blob: dded6a13e0e7c676d23557bd9fa2c97de005137b [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cinttypes>
#include <memory>
#include <CursorInputMapper.h>
#include <InputDevice.h>
#include <InputMapper.h>
#include <InputReader.h>
#include <InputReaderBase.h>
#include <InputReaderFactory.h>
#include <JoystickInputMapper.h>
#include <KeyboardInputMapper.h>
#include <MultiTouchInputMapper.h>
#include <PeripheralController.h>
#include <SensorInputMapper.h>
#include <SingleTouchInputMapper.h>
#include <SwitchInputMapper.h>
#include <TestInputListener.h>
#include <TestInputListenerMatchers.h>
#include <TouchInputMapper.h>
#include <UinputDevice.h>
#include <VibratorInputMapper.h>
#include <android-base/thread_annotations.h>
#include <gtest/gtest.h>
#include <gui/constants.h>
#include "android/hardware/input/InputDeviceCountryCode.h"
#include "input/DisplayViewport.h"
#include "input/Input.h"
using android::hardware::input::InputDeviceCountryCode;
namespace android {
using namespace ftl::flag_operators;
using testing::AllOf;
using std::chrono_literals::operator""ms;
// Timeout for waiting for an expected event
static constexpr std::chrono::duration WAIT_TIMEOUT = 100ms;
// An arbitrary time value.
static constexpr nsecs_t ARBITRARY_TIME = 1234;
static constexpr nsecs_t READ_TIME = 4321;
// Arbitrary display properties.
static constexpr int32_t DISPLAY_ID = 0;
static const std::string DISPLAY_UNIQUE_ID = "local:1";
static constexpr int32_t SECONDARY_DISPLAY_ID = DISPLAY_ID + 1;
static const std::string SECONDARY_DISPLAY_UNIQUE_ID = "local:2";
static constexpr int32_t DISPLAY_WIDTH = 480;
static constexpr int32_t DISPLAY_HEIGHT = 800;
static constexpr int32_t VIRTUAL_DISPLAY_ID = 1;
static constexpr int32_t VIRTUAL_DISPLAY_WIDTH = 400;
static constexpr int32_t VIRTUAL_DISPLAY_HEIGHT = 500;
static const char* VIRTUAL_DISPLAY_UNIQUE_ID = "virtual:1";
static constexpr std::optional<uint8_t> NO_PORT = std::nullopt; // no physical port is specified
static constexpr int32_t FIRST_SLOT = 0;
static constexpr int32_t SECOND_SLOT = 1;
static constexpr int32_t THIRD_SLOT = 2;
static constexpr int32_t INVALID_TRACKING_ID = -1;
static constexpr int32_t FIRST_TRACKING_ID = 0;
static constexpr int32_t SECOND_TRACKING_ID = 1;
static constexpr int32_t THIRD_TRACKING_ID = 2;
static constexpr int32_t DEFAULT_BATTERY = 1;
static constexpr int32_t BATTERY_STATUS = 4;
static constexpr int32_t BATTERY_CAPACITY = 66;
static const std::string BATTERY_DEVPATH = "/sys/devices/mydevice/power_supply/mybattery";
static constexpr int32_t LIGHT_BRIGHTNESS = 0x55000000;
static constexpr int32_t LIGHT_COLOR = 0x7F448866;
static constexpr int32_t LIGHT_PLAYER_ID = 2;
static constexpr int32_t ACTION_POINTER_0_DOWN =
AMOTION_EVENT_ACTION_POINTER_DOWN | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
static constexpr int32_t ACTION_POINTER_0_UP =
AMOTION_EVENT_ACTION_POINTER_UP | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
static constexpr int32_t ACTION_POINTER_1_DOWN =
AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
static constexpr int32_t ACTION_POINTER_1_UP =
AMOTION_EVENT_ACTION_POINTER_UP | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
// Error tolerance for floating point assertions.
static const float EPSILON = 0.001f;
template<typename T>
static inline T min(T a, T b) {
return a < b ? a : b;
}
static inline float avg(float x, float y) {
return (x + y) / 2;
}
// Mapping for light color name and the light color
const std::unordered_map<std::string, LightColor> LIGHT_COLORS = {{"red", LightColor::RED},
{"green", LightColor::GREEN},
{"blue", LightColor::BLUE}};
static int32_t getInverseRotation(int32_t orientation) {
switch (orientation) {
case DISPLAY_ORIENTATION_90:
return DISPLAY_ORIENTATION_270;
case DISPLAY_ORIENTATION_270:
return DISPLAY_ORIENTATION_90;
default:
return orientation;
}
}
static void assertAxisResolution(MultiTouchInputMapper& mapper, int axis, float resolution) {
InputDeviceInfo info;
mapper.populateDeviceInfo(&info);
const InputDeviceInfo::MotionRange* motionRange =
info.getMotionRange(axis, AINPUT_SOURCE_TOUCHSCREEN);
ASSERT_NEAR(motionRange->resolution, resolution, EPSILON);
}
static void assertAxisNotPresent(MultiTouchInputMapper& mapper, int axis) {
InputDeviceInfo info;
mapper.populateDeviceInfo(&info);
const InputDeviceInfo::MotionRange* motionRange =
info.getMotionRange(axis, AINPUT_SOURCE_TOUCHSCREEN);
ASSERT_EQ(nullptr, motionRange);
}
// --- FakePointerController ---
class FakePointerController : public PointerControllerInterface {
bool mHaveBounds;
float mMinX, mMinY, mMaxX, mMaxY;
float mX, mY;
int32_t mButtonState;
int32_t mDisplayId;
public:
FakePointerController() :
mHaveBounds(false), mMinX(0), mMinY(0), mMaxX(0), mMaxY(0), mX(0), mY(0),
mButtonState(0), mDisplayId(ADISPLAY_ID_DEFAULT) {
}
virtual ~FakePointerController() {}
void setBounds(float minX, float minY, float maxX, float maxY) {
mHaveBounds = true;
mMinX = minX;
mMinY = minY;
mMaxX = maxX;
mMaxY = maxY;
}
void setPosition(float x, float y) override {
mX = x;
mY = y;
}
void setButtonState(int32_t buttonState) override { mButtonState = buttonState; }
int32_t getButtonState() const override { return mButtonState; }
void getPosition(float* outX, float* outY) const override {
*outX = mX;
*outY = mY;
}
int32_t getDisplayId() const override { return mDisplayId; }
void setDisplayViewport(const DisplayViewport& viewport) override {
mDisplayId = viewport.displayId;
}
const std::map<int32_t, std::vector<int32_t>>& getSpots() {
return mSpotsByDisplay;
}
private:
bool getBounds(float* outMinX, float* outMinY, float* outMaxX, float* outMaxY) const override {
*outMinX = mMinX;
*outMinY = mMinY;
*outMaxX = mMaxX;
*outMaxY = mMaxY;
return mHaveBounds;
}
void move(float deltaX, float deltaY) override {
mX += deltaX;
if (mX < mMinX) mX = mMinX;
if (mX > mMaxX) mX = mMaxX;
mY += deltaY;
if (mY < mMinY) mY = mMinY;
if (mY > mMaxY) mY = mMaxY;
}
void fade(Transition) override {}
void unfade(Transition) override {}
void setPresentation(Presentation) override {}
void setSpots(const PointerCoords*, const uint32_t*, BitSet32 spotIdBits,
int32_t displayId) override {
std::vector<int32_t> newSpots;
// Add spots for fingers that are down.
