blob: 3ea0986d4109c7689b315a058e98ea2d4ca8fe0c [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "InputClassifier"
#include "InputClassifier.h"
#include "InputCommonConverter.h"
#include <android-base/stringprintf.h>
#include <android/binder_manager.h>
#include <android/binder_process.h>
#include <inttypes.h>
#include <log/log.h>
#include <algorithm>
#include <cmath>
#if defined(__linux__)
#include <pthread.h>
#endif
#include <unordered_set>
#define INDENT1 " "
#define INDENT2 " "
#define INDENT3 " "
#define INDENT4 " "
#define INDENT5 " "
using android::base::StringPrintf;
using namespace std::chrono_literals;
using namespace ::aidl::android::hardware::input;
using aidl::android::hardware::input::processor::IInputProcessor;
namespace android {
//Max number of elements to store in mEvents.
static constexpr size_t MAX_EVENTS = 5;
template<class K, class V>
static V getValueForKey(const std::unordered_map<K, V>& map, K key, V defaultValue) {
auto it = map.find(key);
if (it == map.end()) {
return defaultValue;
}
return it->second;
}
static MotionClassification getMotionClassification(common::Classification classification) {
static_assert(MotionClassification::NONE ==
static_cast<MotionClassification>(common::Classification::NONE));
static_assert(MotionClassification::AMBIGUOUS_GESTURE ==
static_cast<MotionClassification>(common::Classification::AMBIGUOUS_GESTURE));
static_assert(MotionClassification::DEEP_PRESS ==
static_cast<MotionClassification>(common::Classification::DEEP_PRESS));
return static_cast<MotionClassification>(classification);
}
static bool isTouchEvent(const NotifyMotionArgs& args) {
return isFromSource(args.source, AINPUT_SOURCE_TOUCHPAD) ||
isFromSource(args.source, AINPUT_SOURCE_TOUCHSCREEN);
}
static void setCurrentThreadName(const char* name) {
#if defined(__linux__)
// Set the thread name for debugging
pthread_setname_np(pthread_self(), name);
#else
(void*)(name); // prevent unused variable warning
#endif
}
static std::shared_ptr<IInputProcessor> getService() {
const std::string aidl_instance_name = std::string(IInputProcessor::descriptor) + "/default";
if (!AServiceManager_isDeclared(aidl_instance_name.c_str())) {
ALOGI("HAL %s is not declared", aidl_instance_name.c_str());
return nullptr;
}
ndk::SpAIBinder binder(AServiceManager_waitForService(aidl_instance_name.c_str()));
return IInputProcessor::fromBinder(binder);
}
// Temporarily releases a held mutex for the lifetime of the instance.
// Named to match std::scoped_lock
class scoped_unlock {
public:
explicit scoped_unlock(std::mutex& mutex) : mMutex(mutex) { mMutex.unlock(); }
~scoped_unlock() { mMutex.lock(); }
private:
std::mutex& mMutex;
};
// --- ScopedDeathRecipient ---
ScopedDeathRecipient::ScopedDeathRecipient(AIBinder_DeathRecipient_onBinderDied onBinderDied,
void* cookie)
: mCookie(cookie) {
mRecipient = AIBinder_DeathRecipient_new(onBinderDied);
}
void ScopedDeathRecipient::linkToDeath(AIBinder* binder) {
binder_status_t linked = AIBinder_linkToDeath(binder, mRecipient, mCookie);
if (linked != STATUS_OK) {
ALOGE("Could not link death recipient to the HAL death");
}
}
ScopedDeathRecipient::~ScopedDeathRecipient() {
AIBinder_DeathRecipient_delete(mRecipient);
}
// --- ClassifierEvent ---
ClassifierEvent::ClassifierEvent(std::unique_ptr<NotifyMotionArgs> args) :
type(ClassifierEventType::MOTION), args(std::move(args)) { };
ClassifierEvent::ClassifierEvent(std::unique_ptr<NotifyDeviceResetArgs> args) :
type(ClassifierEventType::DEVICE_RESET), args(std::move(args)) { };
ClassifierEvent::ClassifierEvent(ClassifierEventType type, std::unique_ptr<NotifyArgs> args) :
type(type), args(std::move(args)) { };
ClassifierEvent::ClassifierEvent(ClassifierEvent&& other) :
type(other.type), args(std::move(other.args)) { };
ClassifierEvent& ClassifierEvent::operator=(ClassifierEvent&& other) {
