blob: 9a1273301bd2c8d6beadc92fc1656cfd6d8b1fe7 [file] [log] [blame]
/*
* Copyright (C) 2005 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <assert.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <linux/ioctl.h>
#include <memory.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/capability.h>
#include <sys/epoll.h>
#include <sys/inotify.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/sysmacros.h>
#include <unistd.h>
#define LOG_TAG "EventHub"
// #define LOG_NDEBUG 0
#include <android-base/file.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <cutils/properties.h>
#include <ftl/enum.h>
#include <input/KeyCharacterMap.h>
#include <input/KeyLayoutMap.h>
#include <input/PrintTools.h>
#include <input/VirtualKeyMap.h>
#include <openssl/sha.h>
#include <statslog.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <utils/Timers.h>
#include <filesystem>
#include <optional>
#include <regex>
#include <utility>
#include "EventHub.h"
#include "KeyCodeClassifications.h"
#define INDENT " "
#define INDENT2 " "
#define INDENT3 " "
using android::base::StringPrintf;
namespace android {
using namespace ftl::flag_operators;
static const char* DEVICE_INPUT_PATH = "/dev/input";
// v4l2 devices go directly into /dev
static const char* DEVICE_PATH = "/dev";
static constexpr size_t OBFUSCATED_LENGTH = 8;
static constexpr int32_t FF_STRONG_MAGNITUDE_CHANNEL_IDX = 0;
static constexpr int32_t FF_WEAK_MAGNITUDE_CHANNEL_IDX = 1;
static constexpr size_t EVENT_BUFFER_SIZE = 256;
// Mapping for input battery class node IDs lookup.
// https://www.kernel.org/doc/Documentation/power/power_supply_class.txt
static const std::unordered_map<std::string, InputBatteryClass> BATTERY_CLASSES =
{{"capacity", InputBatteryClass::CAPACITY},
{"capacity_level", InputBatteryClass::CAPACITY_LEVEL},
{"status", InputBatteryClass::STATUS}};
// Mapping for input battery class node names lookup.
// https://www.kernel.org/doc/Documentation/power/power_supply_class.txt
static const std::unordered_map<InputBatteryClass, std::string> BATTERY_NODES =
{{InputBatteryClass::CAPACITY, "capacity"},
{InputBatteryClass::CAPACITY_LEVEL, "capacity_level"},
{InputBatteryClass::STATUS, "status"}};
// must be kept in sync with definitions in kernel /drivers/power/supply/power_supply_sysfs.c
static const std::unordered_map<std::string, int32_t> BATTERY_STATUS =
{{"Unknown", BATTERY_STATUS_UNKNOWN},
{"Charging", BATTERY_STATUS_CHARGING},
{"Discharging", BATTERY_STATUS_DISCHARGING},
{"Not charging", BATTERY_STATUS_NOT_CHARGING},
{"Full", BATTERY_STATUS_FULL}};
// Mapping taken from
// https://gitlab.freedesktop.org/upower/upower/-/blob/master/src/linux/up-device-supply.c#L484
static const std::unordered_map<std::string, int32_t> BATTERY_LEVEL = {{"Critical", 5},
{"Low", 10},
{"Normal", 55},
{"High", 70},
{"Full", 100},
{"Unknown", 50}};
// Mapping for input led class node names lookup.
// https://www.kernel.org/doc/html/latest/leds/leds-class.html
static const std::unordered_map<std::string, InputLightClass> LIGHT_CLASSES =
{{"red", InputLightClass::RED},
{"green", InputLightClass::GREEN},
{"blue", InputLightClass::BLUE},
{"global", InputLightClass::GLOBAL},
{"brightness", InputLightClass::BRIGHTNESS},
{"multi_index", InputLightClass::MULTI_INDEX},
{"multi_intensity", InputLightClass::MULTI_INTENSITY},
{"max_brightness", InputLightClass::MAX_BRIGHTNESS},
{"kbd_backlight", InputLightClass::KEYBOARD_BACKLIGHT}};
// Mapping for input multicolor led class node names.
// https://www.kernel.org/doc/html/latest/leds/leds-class-multicolor.html
static const std::unordered_map<InputLightClass, std::string> LIGHT_NODES =
{{InputLightClass::BRIGHTNESS, "brightness"},
{InputLightClass::MULTI_INDEX, "multi_index"},
{InputLightClass::MULTI_INTENSITY, "multi_intensity"}};
// Mapping for light color name and the light color
const std::unordered_map<std::string, LightColor> LIGHT_COLORS = {{"red", LightColor::RED},
{"green", LightColor::GREEN},
{"blue", LightColor::BLUE}};
// Mapping for country code to Layout info.
// See bCountryCode in 6.2.1 of https://usb.org/sites/default/files/hid1_11.pdf.
const std::unordered_map<std::int32_t, RawLayoutInfo> LAYOUT_INFOS =
{{0, RawLayoutInfo{.languageTag = "", .layoutType = ""}}, // NOT_SUPPORTED
{1, RawLayoutInfo{.languageTag = "ar-Arab", .layoutType = ""}}, // ARABIC
{2, RawLayoutInfo{.languageTag = "fr-BE", .layoutType = ""}}, // BELGIAN
{3, RawLayoutInfo{.languageTag = "fr-CA", .layoutType = ""}}, // CANADIAN_BILINGUAL
{4, RawLayoutInfo{.languageTag = "fr-CA", .layoutType = ""}}, // CANADIAN_FRENCH
{5, RawLayoutInfo{.languageTag = "cs", .layoutType = ""}}, // CZECH_REPUBLIC
{6, RawLayoutInfo{.languageTag = "da", .layoutType = ""}}, // DANISH
{7, RawLayoutInfo{.languageTag = "fi", .layoutType = ""}}, // FINNISH
{8, RawLayoutInfo{.languageTag = "fr-FR", .layoutType = ""}}, // FRENCH
{9, RawLayoutInfo{.languageTag = "de", .layoutType = ""}}, // GERMAN
{10, RawLayoutInfo{.languageTag = "el", .layoutType = ""}}, // GREEK
{11, RawLayoutInfo{.languageTag = "iw", .layoutType = ""}}, // HEBREW
{12, RawLayoutInfo{.languageTag = "hu", .layoutType = ""}}, // HUNGARY
{13, RawLayoutInfo{.languageTag = "en", .layoutType = "extended"}}, // INTERNATIONAL (ISO)
{14, RawLayoutInfo{.languageTag = "it", .layoutType = ""}}, // ITALIAN
{15, RawLayoutInfo{.languageTag = "ja", .layoutType = ""}}, // JAPAN
{16, RawLayoutInfo{.languageTag = "ko", .layoutType = ""}}, // KOREAN
{17, RawLayoutInfo{.languageTag = "es-419", .layoutType = ""}}, // LATIN_AMERICA
{18, RawLayoutInfo{.languageTag = "nl", .layoutType = ""}}, // DUTCH
{19, RawLayoutInfo{.languageTag = "nb", .layoutType = ""}}, // NORWEGIAN
{20, RawLayoutInfo{.languageTag = "fa", .layoutType = ""}}, // PERSIAN
{21, RawLayoutInfo{.languageTag = "pl", .layoutType = ""}}, // POLAND
{22, RawLayoutInfo{.languageTag = "pt", .layoutType = ""}}, // PORTUGUESE
{23, RawLayoutInfo{.languageTag = "ru", .layoutType = ""}}, // RUSSIA
{24, RawLayoutInfo{.languageTag = "sk", .layoutType = ""}}, // SLOVAKIA
{25, RawLayoutInfo{.languageTag = "es-ES", .layoutType = ""}}, // SPANISH
{26, RawLayoutInfo{.languageTag = "sv", .layoutType = ""}}, // SWEDISH
{27, RawLayoutInfo{.languageTag = "fr-CH", .layoutType = ""}}, // SWISS_FRENCH
{28, RawLayoutInfo{.languageTag = "de-CH", .layoutType = ""}}, // SWISS_GERMAN
{29, RawLayoutInfo{.languageTag = "de-CH", .layoutType = ""}}, // SWITZERLAND
{30, RawLayoutInfo{.languageTag = "zh-TW", .layoutType = ""}}, // TAIWAN
{31, RawLayoutInfo{.languageTag = "tr", .layoutType = "turkish_q"}}, // TURKISH_Q
{32, RawLayoutInfo{.languageTag = "en-GB", .layoutType = ""}}, // UK
{33, RawLayoutInfo{.languageTag = "en-US", .layoutType = ""}}, // US
{34, RawLayoutInfo{.languageTag = "", .layoutType = ""}}, // YUGOSLAVIA
{35, RawLayoutInfo{.languageTag = "tr", .layoutType = "turkish_f"}}}; // TURKISH_F
static std::string sha1(const std::string& in) {
SHA_CTX ctx;
SHA1_Init(&ctx);
SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.c_str()), in.size());
u_char digest[SHA_DIGEST_LENGTH];
SHA1_Final(digest, &ctx);
std::string out;
for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) {
out += StringPrintf("%02x", digest[i]);
}
return out;
}
/**
* Return true if name matches "v4l-touch*"
*/
static bool isV4lTouchNode(std::string name) {
return name.find("v4l-touch") != std::string::npos;
}
/**
* Returns true if V4L devices should be scanned.
*
* The system property ro.input.video_enabled can be used to control whether
* EventHub scans and opens V4L devices. As V4L does not support multiple
* clients, EventHub effectively blocks access to these devices when it opens
* them.
*
* Setting this to "false" would prevent any video devices from being discovered and
* associated with input devices.
*
* This property can be used as follows:
* 1. To turn off features that are dependent on video device presence.
* 2. During testing and development, to allow other clients to read video devices
* directly from /dev.
*/
static bool isV4lScanningEnabled() {
return property_get_bool("ro.input.video_enabled", /*default_value=*/true);
}
static nsecs_t processEventTimestamp(const struct input_event& event) {
// Use the time specified in the event instead of the current time
// so that downstream code can get more accurate estimates of
// event dispatch latency from the time the event is enqueued onto
// the evdev client buffer.
//
// The event's timestamp fortuitously uses the same monotonic clock
// time base as the rest of Android. The kernel event device driver
// (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
// The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
// calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
// system call that also queries ktime_get_ts().
const nsecs_t inputEventTime = seconds_to_nanoseconds(event.input_event_sec) +
microseconds_to_nanoseconds(event.input_event_usec);
return inputEventTime;
}
/**
* Returns the sysfs root path of the input device.
*/
static std::optional<std::filesystem::path> getSysfsRootPath(const char* devicePath) {
std::error_code errorCode;
// Stat the device path to get the major and minor number of the character file
struct stat statbuf;
if (stat(devicePath, &statbuf) == -1) {
ALOGE("Could not stat device %s due to error: %s.", devicePath, std::strerror(errno));
return std::nullopt;
}
unsigned int major_num = major(statbuf.st_rdev);
unsigned int minor_num = minor(statbuf.st_rdev);
// Realpath "/sys/dev/char/{major}:{minor}" to get the sysfs path to the input event
auto sysfsPath = std::filesystem::path("/sys/dev/char/");
sysfsPath /= std::to_string(major_num) + ":" + std::to_string(minor_num);
sysfsPath = std::filesystem::canonical(sysfsPath, errorCode);
// Make sure nothing went wrong in call to canonical()
if (errorCode) {
ALOGW("Could not run filesystem::canonical() due to error %d : %s.", errorCode.value(),
errorCode.message().c_str());
return std::nullopt;
}
// Continue to go up a directory until we reach a directory named "input"
while (sysfsPath != "/" && sysfsPath.filename() != "input") {
sysfsPath = sysfsPath.parent_path();
}
// Then go up one more and you will be at the sysfs root of the device
sysfsPath = sysfsPath.parent_path();
// Make sure we didn't reach root path and that directory actually exists
if (sysfsPath == "/" || !std::filesystem::exists(sysfsPath, errorCode)) {
if (errorCode) {
ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(),
errorCode.message().c_str());
}
// Not found
return std::nullopt;
}
return sysfsPath;
}
/**
* Returns the list of files under a specified path.