for (BitSet32 idBits(spotIdBits); !idBits.isEmpty(); ) {
uint32_t id = idBits.clearFirstMarkedBit();
newSpots.push_back(id);
}
mSpotsByDisplay[displayId] = newSpots;
}
void clearSpots() override { mSpotsByDisplay.clear(); }
std::map<int32_t, std::vector<int32_t>> mSpotsByDisplay;
};
// --- FakeInputReaderPolicy ---
class FakeInputReaderPolicy : public InputReaderPolicyInterface {
std::mutex mLock;
std::condition_variable mDevicesChangedCondition;
InputReaderConfiguration mConfig;
std::shared_ptr<FakePointerController> mPointerController;
std::vector<InputDeviceInfo> mInputDevices GUARDED_BY(mLock);
bool mInputDevicesChanged GUARDED_BY(mLock){false};
std::vector<DisplayViewport> mViewports;
TouchAffineTransformation transform;
protected:
virtual ~FakeInputReaderPolicy() {}
public:
FakeInputReaderPolicy() {
}
void assertInputDevicesChanged() {
waitForInputDevices([](bool devicesChanged) {
if (!devicesChanged) {
FAIL() << "Timed out waiting for notifyInputDevicesChanged() to be called.";
}
});
}
void assertInputDevicesNotChanged() {
waitForInputDevices([](bool devicesChanged) {
if (devicesChanged) {
FAIL() << "Expected notifyInputDevicesChanged() to not be called.";
}
});
}
virtual void clearViewports() {
mViewports.clear();
mConfig.setDisplayViewports(mViewports);
}
std::optional<DisplayViewport> getDisplayViewportByUniqueId(const std::string& uniqueId) const {
return mConfig.getDisplayViewportByUniqueId(uniqueId);
}
std::optional<DisplayViewport> getDisplayViewportByType(ViewportType type) const {
return mConfig.getDisplayViewportByType(type);
}
std::optional<DisplayViewport> getDisplayViewportByPort(uint8_t displayPort) const {
return mConfig.getDisplayViewportByPort(displayPort);
}
void addDisplayViewport(DisplayViewport viewport) {
mViewports.push_back(std::move(viewport));
mConfig.setDisplayViewports(mViewports);
}
void addDisplayViewport(int32_t displayId, int32_t width, int32_t height, int32_t orientation,
bool isActive, const std::string& uniqueId,
std::optional<uint8_t> physicalPort, ViewportType type) {
const bool isRotated =
(orientation == DISPLAY_ORIENTATION_90 || orientation == DISPLAY_ORIENTATION_270);
DisplayViewport v;
v.displayId = displayId;
v.orientation = orientation;
v.logicalLeft = 0;
v.logicalTop = 0;
v.logicalRight = isRotated ? height : width;
v.logicalBottom = isRotated ? width : height;
v.physicalLeft = 0;
v.physicalTop = 0;
v.physicalRight = isRotated ? height : width;
v.physicalBottom = isRotated ? width : height;
v.deviceWidth = isRotated ? height : width;
v.deviceHeight = isRotated ? width : height;
v.isActive = isActive;
v.uniqueId = uniqueId;
v.physicalPort = physicalPort;
v.type = type;
addDisplayViewport(v);
}
bool updateViewport(const DisplayViewport& viewport) {
size_t count = mViewports.size();
for (size_t i = 0; i < count; i++) {
const DisplayViewport& currentViewport = mViewports[i];
if (currentViewport.displayId == viewport.displayId) {
mViewports[i] = viewport;
mConfig.setDisplayViewports(mViewports);
return true;
}
}
// no viewport found.
return false;
}
void addExcludedDeviceName(const std::string& deviceName) {
mConfig.excludedDeviceNames.push_back(deviceName);
}
void addInputPortAssociation(const std::string& inputPort, uint8_t displayPort) {
mConfig.portAssociations.insert({inputPort, displayPort});
}
void addInputUniqueIdAssociation(const std::string& inputUniqueId,
const std::string& displayUniqueId) {
mConfig.uniqueIdAssociations.insert({inputUniqueId, displayUniqueId});
}
void addDisabledDevice(int32_t deviceId) { mConfig.disabledDevices.insert(deviceId); }
void removeDisabledDevice(int32_t deviceId) { mConfig.disabledDevices.erase(deviceId); }
void setPointerController(std::shared_ptr<FakePointerController> controller) {
mPointerController = std::move(controller);
}
const InputReaderConfiguration* getReaderConfiguration() const {
return &mConfig;
}
const std::vector<InputDeviceInfo>& getInputDevices() const {
return mInputDevices;
}
TouchAffineTransformation getTouchAffineTransformation(const std::string& inputDeviceDescriptor,
int32_t surfaceRotation) {
return transform;
}
void setTouchAffineTransformation(const TouchAffineTransformation t) {
transform = t;
}
PointerCaptureRequest setPointerCapture(bool enabled) {
mConfig.pointerCaptureRequest = {enabled, mNextPointerCaptureSequenceNumber++};
return mConfig.pointerCaptureRequest;
}
void setShowTouches(bool enabled) {
mConfig.showTouches = enabled;
}
void setDefaultPointerDisplayId(int32_t pointerDisplayId) {
mConfig.defaultPointerDisplayId = pointerDisplayId;
}
void setPointerGestureEnabled(bool enabled) { mConfig.pointerGesturesEnabled = enabled; }
float getPointerGestureMovementSpeedRatio() { return mConfig.pointerGestureMovementSpeedRatio; }
float getPointerGestureZoomSpeedRatio() { return mConfig.pointerGestureZoomSpeedRatio; }
void setVelocityControlParams(const VelocityControlParameters& params) {
mConfig.pointerVelocityControlParameters = params;
mConfig.wheelVelocityControlParameters = params;
}
private:
uint32_t mNextPointerCaptureSequenceNumber = 0;
void getReaderConfiguration(InputReaderConfiguration* outConfig) override {
*outConfig = mConfig;
}
std::shared_ptr<PointerControllerInterface> obtainPointerController(
int32_t /*deviceId*/) override {
return mPointerController;
}
void notifyInputDevicesChanged(const std::vector<InputDeviceInfo>& inputDevices) override {
std::scoped_lock<std::mutex> lock(mLock);
mInputDevices = inputDevices;
mInputDevicesChanged = true;
mDevicesChangedCondition.notify_all();
}
std::shared_ptr<KeyCharacterMap> getKeyboardLayoutOverlay(
const InputDeviceIdentifier&) override {
return nullptr;
}
std::string getDeviceAlias(const InputDeviceIdentifier&) override { return ""; }
void waitForInputDevices(std::function<void(bool)> processDevicesChanged) {
std::unique_lock<std::mutex> lock(mLock);
base::ScopedLockAssertion assumeLocked(mLock);
const bool devicesChanged =
mDevicesChangedCondition.wait_for(lock, WAIT_TIMEOUT, [this]() REQUIRES(mLock) {
return mInputDevicesChanged;
});
ASSERT_NO_FATAL_FAILURE(processDevicesChanged(devicesChanged));
mInputDevicesChanged = false;
}
};
// --- FakeEventHub ---
class FakeEventHub : public EventHubInterface {
struct KeyInfo {
int32_t keyCode;
uint32_t flags;
};
struct SensorInfo {
InputDeviceSensorType sensorType;
int32_t sensorDataIndex;
};
struct Device {
InputDeviceIdentifier identifier;
ftl::Flags<InputDeviceClass> classes;
PropertyMap configuration;
KeyedVector<int, RawAbsoluteAxisInfo> absoluteAxes;
KeyedVector<int, bool> relativeAxes;
KeyedVector<int32_t, int32_t> keyCodeStates;
KeyedVector<int32_t, int32_t> scanCodeStates;
KeyedVector<int32_t, int32_t> switchStates;
KeyedVector<int32_t, int32_t> absoluteAxisValue;
KeyedVector<int32_t, KeyInfo> keysByScanCode;
KeyedVector<int32_t, KeyInfo> keysByUsageCode;
KeyedVector<int32_t, bool> leds;
// fake mapping which would normally come from keyCharacterMap
std::unordered_map<int32_t, int32_t> keyCodeMapping;
std::unordered_map<int32_t, SensorInfo> sensorsByAbsCode;
BitArray<MSC_MAX> mscBitmask;
std::vector<VirtualKeyDefinition> virtualKeys;
bool enabled;
InputDeviceCountryCode countryCode;
status_t enable() {
enabled = true;
return OK;
}
status_t disable() {
enabled = false;
return OK;
}
explicit Device(ftl::Flags<InputDeviceClass> classes) : classes(classes), enabled(true) {}
};
std::mutex mLock;
std::condition_variable mEventsCondition;
KeyedVector<int32_t, Device*> mDevices;
std::vector<std::string> mExcludedDevices;
std::vector<RawEvent> mEvents GUARDED_BY(mLock);
std::unordered_map<int32_t /*deviceId*/, std::vector<TouchVideoFrame>> mVideoFrames;
std::vector<int32_t> mVibrators = {0, 1};
std::unordered_map<int32_t, RawLightInfo> mRawLightInfos;
// Simulates a device light brightness, from light id to light brightness.
std::unordered_map<int32_t /* lightId */, int32_t /* brightness*/> mLightBrightness;
// Simulates a device light intensities, from light id to light intensities map.