type = other.type;
args = std::move(other.args);
return *this;
}
ClassifierEvent ClassifierEvent::createHalResetEvent() {
return ClassifierEvent(ClassifierEventType::HAL_RESET, nullptr);
}
ClassifierEvent ClassifierEvent::createExitEvent() {
return ClassifierEvent(ClassifierEventType::EXIT, nullptr);
}
std::optional<int32_t> ClassifierEvent::getDeviceId() const {
switch (type) {
case ClassifierEventType::MOTION: {
NotifyMotionArgs* motionArgs = static_cast<NotifyMotionArgs*>(args.get());
return motionArgs->deviceId;
}
case ClassifierEventType::DEVICE_RESET: {
NotifyDeviceResetArgs* deviceResetArgs =
static_cast<NotifyDeviceResetArgs*>(args.get());
return deviceResetArgs->deviceId;
}
case ClassifierEventType::HAL_RESET: {
return std::nullopt;
}
case ClassifierEventType::EXIT: {
return std::nullopt;
}
}
}
// --- MotionClassifier ---
MotionClassifier::MotionClassifier(std::shared_ptr<IInputProcessor> service)
: mEvents(MAX_EVENTS), mService(std::move(service)) {
// Under normal operation, we do not need to reset the HAL here. But in the case where system
// crashed, but HAL didn't, we may be connecting to an existing HAL process that might already
// have received events in the past. That means, that HAL could be in an inconsistent state
// once it receives events from the newly created MotionClassifier.
mEvents.push(ClassifierEvent::createHalResetEvent());
mHalThread = std::thread(&MotionClassifier::processEvents, this);
#if defined(__linux__)
// Set the thread name for debugging
pthread_setname_np(mHalThread.native_handle(), "InputClassifier");
#endif
}
std::unique_ptr<MotionClassifierInterface> MotionClassifier::create(
std::shared_ptr<IInputProcessor> service) {
LOG_ALWAYS_FATAL_IF(service == nullptr);
// Using 'new' to access a non-public constructor
return std::unique_ptr<MotionClassifier>(new MotionClassifier(std::move(service)));
}
MotionClassifier::~MotionClassifier() {
requestExit();
mHalThread.join();
}
/**
* Obtain the classification from the HAL for a given MotionEvent.
* Should only be called from the InputClassifier thread (mHalThread).
* Should not be called from the thread that notifyMotion runs on.
*
* There is no way to provide a timeout for a HAL call. So if the HAL takes too long
* to return a classification, this would directly impact the touch latency.
* To remove any possibility of negatively affecting the touch latency, the HAL
* is called from a dedicated thread.
*/
void MotionClassifier::processEvents() {
while (true) {
ClassifierEvent event = mEvents.pop();
bool halResponseOk = true;
switch (event.type) {
case ClassifierEventType::MOTION: {
NotifyMotionArgs* motionArgs = static_cast<NotifyMotionArgs*>(event.args.get());
common::MotionEvent motionEvent = notifyMotionArgsToHalMotionEvent(*motionArgs);
common::Classification classification;
ndk::ScopedAStatus response = mService->classify(motionEvent, &classification);
if (response.isOk()) {
updateClassification(motionArgs->deviceId, motionArgs->eventTime,
getMotionClassification(classification));
}
break;
}
case ClassifierEventType::DEVICE_RESET: {
const int32_t deviceId = *(event.getDeviceId());
halResponseOk = mService->resetDevice(deviceId).isOk();
clearDeviceState(deviceId);
break;
}
case ClassifierEventType::HAL_RESET: {
halResponseOk = mService->reset().isOk();
clearClassifications();
break;
}
case ClassifierEventType::EXIT: {
clearClassifications();
return;
}
}
if (!halResponseOk) {
ALOGE("Error communicating with InputClassifier HAL. "
"Exiting MotionClassifier HAL thread");
clearClassifications();
return;
}
}
}
void MotionClassifier::enqueueEvent(ClassifierEvent&& event) {
bool eventAdded = mEvents.push(std::move(event));
if (!eventAdded) {
// If the queue is full, suspect the HAL is slow in processing the events.