*/
static std::vector<std::filesystem::path> allFilesInPath(const std::filesystem::path& path) {
std::vector<std::filesystem::path> nodes;
std::error_code errorCode;
auto iter = std::filesystem::directory_iterator(path, errorCode);
while (!errorCode && iter != std::filesystem::directory_iterator()) {
nodes.push_back(iter->path());
iter++;
}
return nodes;
}
/**
* Returns the list of files under a specified directory in a sysfs path.
* Example:
* findSysfsNodes(sysfsRootPath, SysfsClass::LEDS) will return all led nodes under "leds" directory
* in the sysfs path.
*/
static std::vector<std::filesystem::path> findSysfsNodes(const std::filesystem::path& sysfsRoot,
SysfsClass clazz) {
std::string nodeStr = ftl::enum_string(clazz);
std::for_each(nodeStr.begin(), nodeStr.end(),
[](char& c) { c = std::tolower(static_cast<unsigned char>(c)); });
std::vector<std::filesystem::path> nodes;
for (auto path = sysfsRoot; path != "/" && nodes.empty(); path = path.parent_path()) {
nodes = allFilesInPath(path / nodeStr);
}
return nodes;
}
static std::optional<std::array<LightColor, COLOR_NUM>> getColorIndexArray(
std::filesystem::path path) {
std::string indexStr;
if (!base::ReadFileToString(path, &indexStr)) {
return std::nullopt;
}
// Parse the multi color LED index file, refer to kernel docs
// leds/leds-class-multicolor.html
std::regex indexPattern("(red|green|blue)\\s(red|green|blue)\\s(red|green|blue)[\\n]");
std::smatch results;
std::array<LightColor, COLOR_NUM> colors;
if (!std::regex_match(indexStr, results, indexPattern)) {
return std::nullopt;
}
for (size_t i = 1; i < results.size(); i++) {
const auto it = LIGHT_COLORS.find(results[i].str());
if (it != LIGHT_COLORS.end()) {
// intensities.emplace(it->second, 0);
colors[i - 1] = it->second;
}
}
return colors;
}
/**
* Read country code information exposed through the sysfs path and convert it to Layout info.
*/
static std::optional<RawLayoutInfo> readLayoutConfiguration(
const std::filesystem::path& sysfsRootPath) {
// Check the sysfs root path
int32_t hidCountryCode = -1;
std::string str;
if (base::ReadFileToString(sysfsRootPath / "country", &str)) {
hidCountryCode = std::stoi(str, nullptr, 16);
// Update this condition if new supported country codes are added to HID spec.
if (hidCountryCode > 35 || hidCountryCode < 0) {
ALOGE("HID country code should be in range [0, 35], but for sysfs path %s it was %d",
sysfsRootPath.c_str(), hidCountryCode);
}
}
const auto it = LAYOUT_INFOS.find(hidCountryCode);
if (it != LAYOUT_INFOS.end()) {
return it->second;
}
return std::nullopt;
}
/**
* Read information about batteries exposed through the sysfs path.
*/
static std::unordered_map<int32_t /*batteryId*/, RawBatteryInfo> readBatteryConfiguration(
const std::filesystem::path& sysfsRootPath) {
std::unordered_map<int32_t, RawBatteryInfo> batteryInfos;
int32_t nextBatteryId = 0;
// Check if device has any battery.
const auto& paths = findSysfsNodes(sysfsRootPath, SysfsClass::POWER_SUPPLY);
for (const auto& nodePath : paths) {
RawBatteryInfo info;
info.id = ++nextBatteryId;
info.path = nodePath;
info.name = nodePath.filename();
// Scan the path for all the files
// Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt
const auto& files = allFilesInPath(nodePath);
for (const auto& file : files) {
const auto it = BATTERY_CLASSES.find(file.filename().string());
if (it != BATTERY_CLASSES.end()) {
info.flags |= it->second;
}
}
batteryInfos.insert_or_assign(info.id, info);
ALOGD("configureBatteryLocked rawBatteryId %d name %s", info.id, info.name.c_str());
}
return batteryInfos;
}
/**
* Read information about lights exposed through the sysfs path.
*/
static std::unordered_map<int32_t /*lightId*/, RawLightInfo> readLightsConfiguration(
const std::filesystem::path& sysfsRootPath) {
std::unordered_map<int32_t, RawLightInfo> lightInfos;
int32_t nextLightId = 0;
// Check if device has any lights.
const auto& paths = findSysfsNodes(sysfsRootPath, SysfsClass::LEDS);
for (const auto& nodePath : paths) {
RawLightInfo info;
info.id = ++nextLightId;
info.path = nodePath;
info.name = nodePath.filename();
info.maxBrightness = std::nullopt;
// Light name should follow the naming pattern <name>:<color>:<function>
// Refer kernel docs /leds/leds-class.html for valid supported LED names.
std::regex indexPattern("([a-zA-Z0-9_.:]*:)?([a-zA-Z0-9_.]*):([a-zA-Z0-9_.]*)");
std::smatch results;
if (std::regex_match(info.name, results, indexPattern)) {
// regex_match will return full match at index 0 and <name> at index 1. For RawLightInfo
// we only care about sections <color> and <function> which will be at index 2 and 3.
for (int i = 2; i <= 3; i++) {
const auto it = LIGHT_CLASSES.find(results.str(i));
if (it != LIGHT_CLASSES.end()) {
info.flags |= it->second;
}
}
// Set name of the raw light to <function> which represents playerIDs for LEDs that
// turn on/off based on the current player ID (Refer to PeripheralController.cpp for
// player ID logic)
info.name = results.str(3);
}
// Scan the path for all the files
// Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt
const auto& files = allFilesInPath(nodePath);
for (const auto& file : files) {
const auto it = LIGHT_CLASSES.find(file.filename().string());
if (it != LIGHT_CLASSES.end()) {
info.flags |= it->second;
// If the node has maximum brightness, read it
if (it->second == InputLightClass::MAX_BRIGHTNESS) {
std::string str;
if (base::ReadFileToString(file, &str)) {
info.maxBrightness = std::stoi(str);
}
}
}
}
lightInfos.insert_or_assign(info.id, info);
ALOGD("configureLightsLocked rawLightId %d name %s", info.id, info.name.c_str());
}
return lightInfos;
}
// --- Global Functions ---
ftl::Flags<InputDeviceClass> getAbsAxisUsage(int32_t axis,
ftl::Flags<InputDeviceClass> deviceClasses) {
// Touch devices get dibs on touch-related axes.
if (deviceClasses.test(InputDeviceClass::TOUCH)) {
switch (axis) {
case ABS_X:
case ABS_Y:
case ABS_PRESSURE:
case ABS_TOOL_WIDTH:
case ABS_DISTANCE:
case ABS_TILT_X:
case ABS_TILT_Y:
case ABS_MT_SLOT:
case ABS_MT_TOUCH_MAJOR:
case ABS_MT_TOUCH_MINOR:
case ABS_MT_WIDTH_MAJOR:
case ABS_MT_WIDTH_MINOR:
case ABS_MT_ORIENTATION:
case ABS_MT_POSITION_X:
case ABS_MT_POSITION_Y:
case ABS_MT_TOOL_TYPE:
case ABS_MT_BLOB_ID:
case ABS_MT_TRACKING_ID:
case ABS_MT_PRESSURE:
case ABS_MT_DISTANCE:
return InputDeviceClass::TOUCH;
}
}
if (deviceClasses.test(InputDeviceClass::SENSOR)) {
switch (axis) {
case ABS_X:
case ABS_Y:
case ABS_Z:
case ABS_RX:
case ABS_RY:
case ABS_RZ:
return InputDeviceClass::SENSOR;
}
}
// External stylus gets the pressure axis
if (deviceClasses.test(InputDeviceClass::EXTERNAL_STYLUS)) {
if (axis == ABS_PRESSURE) {
return InputDeviceClass::EXTERNAL_STYLUS;
}
}
// Joystick devices get the rest.
return deviceClasses & InputDeviceClass::JOYSTICK;
}
// --- RawAbsoluteAxisInfo ---
std::ostream& operator<<(std::ostream& out, const RawAbsoluteAxisInfo& info) {
if (info.valid) {
out << "min=" << info.minValue << ", max=" << info.maxValue << ", flat=" << info.flat
<< ", fuzz=" << info.fuzz << ", resolution=" << info.resolution;
} else {
out << "unknown range";
}
return out;
}
// --- EventHub::Device ---
EventHub::Device::Device(int fd, int32_t id, std::string path, InputDeviceIdentifier identifier,
std::shared_ptr<const AssociatedDevice> assocDev)
: fd(fd),
id(id),
path(std::move(path)),
identifier(std::move(identifier)),
classes(0),
configuration(nullptr),
virtualKeyMap(nullptr),
ffEffectPlaying(false),
ffEffectId(-1),
associatedDevice(std::move(assocDev)),
controllerNumber(0),
enabled(true),
isVirtual(fd < 0),
currentFrameDropped(false) {}
EventHub::Device::~Device() {
close();
}
void EventHub::Device::close() {
if (fd >= 0) {
::close(fd);
fd = -1;
}
}
status_t EventHub::Device::enable() {
fd = open(path.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK);
if (fd < 0) {
ALOGE("could not open %s, %s\n", path.c_str(), strerror(errno));
return -errno;
}
enabled = true;
return OK;
}
status_t EventHub::Device::disable() {
close();
enabled = false;
return OK;
}
bool EventHub::Device::hasValidFd() const {
return !isVirtual && enabled;
}
const std::shared_ptr<KeyCharacterMap> EventHub::Device::getKeyCharacterMap() const {
return keyMap.keyCharacterMap;
}
template <std::size_t N>
status_t EventHub::Device::readDeviceBitMask(unsigned long ioctlCode, BitArray<N>& bitArray) {
if (!hasValidFd()) {
return BAD_VALUE;
}
if ((_IOC_SIZE(ioctlCode) == 0)) {
ioctlCode |= _IOC(0, 0, 0, bitArray.bytes());
}
typename BitArray<N>::Buffer buffer;
status_t ret = ioctl(fd, ioctlCode, buffer.data());
bitArray.loadFromBuffer(buffer);
return ret;
}
void EventHub::Device::configureFd() {
// Set fd parameters with ioctl, such as key repeat, suspend block, and clock type
if (classes.test(InputDeviceClass::KEYBOARD)) {
// Disable kernel key repeat since we handle it ourselves
unsigned int repeatRate[] = {0, 0};
if (ioctl(fd, EVIOCSREP, repeatRate)) {
ALOGW("Unable to disable kernel key repeat for %s: %s", path.c_str(), strerror(errno));
}
}
// Tell the kernel that we want to use the monotonic clock for reporting timestamps
// associated with input events. This is important because the input system
// uses the timestamps extensively and assumes they were recorded using the monotonic
// clock.
int clockId = CLOCK_MONOTONIC;
if (classes.test(InputDeviceClass::SENSOR)) {
// Each new sensor event should use the same time base as
// SystemClock.elapsedRealtimeNanos().
clockId = CLOCK_BOOTTIME;
}
bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
ALOGI("usingClockIoctl=%s", toString(usingClockIoctl));
// Query the initial state of keys and switches, which is tracked by EventHub.
readDeviceState();
}
void EventHub::Device::readDeviceState() {
if (readDeviceBitMask(EVIOCGKEY(0), keyState) < 0) {
ALOGD("Unable to query the global key state for %s: %s", path.c_str(), strerror(errno));
}
if (readDeviceBitMask(EVIOCGSW(0), swState) < 0) {
ALOGD("Unable to query the global switch state for %s: %s", path.c_str(), strerror(errno));
}
// Read absolute axis info and values for all available axes for the device.