std::unordered_map<int32_t /* lightId */, std::unordered_map<LightColor, int32_t>>
mLightIntensities;
public:
virtual ~FakeEventHub() {
for (size_t i = 0; i < mDevices.size(); i++) {
delete mDevices.valueAt(i);
}
}
FakeEventHub() { }
void addDevice(int32_t deviceId, const std::string& name,
ftl::Flags<InputDeviceClass> classes) {
Device* device = new Device(classes);
device->identifier.name = name;
mDevices.add(deviceId, device);
enqueueEvent(ARBITRARY_TIME, READ_TIME, deviceId, EventHubInterface::DEVICE_ADDED, 0, 0);
}
void removeDevice(int32_t deviceId) {
delete mDevices.valueFor(deviceId);
mDevices.removeItem(deviceId);
enqueueEvent(ARBITRARY_TIME, READ_TIME, deviceId, EventHubInterface::DEVICE_REMOVED, 0, 0);
}
bool isDeviceEnabled(int32_t deviceId) const override {
Device* device = getDevice(deviceId);
if (device == nullptr) {
ALOGE("Incorrect device id=%" PRId32 " provided to %s", deviceId, __func__);
return false;
}
return device->enabled;
}
status_t enableDevice(int32_t deviceId) override {
status_t result;
Device* device = getDevice(deviceId);
if (device == nullptr) {
ALOGE("Incorrect device id=%" PRId32 " provided to %s", deviceId, __func__);
return BAD_VALUE;
}
if (device->enabled) {
ALOGW("Duplicate call to %s, device %" PRId32 " already enabled", __func__, deviceId);
return OK;
}
result = device->enable();
return result;
}
status_t disableDevice(int32_t deviceId) override {
Device* device = getDevice(deviceId);
if (device == nullptr) {
ALOGE("Incorrect device id=%" PRId32 " provided to %s", deviceId, __func__);
return BAD_VALUE;
}
if (!device->enabled) {
ALOGW("Duplicate call to %s, device %" PRId32 " already disabled", __func__, deviceId);
return OK;
}
return device->disable();
}
void finishDeviceScan() {
enqueueEvent(ARBITRARY_TIME, READ_TIME, 0, EventHubInterface::FINISHED_DEVICE_SCAN, 0, 0);
}
void addConfigurationProperty(int32_t deviceId, const char* key, const char* value) {
Device* device = getDevice(deviceId);
device->configuration.addProperty(key, value);
}
void addConfigurationMap(int32_t deviceId, const PropertyMap* configuration) {
Device* device = getDevice(deviceId);
device->configuration.addAll(configuration);
}
void addAbsoluteAxis(int32_t deviceId, int axis,
int32_t minValue, int32_t maxValue, int flat, int fuzz, int resolution = 0) {
Device* device = getDevice(deviceId);
RawAbsoluteAxisInfo info;
info.valid = true;
info.minValue = minValue;
info.maxValue = maxValue;
info.flat = flat;
info.fuzz = fuzz;
info.resolution = resolution;
device->absoluteAxes.add(axis, info);
}
void addRelativeAxis(int32_t deviceId, int32_t axis) {
Device* device = getDevice(deviceId);
device->relativeAxes.add(axis, true);
}
void setKeyCodeState(int32_t deviceId, int32_t keyCode, int32_t state) {
Device* device = getDevice(deviceId);
device->keyCodeStates.replaceValueFor(keyCode, state);
}
void setCountryCode(int32_t deviceId, InputDeviceCountryCode countryCode) {
Device* device = getDevice(deviceId);
device->countryCode = countryCode;
}
void setScanCodeState(int32_t deviceId, int32_t scanCode, int32_t state) {
Device* device = getDevice(deviceId);
device->scanCodeStates.replaceValueFor(scanCode, state);
}
void setSwitchState(int32_t deviceId, int32_t switchCode, int32_t state) {
Device* device = getDevice(deviceId);
device->switchStates.replaceValueFor(switchCode, state);
}
void setAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t value) {
Device* device = getDevice(deviceId);
device->absoluteAxisValue.replaceValueFor(axis, value);
}
void addKey(int32_t deviceId, int32_t scanCode, int32_t usageCode,
int32_t keyCode, uint32_t flags) {
Device* device = getDevice(deviceId);
KeyInfo info;
info.keyCode = keyCode;
info.flags = flags;
if (scanCode) {
device->keysByScanCode.add(scanCode, info);
}
if (usageCode) {
device->keysByUsageCode.add(usageCode, info);
}
}
void addKeyCodeMapping(int32_t deviceId, int32_t fromKeyCode, int32_t toKeyCode) {
Device* device = getDevice(deviceId);
device->keyCodeMapping.insert_or_assign(fromKeyCode, toKeyCode);
}
void addLed(int32_t deviceId, int32_t led, bool initialState) {
Device* device = getDevice(deviceId);
device->leds.add(led, initialState);
}
void addSensorAxis(int32_t deviceId, int32_t absCode, InputDeviceSensorType sensorType,
int32_t sensorDataIndex) {
Device* device = getDevice(deviceId);
SensorInfo info;
info.sensorType = sensorType;
info.sensorDataIndex = sensorDataIndex;
device->sensorsByAbsCode.emplace(absCode, info);
}
void setMscEvent(int32_t deviceId, int32_t mscEvent) {
Device* device = getDevice(deviceId);
typename BitArray<MSC_MAX>::Buffer buffer;
buffer[mscEvent / 32] = 1 << mscEvent % 32;
device->mscBitmask.loadFromBuffer(buffer);
}
void addRawLightInfo(int32_t rawId, RawLightInfo&& info) {
mRawLightInfos.emplace(rawId, std::move(info));
}
void fakeLightBrightness(int32_t rawId, int32_t brightness) {
mLightBrightness.emplace(rawId, brightness);
}
void fakeLightIntensities(int32_t rawId,
const std::unordered_map<LightColor, int32_t> intensities) {
mLightIntensities.emplace(rawId, std::move(intensities));
}
bool getLedState(int32_t deviceId, int32_t led) {
Device* device = getDevice(deviceId);
return device->leds.valueFor(led);
}
std::vector<std::string>& getExcludedDevices() {
return mExcludedDevices;
}
void addVirtualKeyDefinition(int32_t deviceId, const VirtualKeyDefinition& definition) {
Device* device = getDevice(deviceId);
device->virtualKeys.push_back(definition);
}
void enqueueEvent(nsecs_t when, nsecs_t readTime, int32_t deviceId, int32_t type, int32_t code,
int32_t value) {
std::scoped_lock<std::mutex> lock(mLock);
RawEvent event;
event.when = when;
event.readTime = readTime;
event.deviceId = deviceId;
event.type = type;
event.code = code;
event.value = value;
mEvents.push_back(event);
if (type == EV_ABS) {
setAbsoluteAxisValue(deviceId, code, value);
}
}
void setVideoFrames(std::unordered_map<int32_t /*deviceId*/,
std::vector<TouchVideoFrame>> videoFrames) {
mVideoFrames = std::move(videoFrames);
}
void assertQueueIsEmpty() {
std::unique_lock<std::mutex> lock(mLock);
base::ScopedLockAssertion assumeLocked(mLock);
const bool queueIsEmpty =
mEventsCondition.wait_for(lock, WAIT_TIMEOUT,
[this]() REQUIRES(mLock) { return mEvents.size() == 0; });
if (!queueIsEmpty) {
FAIL() << "Timed out waiting for EventHub queue to be emptied.";
}
}
private:
Device* getDevice(int32_t deviceId) const {
ssize_t index = mDevices.indexOfKey(deviceId);
return index >= 0 ? mDevices.valueAt(index) : nullptr;
}
ftl::Flags<InputDeviceClass> getDeviceClasses(int32_t deviceId) const override {
Device* device = getDevice(deviceId);
return device ? device->classes : ftl::Flags<InputDeviceClass>(0);
}
InputDeviceIdentifier getDeviceIdentifier(int32_t deviceId) const override {
Device* device = getDevice(deviceId);
return device ? device->identifier : InputDeviceIdentifier();
}
int32_t getDeviceControllerNumber(int32_t) const override { return 0; }
void getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const override {
Device* device = getDevice(deviceId);
if (device) {
*outConfiguration = device->configuration;
}
}
status_t getAbsoluteAxisInfo(int32_t deviceId, int axis,
RawAbsoluteAxisInfo* outAxisInfo) const override {
Device* device = getDevice(deviceId);
if (device && device->enabled) {
ssize_t index = device->absoluteAxes.indexOfKey(axis);
if (index >= 0) {
*outAxisInfo = device->absoluteAxes.valueAt(index);
return OK;
}
}
outAxisInfo->clear();
