;
}
return NO_ERROR;
}));
return NO_ERROR;
}
status_t SurfaceFlinger::acquireFrameRateFlexibilityToken(sp<IBinder>* outToken) {
if (!outToken) {
return BAD_VALUE;
}
auto future = schedule([this] {
status_t result = NO_ERROR;
sp<IBinder> token;
if (mFrameRateFlexibilityTokenCount == 0) {
const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked());
// This is a little racy, but not in a way that hurts anything. As we grab the
// defaultMode from the display manager policy, we could be setting a new display
// manager policy, leaving us using a stale defaultMode. The defaultMode doesn't
// matter for the override policy though, since we set allowGroupSwitching to
// true, so it's not a problem.
scheduler::RefreshRateConfigs::Policy overridePolicy;
overridePolicy.defaultMode = mRefreshRateConfigs->getDisplayManagerPolicy().defaultMode;
overridePolicy.allowGroupSwitching = true;
constexpr bool kOverridePolicy = true;
result = setDesiredDisplayModeSpecsInternal(display, overridePolicy, kOverridePolicy);
}
if (result == NO_ERROR) {
mFrameRateFlexibilityTokenCount++;
// Handing out a reference to the SurfaceFlinger object, as we're doing in the line
// below, is something to consider carefully. The lifetime of the
// FrameRateFlexibilityToken isn't tied to SurfaceFlinger object lifetime, so if this
// SurfaceFlinger object were to be destroyed while the token still exists, the token
// destructor would be accessing a stale SurfaceFlinger reference, and crash. This is ok
// in this case, for two reasons:
// 1. Once SurfaceFlinger::run() is called by main_surfaceflinger.cpp, the only way
// the program exits is via a crash. So we won't have a situation where the
// SurfaceFlinger object is dead but the process is still up.
// 2. The frame rate flexibility token is acquired/released only by CTS tests, so even
// if condition 1 were changed, the problem would only show up when running CTS tests,
// not on end user devices, so we could spot it and fix it without serious impact.
token = new FrameRateFlexibilityToken(
[this]() { onFrameRateFlexibilityTokenReleased(); });
ALOGD("Frame rate flexibility token acquired. count=%d",
mFrameRateFlexibilityTokenCount);
}
return std::make_pair(result, token);
});
status_t result;
std::tie(result, *outToken) = future.get();
return result;
}
void SurfaceFlinger::onFrameRateFlexibilityTokenReleased() {
static_cast<void>(schedule([this] {
LOG_ALWAYS_FATAL_IF(mFrameRateFlexibilityTokenCount == 0,
"Failed tracking frame rate flexibility tokens");
mFrameRateFlexibilityTokenCount--;
ALOGD("Frame rate flexibility token released. count=%d", mFrameRateFlexibilityTokenCount);
if (mFrameRateFlexibilityTokenCount == 0) {
const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked());
constexpr bool kOverridePolicy = true;
status_t result = setDesiredDisplayModeSpecsInternal(display, {}, kOverridePolicy);
LOG_ALWAYS_FATAL_IF(result < 0, "Failed releasing frame rate flexibility token");
}
}));
}
status_t SurfaceFlinger::setFrameTimelineInfo(const sp<IGraphicBufferProducer>& surface,
const FrameTimelineInfo& frameTimelineInfo) {
Mutex::Autolock lock(mStateLock);
if (!authenticateSurfaceTextureLocked(surface)) {
ALOGE("Attempt to set frame timeline info on an unrecognized IGraphicBufferProducer");
return BAD_VALUE;
}
sp<Layer> layer = (static_cast<MonitoredProducer*>(surface.get()))->getLayer();
if (layer == nullptr) {
ALOGE("Attempt to set frame timeline info on a layer that no longer exists");
return BAD_VALUE;
}
layer->setFrameTimelineInfoForBuffer(frameTimelineInfo);
return NO_ERROR;
}
void SurfaceFlinger::enableRefreshRateOverlay(bool enable) {
static_cast<void>(schedule([=] {
std::unique_ptr<RefreshRateOverlay> overlay;
if (enable) {
overlay = std::make_unique<RefreshRateOverlay>(*this, mRefreshRateOverlaySpinner);
}
{
Mutex::Autolock lock(mStateLock);
// Destroy the layer of the current overlay, if any, outside the lock.
mRefreshRateOverlay.swap(overlay);
if (!mRefreshRateOverlay) return;
if (const auto display = getDefaultDisplayDeviceLocked()) {
mRefreshRateOverlay->setViewport(display->getSize());
mRefreshRateOverlay->changeRefreshRate(display->getActiveMode()->getFps());
}
}
}));
}
status_t SurfaceFlinger::addTransactionTraceListener(
const sp<gui::ITransactionTraceListener>& listener) {
if (!listener) {
return BAD_VALUE;
}
mInterceptor->addTransactionTraceListener(listener);
return NO_ERROR;
}
int SurfaceFlinger::getGPUContextPriority() {
return getRenderEngine().getContextPriority();
}
int SurfaceFlinger::calculateExtraBufferCount(Fps maxSupportedRefreshRate,
std::chrono::nanoseconds presentLatency) {
auto pipelineDepth = presentLatency.count() / maxSupportedRefreshRate.getPeriodNsecs();
if (presentLatency.count() % maxSupportedRefreshRate.getPeriodNsecs()) {
pipelineDepth++;
}
return std::max(0ll, pipelineDepth - 2);
}
status_t SurfaceFlinger::getExtraBufferCount(int* extraBuffers) const {
const auto maxSupportedRefreshRate = mRefreshRateConfigs->getSupportedRefreshRateRange().max;
const auto vsyncConfig =
mVsyncConfiguration->getConfigsForRefreshRate(maxSupportedRefreshRate).late;
const auto presentLatency = vsyncConfig.appWorkDuration + vsyncConfig.sfWorkDuration;
*extraBuffers = calculateExtraBufferCount(maxSupportedRefreshRate, presentLatency);
return NO_ERROR;
}
void SurfaceFlinger::TransactionState::traverseStatesWithBuffers(
std::function<void(const layer_state_t&)> visitor) {
for (const auto& state : states) {
if (state.state.hasBufferChanges() && (state.state.surface)) {
visitor(state.state);
}
}
}
} // namespace android
#if defined(__gl_h_)
#error "don't include gl/gl.h in this file"
#endif
#if defined(__gl2_h_)
#error "don't include gl2/gl2.h in this file"
#endif
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wconversion -Wextra"