populateAbsoluteAxisStates();
}
void EventHub::Device::populateAbsoluteAxisStates() {
absState.clear();
for (int axis = 0; axis <= ABS_MAX; axis++) {
if (!absBitmask.test(axis)) {
continue;
}
struct input_absinfo info {};
if (ioctl(fd, EVIOCGABS(axis), &info)) {
ALOGE("Error reading absolute controller %d for device %s fd %d: %s", axis,
identifier.name.c_str(), fd, strerror(errno));
continue;
}
if (info.minimum == info.maximum) {
continue;
}
auto& [axisInfo, value] = absState[axis];
axisInfo.valid = true;
axisInfo.minValue = info.minimum;
axisInfo.maxValue = info.maximum;
axisInfo.flat = info.flat;
axisInfo.fuzz = info.fuzz;
axisInfo.resolution = info.resolution;
value = info.value;
}
}
bool EventHub::Device::hasKeycodeLocked(int keycode) const {
if (!keyMap.haveKeyLayout()) {
return false;
}
std::vector<int32_t> scanCodes = keyMap.keyLayoutMap->findScanCodesForKey(keycode);
const size_t N = scanCodes.size();
for (size_t i = 0; i < N && i <= KEY_MAX; i++) {
int32_t sc = scanCodes[i];
if (sc >= 0 && sc <= KEY_MAX && keyBitmask.test(sc)) {
return true;
}
}
std::vector<int32_t> usageCodes = keyMap.keyLayoutMap->findUsageCodesForKey(keycode);
if (usageCodes.size() > 0 && mscBitmask.test(MSC_SCAN)) {
return true;
}
return false;
}
void EventHub::Device::loadConfigurationLocked() {
configurationFile =
getInputDeviceConfigurationFilePathByDeviceIdentifier(identifier,
InputDeviceConfigurationFileType::
CONFIGURATION);
if (configurationFile.empty()) {
ALOGD("No input device configuration file found for device '%s'.", identifier.name.c_str());
} else {
android::base::Result<std::unique_ptr<PropertyMap>> propertyMap =
PropertyMap::load(configurationFile.c_str());
if (!propertyMap.ok()) {
ALOGE("Error loading input device configuration file for device '%s'. "
"Using default configuration.",
identifier.name.c_str());
} else {
configuration = std::move(*propertyMap);
}
}
}
bool EventHub::Device::loadVirtualKeyMapLocked() {
// The virtual key map is supplied by the kernel as a system board property file.
std::string propPath = "/sys/board_properties/virtualkeys.";
propPath += identifier.getCanonicalName();
if (access(propPath.c_str(), R_OK)) {
return false;
}
virtualKeyMap = VirtualKeyMap::load(propPath);
return virtualKeyMap != nullptr;
}
status_t EventHub::Device::loadKeyMapLocked() {
return keyMap.load(identifier, configuration.get());
}
bool EventHub::Device::isExternalDeviceLocked() {
if (configuration) {
std::optional<bool> isInternal = configuration->getBool("device.internal");
if (isInternal.has_value()) {
return !isInternal.value();
}
}
return identifier.bus == BUS_USB || identifier.bus == BUS_BLUETOOTH;
}
bool EventHub::Device::deviceHasMicLocked() {
if (configuration) {
std::optional<bool> hasMic = configuration->getBool("audio.mic");
if (hasMic.has_value()) {
return hasMic.value();
}
}
return false;
}
void EventHub::Device::setLedStateLocked(int32_t led, bool on) {
int32_t sc;
if (hasValidFd() && mapLed(led, &sc) != NAME_NOT_FOUND) {
struct input_event ev;
ev.input_event_sec = 0;
ev.input_event_usec = 0;
ev.type = EV_LED;
ev.code = sc;
ev.value = on ? 1 : 0;
ssize_t nWrite;
do {
nWrite = write(fd, &ev, sizeof(struct input_event));
} while (nWrite == -1 && errno == EINTR);
}
}
void EventHub::Device::setLedForControllerLocked() {
for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) {
setLedStateLocked(ALED_CONTROLLER_1 + i, controllerNumber == i + 1);
}
}
status_t EventHub::Device::mapLed(int32_t led, int32_t* outScanCode) const {
if (!keyMap.haveKeyLayout()) {
return NAME_NOT_FOUND;
}
std::optional<int32_t> scanCode = keyMap.keyLayoutMap->findScanCodeForLed(led);
if (scanCode.has_value()) {
if (*scanCode >= 0 && *scanCode <= LED_MAX && ledBitmask.test(*scanCode)) {
*outScanCode = *scanCode;
return NO_ERROR;
}
}
return NAME_NOT_FOUND;
}
void EventHub::Device::trackInputEvent(const struct input_event& event) {
switch (event.type) {
case EV_KEY: {
LOG_ALWAYS_FATAL_IF(!currentFrameDropped &&
!keyState.set(static_cast<size_t>(event.code),
event.value != 0),
"%s: received invalid EV_KEY event code: %s", __func__,
InputEventLookup::getLinuxEvdevLabel(EV_KEY, event.code, 1)
.code.c_str());
break;
}
case EV_SW: {
LOG_ALWAYS_FATAL_IF(!currentFrameDropped &&
!swState.set(static_cast<size_t>(event.code),
event.value != 0),
"%s: received invalid EV_SW event code: %s", __func__,
InputEventLookup::getLinuxEvdevLabel(EV_SW, event.code, 1)
.code.c_str());
break;
}
case EV_ABS: {
auto it = absState.find(event.code);
LOG_ALWAYS_FATAL_IF(!currentFrameDropped && it == absState.end(),
"%s: received invalid EV_ABS event code: %s", __func__,
InputEventLookup::getLinuxEvdevLabel(EV_ABS, event.code, 0)
.code.c_str());
it->second.value = event.value;
break;
}
case EV_SYN: {
switch (event.code) {
case SYN_REPORT:
currentFrameDropped = false;
break;
case SYN_DROPPED:
// When we receive SYN_DROPPED, all events in the current frame should be
// dropped. We query the state of the device to synchronize our device state
// with the kernel's to account for the dropped events.
currentFrameDropped = true;
readDeviceState();
break;
default:
break;
}
break;
}
default:
break;
}
}
/**
* Get the capabilities for the current process.
* Crashes the system if unable to create / check / destroy the capabilities object.
*/
class Capabilities final {
public:
explicit Capabilities() {
mCaps = cap_get_proc();
LOG_ALWAYS_FATAL_IF(mCaps == nullptr, "Could not get capabilities of the current process");
}
/**
* Check whether the current process has a specific capability
* in the set of effective capabilities.
* Return CAP_SET if the process has the requested capability
* Return CAP_CLEAR otherwise.
*/
cap_flag_value_t checkEffectiveCapability(cap_value_t capability) {
cap_flag_value_t value;
const int result = cap_get_flag(mCaps, capability, CAP_EFFECTIVE, &value);
LOG_ALWAYS_FATAL_IF(result == -1, "Could not obtain the requested capability");
return value;
}
~Capabilities() {
const int result = cap_free(mCaps);
LOG_ALWAYS_FATAL_IF(result == -1, "Could not release the capabilities structure");
}
private:
cap_t mCaps;
};
static void ensureProcessCanBlockSuspend() {
Capabilities capabilities;
const bool canBlockSuspend =
capabilities.checkEffectiveCapability(CAP_BLOCK_SUSPEND) == CAP_SET;
LOG_ALWAYS_FATAL_IF(!canBlockSuspend,
"Input must be able to block suspend to properly process events");
}
// --- EventHub ---
const int EventHub::EPOLL_MAX_EVENTS;
EventHub::EventHub(void)
: mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD),
mNextDeviceId(1),
mControllerNumbers(),
mNeedToSendFinishedDeviceScan(false),
mNeedToReopenDevices(false),
mNeedToScanDevices(true),
mPendingEventCount(0),
mPendingEventIndex(0),
mPendingINotify(false) {
ensureProcessCanBlockSuspend();
mEpollFd = epoll_create1(EPOLL_CLOEXEC);
LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno));
mINotifyFd = inotify_init1(IN_CLOEXEC);
LOG_ALWAYS_FATAL_IF(mINotifyFd < 0, "Could not create inotify instance: %s", strerror(errno));
std::error_code errorCode;
bool isDeviceInotifyAdded = false;
if (std::filesystem::exists(DEVICE_INPUT_PATH, errorCode)) {
addDeviceInputInotify();
} else {
addDeviceInotify();
isDeviceInotifyAdded = true;
if (errorCode) {
ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(),
errorCode.message().c_str());
}
}
if (isV4lScanningEnabled() && !isDeviceInotifyAdded) {
addDeviceInotify();
} else {
ALOGI("Video device scanning disabled");
}
struct epoll_event eventItem = {};
eventItem.events = EPOLLIN | EPOLLWAKEUP;
eventItem.data.fd = mINotifyFd;
int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno);
int wakeFds[2];
result = pipe2(wakeFds, O_CLOEXEC);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno);
mWakeReadPipeFd = wakeFds[0];
mWakeWritePipeFd = wakeFds[1];
result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d",
errno);
result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d",
errno);
eventItem.data.fd = mWakeReadPipeFd;
result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d",
errno);
}
EventHub::~EventHub(void) {
closeAllDevicesLocked();
::close(mEpollFd);
::close(mINotifyFd);
::close(mWakeReadPipeFd);
::close(mWakeWritePipeFd);
}
/**
* On devices that don't have any input devices (like some development boards), the /dev/input
* directory will be absent. However, the user may still plug in an input device at a later time.
* Add watch for contents of /dev/input only when /dev/input appears.
*/
void EventHub::addDeviceInputInotify() {
mDeviceInputWd = inotify_add_watch(mINotifyFd, DEVICE_INPUT_PATH, IN_DELETE | IN_CREATE);
LOG_ALWAYS_FATAL_IF(mDeviceInputWd < 0, "Could not register INotify for %s: %s",
DEVICE_INPUT_PATH, strerror(errno));
}
void EventHub::addDeviceInotify() {
mDeviceWd = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
LOG_ALWAYS_FATAL_IF(mDeviceWd < 0, "Could not register INotify for %s: %s", DEVICE_PATH,
strerror(errno));
}
InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
return device != nullptr ? device->identifier : InputDeviceIdentifier();
}
ftl::Flags<InputDeviceClass> EventHub::getDeviceClasses(int32_t deviceId) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
return device != nullptr ? device->classes : ftl::Flags<InputDeviceClass>(0);
}
int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
return device != nullptr ? device->controllerNumber : 0;
}
std::optional<PropertyMap> EventHub::getConfiguration(int32_t deviceId) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == nullptr || device->configuration == nullptr) {
return {};
}
return *device->configuration;
}
status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
RawAbsoluteAxisInfo* outAxisInfo) const {
outAxisInfo->clear();
if (axis < 0 || axis > ABS_MAX) {
return NAME_NOT_FOUND;
}
std::scoped_lock _l(mLock);
const Device* device = getDeviceLocked(deviceId);
if (device == nullptr) {
return NAME_NOT_FOUND;
}
// We can read the RawAbsoluteAxisInfo even if the device is disabled and doesn't have a valid
// fd, because the info is populated once when the device is first opened, and it doesn't change
// throughout the device lifecycle.