return -1;
}
bool hasRelativeAxis(int32_t deviceId, int axis) const override {
Device* device = getDevice(deviceId);
if (device) {
return device->relativeAxes.indexOfKey(axis) >= 0;
}
return false;
}
bool hasInputProperty(int32_t, int) const override { return false; }
bool hasMscEvent(int32_t deviceId, int mscEvent) const override final {
Device* device = getDevice(deviceId);
if (device) {
return mscEvent >= 0 && mscEvent <= MSC_MAX ? device->mscBitmask.test(mscEvent) : false;
}
return false;
}
status_t mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, int32_t metaState,
int32_t* outKeycode, int32_t* outMetaState, uint32_t* outFlags) const override {
Device* device = getDevice(deviceId);
if (device) {
const KeyInfo* key = getKey(device, scanCode, usageCode);
if (key) {
if (outKeycode) {
*outKeycode = key->keyCode;
}
if (outFlags) {
*outFlags = key->flags;
}
if (outMetaState) {
*outMetaState = metaState;
}
return OK;
}
}
return NAME_NOT_FOUND;
}
const KeyInfo* getKey(Device* device, int32_t scanCode, int32_t usageCode) const {
if (usageCode) {
ssize_t index = device->keysByUsageCode.indexOfKey(usageCode);
if (index >= 0) {
return &device->keysByUsageCode.valueAt(index);
}
}
if (scanCode) {
ssize_t index = device->keysByScanCode.indexOfKey(scanCode);
if (index >= 0) {
return &device->keysByScanCode.valueAt(index);
}
}
return nullptr;
}
status_t mapAxis(int32_t, int32_t, AxisInfo*) const override { return NAME_NOT_FOUND; }
base::Result<std::pair<InputDeviceSensorType, int32_t>> mapSensor(
int32_t deviceId, int32_t absCode) const override {
Device* device = getDevice(deviceId);
if (!device) {
return Errorf("Sensor device not found.");
}
auto it = device->sensorsByAbsCode.find(absCode);
if (it == device->sensorsByAbsCode.end()) {
return Errorf("Sensor map not found.");
}
const SensorInfo& info = it->second;
return std::make_pair(info.sensorType, info.sensorDataIndex);
}
void setExcludedDevices(const std::vector<std::string>& devices) override {
mExcludedDevices = devices;
}
std::vector<RawEvent> getEvents(int) override {
std::scoped_lock lock(mLock);
std::vector<RawEvent> buffer;
std::swap(buffer, mEvents);
mEventsCondition.notify_all();
return buffer;
}
std::vector<TouchVideoFrame> getVideoFrames(int32_t deviceId) override {
auto it = mVideoFrames.find(deviceId);
if (it != mVideoFrames.end()) {
std::vector<TouchVideoFrame> frames = std::move(it->second);
mVideoFrames.erase(deviceId);
return frames;
}
return {};
}
int32_t getScanCodeState(int32_t deviceId, int32_t scanCode) const override {
Device* device = getDevice(deviceId);
if (device) {
ssize_t index = device->scanCodeStates.indexOfKey(scanCode);
if (index >= 0) {
return device->scanCodeStates.valueAt(index);
}
}
return AKEY_STATE_UNKNOWN;
}
InputDeviceCountryCode getCountryCode(int32_t deviceId) const override {
Device* device = getDevice(deviceId);
if (device) {
return device->countryCode;
}
return InputDeviceCountryCode::INVALID;
}
int32_t getKeyCodeState(int32_t deviceId, int32_t keyCode) const override {
Device* device = getDevice(deviceId);
if (device) {
ssize_t index = device->keyCodeStates.indexOfKey(keyCode);
if (index >= 0) {
return device->keyCodeStates.valueAt(index);
}
}
return AKEY_STATE_UNKNOWN;
}
int32_t getSwitchState(int32_t deviceId, int32_t sw) const override {
Device* device = getDevice(deviceId);
if (device) {
ssize_t index = device->switchStates.indexOfKey(sw);
if (index >= 0) {
return device->switchStates.valueAt(index);
}
}
return AKEY_STATE_UNKNOWN;
}
status_t getAbsoluteAxisValue(int32_t deviceId, int32_t axis,
int32_t* outValue) const override {
Device* device = getDevice(deviceId);
if (device) {
ssize_t index = device->absoluteAxisValue.indexOfKey(axis);
if (index >= 0) {
*outValue = device->absoluteAxisValue.valueAt(index);
return OK;
}
}
*outValue = 0;
return -1;
}
int32_t getKeyCodeForKeyLocation(int32_t deviceId, int32_t locationKeyCode) const override {
Device* device = getDevice(deviceId);
if (!device) {
return AKEYCODE_UNKNOWN;
}
auto it = device->keyCodeMapping.find(locationKeyCode);
return it != device->keyCodeMapping.end() ? it->second : locationKeyCode;
}
// Return true if the device has non-empty key layout.
bool markSupportedKeyCodes(int32_t deviceId, const std::vector<int32_t>& keyCodes,
uint8_t* outFlags) const override {
bool result = false;
Device* device = getDevice(deviceId);
if (device) {
result = device->keysByScanCode.size() > 0 || device->keysByUsageCode.size() > 0;
for (size_t i = 0; i < keyCodes.size(); i++) {
for (size_t j = 0; j < device->keysByScanCode.size(); j++) {
if (keyCodes[i] == device->keysByScanCode.valueAt(j).keyCode) {
outFlags[i] = 1;
}
}
for (size_t j = 0; j < device->keysByUsageCode.size(); j++) {
if (keyCodes[i] == device->keysByUsageCode.valueAt(j).keyCode) {
outFlags[i] = 1;
}
}
}
}
return result;
}
bool hasScanCode(int32_t deviceId, int32_t scanCode) const override {
Device* device = getDevice(deviceId);
if (device) {
ssize_t index = device->keysByScanCode.indexOfKey(scanCode);
return index >= 0;
}
return false;
}
bool hasKeyCode(int32_t deviceId, int32_t keyCode) const override {
Device* device = getDevice(deviceId);
if (!device) {
return false;
}
for (size_t i = 0; i < device->keysByScanCode.size(); i++) {
if (keyCode == device->keysByScanCode.valueAt(i).keyCode) {
return true;
}
}
for (size_t j = 0; j < device->keysByUsageCode.size(); j++) {
if (keyCode == device->keysByUsageCode.valueAt(j).keyCode) {
return true;
}
}
return false;
}
bool hasLed(int32_t deviceId, int32_t led) const override {
Device* device = getDevice(deviceId);
return device && device->leds.indexOfKey(led) >= 0;
}
void setLedState(int32_t deviceId, int32_t led, bool on) override {
Device* device = getDevice(deviceId);
if (device) {
ssize_t index = device->leds.indexOfKey(led);
if (index >= 0) {
device->leds.replaceValueAt(led, on);
} else {
ADD_FAILURE()
<< "Attempted to set the state of an LED that the EventHub declared "
"was not present. led=" << led;
}
}
}
void getVirtualKeyDefinitions(
int32_t deviceId, std::vector<VirtualKeyDefinition>& outVirtualKeys) const override {
outVirtualKeys.clear();
Device* device = getDevice(deviceId);
if (device) {
outVirtualKeys = device->virtualKeys;
}
}
const std::shared_ptr<KeyCharacterMap> getKeyCharacterMap(int32_t) const override {
return nullptr;
}
bool setKeyboardLayoutOverlay(int32_t, std::shared_ptr<KeyCharacterMap>) override {
return false;
}
void vibrate(int32_t, const VibrationElement&) override {}
void cancelVibrate(int32_t) override {}
std::vector<int32_t> getVibratorIds(int32_t deviceId) const override { return mVibrators; };
std::optional<int32_t> getBatteryCapacity(int32_t, int32_t) const override {
return BATTERY_CAPACITY;
}
std::optional<int32_t> getBatteryStatus(int32_t, int32_t) const override {
return BATTERY_STATUS;
}
std::vector<int32_t> getRawBatteryIds(int32_t deviceId) const override {
return {DEFAULT_BATTERY};
}
std::optional<RawBatteryInfo> getRawBatteryInfo(int32_t deviceId,
int32_t batteryId) const override {
if (batteryId != DEFAULT_BATTERY) return {};
static const auto BATTERY_INFO = RawBatteryInfo{.id = DEFAULT_BATTERY,
.name = "default battery",
.flags = InputBatteryClass::CAPACITY,
.path = BATTERY_DEVPATH};
return BATTERY_INFO;
}
std::vector<int32_t> getRawLightIds(int32_t deviceId) const override {
std::vector<int32_t> ids;
for (const auto& [rawId, info] : mRawLightInfos) {
ids.push_back(rawId);
}
return ids;
}