ALOGE("Could not add the event to the queue. Resetting");
reset();
}
}
void MotionClassifier::requestExit() {
reset();
mEvents.push(ClassifierEvent::createExitEvent());
}
void MotionClassifier::updateClassification(int32_t deviceId, nsecs_t eventTime,
MotionClassification classification) {
std::scoped_lock lock(mLock);
const nsecs_t lastDownTime = getValueForKey(mLastDownTimes, deviceId, static_cast<nsecs_t>(0));
if (eventTime < lastDownTime) {
// HAL just finished processing an event that belonged to an earlier gesture,
// but new gesture is already in progress. Drop this classification.
ALOGW("Received late classification. Late by at least %" PRId64 " ms.",
nanoseconds_to_milliseconds(lastDownTime - eventTime));
return;
}
mClassifications[deviceId] = classification;
}
void MotionClassifier::setClassification(int32_t deviceId, MotionClassification classification) {
std::scoped_lock lock(mLock);
mClassifications[deviceId] = classification;
}
void MotionClassifier::clearClassifications() {
std::scoped_lock lock(mLock);
mClassifications.clear();
}
MotionClassification MotionClassifier::getClassification(int32_t deviceId) {
std::scoped_lock lock(mLock);
return getValueForKey(mClassifications, deviceId, MotionClassification::NONE);
}
void MotionClassifier::updateLastDownTime(int32_t deviceId, nsecs_t downTime) {
std::scoped_lock lock(mLock);
mLastDownTimes[deviceId] = downTime;
mClassifications[deviceId] = MotionClassification::NONE;
}
void MotionClassifier::clearDeviceState(int32_t deviceId) {
std::scoped_lock lock(mLock);
mClassifications.erase(deviceId);
mLastDownTimes.erase(deviceId);
}
MotionClassification MotionClassifier::classify(const NotifyMotionArgs& args) {
if ((args.action & AMOTION_EVENT_ACTION_MASK) == AMOTION_EVENT_ACTION_DOWN) {
updateLastDownTime(args.deviceId, args.downTime);
}
ClassifierEvent event(std::make_unique<NotifyMotionArgs>(args));
enqueueEvent(std::move(event));
return getClassification(args.deviceId);
}
void MotionClassifier::reset() {
mEvents.clear();
mEvents.push(ClassifierEvent::createHalResetEvent());
}
/**
* Per-device reset. Clear the outstanding events that are going to be sent to HAL.
* Request InputClassifier thread to call resetDevice for this particular device.
*/
void MotionClassifier::reset(const NotifyDeviceResetArgs& args) {
int32_t deviceId = args.deviceId;
// Clear the pending events right away, to avoid unnecessary work done by the HAL.
mEvents.erase([deviceId](const ClassifierEvent& event) {
std::optional<int32_t> eventDeviceId = event.getDeviceId();
return eventDeviceId && (*eventDeviceId == deviceId);
});
enqueueEvent(std::make_unique<NotifyDeviceResetArgs>(args));
}
const char* MotionClassifier::getServiceStatus() REQUIRES(mLock) {
if (!mService) {
return "null";
}
if (AIBinder_ping(mService->asBinder().get()) == STATUS_OK) {
return "running";
}
return "not responding";
}
void MotionClassifier::dump(std::string& dump) {
std::scoped_lock lock(mLock);
dump += StringPrintf(INDENT2 "mService status: %s\n", getServiceStatus());
dump += StringPrintf(INDENT2 "mEvents: %zu element(s) (max=%zu)\n",
mEvents.size(), MAX_EVENTS);
dump += INDENT2 "mClassifications, mLastDownTimes:\n";
dump += INDENT3 "Device Id\tClassification\tLast down time";
// Combine mClassifications and mLastDownTimes into a single table.
// Create a superset of device ids.