auto it = device->absState.find(axis);
if (it == device->absState.end()) {
return NAME_NOT_FOUND;
}
*outAxisInfo = it->second.info;
return OK;
}
bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
if (axis >= 0 && axis <= REL_MAX) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
return device != nullptr ? device->relBitmask.test(axis) : false;
}
return false;
}
bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
return property >= 0 && property <= INPUT_PROP_MAX && device != nullptr
? device->propBitmask.test(property)
: false;
}
bool EventHub::hasMscEvent(int32_t deviceId, int mscEvent) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
return mscEvent >= 0 && mscEvent <= MSC_MAX && device != nullptr
? device->mscBitmask.test(mscEvent)
: false;
}
int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
if (scanCode < 0 || scanCode > KEY_MAX) {
return AKEY_STATE_UNKNOWN;
}
std::scoped_lock _l(mLock);
const Device* device = getDeviceLocked(deviceId);
if (device == nullptr || !device->hasValidFd() || !device->keyBitmask.test(scanCode)) {
return AKEY_STATE_UNKNOWN;
}
return device->keyState.test(scanCode) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
}
int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
std::scoped_lock _l(mLock);
const Device* device = getDeviceLocked(deviceId);
if (device == nullptr || !device->hasValidFd() || !device->keyMap.haveKeyLayout()) {
return AKEY_STATE_UNKNOWN;
}
const std::vector<int32_t> scanCodes =
device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode);
if (scanCodes.empty()) {
return AKEY_STATE_UNKNOWN;
}
return std::any_of(scanCodes.begin(), scanCodes.end(),
[&device](const int32_t sc) {
return sc >= 0 && sc <= KEY_MAX && device->keyState.test(sc);
})
? AKEY_STATE_DOWN
: AKEY_STATE_UP;
}
int32_t EventHub::getKeyCodeForKeyLocation(int32_t deviceId, int32_t locationKeyCode) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == nullptr || !device->hasValidFd() || device->keyMap.keyCharacterMap == nullptr ||
device->keyMap.keyLayoutMap == nullptr) {
return AKEYCODE_UNKNOWN;
}
std::vector<int32_t> scanCodes =
device->keyMap.keyLayoutMap->findScanCodesForKey(locationKeyCode);
if (scanCodes.empty()) {
ALOGW("Failed to get key code for key location: no scan code maps to key code %d for input"
"device %d",
locationKeyCode, deviceId);
return AKEYCODE_UNKNOWN;
}
if (scanCodes.size() > 1) {
ALOGW("Multiple scan codes map to the same key code %d, returning only the first match",
locationKeyCode);
}
int32_t outKeyCode;
status_t mapKeyRes =
device->getKeyCharacterMap()->mapKey(scanCodes[0], /*usageCode=*/0, &outKeyCode);
switch (mapKeyRes) {
case OK:
break;
case NAME_NOT_FOUND:
// key character map doesn't re-map this scanCode, hence the keyCode remains the same
outKeyCode = locationKeyCode;
break;
default:
ALOGW("Failed to get key code for key location: Key character map returned error %s",
statusToString(mapKeyRes).c_str());
outKeyCode = AKEYCODE_UNKNOWN;
break;
}
// Remap if there is a Key remapping added to the KCM and return the remapped key
return device->getKeyCharacterMap()->applyKeyRemapping(outKeyCode);
}
int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
if (sw < 0 || sw > SW_MAX) {
return AKEY_STATE_UNKNOWN;
}
std::scoped_lock _l(mLock);
const Device* device = getDeviceLocked(deviceId);
if (device == nullptr || !device->hasValidFd() || !device->swBitmask.test(sw)) {
return AKEY_STATE_UNKNOWN;
}
return device->swState.test(sw) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
}
status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
*outValue = 0;
if (axis < 0 || axis > ABS_MAX) {
return NAME_NOT_FOUND;
}
std::scoped_lock _l(mLock);
const Device* device = getDeviceLocked(deviceId);
if (device == nullptr || !device->hasValidFd()) {
return NAME_NOT_FOUND;
}
const auto it = device->absState.find(axis);
if (it == device->absState.end()) {
return NAME_NOT_FOUND;
}
*outValue = it->second.value;
return OK;
}
bool EventHub::markSupportedKeyCodes(int32_t deviceId, const std::vector<int32_t>& keyCodes,
uint8_t* outFlags) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && device->keyMap.haveKeyLayout()) {
for (size_t codeIndex = 0; codeIndex < keyCodes.size(); codeIndex++) {
if (device->hasKeycodeLocked(keyCodes[codeIndex])) {
outFlags[codeIndex] = 1;
}
}
return true;
}
return false;
}
void EventHub::addKeyRemapping(int32_t deviceId, int32_t fromKeyCode, int32_t toKeyCode) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == nullptr) {
return;
}
const std::shared_ptr<KeyCharacterMap> kcm = device->getKeyCharacterMap();
if (kcm) {
kcm->addKeyRemapping(fromKeyCode, toKeyCode);
}
}
status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, int32_t metaState,
int32_t* outKeycode, int32_t* outMetaState, uint32_t* outFlags) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
status_t status = NAME_NOT_FOUND;
if (device != nullptr) {
// Check the key character map first.
const std::shared_ptr<KeyCharacterMap> kcm = device->getKeyCharacterMap();
if (kcm) {
if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
*outFlags = 0;
status = NO_ERROR;
}
}
// Check the key layout next.
if (status != NO_ERROR && device->keyMap.haveKeyLayout()) {
if (!device->keyMap.keyLayoutMap->mapKey(scanCode, usageCode, outKeycode, outFlags)) {
status = NO_ERROR;
}
}
if (status == NO_ERROR) {
if (kcm) {
// Remap keys based on user-defined key remappings and key behavior defined in the
// corresponding kcm file
*outKeycode = kcm->applyKeyRemapping(*outKeycode);
// Remap keys based on Key behavior defined in KCM file
std::tie(*outKeycode, *outMetaState) =
kcm->applyKeyBehavior(*outKeycode, metaState);
} else {
*outMetaState = metaState;
}
}
}
if (status != NO_ERROR) {
*outKeycode = 0;
*outFlags = 0;
*outMetaState = metaState;
}
return status;
}
status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == nullptr || !device->keyMap.haveKeyLayout()) {
return NAME_NOT_FOUND;
}
std::optional<AxisInfo> info = device->keyMap.keyLayoutMap->mapAxis(scanCode);
if (!info.has_value()) {
return NAME_NOT_FOUND;
}
*outAxisInfo = *info;
return NO_ERROR;
}
base::Result<std::pair<InputDeviceSensorType, int32_t>> EventHub::mapSensor(int32_t deviceId,
int32_t absCode) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && device->keyMap.haveKeyLayout()) {
return device->keyMap.keyLayoutMap->mapSensor(absCode);
}
return Errorf("Device not found or device has no key layout.");
}
// Gets the battery info map from battery ID to RawBatteryInfo of the miscellaneous device
// associated with the device ID. Returns an empty map if no miscellaneous device found.
const std::unordered_map<int32_t, RawBatteryInfo>& EventHub::getBatteryInfoLocked(
int32_t deviceId) const {
static const std::unordered_map<int32_t, RawBatteryInfo> EMPTY_BATTERY_INFO = {};
Device* device = getDeviceLocked(deviceId);
if (device == nullptr || !device->associatedDevice) {
return EMPTY_BATTERY_INFO;
}
return device->associatedDevice->batteryInfos;
}
std::vector<int32_t> EventHub::getRawBatteryIds(int32_t deviceId) const {
std::scoped_lock _l(mLock);
std::vector<int32_t> batteryIds;
for (const auto& [id, info] : getBatteryInfoLocked(deviceId)) {
batteryIds.push_back(id);
}
return batteryIds;
}
std::optional<RawBatteryInfo> EventHub::getRawBatteryInfo(int32_t deviceId,
int32_t batteryId) const {
std::scoped_lock _l(mLock);
const auto infos = getBatteryInfoLocked(deviceId);
auto it = infos.find(batteryId);
if (it != infos.end()) {
return it->second;
}
return std::nullopt;
}
// Gets the light info map from light ID to RawLightInfo of the miscellaneous device associated
// with the device ID. Returns an empty map if no miscellaneous device found.
const std::unordered_map<int32_t, RawLightInfo>& EventHub::getLightInfoLocked(
int32_t deviceId) const {
static const std::unordered_map<int32_t, RawLightInfo> EMPTY_LIGHT_INFO = {};
Device* device = getDeviceLocked(deviceId);
if (device == nullptr || !device->associatedDevice) {
return EMPTY_LIGHT_INFO;
}
return device->associatedDevice->lightInfos;
}
std::vector<int32_t> EventHub::getRawLightIds(int32_t deviceId) const {
std::scoped_lock _l(mLock);
std::vector<int32_t> lightIds;
for (const auto& [id, info] : getLightInfoLocked(deviceId)) {
lightIds.push_back(id);
}
return lightIds;
}
std::optional<RawLightInfo> EventHub::getRawLightInfo(int32_t deviceId, int32_t lightId) const {
std::scoped_lock _l(mLock);
const auto infos = getLightInfoLocked(deviceId);
auto it = infos.find(lightId);
if (it != infos.end()) {
return it->second;
}
return std::nullopt;
}
std::optional<int32_t> EventHub::getLightBrightness(int32_t deviceId, int32_t lightId) const {
std::scoped_lock _l(mLock);
const auto infos = getLightInfoLocked(deviceId);
auto it = infos.find(lightId);
if (it == infos.end()) {
return std::nullopt;
}
std::string buffer;
if (!base::ReadFileToString(it->second.path / LIGHT_NODES.at(InputLightClass::BRIGHTNESS),
&buffer)) {
return std::nullopt;
}
return std::stoi(buffer);
}
std::optional<std::unordered_map<LightColor, int32_t>> EventHub::getLightIntensities(
int32_t deviceId, int32_t lightId) const {
std::scoped_lock _l(mLock);
const auto infos = getLightInfoLocked(deviceId);
auto lightIt = infos.find(lightId);
if (lightIt == infos.end()) {
return std::nullopt;
}
auto ret =
getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX));
if (!ret.has_value()) {
return std::nullopt;
}
std::array<LightColor, COLOR_NUM> colors = ret.value();
std::string intensityStr;
if (!base::ReadFileToString(lightIt->second.path /
LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY),
&intensityStr)) {
return std::nullopt;
}
// Intensity node outputs 3 color values
std::regex intensityPattern("([0-9]+)\\s([0-9]+)\\s([0-9]+)[\\n]");
std::smatch results;
if (!std::regex_match(intensityStr, results, intensityPattern)) {
return std::nullopt;
}
std::unordered_map<LightColor, int32_t> intensities;
for (size_t i = 1; i < results.size(); i++) {
int value = std::stoi(results[i].str());
intensities.emplace(colors[i - 1], value);
}
return intensities;
}
void EventHub::setLightBrightness(int32_t deviceId, int32_t lightId, int32_t brightness) {
std::scoped_lock _l(mLock);
const auto infos = getLightInfoLocked(deviceId);
auto lightIt = infos.find(lightId);
if (lightIt == infos.end()) {
ALOGE("%s lightId %d not found ", __func__, lightId);
return;
}
if (!base::WriteStringToFile(std::to_string(brightness),
lightIt->second.path /
LIGHT_NODES.at(InputLightClass::BRIGHTNESS))) {
ALOGE("Can not write to file, error: %s", strerror(errno));
}
}
void EventHub::setLightIntensities(int32_t deviceId, int32_t lightId,
std::unordered_map<LightColor, int32_t> intensities) {
std::scoped_lock _l(mLock);
const auto infos = getLightInfoLocked(deviceId);
auto lightIt = infos.find(lightId);
if (lightIt == infos.end()) {
ALOGE("Light Id %d does not exist.", lightId);
return;
}
auto ret =
getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX));
if (!ret.has_value()) {
return;
}
std::array<LightColor, COLOR_NUM> colors = ret.value();
std::string rgbStr;
for (size_t i = 0; i < COLOR_NUM; i++) {
auto it = intensities.find(colors[i]);
if (it != intensities.end()) {
rgbStr += std::to_string(it->second);
// Insert space between colors
if (i < COLOR_NUM - 1) {
rgbStr += " ";
}
}
}
// Append new line
rgbStr += "\n";
if (!base::WriteStringToFile(rgbStr,
lightIt->second.path /
LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY))) {
ALOGE("Can not write to file, error: %s", strerror(errno));
}
}
std::optional<RawLayoutInfo> EventHub::getRawLayoutInfo(int32_t deviceId) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == nullptr || !device->associatedDevice) {
return std::nullopt;
}
return device->associatedDevice->layoutInfo;
}
void EventHub::setExcludedDevices(const std::vector<std::string>& devices) {
std::scoped_lock _l(mLock);
mExcludedDevices = devices;
}
bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && scanCode >= 0 && scanCode <= KEY_MAX) {
return device->keyBitmask.test(scanCode);
}
return false;
}
bool EventHub::hasKeyCode(int32_t deviceId, int32_t keyCode) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr) {
return device->hasKeycodeLocked(keyCode);
}
return false;
}
bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
int32_t sc;
if (device != nullptr && device->mapLed(led, &sc) == NO_ERROR) {
return device->ledBitmask.test(sc);
}
return false;
}
void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && device->hasValidFd()) {
device->setLedStateLocked(led, on);
}
}
void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
std::vector<VirtualKeyDefinition>& outVirtualKeys) const {
outVirtualKeys.clear();
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && device->virtualKeyMap) {
const std::vector<VirtualKeyDefinition> virtualKeys =
device->virtualKeyMap->getVirtualKeys();
outVirtualKeys.insert(outVirtualKeys.end(), virtualKeys.begin(), virtualKeys.end());
}
}
const std::shared_ptr<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr) {
return device->getKeyCharacterMap();
}
return nullptr;
}
// If provided map is null, it will reset key character map to default KCM.
bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId, std::shared_ptr<KeyCharacterMap> map) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == nullptr || device->keyMap.keyCharacterMap == nullptr) {
return false;
}
if (map == nullptr) {
device->keyMap.keyCharacterMap->clearLayoutOverlay();
return true;
}
device->keyMap.keyCharacterMap->combine(*map);
return true;
}
static std::string generateDescriptor(InputDeviceIdentifier& identifier) {
std::string rawDescriptor;
rawDescriptor += StringPrintf(":%04x:%04x:", identifier.vendor, identifier.product);
// TODO add handling for USB devices to not uniqueify kbs that show up twice
if (!identifier.uniqueId.empty()) {
rawDescriptor += "uniqueId:";
rawDescriptor += identifier.uniqueId;
}
if (identifier.nonce != 0) {
rawDescriptor += StringPrintf("nonce:%04x", identifier.nonce);
}
if (identifier.vendor == 0 && identifier.product == 0) {
// If we don't know the vendor and product id, then the device is probably
// built-in so we need to rely on other information to uniquely identify
// the input device. Usually we try to avoid relying on the device name or
// location but for built-in input device, they are unlikely to ever change.
if (!identifier.name.empty()) {
rawDescriptor += "name:";
rawDescriptor += identifier.name;
} else if (!identifier.location.empty()) {
rawDescriptor += "location:";
rawDescriptor += identifier.location;
}
}
identifier.descriptor = sha1(rawDescriptor);
return rawDescriptor;
}
void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) {
// Compute a device descriptor that uniquely identifies the device.
// The descriptor is assumed to be a stable identifier. Its value should not
// change between reboots, reconnections, firmware updates or new releases
// of Android. In practice we sometimes get devices that cannot be uniquely
// identified. In this case we enforce uniqueness between connected devices.
// Ideally, we also want the descriptor to be short and relatively opaque.
// Note that we explicitly do not use the path or location for external devices
// as their path or location will change as they are plugged/unplugged or moved
// to different ports. We do fallback to using name and location in the case of
// internal devices which are detected by the vendor and product being 0 in
// generateDescriptor. If two identical descriptors are detected we will fallback
// to using a 'nonce' and incrementing it until the new descriptor no longer has
// a match with any existing descriptors.
identifier.nonce = 0;
std::string rawDescriptor = generateDescriptor(identifier);
// Enforce that the generated descriptor is unique.
while (hasDeviceWithDescriptorLocked(identifier.descriptor)) {
identifier.nonce++;
rawDescriptor = generateDescriptor(identifier);
}
ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.c_str(),
identifier.descriptor.c_str());
}
std::shared_ptr<const EventHub::AssociatedDevice> EventHub::obtainAssociatedDeviceLocked(
const std::filesystem::path& devicePath) const {
const std::optional<std::filesystem::path> sysfsRootPathOpt =
getSysfsRootPath(devicePath.c_str());
if (!sysfsRootPathOpt) {
return nullptr;
}
const auto& path = *sysfsRootPathOpt;
std::shared_ptr<const AssociatedDevice> associatedDevice = std::make_shared<AssociatedDevice>(
AssociatedDevice{.sysfsRootPath = path,
.batteryInfos = readBatteryConfiguration(path),
.lightInfos = readLightsConfiguration(path),
.layoutInfo = readLayoutConfiguration(path)});
bool associatedDeviceChanged = false;
for (const auto& [id, dev] : mDevices) {
if (dev->associatedDevice && dev->associatedDevice->sysfsRootPath == path) {
if (*associatedDevice != *dev->associatedDevice) {
associatedDeviceChanged = true;
dev->associatedDevice = associatedDevice;
}
associatedDevice = dev->associatedDevice;
}
}
ALOGI_IF(associatedDeviceChanged,
"The AssociatedDevice changed for path '%s'. Using new AssociatedDevice: %s",
path.c_str(), associatedDevice->dump().c_str());
return associatedDevice;
}
bool EventHub::AssociatedDevice::isChanged() const {
std::unordered_map<int32_t, RawBatteryInfo> newBatteryInfos =
readBatteryConfiguration(sysfsRootPath);
std::unordered_map<int32_t, RawLightInfo> newLightInfos =
readLightsConfiguration(sysfsRootPath);
std::optional<RawLayoutInfo> newLayoutInfo = readLayoutConfiguration(sysfsRootPath);
if (newBatteryInfos == batteryInfos && newLightInfos == lightInfos &&
newLayoutInfo == layoutInfo) {
return false;
}
return true;
}
void EventHub::vibrate(int32_t deviceId, const VibrationElement& element) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && device->hasValidFd()) {
ff_effect effect;
memset(&effect, 0, sizeof(effect));
effect.type = FF_RUMBLE;
effect.id = device->ffEffectId;
// evdev FF_RUMBLE effect only supports two channels of vibration.
effect.u.rumble.strong_magnitude = element.getMagnitude(FF_STRONG_MAGNITUDE_CHANNEL_IDX);
effect.u.rumble.weak_magnitude = element.getMagnitude(FF_WEAK_MAGNITUDE_CHANNEL_IDX);
effect.replay.length = element.duration.count();
effect.replay.delay = 0;
if (ioctl(device->fd, EVIOCSFF, &effect)) {
ALOGW("Could not upload force feedback effect to device %s due to error %d.",
device->identifier.name.c_str(), errno);
return;
}
device->ffEffectId = effect.id;
struct input_event ev;
ev.input_event_sec = 0;
ev.input_event_usec = 0;
ev.type = EV_FF;
ev.code = device->ffEffectId;
ev.value = 1;
if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
ALOGW("Could not start force feedback effect on device %s due to error %d.",
device->identifier.name.c_str(), errno);
return;
}
device->ffEffectPlaying = true;
}
}
void EventHub::cancelVibrate(int32_t deviceId) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && device->hasValidFd()) {
if (device->ffEffectPlaying) {
device->ffEffectPlaying = false;
struct input_event ev;
ev.input_event_sec = 0;
ev.input_event_usec = 0;
ev.type = EV_FF;
ev.code = device->ffEffectId;
ev.value = 0;
if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
ALOGW("Could not stop force feedback effect on device %s due to error %d.",
device->identifier.name.c_str(), errno);
return;
}
}
}
}
std::vector<int32_t> EventHub::getVibratorIds(int32_t deviceId) const {
std::scoped_lock _l(mLock);
std::vector<int32_t> vibrators;
Device* device = getDeviceLocked(deviceId);
if (device != nullptr && device->hasValidFd() &&
device->classes.test(InputDeviceClass::VIBRATOR)) {
vibrators.push_back(FF_STRONG_MAGNITUDE_CHANNEL_IDX);
vibrators.push_back(FF_WEAK_MAGNITUDE_CHANNEL_IDX);
}
return vibrators;
}
/**
* Checks both mDevices and mOpeningDevices for a device with the descriptor passed.
*/
bool EventHub::hasDeviceWithDescriptorLocked(const std::string& descriptor) const {
for (const auto& device : mOpeningDevices) {
if (descriptor == device->identifier.descriptor) {
return true;
}
}
for (const auto& [id, device] : mDevices) {
if (descriptor == device->identifier.descriptor) {
return true;
}
}
return false;
}
EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
if (deviceId == ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID) {
deviceId = mBuiltInKeyboardId;
}
const auto& it = mDevices.find(deviceId);
return it != mDevices.end() ? it->second.get() : nullptr;
}
EventHub::Device* EventHub::getDeviceByPathLocked(const std::string& devicePath) const {
for (const auto& [id, device] : mDevices) {
if (device->path == devicePath) {
return device.get();
}
}
return nullptr;
}
/**
* The file descriptor could be either input device, or a video device (associated with a
* specific input device). Check both cases here, and return the device that this event
* belongs to. Caller can compare the fd's once more to determine event type.
* Looks through all input devices, and only attached video devices. Unattached video
* devices are ignored.
*/
EventHub::Device* EventHub::getDeviceByFdLocked(int fd) const {
for (const auto& [id, device] : mDevices) {
if (device->fd == fd) {
// This is an input device event
return device.get();
}
if (device->videoDevice && device->videoDevice->getFd() == fd) {
// This is a video device event
return device.get();
}
}
// We do not check mUnattachedVideoDevices here because they should not participate in epoll,
// and therefore should never be looked up by fd.
return nullptr;
}
std::optional<int32_t> EventHub::getBatteryCapacity(int32_t deviceId, int32_t batteryId) const {
std::filesystem::path batteryPath;
{
// Do not read the sysfs node to get the battery state while holding
// the EventHub lock. For some peripheral devices, reading battery state
// can be broken and take 5+ seconds. Holding the lock in this case would
// block all other event processing during this time. For now, we assume this
// call never happens on the InputReader thread and read the sysfs node outside
// the lock to prevent event processing from being blocked by this call.
std::scoped_lock _l(mLock);
const auto& infos = getBatteryInfoLocked(deviceId);
auto it = infos.find(batteryId);
if (it == infos.end()) {
return std::nullopt;
}
batteryPath = it->second.path;
} // release lock
std::string buffer;
// Some devices report battery capacity as an integer through the "capacity" file
if (base::ReadFileToString(batteryPath / BATTERY_NODES.at(InputBatteryClass::CAPACITY),
&buffer)) {
return std::stoi(base::Trim(buffer));
}
// Other devices report capacity as an enum value POWER_SUPPLY_CAPACITY_LEVEL_XXX
// These values are taken from kernel source code include/linux/power_supply.h
if (base::ReadFileToString(batteryPath / BATTERY_NODES.at(InputBatteryClass::CAPACITY_LEVEL),
&buffer)) {
// Remove any white space such as trailing new line
const auto levelIt = BATTERY_LEVEL.find(base::Trim(buffer));
if (levelIt != BATTERY_LEVEL.end()) {
return levelIt->second;
}
}
return std::nullopt;
}
std::optional<int32_t> EventHub::getBatteryStatus(int32_t deviceId, int32_t batteryId) const {
std::filesystem::path batteryPath;
{
// Do not read the sysfs node to get the battery state while holding
// the EventHub lock. For some peripheral devices, reading battery state
// can be broken and take 5+ seconds. Holding the lock in this case would
// block all other event processing during this time. For now, we assume this
// call never happens on the InputReader thread and read the sysfs node outside
// the lock to prevent event processing from being blocked by this call.
std::scoped_lock _l(mLock);
const auto& infos = getBatteryInfoLocked(deviceId);
auto it = infos.find(batteryId);
if (it == infos.end()) {
return std::nullopt;
}
batteryPath = it->second.path;
} // release lock
std::string buffer;
if (!base::ReadFileToString(batteryPath / BATTERY_NODES.at(InputBatteryClass::STATUS),
&buffer)) {
ALOGE("Failed to read sysfs battery info: %s", strerror(errno));
return std::nullopt;
}
// Remove white space like trailing new line
const auto statusIt = BATTERY_STATUS.find(base::Trim(buffer));
if (statusIt != BATTERY_STATUS.end()) {
return statusIt->second;
}
return std::nullopt;
}
std::vector<RawEvent> EventHub::getEvents(int timeoutMillis) {
std::scoped_lock _l(mLock);
std::array<input_event, EVENT_BUFFER_SIZE> readBuffer;
std::vector<RawEvent> events;
bool awoken = false;
for (;;) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
// Reopen input devices if needed.
if (mNeedToReopenDevices) {
mNeedToReopenDevices = false;
ALOGI("Reopening all input devices due to a configuration change.");
closeAllDevicesLocked();
mNeedToScanDevices = true;
break; // return to the caller before we actually rescan
}
// Report any devices that had last been added/removed.