std::optional<RawLightInfo> getRawLightInfo(int32_t deviceId, int32_t lightId) const override {
auto it = mRawLightInfos.find(lightId);
if (it == mRawLightInfos.end()) {
return std::nullopt;
}
return it->second;
}
void setLightBrightness(int32_t deviceId, int32_t lightId, int32_t brightness) override {
mLightBrightness.emplace(lightId, brightness);
}
void setLightIntensities(int32_t deviceId, int32_t lightId,
std::unordered_map<LightColor, int32_t> intensities) override {
mLightIntensities.emplace(lightId, intensities);
};
std::optional<int32_t> getLightBrightness(int32_t deviceId, int32_t lightId) const override {
auto lightIt = mLightBrightness.find(lightId);
if (lightIt == mLightBrightness.end()) {
return std::nullopt;
}
return lightIt->second;
}
std::optional<std::unordered_map<LightColor, int32_t>> getLightIntensities(
int32_t deviceId, int32_t lightId) const override {
auto lightIt = mLightIntensities.find(lightId);
if (lightIt == mLightIntensities.end()) {
return std::nullopt;
}
return lightIt->second;
};
void dump(std::string&) const override {}
void monitor() const override {}
void requestReopenDevices() override {}
void wake() override {}
};
// --- FakeInputMapper ---
class FakeInputMapper : public InputMapper {
uint32_t mSources;
int32_t mKeyboardType;
int32_t mMetaState;
KeyedVector<int32_t, int32_t> mKeyCodeStates;
KeyedVector<int32_t, int32_t> mScanCodeStates;
KeyedVector<int32_t, int32_t> mSwitchStates;
// fake mapping which would normally come from keyCharacterMap
std::unordered_map<int32_t, int32_t> mKeyCodeMapping;
std::vector<int32_t> mSupportedKeyCodes;
std::mutex mLock;
std::condition_variable mStateChangedCondition;
bool mConfigureWasCalled GUARDED_BY(mLock);
bool mResetWasCalled GUARDED_BY(mLock);
bool mProcessWasCalled GUARDED_BY(mLock);
RawEvent mLastEvent GUARDED_BY(mLock);
std::optional<DisplayViewport> mViewport;
public:
FakeInputMapper(InputDeviceContext& deviceContext, uint32_t sources)
: InputMapper(deviceContext),
mSources(sources),
mKeyboardType(AINPUT_KEYBOARD_TYPE_NONE),
mMetaState(0),
mConfigureWasCalled(false),
mResetWasCalled(false),
mProcessWasCalled(false) {}
virtual ~FakeInputMapper() {}
void setKeyboardType(int32_t keyboardType) {
mKeyboardType = keyboardType;
}
void setMetaState(int32_t metaState) {
mMetaState = metaState;
}
void assertConfigureWasCalled() {
std::unique_lock<std::mutex> lock(mLock);
base::ScopedLockAssertion assumeLocked(mLock);
const bool configureCalled =
mStateChangedCondition.wait_for(lock, WAIT_TIMEOUT, [this]() REQUIRES(mLock) {
return mConfigureWasCalled;
});
if (!configureCalled) {
FAIL() << "Expected configure() to have been called.";
}
mConfigureWasCalled = false;
}
void assertResetWasCalled() {
std::unique_lock<std::mutex> lock(mLock);
base::ScopedLockAssertion assumeLocked(mLock);
const bool resetCalled =
mStateChangedCondition.wait_for(lock, WAIT_TIMEOUT, [this]() REQUIRES(mLock) {
return mResetWasCalled;
});
if (!resetCalled) {
FAIL() << "Expected reset() to have been called.";
}
mResetWasCalled = false;
}
void assertProcessWasCalled(RawEvent* outLastEvent = nullptr) {
std::unique_lock<std::mutex> lock(mLock);
base::ScopedLockAssertion assumeLocked(mLock);
const bool processCalled =
mStateChangedCondition.wait_for(lock, WAIT_TIMEOUT, [this]() REQUIRES(mLock) {
return mProcessWasCalled;
});
if (!processCalled) {
FAIL() << "Expected process() to have been called.";
}
if (outLastEvent) {
*outLastEvent = mLastEvent;
}
mProcessWasCalled = false;
}
void setKeyCodeState(int32_t keyCode, int32_t state) {
mKeyCodeStates.replaceValueFor(keyCode, state);
}
void setScanCodeState(int32_t scanCode, int32_t state) {
mScanCodeStates.replaceValueFor(scanCode, state);
}
void setSwitchState(int32_t switchCode, int32_t state) {
mSwitchStates.replaceValueFor(switchCode, state);
}
void addSupportedKeyCode(int32_t keyCode) {
mSupportedKeyCodes.push_back(keyCode);
}
void addKeyCodeMapping(int32_t fromKeyCode, int32_t toKeyCode) {
mKeyCodeMapping.insert_or_assign(fromKeyCode, toKeyCode);
}
private:
uint32_t getSources() const override { return mSources; }
void populateDeviceInfo(InputDeviceInfo* deviceInfo) override {
InputMapper::populateDeviceInfo(deviceInfo);
if (mKeyboardType != AINPUT_KEYBOARD_TYPE_NONE) {
deviceInfo->setKeyboardType(mKeyboardType);
}
}
std::list<NotifyArgs> configure(nsecs_t, const InputReaderConfiguration* config,
uint32_t changes) override {
std::scoped_lock<std::mutex> lock(mLock);
mConfigureWasCalled = true;
// Find the associated viewport if exist.
const std::optional<uint8_t> displayPort = getDeviceContext().getAssociatedDisplayPort();
if (displayPort && (changes & InputReaderConfiguration::CHANGE_DISPLAY_INFO)) {
mViewport = config->getDisplayViewportByPort(*displayPort);
}
mStateChangedCondition.notify_all();
return {};
}
std::list<NotifyArgs> reset(nsecs_t) override {
std::scoped_lock<std::mutex> lock(mLock);
mResetWasCalled = true;
mStateChangedCondition.notify_all();
return {};
}
std::list<NotifyArgs> process(const RawEvent* rawEvent) override {
std::scoped_lock<std::mutex> lock(mLock);
mLastEvent = *rawEvent;
mProcessWasCalled = true;
mStateChangedCondition.notify_all();
return {};
}
int32_t getKeyCodeState(uint32_t, int32_t keyCode) override {
ssize_t index = mKeyCodeStates.indexOfKey(keyCode);
return index >= 0 ? mKeyCodeStates.valueAt(index) : AKEY_STATE_UNKNOWN;
}
int32_t getKeyCodeForKeyLocation(int32_t locationKeyCode) const override {
auto it = mKeyCodeMapping.find(locationKeyCode);
return it != mKeyCodeMapping.end() ? it->second : locationKeyCode;
}
int32_t getScanCodeState(uint32_t, int32_t scanCode) override {
ssize_t index = mScanCodeStates.indexOfKey(scanCode);
return index >= 0 ? mScanCodeStates.valueAt(index) : AKEY_STATE_UNKNOWN;
}
int32_t getSwitchState(uint32_t, int32_t switchCode) override {
ssize_t index = mSwitchStates.indexOfKey(switchCode);
return index >= 0 ? mSwitchStates.valueAt(index) : AKEY_STATE_UNKNOWN;
}
// Return true if the device has non-empty key layout.
bool markSupportedKeyCodes(uint32_t, const std::vector<int32_t>& keyCodes,
uint8_t* outFlags) override {
for (size_t i = 0; i < keyCodes.size(); i++) {
for (size_t j = 0; j < mSupportedKeyCodes.size(); j++) {
if (keyCodes[i] == mSupportedKeyCodes[j]) {
outFlags[i] = 1;
}
}
}
bool result = mSupportedKeyCodes.size() > 0;
return result;
}
virtual int32_t getMetaState() {
return mMetaState;
}
virtual void fadePointer() {
}
virtual std::optional<int32_t> getAssociatedDisplay() {
if (mViewport) {
return std::make_optional(mViewport->displayId);
}
return std::nullopt;
}
};
// --- InstrumentedInputReader ---
class InstrumentedInputReader : public InputReader {
std::queue<std::shared_ptr<InputDevice>> mNextDevices;
public:
InstrumentedInputReader(std::shared_ptr<EventHubInterface> eventHub,
const sp<InputReaderPolicyInterface>& policy,
InputListenerInterface& listener)
: InputReader(eventHub, policy, listener), mFakeContext(this) {}
virtual ~InstrumentedInputReader() {}
void pushNextDevice(std::shared_ptr<InputDevice> device) { mNextDevices.push(device); }
std::shared_ptr<InputDevice> newDevice(int32_t deviceId, const std::string& name,
const std::string& location = "") {
InputDeviceIdentifier identifier;
identifier.name = name;
identifier.location = location;
int32_t generation = deviceId + 1;
return std::make_shared<InputDevice>(&mFakeContext, deviceId, generation, identifier);
}
// Make the protected loopOnce method accessible to tests.