std::unordered_set<int32_t> deviceIds;
std::for_each(mClassifications.begin(), mClassifications.end(),
[&deviceIds](auto pair){ deviceIds.insert(pair.first); });
std::for_each(mLastDownTimes.begin(), mLastDownTimes.end(),
[&deviceIds](auto pair){ deviceIds.insert(pair.first); });
for(int32_t deviceId : deviceIds) {
const MotionClassification classification =
getValueForKey(mClassifications, deviceId, MotionClassification::NONE);
const nsecs_t downTime = getValueForKey(mLastDownTimes, deviceId, static_cast<nsecs_t>(0));
dump += StringPrintf("\n" INDENT4 "%" PRId32 "\t%s\t%" PRId64,
deviceId, motionClassificationToString(classification), downTime);
}
}
// --- InputClassifier ---
InputClassifier::InputClassifier(InputListenerInterface& listener) : mListener(listener) {}
void InputClassifier::onBinderDied(void* cookie) {
InputClassifier* classifier = static_cast<InputClassifier*>(cookie);
if (classifier == nullptr) {
LOG_ALWAYS_FATAL("Cookie is not valid");
return;
}
classifier->setMotionClassifierEnabled(false);
}
void InputClassifier::setMotionClassifierEnabled(bool enabled) {
std::scoped_lock lock(mLock);
if (enabled) {
ALOGI("Enabling motion classifier");
if (mInitializeMotionClassifier.valid()) {
scoped_unlock unlock(mLock);
std::future_status status = mInitializeMotionClassifier.wait_for(5s);
if (status != std::future_status::ready) {
/**
* We don't have a better option here than to crash. We can't stop the thread,
* and we can't continue because 'mInitializeMotionClassifier' will block in its
* destructor.
*/
LOG_ALWAYS_FATAL("The thread to load IInputClassifier is stuck!");
}
}
mInitializeMotionClassifier = std::async(std::launch::async, [this] {
setCurrentThreadName("Create MotionClassifier");
std::shared_ptr<IInputProcessor> service = getService();
if (service == nullptr) {
// Keep the MotionClassifier null, no service was found
return;
}
{ // acquire lock
std::scoped_lock threadLock(mLock);
mHalDeathRecipient =
std::make_unique<ScopedDeathRecipient>(onBinderDied, this /*cookie*/);
mHalDeathRecipient->linkToDeath(service->asBinder().get());
setMotionClassifierLocked(MotionClassifier::create(std::move(service)));
} // release lock
});
} else {
ALOGI("Disabling motion classifier");
setMotionClassifierLocked(nullptr);
}
}
void InputClassifier::notifyConfigurationChanged(const NotifyConfigurationChangedArgs* args) {
// pass through
mListener.notifyConfigurationChanged(args);
}
void InputClassifier::notifyKey(const NotifyKeyArgs* args) {
// pass through
mListener.notifyKey(args);
}
void InputClassifier::notifyMotion(const NotifyMotionArgs* args) {
std::scoped_lock lock(mLock);
// MotionClassifier is only used for touch events, for now
const bool sendToMotionClassifier = mMotionClassifier && isTouchEvent(*args);
if (!sendToMotionClassifier) {
mListener.notifyMotion(args);
return;
}
NotifyMotionArgs newArgs(*args);
newArgs.classification = mMotionClassifier->classify(newArgs);
mListener.notifyMotion(&newArgs);
}
void InputClassifier::notifySensor(const NotifySensorArgs* args) {
// pass through
mListener.notifySensor(args);
}
void InputClassifier::notifyVibratorState(const NotifyVibratorStateArgs* args) {
// pass through
mListener.notifyVibratorState(args);
}
void InputClassifier::notifySwitch(const NotifySwitchArgs* args) {
// pass through
mListener.notifySwitch(args);
}
void InputClassifier::notifyDeviceReset(const NotifyDeviceResetArgs* args) {
std::scoped_lock lock(mLock);
if (mMotionClassifier) {
mMotionClassifier->reset(*args);
}
// continue to next stage
mListener.notifyDeviceReset(args);
}
void InputClassifier::notifyPointerCaptureChanged(const NotifyPointerCaptureChangedArgs* args) {
// pass through
mListener.notifyPointerCaptureChanged(args);
}
void InputClassifier::setMotionClassifierLocked(
std::unique_ptr<MotionClassifierInterface> motionClassifier) REQUIRES(mLock) {
if (motionClassifier == nullptr) {
// Destroy the ScopedDeathRecipient object, which will cause it to unlinkToDeath.
// We can't call 'unlink' here because we don't have the binder handle.
mHalDeathRecipient = nullptr;
}
mMotionClassifier = std::move(motionClassifier);
}
void InputClassifier::dump(std::string& dump) {
std::scoped_lock lock(mLock);
dump += "Input Classifier State:\n";
dump += INDENT1 "Motion Classifier:\n";
if (mMotionClassifier) {
mMotionClassifier->dump(dump);
} else {
dump += INDENT2 "<nullptr>";
}
dump += "\n";
}
InputClassifier::~InputClassifier() {
}
} // namespace android