for (auto it = mClosingDevices.begin(); it != mClosingDevices.end();) {
std::unique_ptr<Device> device = std::move(*it);
ALOGV("Reporting device closed: id=%d, name=%s\n", device->id, device->path.c_str());
const int32_t deviceId = (device->id == mBuiltInKeyboardId)
? ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID
: device->id;
events.push_back({
.when = now,
.deviceId = deviceId,
.type = DEVICE_REMOVED,
});
it = mClosingDevices.erase(it);
mNeedToSendFinishedDeviceScan = true;
if (events.size() == EVENT_BUFFER_SIZE) {
break;
}
}
if (mNeedToScanDevices) {
mNeedToScanDevices = false;
scanDevicesLocked();
mNeedToSendFinishedDeviceScan = true;
}
while (!mOpeningDevices.empty()) {
std::unique_ptr<Device> device = std::move(*mOpeningDevices.rbegin());
mOpeningDevices.pop_back();
ALOGV("Reporting device opened: id=%d, name=%s\n", device->id, device->path.c_str());
const int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
events.push_back({
.when = now,
.deviceId = deviceId,
.type = DEVICE_ADDED,
});
// Try to find a matching video device by comparing device names
for (auto it = mUnattachedVideoDevices.begin(); it != mUnattachedVideoDevices.end();
it++) {
std::unique_ptr<TouchVideoDevice>& videoDevice = *it;
if (tryAddVideoDeviceLocked(*device, videoDevice)) {
// videoDevice was transferred to 'device'
it = mUnattachedVideoDevices.erase(it);
break;
}
}
auto [dev_it, inserted] = mDevices.insert_or_assign(device->id, std::move(device));
if (!inserted) {
ALOGW("Device id %d exists, replaced.", device->id);
}
mNeedToSendFinishedDeviceScan = true;
if (events.size() == EVENT_BUFFER_SIZE) {
break;
}
}
if (mNeedToSendFinishedDeviceScan) {
mNeedToSendFinishedDeviceScan = false;
events.push_back({
.when = now,
.type = FINISHED_DEVICE_SCAN,
});
if (events.size() == EVENT_BUFFER_SIZE) {
break;
}
}
// Grab the next input event.
bool deviceChanged = false;
while (mPendingEventIndex < mPendingEventCount) {
const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
if (eventItem.data.fd == mINotifyFd) {
if (eventItem.events & EPOLLIN) {
mPendingINotify = true;
} else {
ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
}
continue;
}
if (eventItem.data.fd == mWakeReadPipeFd) {
if (eventItem.events & EPOLLIN) {
ALOGV("awoken after wake()");
awoken = true;
char wakeReadBuffer[16];
ssize_t nRead;
do {
nRead = read(mWakeReadPipeFd, wakeReadBuffer, sizeof(wakeReadBuffer));
} while ((nRead == -1 && errno == EINTR) || nRead == sizeof(wakeReadBuffer));
} else {
ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
eventItem.events);
}
continue;
}
Device* device = getDeviceByFdLocked(eventItem.data.fd);
if (device == nullptr) {
ALOGE("Received unexpected epoll event 0x%08x for unknown fd %d.", eventItem.events,
eventItem.data.fd);
ALOG_ASSERT(!DEBUG);
continue;
}
if (device->videoDevice && eventItem.data.fd == device->videoDevice->getFd()) {
if (eventItem.events & EPOLLIN) {
size_t numFrames = device->videoDevice->readAndQueueFrames();
if (numFrames == 0) {
ALOGE("Received epoll event for video device %s, but could not read frame",
device->videoDevice->getName().c_str());
}
} else if (eventItem.events & EPOLLHUP) {
// TODO(b/121395353) - consider adding EPOLLRDHUP
ALOGI("Removing video device %s due to epoll hang-up event.",
device->videoDevice->getName().c_str());
unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
device->videoDevice = nullptr;
} else {
ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
device->videoDevice->getName().c_str());
ALOG_ASSERT(!DEBUG);
}
continue;
}
// This must be an input event
if (eventItem.events & EPOLLIN) {
int32_t readSize =
read(device->fd, readBuffer.data(),
sizeof(decltype(readBuffer)::value_type) * readBuffer.size());
if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
// Device was removed before INotify noticed.
ALOGW("could not get event, removed? (fd: %d size: %" PRId32
" capacity: %zu errno: %d)\n",
device->fd, readSize, readBuffer.size(), errno);
deviceChanged = true;
closeDeviceLocked(*device);
} else if (readSize < 0) {
if (errno != EAGAIN && errno != EINTR) {
ALOGW("could not get event (errno=%d)", errno);
}
} else if ((readSize % sizeof(struct input_event)) != 0) {
ALOGE("could not get event (wrong size: %d)", readSize);
} else {
const int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
const size_t count = size_t(readSize) / sizeof(struct input_event);
for (size_t i = 0; i < count; i++) {
struct input_event& iev = readBuffer[i];
device->trackInputEvent(iev);
events.push_back({
.when = processEventTimestamp(iev),
.readTime = systemTime(SYSTEM_TIME_MONOTONIC),
.deviceId = deviceId,
.type = iev.type,
.code = iev.code,
.value = iev.value,
});
}
if (events.size() >= EVENT_BUFFER_SIZE) {
// The result buffer is full. Reset the pending event index
// so we will try to read the device again on the next iteration.
mPendingEventIndex -= 1;
break;
}
}
} else if (eventItem.events & EPOLLHUP) {
ALOGI("Removing device %s due to epoll hang-up event.",
device->identifier.name.c_str());
deviceChanged = true;
closeDeviceLocked(*device);
} else {
ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
device->identifier.name.c_str());
}
}
// readNotify() will modify the list of devices so this must be done after
// processing all other events to ensure that we read all remaining events
// before closing the devices.
if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
mPendingINotify = false;
const auto res = readNotifyLocked();
if (!res.ok()) {
ALOGW("Failed to read from inotify: %s", res.error().message().c_str());
}
deviceChanged = true;
}
// Report added or removed devices immediately.
if (deviceChanged) {
continue;
}
// Return now if we have collected any events or if we were explicitly awoken.
if (!events.empty() || awoken) {
break;
}
// Poll for events.
// When a device driver has pending (unread) events, it acquires
// a kernel wake lock. Once the last pending event has been read, the device
// driver will release the kernel wake lock, but the epoll will hold the wakelock,
// since we are using EPOLLWAKEUP. The wakelock is released by the epoll when epoll_wait
// is called again for the same fd that produced the event.
// Thus the system can only sleep if there are no events pending or
// currently being processed.
//
// The timeout is advisory only. If the device is asleep, it will not wake just to
// service the timeout.
mPendingEventIndex = 0;
mLock.unlock(); // release lock before poll
int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
mLock.lock(); // reacquire lock after poll
if (pollResult == 0) {
// Timed out.
mPendingEventCount = 0;
break;
}
if (pollResult < 0) {
// An error occurred.
mPendingEventCount = 0;
// Sleep after errors to avoid locking up the system.
// Hopefully the error is transient.
if (errno != EINTR) {
ALOGW("poll failed (errno=%d)\n", errno);
usleep(100000);
}
} else {
// Some events occurred.
mPendingEventCount = size_t(pollResult);
}
}
// All done, return the number of events we read.
return events;
}
std::vector<TouchVideoFrame> EventHub::getVideoFrames(int32_t deviceId) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == nullptr || !device->videoDevice) {
return {};
}
return device->videoDevice->consumeFrames();
}
void EventHub::wake() {
ALOGV("wake() called");
ssize_t nWrite;
do {
nWrite = write(mWakeWritePipeFd, "W", 1);
} while (nWrite == -1 && errno == EINTR);
if (nWrite != 1 && errno != EAGAIN) {
ALOGW("Could not write wake signal: %s", strerror(errno));
}
}
void EventHub::scanDevicesLocked() {
status_t result;
std::error_code errorCode;
if (std::filesystem::exists(DEVICE_INPUT_PATH, errorCode)) {
result = scanDirLocked(DEVICE_INPUT_PATH);
if (result < 0) {
ALOGE("scan dir failed for %s", DEVICE_INPUT_PATH);
}
} else {
if (errorCode) {
ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(),
errorCode.message().c_str());
}
}
if (isV4lScanningEnabled()) {
result = scanVideoDirLocked(DEVICE_PATH);
if (result != OK) {
ALOGE("scan video dir failed for %s", DEVICE_PATH);
}
}
if (mDevices.find(ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID) == mDevices.end()) {
createVirtualKeyboardLocked();
}
}
// ----------------------------------------------------------------------------
status_t EventHub::registerFdForEpoll(int fd) {
// TODO(b/121395353) - consider adding EPOLLRDHUP
struct epoll_event eventItem = {};
eventItem.events = EPOLLIN | EPOLLWAKEUP;
eventItem.data.fd = fd;
if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
ALOGE("Could not add fd to epoll instance: %s", strerror(errno));
return -errno;
}
return OK;
}
status_t EventHub::unregisterFdFromEpoll(int fd) {
if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, fd, nullptr)) {
ALOGW("Could not remove fd from epoll instance: %s", strerror(errno));
return -errno;
}
return OK;
}
status_t EventHub::registerDeviceForEpollLocked(Device& device) {
status_t result = registerFdForEpoll(device.fd);
if (result != OK) {
ALOGE("Could not add input device fd to epoll for device %" PRId32, device.id);
return result;
}
if (device.videoDevice) {
registerVideoDeviceForEpollLocked(*device.videoDevice);
}
return result;
}
void EventHub::registerVideoDeviceForEpollLocked(const TouchVideoDevice& videoDevice) {
status_t result = registerFdForEpoll(videoDevice.getFd());
if (result != OK) {
ALOGE("Could not add video device %s to epoll", videoDevice.getName().c_str());
}
}
status_t EventHub::unregisterDeviceFromEpollLocked(Device& device) {
if (device.hasValidFd()) {
status_t result = unregisterFdFromEpoll(device.fd);
if (result != OK) {
ALOGW("Could not remove input device fd from epoll for device %" PRId32, device.id);
return result;
}
}
if (device.videoDevice) {
unregisterVideoDeviceFromEpollLocked(*device.videoDevice);
}
return OK;
}
void EventHub::unregisterVideoDeviceFromEpollLocked(const TouchVideoDevice& videoDevice) {
if (videoDevice.hasValidFd()) {
status_t result = unregisterFdFromEpoll(videoDevice.getFd());
if (result != OK) {
ALOGW("Could not remove video device fd from epoll for device: %s",
videoDevice.getName().c_str());
}
}
}
void EventHub::reportDeviceAddedForStatisticsLocked(const InputDeviceIdentifier& identifier,
ftl::Flags<InputDeviceClass> classes) {
SHA256_CTX ctx;
SHA256_Init(&ctx);
SHA256_Update(&ctx, reinterpret_cast<const uint8_t*>(identifier.uniqueId.c_str()),
identifier.uniqueId.size());
std::array<uint8_t, SHA256_DIGEST_LENGTH> digest;
SHA256_Final(digest.data(), &ctx);
std::string obfuscatedId;
for (size_t i = 0; i < OBFUSCATED_LENGTH; i++) {
obfuscatedId += StringPrintf("%02x", digest[i]);
}
android::util::stats_write(android::util::INPUTDEVICE_REGISTERED, identifier.name.c_str(),
identifier.vendor, identifier.product, identifier.version,
identifier.bus, obfuscatedId.c_str(), classes.get());
}
void EventHub::openDeviceLocked(const std::string& devicePath) {
// If an input device happens to register around the time when EventHub's constructor runs, it
// is possible that the same input event node (for example, /dev/input/event3) will be noticed
// in both 'inotify' callback and also in the 'scanDirLocked' pass. To prevent duplicate devices
// from getting registered, ensure that this path is not already covered by an existing device.
for (const auto& [deviceId, device] : mDevices) {
if (device->path == devicePath) {
return; // device was already registered
}
}
char buffer[80];
ALOGV("Opening device: %s", devicePath.c_str());
int fd = open(devicePath.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK);
if (fd < 0) {
ALOGE("could not open %s, %s\n", devicePath.c_str(), strerror(errno));
return;
}
InputDeviceIdentifier identifier;
// Get device name.