using InputReader::loopOnce;
protected:
virtual std::shared_ptr<InputDevice> createDeviceLocked(int32_t eventHubId,
const InputDeviceIdentifier& identifier)
REQUIRES(mLock) {
if (!mNextDevices.empty()) {
std::shared_ptr<InputDevice> device(std::move(mNextDevices.front()));
mNextDevices.pop();
return device;
}
return InputReader::createDeviceLocked(eventHubId, identifier);
}
// --- FakeInputReaderContext ---
class FakeInputReaderContext : public ContextImpl {
int32_t mGlobalMetaState;
bool mUpdateGlobalMetaStateWasCalled;
int32_t mGeneration;
public:
FakeInputReaderContext(InputReader* reader)
: ContextImpl(reader),
mGlobalMetaState(0),
mUpdateGlobalMetaStateWasCalled(false),
mGeneration(1) {}
virtual ~FakeInputReaderContext() {}
void assertUpdateGlobalMetaStateWasCalled() {
ASSERT_TRUE(mUpdateGlobalMetaStateWasCalled)
<< "Expected updateGlobalMetaState() to have been called.";
mUpdateGlobalMetaStateWasCalled = false;
}
void setGlobalMetaState(int32_t state) { mGlobalMetaState = state; }
uint32_t getGeneration() { return mGeneration; }
void updateGlobalMetaState() override {
mUpdateGlobalMetaStateWasCalled = true;
ContextImpl::updateGlobalMetaState();
}
int32_t getGlobalMetaState() override {
return mGlobalMetaState | ContextImpl::getGlobalMetaState();
}
int32_t bumpGeneration() override {
mGeneration = ContextImpl::bumpGeneration();
return mGeneration;
}
} mFakeContext;
friend class InputReaderTest;
public:
FakeInputReaderContext* getContext() { return &mFakeContext; }
};
// --- InputReaderPolicyTest ---
class InputReaderPolicyTest : public testing::Test {
protected:
sp<FakeInputReaderPolicy> mFakePolicy;
void SetUp() override { mFakePolicy = sp<FakeInputReaderPolicy>::make(); }
void TearDown() override { mFakePolicy.clear(); }
};
/**
* Check that empty set of viewports is an acceptable configuration.
* Also try to get internal viewport two different ways - by type and by uniqueId.
*
* There will be confusion if two viewports with empty uniqueId and identical type are present.
* Such configuration is not currently allowed.
*/
TEST_F(InputReaderPolicyTest, Viewports_GetCleared) {
static const std::string uniqueId = "local:0";
// We didn't add any viewports yet, so there shouldn't be any.
std::optional<DisplayViewport> internalViewport =
mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL);
ASSERT_FALSE(internalViewport);
// Add an internal viewport, then clear it
mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, true /*isActive*/, uniqueId, NO_PORT,
ViewportType::INTERNAL);
// Check matching by uniqueId
internalViewport = mFakePolicy->getDisplayViewportByUniqueId(uniqueId);
ASSERT_TRUE(internalViewport);
ASSERT_EQ(ViewportType::INTERNAL, internalViewport->type);
// Check matching by viewport type
internalViewport = mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL);
ASSERT_TRUE(internalViewport);
ASSERT_EQ(uniqueId, internalViewport->uniqueId);
mFakePolicy->clearViewports();
// Make sure nothing is found after clear
internalViewport = mFakePolicy->getDisplayViewportByUniqueId(uniqueId);
ASSERT_FALSE(internalViewport);
internalViewport = mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL);
ASSERT_FALSE(internalViewport);
}
TEST_F(InputReaderPolicyTest, Viewports_GetByType) {
const std::string internalUniqueId = "local:0";
const std::string externalUniqueId = "local:1";
const std::string virtualUniqueId1 = "virtual:2";
const std::string virtualUniqueId2 = "virtual:3";
constexpr int32_t virtualDisplayId1 = 2;
constexpr int32_t virtualDisplayId2 = 3;
// Add an internal viewport
mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, true /*isActive*/, internalUniqueId,
NO_PORT, ViewportType::INTERNAL);
// Add an external viewport
mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, true /*isActive*/, externalUniqueId,
NO_PORT, ViewportType::EXTERNAL);
// Add an virtual viewport
mFakePolicy->addDisplayViewport(virtualDisplayId1, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, true /*isActive*/, virtualUniqueId1,
NO_PORT, ViewportType::VIRTUAL);
// Add another virtual viewport
mFakePolicy->addDisplayViewport(virtualDisplayId2, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, true /*isActive*/, virtualUniqueId2,
NO_PORT, ViewportType::VIRTUAL);
// Check matching by type for internal
std::optional<DisplayViewport> internalViewport =
mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL);
ASSERT_TRUE(internalViewport);
ASSERT_EQ(internalUniqueId, internalViewport->uniqueId);
// Check matching by type for external
std::optional<DisplayViewport> externalViewport =
mFakePolicy->getDisplayViewportByType(ViewportType::EXTERNAL);
ASSERT_TRUE(externalViewport);
ASSERT_EQ(externalUniqueId, externalViewport->uniqueId);
// Check matching by uniqueId for virtual viewport #1
std::optional<DisplayViewport> virtualViewport1 =
mFakePolicy->getDisplayViewportByUniqueId(virtualUniqueId1);
ASSERT_TRUE(virtualViewport1);
ASSERT_EQ(ViewportType::VIRTUAL, virtualViewport1->type);
ASSERT_EQ(virtualUniqueId1, virtualViewport1->uniqueId);
ASSERT_EQ(virtualDisplayId1, virtualViewport1->displayId);
// Check matching by uniqueId for virtual viewport #2
std::optional<DisplayViewport> virtualViewport2 =
mFakePolicy->getDisplayViewportByUniqueId(virtualUniqueId2);
ASSERT_TRUE(virtualViewport2);
ASSERT_EQ(ViewportType::VIRTUAL, virtualViewport2->type);
ASSERT_EQ(virtualUniqueId2, virtualViewport2->uniqueId);
ASSERT_EQ(virtualDisplayId2, virtualViewport2->displayId);
}
/**
* We can have 2 viewports of the same kind. We can distinguish them by uniqueId, and confirm
* that lookup works by checking display id.
* Check that 2 viewports of each kind is possible, for all existing viewport types.
*/
TEST_F(InputReaderPolicyTest, Viewports_TwoOfSameType) {
const std::string uniqueId1 = "uniqueId1";
const std::string uniqueId2 = "uniqueId2";
constexpr int32_t displayId1 = 2;
constexpr int32_t displayId2 = 3;
std::vector<ViewportType> types = {ViewportType::INTERNAL, ViewportType::EXTERNAL,
ViewportType::VIRTUAL};
for (const ViewportType& type : types) {
mFakePolicy->clearViewports();
// Add a viewport
mFakePolicy->addDisplayViewport(displayId1, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, true /*isActive*/, uniqueId1,
NO_PORT, type);
// Add another viewport
mFakePolicy->addDisplayViewport(displayId2, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, true /*isActive*/, uniqueId2,
NO_PORT, type);
// Check that correct display viewport was returned by comparing the display IDs.
std::optional<DisplayViewport> viewport1 =
mFakePolicy->getDisplayViewportByUniqueId(uniqueId1);
ASSERT_TRUE(viewport1);
ASSERT_EQ(displayId1, viewport1->displayId);
ASSERT_EQ(type, viewport1->type);
std::optional<DisplayViewport> viewport2 =
mFakePolicy->getDisplayViewportByUniqueId(uniqueId2);
ASSERT_TRUE(viewport2);
ASSERT_EQ(displayId2, viewport2->displayId);
ASSERT_EQ(type, viewport2->type);
// When there are multiple viewports of the same kind, and uniqueId is not specified
// in the call to getDisplayViewport, then that situation is not supported.
// The viewports can be stored in any order, so we cannot rely on the order, since that
// is just implementation detail.
// However, we can check that it still returns *a* viewport, we just cannot assert
// which one specifically is returned.
std::optional<DisplayViewport> someViewport = mFakePolicy->getDisplayViewportByType(type);
ASSERT_TRUE(someViewport);
}
}
/**
* When we have multiple internal displays make sure we always return the default display when
* querying by type.
*/
TEST_F(InputReaderPolicyTest, Viewports_ByTypeReturnsDefaultForInternal) {
const std::string uniqueId1 = "uniqueId1";
const std::string uniqueId2 = "uniqueId2";
constexpr int32_t nonDefaultDisplayId = 2;
static_assert(nonDefaultDisplayId != ADISPLAY_ID_DEFAULT,
"Test display ID should not be ADISPLAY_ID_DEFAULT");
// Add the default display first and ensure it gets returned.
mFakePolicy->clearViewports();
mFakePolicy->addDisplayViewport(ADISPLAY_ID_DEFAULT, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, true /*isActive*/, uniqueId1, NO_PORT,
ViewportType::INTERNAL);
mFakePolicy->addDisplayViewport(nonDefaultDisplayId, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, true /*isActive*/, uniqueId2, NO_PORT,
ViewportType::INTERNAL);
std::optional<DisplayViewport> viewport =
mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL);
ASSERT_TRUE(viewport);
ASSERT_EQ(ADISPLAY_ID_DEFAULT, viewport->displayId);
ASSERT_EQ(ViewportType::INTERNAL, viewport->type);
// Add the default display second to make sure order doesn't matter.
mFakePolicy->clearViewports();
mFakePolicy->addDisplayViewport(nonDefaultDisplayId, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, true /*isActive*/, uniqueId2, NO_PORT,
ViewportType::INTERNAL);
mFakePolicy->addDisplayViewport(ADISPLAY_ID_DEFAULT, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, true /*isActive*/, uniqueId1, NO_PORT,
ViewportType::INTERNAL);
viewport = mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL);
ASSERT_TRUE(viewport);
ASSERT_EQ(ADISPLAY_ID_DEFAULT, viewport->displayId);
ASSERT_EQ(ViewportType::INTERNAL, viewport->type);
}
/**
* Check getDisplayViewportByPort
*/
TEST_F(InputReaderPolicyTest, Viewports_GetByPort) {
constexpr ViewportType type = ViewportType::EXTERNAL;
const std::string uniqueId1 = "uniqueId1";
const std::string uniqueId2 = "uniqueId2";
constexpr int32_t displayId1 = 1;
constexpr int32_t displayId2 = 2;
const uint8_t hdmi1 = 0;
const uint8_t hdmi2 = 1;
const uint8_t hdmi3 = 2;
mFakePolicy->clearViewports();
// Add a viewport that's associated with some display port that's not of interest.
mFakePolicy->addDisplayViewport(displayId1, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, true /*isActive*/, uniqueId1, hdmi3,
type);
// Add another viewport, connected to HDMI1 port
mFakePolicy->addDisplayViewport(displayId2, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, true /*isActive*/, uniqueId2, hdmi1,
type);
// Check that correct display viewport was returned by comparing the display ports.
std::optional<DisplayViewport> hdmi1Viewport = mFakePolicy->getDisplayViewportByPort(hdmi1);
ASSERT_TRUE(hdmi1Viewport);
ASSERT_EQ(displayId2, hdmi1Viewport->displayId);
ASSERT_EQ(uniqueId2, hdmi1Viewport->uniqueId);
// Check that we can still get the same viewport using the uniqueId
hdmi1Viewport = mFakePolicy->getDisplayViewportByUniqueId(uniqueId2);
ASSERT_TRUE(hdmi1Viewport);
ASSERT_EQ(displayId2, hdmi1Viewport->displayId);
ASSERT_EQ(uniqueId2, hdmi1Viewport->uniqueId);
ASSERT_EQ(type, hdmi1Viewport->type);
// Check that we cannot find a port with "HDMI2", because we never added one
std::optional<DisplayViewport> hdmi2Viewport = mFakePolicy->getDisplayViewportByPort(hdmi2);
ASSERT_FALSE(hdmi2Viewport);
}
// --- InputReaderTest ---
class InputReaderTest : public testing::Test {
protected:
std::unique_ptr<TestInputListener> mFakeListener;
sp<FakeInputReaderPolicy> mFakePolicy;
std::shared_ptr<FakeEventHub> mFakeEventHub;
std::unique_ptr<InstrumentedInputReader> mReader;
void SetUp() override {
mFakeEventHub = std::make_unique<FakeEventHub>();
mFakePolicy = sp<FakeInputReaderPolicy>::make();
mFakeListener = std::make_unique<TestInputListener>();
mReader = std::make_unique<InstrumentedInputReader>(mFakeEventHub, mFakePolicy,
*mFakeListener);
}
void TearDown() override {
mFakeListener.reset();
mFakePolicy.clear();
}
void addDevice(int32_t eventHubId, const std::string& name,
ftl::Flags<InputDeviceClass> classes, const PropertyMap* configuration) {
mFakeEventHub->addDevice(eventHubId, name, classes);
if (configuration) {
mFakeEventHub->addConfigurationMap(eventHubId, configuration);
}
mFakeEventHub->finishDeviceScan();
mReader->loopOnce();
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
ASSERT_NO_FATAL_FAILURE(mFakeEventHub->assertQueueIsEmpty());
}
void disableDevice(int32_t deviceId) {
mFakePolicy->addDisabledDevice(deviceId);
mReader->requestRefreshConfiguration(InputReaderConfiguration::CHANGE_ENABLED_STATE);
}
void enableDevice(int32_t deviceId) {
mFakePolicy->removeDisabledDevice(deviceId);
mReader->requestRefreshConfiguration(InputReaderConfiguration::CHANGE_ENABLED_STATE);
}
FakeInputMapper& addDeviceWithFakeInputMapper(int32_t deviceId, int32_t eventHubId,
const std::string& name,
ftl::Flags<InputDeviceClass> classes,
uint32_t sources,
const PropertyMap* configuration) {
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, name);
FakeInputMapper& mapper = device->addMapper<FakeInputMapper>(eventHubId, sources);
mReader->pushNextDevice(device);
addDevice(eventHubId, name, classes, configuration);
return mapper;
}
};
TEST_F(InputReaderTest, PolicyGetInputDevices) {
ASSERT_NO_FATAL_FAILURE(addDevice(1, "keyboard", InputDeviceClass::KEYBOARD, nullptr));
ASSERT_NO_FATAL_FAILURE(addDevice(2, "ignored", ftl::Flags<InputDeviceClass>(0),
nullptr)); // no classes so device will be ignored
// Should also have received a notification describing the new input devices.
const std::vector<InputDeviceInfo>& inputDevices = mFakePolicy->getInputDevices();
ASSERT_EQ(1U, inputDevices.size());
ASSERT_EQ(END_RESERVED_ID + 1, inputDevices[0].getId());
ASSERT_STREQ("keyboard", inputDevices[0].getIdentifier().name.c_str());
ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC, inputDevices[0].getKeyboardType());
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, inputDevices[0].getSources());
ASSERT_EQ(0U, inputDevices[0].getMotionRanges().size());
}
TEST_F(InputReaderTest, GetMergedInputDevices) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr int32_t eventHubIds[2] = {END_RESERVED_ID, END_RESERVED_ID + 1};
// Add two subdevices to device
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake");
// Must add at least one mapper or the device will be ignored!
device->addMapper<FakeInputMapper>(eventHubIds[0], AINPUT_SOURCE_KEYBOARD);
device->addMapper<FakeInputMapper>(eventHubIds[1], AINPUT_SOURCE_KEYBOARD);
// Push same device instance for next device to be added, so they'll have same identifier.
mReader->pushNextDevice(device);
mReader->pushNextDevice(device);
ASSERT_NO_FATAL_FAILURE(
addDevice(eventHubIds[0], "fake1", InputDeviceClass::KEYBOARD, nullptr));
ASSERT_NO_FATAL_FAILURE(
addDevice(eventHubIds[1], "fake2", InputDeviceClass::KEYBOARD, nullptr));
// Two devices will be merged to one input device as they have same identifier
ASSERT_EQ(1U, mFakePolicy->getInputDevices().size());
}
TEST_F(InputReaderTest, GetMergedInputDevicesEnabled) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr int32_t eventHubIds[2] = {END_RESERVED_ID, END_RESERVED_ID + 1};
// Add two subdevices to device
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake");
// Must add at least one mapper or the device will be ignored!
device->addMapper<FakeInputMapper>(eventHubIds[0], AINPUT_SOURCE_KEYBOARD);
device->addMapper<FakeInputMapper>(eventHubIds[1], AINPUT_SOURCE_KEYBOARD);
// Push same device instance for next device to be added, so they'll have same identifier.
mReader->pushNextDevice(device);
mReader->pushNextDevice(device);
// Sensor device is initially disabled
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubIds[0], "fake1",
InputDeviceClass::KEYBOARD | InputDeviceClass::SENSOR,
nullptr));
// Device is disabled because the only sub device is a sensor device and disabled initially.