if (ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
ALOGE("Could not get device name for %s: %s", devicePath.c_str(), strerror(errno));
} else {
buffer[sizeof(buffer) - 1] = '\0';
identifier.name = buffer;
}
// Check to see if the device is on our excluded list
for (size_t i = 0; i < mExcludedDevices.size(); i++) {
const std::string& item = mExcludedDevices[i];
if (identifier.name == item) {
ALOGI("ignoring event id %s driver %s\n", devicePath.c_str(), item.c_str());
close(fd);
return;
}
}
// Get device driver version.
int driverVersion;
if (ioctl(fd, EVIOCGVERSION, &driverVersion)) {
ALOGE("could not get driver version for %s, %s\n", devicePath.c_str(), strerror(errno));
close(fd);
return;
}
// Get device identifier.
struct input_id inputId;
if (ioctl(fd, EVIOCGID, &inputId)) {
ALOGE("could not get device input id for %s, %s\n", devicePath.c_str(), strerror(errno));
close(fd);
return;
}
identifier.bus = inputId.bustype;
identifier.product = inputId.product;
identifier.vendor = inputId.vendor;
identifier.version = inputId.version;
// Get device physical location.
if (ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
// fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
} else {
buffer[sizeof(buffer) - 1] = '\0';
identifier.location = buffer;
}
// Get device unique id.
if (ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
// fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
} else {
buffer[sizeof(buffer) - 1] = '\0';
identifier.uniqueId = buffer;
}
// Attempt to get the bluetooth address of an input device from the uniqueId.
if (identifier.bus == BUS_BLUETOOTH &&
std::regex_match(identifier.uniqueId,
std::regex("^[A-Fa-f0-9]{2}(?::[A-Fa-f0-9]{2}){5}$"))) {
identifier.bluetoothAddress = identifier.uniqueId;
// The Bluetooth stack requires alphabetic characters to be uppercase in a valid address.
for (auto& c : *identifier.bluetoothAddress) {
c = ::toupper(c);
}
}
// Fill in the descriptor.
assignDescriptorLocked(identifier);
// Allocate device. (The device object takes ownership of the fd at this point.)
int32_t deviceId = mNextDeviceId++;
std::unique_ptr<Device> device =
std::make_unique<Device>(fd, deviceId, devicePath, identifier,
obtainAssociatedDeviceLocked(devicePath));
ALOGV("add device %d: %s\n", deviceId, devicePath.c_str());
ALOGV(" bus: %04x\n"
" vendor %04x\n"
" product %04x\n"
" version %04x\n",
identifier.bus, identifier.vendor, identifier.product, identifier.version);
ALOGV(" name: \"%s\"\n", identifier.name.c_str());
ALOGV(" location: \"%s\"\n", identifier.location.c_str());
ALOGV(" unique id: \"%s\"\n", identifier.uniqueId.c_str());
ALOGV(" descriptor: \"%s\"\n", identifier.descriptor.c_str());
ALOGV(" driver: v%d.%d.%d\n", driverVersion >> 16, (driverVersion >> 8) & 0xff,
driverVersion & 0xff);
// Load the configuration file for the device.
device->loadConfigurationLocked();
// Figure out the kinds of events the device reports.
device->readDeviceBitMask(EVIOCGBIT(EV_KEY, 0), device->keyBitmask);
device->readDeviceBitMask(EVIOCGBIT(EV_ABS, 0), device->absBitmask);
device->readDeviceBitMask(EVIOCGBIT(EV_REL, 0), device->relBitmask);
device->readDeviceBitMask(EVIOCGBIT(EV_SW, 0), device->swBitmask);
device->readDeviceBitMask(EVIOCGBIT(EV_LED, 0), device->ledBitmask);
device->readDeviceBitMask(EVIOCGBIT(EV_FF, 0), device->ffBitmask);
device->readDeviceBitMask(EVIOCGBIT(EV_MSC, 0), device->mscBitmask);
device->readDeviceBitMask(EVIOCGPROP(0), device->propBitmask);
// See if this is a device with keys. This could be full keyboard, or other devices like
// gamepads, joysticks, and styluses with buttons that should generate key presses.
bool haveKeyboardKeys =
device->keyBitmask.any(0, BTN_MISC) || device->keyBitmask.any(BTN_WHEEL, KEY_MAX + 1);
bool haveGamepadButtons = device->keyBitmask.any(BTN_MISC, BTN_MOUSE) ||
device->keyBitmask.any(BTN_JOYSTICK, BTN_DIGI);
bool haveStylusButtons = device->keyBitmask.test(BTN_STYLUS) ||
device->keyBitmask.test(BTN_STYLUS2) || device->keyBitmask.test(BTN_STYLUS3);
if (haveKeyboardKeys || haveGamepadButtons || haveStylusButtons) {
device->classes |= InputDeviceClass::KEYBOARD;
}
// See if this is a cursor device such as a trackball or mouse.
if (device->keyBitmask.test(BTN_MOUSE) && device->relBitmask.test(REL_X) &&
device->relBitmask.test(REL_Y)) {
device->classes |= InputDeviceClass::CURSOR;
}
// See if the device is specially configured to be of a certain type.
if (device->configuration) {
std::string deviceType = device->configuration->getString("device.type").value_or("");
if (deviceType == "rotaryEncoder") {
device->classes |= InputDeviceClass::ROTARY_ENCODER;
} else if (deviceType == "externalStylus") {
device->classes |= InputDeviceClass::EXTERNAL_STYLUS;
}
}
// See if this is a touch pad.
// Is this a new modern multi-touch driver?
if (device->absBitmask.test(ABS_MT_POSITION_X) && device->absBitmask.test(ABS_MT_POSITION_Y)) {
// Some joysticks such as the PS3 controller report axes that conflict
// with the ABS_MT range. Try to confirm that the device really is
// a touch screen.
if (device->keyBitmask.test(BTN_TOUCH) || !haveGamepadButtons) {
device->classes |= (InputDeviceClass::TOUCH | InputDeviceClass::TOUCH_MT);
if (device->propBitmask.test(INPUT_PROP_POINTER) &&
!device->keyBitmask.any(BTN_TOOL_PEN, BTN_TOOL_FINGER) && !haveStylusButtons) {
device->classes |= InputDeviceClass::TOUCHPAD;
}
}
// Is this an old style single-touch driver?
} else if (device->keyBitmask.test(BTN_TOUCH) && device->absBitmask.test(ABS_X) &&
device->absBitmask.test(ABS_Y)) {
device->classes |= InputDeviceClass::TOUCH;
// Is this a stylus that reports contact/pressure independently of touch coordinates?
} else if ((device->absBitmask.test(ABS_PRESSURE) || device->keyBitmask.test(BTN_TOUCH)) &&
!device->absBitmask.test(ABS_X) && !device->absBitmask.test(ABS_Y)) {
device->classes |= InputDeviceClass::EXTERNAL_STYLUS;
}
// See if this device is a joystick.
// Assumes that joysticks always have gamepad buttons in order to distinguish them
// from other devices such as accelerometers that also have absolute axes.
if (haveGamepadButtons) {
auto assumedClasses = device->classes | InputDeviceClass::JOYSTICK;
for (int i = 0; i <= ABS_MAX; i++) {
if (device->absBitmask.test(i) &&
(getAbsAxisUsage(i, assumedClasses).test(InputDeviceClass::JOYSTICK))) {
device->classes = assumedClasses;
break;
}
}
}
// Check whether this device is an accelerometer.
if (device->propBitmask.test(INPUT_PROP_ACCELEROMETER)) {
device->classes |= InputDeviceClass::SENSOR;
}
// Check whether this device has switches.
for (int i = 0; i <= SW_MAX; i++) {
if (device->swBitmask.test(i)) {
device->classes |= InputDeviceClass::SWITCH;
break;
}
}
// Check whether this device supports the vibrator.
if (device->ffBitmask.test(FF_RUMBLE)) {
device->classes |= InputDeviceClass::VIBRATOR;
}
// Configure virtual keys.
if ((device->classes.test(InputDeviceClass::TOUCH))) {
// Load the virtual keys for the touch screen, if any.
// We do this now so that we can make sure to load the keymap if necessary.
bool success = device->loadVirtualKeyMapLocked();
if (success) {
device->classes |= InputDeviceClass::KEYBOARD;
}
}
// Load the key map.
// We need to do this for joysticks too because the key layout may specify axes, and for
// sensor as well because the key layout may specify the axes to sensor data mapping.
status_t keyMapStatus = NAME_NOT_FOUND;
if (device->classes.any(InputDeviceClass::KEYBOARD | InputDeviceClass::JOYSTICK |
InputDeviceClass::SENSOR)) {
// Load the keymap for the device.
keyMapStatus = device->loadKeyMapLocked();
}
// Configure the keyboard, gamepad or virtual keyboard.
if (device->classes.test(InputDeviceClass::KEYBOARD)) {
// Register the keyboard as a built-in keyboard if it is eligible.
if (!keyMapStatus && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD &&
isEligibleBuiltInKeyboard(device->identifier, device->configuration.get(),
&device->keyMap)) {
mBuiltInKeyboardId = device->id;
}
// 'Q' key support = cheap test of whether this is an alpha-capable kbd
if (device->hasKeycodeLocked(AKEYCODE_Q)) {
device->classes |= InputDeviceClass::ALPHAKEY;
}
// See if this device has a D-pad.
if (std::all_of(DPAD_REQUIRED_KEYCODES.begin(), DPAD_REQUIRED_KEYCODES.end(),
[&](int32_t keycode) { return device->hasKeycodeLocked(keycode); })) {
device->classes |= InputDeviceClass::DPAD;
}
// See if this device has a gamepad.
if (std::any_of(GAMEPAD_KEYCODES.begin(), GAMEPAD_KEYCODES.end(),
[&](int32_t keycode) { return device->hasKeycodeLocked(keycode); })) {
device->classes |= InputDeviceClass::GAMEPAD;
}
// See if this device has any stylus buttons that we would want to fuse with touch data.
if (!device->classes.any(InputDeviceClass::TOUCH | InputDeviceClass::TOUCH_MT) &&
std::any_of(STYLUS_BUTTON_KEYCODES.begin(), STYLUS_BUTTON_KEYCODES.end(),
[&](int32_t keycode) { return device->hasKeycodeLocked(keycode); })) {
device->classes |= InputDeviceClass::EXTERNAL_STYLUS;
}
}
// If the device isn't recognized as something we handle, don't monitor it.
if (device->classes == ftl::Flags<InputDeviceClass>(0)) {
ALOGV("Dropping device: id=%d, path='%s', name='%s'", deviceId, devicePath.c_str(),
device->identifier.name.c_str());
return;
}
// Classify InputDeviceClass::BATTERY.
if (device->associatedDevice && !device->associatedDevice->batteryInfos.empty()) {
device->classes |= InputDeviceClass::BATTERY;
}
// Classify InputDeviceClass::LIGHT.
if (device->associatedDevice && !device->associatedDevice->lightInfos.empty()) {
device->classes |= InputDeviceClass::LIGHT;
}
// Determine whether the device has a mic.
if (device->deviceHasMicLocked()) {
device->classes |= InputDeviceClass::MIC;
}
// Determine whether the device is external or internal.
if (device->isExternalDeviceLocked()) {
device->classes |= InputDeviceClass::EXTERNAL;
}
if (device->classes.any(InputDeviceClass::JOYSTICK | InputDeviceClass::DPAD) &&
device->classes.test(InputDeviceClass::GAMEPAD)) {
device->controllerNumber = getNextControllerNumberLocked(device->identifier.name);
device->setLedForControllerLocked();
}
if (registerDeviceForEpollLocked(*device) != OK) {
return;
}
device->configureFd();
ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=%s, "
"configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, ",
deviceId, fd, devicePath.c_str(), device->identifier.name.c_str(),
device->classes.string().c_str(), device->configurationFile.c_str(),
device->keyMap.keyLayoutFile.c_str(), device->keyMap.keyCharacterMapFile.c_str(),
toString(mBuiltInKeyboardId == deviceId));
addDeviceLocked(std::move(device));
}
void EventHub::openVideoDeviceLocked(const std::string& devicePath) {
std::unique_ptr<TouchVideoDevice> videoDevice = TouchVideoDevice::create(devicePath);
if (!videoDevice) {
ALOGE("Could not create touch video device for %s. Ignoring", devicePath.c_str());
return;
}
// Transfer ownership of this video device to a matching input device
for (const auto& [id, device] : mDevices) {
if (tryAddVideoDeviceLocked(*device, videoDevice)) {
return; // 'device' now owns 'videoDevice'
}
}
// Couldn't find a matching input device, so just add it to a temporary holding queue.
// A matching input device may appear later.
ALOGI("Adding video device %s to list of unattached video devices",
videoDevice->getName().c_str());
mUnattachedVideoDevices.push_back(std::move(videoDevice));
}
bool EventHub::tryAddVideoDeviceLocked(EventHub::Device& device,
std::unique_ptr<TouchVideoDevice>& videoDevice) {
if (videoDevice->getName() != device.identifier.name) {
return false;
}
device.videoDevice = std::move(videoDevice);
if (device.enabled) {
registerVideoDeviceForEpollLocked(*device.videoDevice);
}
return true;
}
bool EventHub::isDeviceEnabled(int32_t deviceId) const {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == nullptr) {
ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
return false;
}
return device->enabled;
}
status_t EventHub::enableDevice(int32_t deviceId) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == nullptr) {
ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
return BAD_VALUE;
}
if (device->enabled) {
ALOGW("Duplicate call to %s, input device %" PRId32 " already enabled", __func__, deviceId);
return OK;
}
status_t result = device->enable();
if (result != OK) {
ALOGE("Failed to enable device %" PRId32, deviceId);
return result;
}
device->configureFd();
return registerDeviceForEpollLocked(*device);
}
status_t EventHub::disableDevice(int32_t deviceId) {
std::scoped_lock _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == nullptr) {
ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
return BAD_VALUE;
}
if (!device->enabled) {
ALOGW("Duplicate call to %s, input device already disabled", __func__);
return OK;
}
unregisterDeviceFromEpollLocked(*device);
return device->disable();
}
// TODO(b/274755573): Shift to uevent handling on native side and remove this method
// Currently using Java UEventObserver to trigger this which uses UEvent infrastructure that uses a
// NETLINK socket to observe UEvents. We can create similar infrastructure on Eventhub side to
// directly observe UEvents instead of triggering from Java side.
void EventHub::sysfsNodeChanged(const std::string& sysfsNodePath) {
std::scoped_lock _l(mLock);
// Check in opening devices
for (auto it = mOpeningDevices.begin(); it != mOpeningDevices.end(); it++) {
std::unique_ptr<Device>& device = *it;
if (device->associatedDevice &&
sysfsNodePath.find(device->associatedDevice->sysfsRootPath.string()) !=
std::string::npos &&
device->associatedDevice->isChanged()) {
it = mOpeningDevices.erase(it);
openDeviceLocked(device->path);
}
}
// Check in already added device
std::vector<Device*> devicesToReopen;
for (const auto& [id, device] : mDevices) {
if (device->associatedDevice &&
sysfsNodePath.find(device->associatedDevice->sysfsRootPath.string()) !=
std::string::npos &&
device->associatedDevice->isChanged()) {
devicesToReopen.push_back(device.get());
}
}
for (const auto& device : devicesToReopen) {
closeDeviceLocked(*device);
openDeviceLocked(device->path);
}
devicesToReopen.clear();
}
void EventHub::createVirtualKeyboardLocked() {
InputDeviceIdentifier identifier;
identifier.name = "Virtual";
identifier.uniqueId = "<virtual>";
assignDescriptorLocked(identifier);
std::unique_ptr<Device> device =
std::make_unique<Device>(-1, ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID, "<virtual>",
identifier, /*associatedDevice=*/nullptr);
device->classes = InputDeviceClass::KEYBOARD | InputDeviceClass::ALPHAKEY |
InputDeviceClass::DPAD | InputDeviceClass::VIRTUAL;
device->loadKeyMapLocked();
addDeviceLocked(std::move(device));
}
void EventHub::addDeviceLocked(std::unique_ptr<Device> device) {
reportDeviceAddedForStatisticsLocked(device->identifier, device->classes);
mOpeningDevices.push_back(std::move(device));
}
int32_t EventHub::getNextControllerNumberLocked(const std::string& name) {
if (mControllerNumbers.isFull()) {
ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s",
name.c_str());
return 0;
}
// Since the controller number 0 is reserved for non-controllers, translate all numbers up by
// one
return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1);
}
void EventHub::releaseControllerNumberLocked(int32_t num) {
if (num > 0) {
mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1));
}
}
void EventHub::closeDeviceByPathLocked(const std::string& devicePath) {
Device* device = getDeviceByPathLocked(devicePath);
if (device != nullptr) {
closeDeviceLocked(*device);
return;
}
ALOGV("Remove device: %s not found, device may already have been removed.", devicePath.c_str());
}
/**
* Find the video device by filename, and close it.
* The video device is closed by path during an inotify event, where we don't have the
* additional context about the video device fd, or the associated input device.
*/
void EventHub::closeVideoDeviceByPathLocked(const std::string& devicePath) {
// A video device may be owned by an existing input device, or it may be stored in
// the mUnattachedVideoDevices queue. Check both locations.
for (const auto& [id, device] : mDevices) {
if (device->videoDevice && device->videoDevice->getPath() == devicePath) {
unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
device->videoDevice = nullptr;
return;
}
}
std::erase_if(mUnattachedVideoDevices,
[&devicePath](const std::unique_ptr<TouchVideoDevice>& videoDevice) {
return videoDevice->getPath() == devicePath;
});
}
void EventHub::closeAllDevicesLocked() {
mUnattachedVideoDevices.clear();
while (!mDevices.empty()) {
closeDeviceLocked(*(mDevices.begin()->second));
}
}
void EventHub::closeDeviceLocked(Device& device) {
ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=%s", device.path.c_str(),
device.identifier.name.c_str(), device.id, device.fd, device.classes.string().c_str());
if (device.id == mBuiltInKeyboardId) {
ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
device.path.c_str(), mBuiltInKeyboardId);
mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
}
unregisterDeviceFromEpollLocked(device);
if (device.videoDevice) {
// This must be done after the video device is removed from epoll
mUnattachedVideoDevices.push_back(std::move(device.videoDevice));
}
releaseControllerNumberLocked(device.controllerNumber);
device.controllerNumber = 0;
device.close();
mClosingDevices.push_back(std::move(mDevices[device.id]));
mDevices.erase(device.id);
}
base::Result<void> EventHub::readNotifyLocked() {
static constexpr auto EVENT_SIZE = static_cast<ssize_t>(sizeof(inotify_event));
uint8_t eventBuffer[512];
ssize_t sizeRead;
ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
do {
sizeRead = read(mINotifyFd, eventBuffer, sizeof(eventBuffer));
} while (sizeRead < 0 && errno == EINTR);
if (sizeRead < EVENT_SIZE) return Errorf("could not get event, %s", strerror(errno));
for (ssize_t eventPos = 0; sizeRead >= EVENT_SIZE;) {
const inotify_event* event;
event = (const inotify_event*)(eventBuffer + eventPos);
if (event->len == 0) continue;
handleNotifyEventLocked(*event);
const ssize_t eventSize = EVENT_SIZE + event->len;
sizeRead -= eventSize;
eventPos += eventSize;
}
return {};
}
void EventHub::handleNotifyEventLocked(const inotify_event& event) {
if (event.wd == mDeviceInputWd) {
std::string filename = std::string(DEVICE_INPUT_PATH) + "/" + event.name;
if (event.mask & IN_CREATE) {
openDeviceLocked(filename);
} else {
ALOGI("Removing device '%s' due to inotify event\n", filename.c_str());
closeDeviceByPathLocked(filename);
}
} else if (event.wd == mDeviceWd) {
if (isV4lTouchNode(event.name)) {
std::string filename = std::string(DEVICE_PATH) + "/" + event.name;
if (event.mask & IN_CREATE) {
openVideoDeviceLocked(filename);
} else {
ALOGI("Removing video device '%s' due to inotify event", filename.c_str());
closeVideoDeviceByPathLocked(filename);
}
} else if (strcmp(event.name, "input") == 0 && event.mask & IN_CREATE) {
addDeviceInputInotify();
}
} else {
LOG_ALWAYS_FATAL("Unexpected inotify event, wd = %i", event.wd);
}
}
status_t EventHub::scanDirLocked(const std::string& dirname) {
for (const auto& entry : std::filesystem::directory_iterator(dirname)) {
openDeviceLocked(entry.path());
}
return 0;
}
/**
* Look for all dirname/v4l-touch* devices, and open them.
*/
status_t EventHub::scanVideoDirLocked(const std::string& dirname) {
for (const auto& entry : std::filesystem::directory_iterator(dirname)) {
if (isV4lTouchNode(entry.path())) {
ALOGI("Found touch video device %s", entry.path().c_str());
openVideoDeviceLocked(entry.path());
}
}
return OK;
}
void EventHub::requestReopenDevices() {
ALOGV("requestReopenDevices() called");
std::scoped_lock _l(mLock);
mNeedToReopenDevices = true;
}
void EventHub::dump(std::string& dump) const {
dump += "Event Hub State:\n";
{ // acquire lock
std::scoped_lock _l(mLock);
dump += StringPrintf(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
dump += INDENT "Devices:\n";
for (const auto& [id, device] : mDevices) {
if (mBuiltInKeyboardId == device->id) {
dump += StringPrintf(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
device->id, device->identifier.name.c_str());
} else {
dump += StringPrintf(INDENT2 "%d: %s\n", device->id,
device->identifier.name.c_str());
}
dump += StringPrintf(INDENT3 "Classes: %s\n", device->classes.string().c_str());
dump += StringPrintf(INDENT3 "Path: %s\n", device->path.c_str());
dump += StringPrintf(INDENT3 "Enabled: %s\n", toString(device->enabled));
dump += StringPrintf(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.c_str());
dump += StringPrintf(INDENT3 "Location: %s\n", device->identifier.location.c_str());
dump += StringPrintf(INDENT3 "ControllerNumber: %d\n", device->controllerNumber);
dump += StringPrintf(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.c_str());
dump += StringPrintf(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
"product=0x%04x, version=0x%04x, bluetoothAddress=%s\n",
device->identifier.bus, device->identifier.vendor,
device->identifier.product, device->identifier.version,
toString(device->identifier.bluetoothAddress).c_str());
dump += StringPrintf(INDENT3 "KeyLayoutFile: %s\n",
device->keyMap.keyLayoutFile.c_str());
dump += StringPrintf(INDENT3 "KeyCharacterMapFile: %s\n",
device->keyMap.keyCharacterMapFile.c_str());
if (device->associatedDevice && device->associatedDevice->layoutInfo) {
dump += StringPrintf(INDENT3 "LanguageTag: %s\n",
device->associatedDevice->layoutInfo->languageTag.c_str());
dump += StringPrintf(INDENT3 "LayoutType: %s\n",
device->associatedDevice->layoutInfo->layoutType.c_str());
}
dump += StringPrintf(INDENT3 "ConfigurationFile: %s\n",
device->configurationFile.c_str());
dump += StringPrintf(INDENT3 "VideoDevice: %s\n",
device->videoDevice ? device->videoDevice->dump().c_str()
: "<none>");
dump += StringPrintf(INDENT3 "SysfsDevicePath: %s\n",
device->associatedDevice
? device->associatedDevice->sysfsRootPath.c_str()
: "<none>");
}
dump += INDENT "Unattached video devices:\n";
for (const std::unique_ptr<TouchVideoDevice>& videoDevice : mUnattachedVideoDevices) {
dump += INDENT2 + videoDevice->dump() + "\n";
}
if (mUnattachedVideoDevices.empty()) {
dump += INDENT2 "<none>\n";
}
} // release lock
}
void EventHub::monitor() const {
// Acquire and release the lock to ensure that the event hub has not deadlocked.
std::unique_lock<std::mutex> lock(mLock);
}
std::string EventHub::AssociatedDevice::dump() const {
return StringPrintf("path=%s, numBatteries=%zu, numLight=%zu", sysfsRootPath.c_str(),
batteryInfos.size(), lightInfos.size());
}
} // namespace android