ASSERT_FALSE(mFakeEventHub->isDeviceEnabled(eventHubIds[0]));
ASSERT_FALSE(device->isEnabled());
ASSERT_NO_FATAL_FAILURE(
addDevice(eventHubIds[1], "fake2", InputDeviceClass::KEYBOARD, nullptr));
// The merged device is enabled if any sub device is enabled
ASSERT_TRUE(mFakeEventHub->isDeviceEnabled(eventHubIds[1]));
ASSERT_TRUE(device->isEnabled());
}
TEST_F(InputReaderTest, WhenEnabledChanges_SendsDeviceResetNotification) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr ftl::Flags<InputDeviceClass> deviceClass(InputDeviceClass::KEYBOARD);
constexpr int32_t eventHubId = 1;
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake");
// Must add at least one mapper or the device will be ignored!
device->addMapper<FakeInputMapper>(eventHubId, AINPUT_SOURCE_KEYBOARD);
mReader->pushNextDevice(device);
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyConfigurationChangedWasCalled(nullptr));
NotifyDeviceResetArgs resetArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(deviceId, resetArgs.deviceId);
ASSERT_EQ(device->isEnabled(), true);
disableDevice(deviceId);
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(deviceId, resetArgs.deviceId);
ASSERT_EQ(device->isEnabled(), false);
disableDevice(deviceId);
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyConfigurationChangedWasNotCalled());
ASSERT_EQ(device->isEnabled(), false);
enableDevice(deviceId);
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(deviceId, resetArgs.deviceId);
ASSERT_EQ(device->isEnabled(), true);
}
TEST_F(InputReaderTest, GetKeyCodeState_ForwardsRequestsToMappers) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD;
constexpr int32_t eventHubId = 1;
FakeInputMapper& mapper =
addDeviceWithFakeInputMapper(deviceId, eventHubId, "fake", deviceClass,
AINPUT_SOURCE_KEYBOARD, nullptr);
mapper.setKeyCodeState(AKEYCODE_A, AKEY_STATE_DOWN);
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getKeyCodeState(0,
AINPUT_SOURCE_ANY, AKEYCODE_A))
<< "Should return unknown when the device id is >= 0 but unknown.";
ASSERT_EQ(AKEY_STATE_UNKNOWN,
mReader->getKeyCodeState(deviceId, AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return unknown when the device id is valid but the sources are not "
"supported by the device.";
ASSERT_EQ(AKEY_STATE_DOWN,
mReader->getKeyCodeState(deviceId, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL,
AKEYCODE_A))
<< "Should return value provided by mapper when device id is valid and the device "
"supports some of the sources.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getKeyCodeState(-1,
AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return unknown when the device id is < 0 but the sources are not supported by any device.";
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getKeyCodeState(-1,
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources.";
}
TEST_F(InputReaderTest, GetKeyCodeForKeyLocation_ForwardsRequestsToMappers) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr int32_t eventHubId = 1;
FakeInputMapper& mapper = addDeviceWithFakeInputMapper(deviceId, eventHubId, "keyboard",
InputDeviceClass::KEYBOARD,
AINPUT_SOURCE_KEYBOARD, nullptr);
mapper.addKeyCodeMapping(AKEYCODE_Y, AKEYCODE_Z);
ASSERT_EQ(AKEYCODE_UNKNOWN, mReader->getKeyCodeForKeyLocation(0, AKEYCODE_Y))
<< "Should return unknown when the device with the specified id is not found.";
ASSERT_EQ(AKEYCODE_Z, mReader->getKeyCodeForKeyLocation(deviceId, AKEYCODE_Y))
<< "Should return correct mapping when device id is valid and mapping exists.";
ASSERT_EQ(AKEYCODE_A, mReader->getKeyCodeForKeyLocation(deviceId, AKEYCODE_A))
<< "Should return the location key code when device id is valid and there's no "
"mapping.";
}
TEST_F(InputReaderTest, GetKeyCodeForKeyLocation_NoKeyboardMapper) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr int32_t eventHubId = 1;
FakeInputMapper& mapper = addDeviceWithFakeInputMapper(deviceId, eventHubId, "joystick",
InputDeviceClass::JOYSTICK,
AINPUT_SOURCE_GAMEPAD, nullptr);
mapper.addKeyCodeMapping(AKEYCODE_Y, AKEYCODE_Z);
ASSERT_EQ(AKEYCODE_UNKNOWN, mReader->getKeyCodeForKeyLocation(deviceId, AKEYCODE_Y))
<< "Should return unknown when the device id is valid but there is no keyboard mapper";
}
TEST_F(InputReaderTest, GetScanCodeState_ForwardsRequestsToMappers) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD;
constexpr int32_t eventHubId = 1;
FakeInputMapper& mapper =
addDeviceWithFakeInputMapper(deviceId, eventHubId, "fake", deviceClass,
AINPUT_SOURCE_KEYBOARD, nullptr);
mapper.setScanCodeState(KEY_A, AKEY_STATE_DOWN);
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getScanCodeState(0,
AINPUT_SOURCE_ANY, KEY_A))
<< "Should return unknown when the device id is >= 0 but unknown.";
ASSERT_EQ(AKEY_STATE_UNKNOWN,
mReader->getScanCodeState(deviceId, AINPUT_SOURCE_TRACKBALL, KEY_A))
<< "Should return unknown when the device id is valid but the sources are not "
"supported by the device.";
ASSERT_EQ(AKEY_STATE_DOWN,
mReader->getScanCodeState(deviceId, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL,
KEY_A))
<< "Should return value provided by mapper when device id is valid and the device "
"supports some of the sources.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getScanCodeState(-1,
AINPUT_SOURCE_TRACKBALL, KEY_A))
<< "Should return unknown when the device id is < 0 but the sources are not supported by any device.";
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getScanCodeState(-1,
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, KEY_A))
<< "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources.";
}
TEST_F(InputReaderTest, GetSwitchState_ForwardsRequestsToMappers) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD;
constexpr int32_t eventHubId = 1;
FakeInputMapper& mapper =
addDeviceWithFakeInputMapper(deviceId, eventHubId, "fake", deviceClass,
AINPUT_SOURCE_KEYBOARD, nullptr);
mapper.setSwitchState(SW_LID, AKEY_STATE_DOWN);
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getSwitchState(0,
AINPUT_SOURCE_ANY, SW_LID))
<< "Should return unknown when the device id is >= 0 but unknown.";
ASSERT_EQ(AKEY_STATE_UNKNOWN,
mReader->getSwitchState(deviceId, AINPUT_SOURCE_TRACKBALL, SW_LID))
<< "Should return unknown when the device id is valid but the sources are not "
"supported by the device.";
ASSERT_EQ(AKEY_STATE_DOWN,
mReader->getSwitchState(deviceId, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL,
SW_LID))
<< "Should return value provided by mapper when device id is valid and the device "
"supports some of the sources.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getSwitchState(-1,
AINPUT_SOURCE_TRACKBALL, SW_LID))
<< "Should return unknown when the device id is < 0 but the sources are not supported by any device.";
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getSwitchState(-1,
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, SW_LID))
<< "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources.";
}
TEST_F(InputReaderTest, MarkSupportedKeyCodes_ForwardsRequestsToMappers) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD;
constexpr int32_t eventHubId = 1;
FakeInputMapper& mapper =
addDeviceWithFakeInputMapper(deviceId, eventHubId, "fake", deviceClass,
AINPUT_SOURCE_KEYBOARD, nullptr);
mapper.addSupportedKeyCode(AKEYCODE_A);
mapper.addSupportedKeyCode(AKEYCODE_B);
const std::vector<int32_t> keyCodes{AKEYCODE_A, AKEYCODE_B, AKEYCODE_1, AKEYCODE_2};
uint8_t flags[4] = { 0, 0, 0, 1 };
ASSERT_FALSE(mReader->hasKeys(0, AINPUT_SOURCE_ANY, keyCodes, flags))
<< "Should return false when device id is >= 0 but unknown.";
ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]);
flags[3] = 1;
ASSERT_FALSE(mReader->hasKeys(deviceId, AINPUT_SOURCE_TRACKBALL, keyCodes, flags))
<< "Should return false when device id is valid but the sources are not supported by "
"the device.";
ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]);
flags[3] = 1;
ASSERT_TRUE(mReader->hasKeys(deviceId, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL,
keyCodes, flags))
<< "Should return value provided by mapper when device id is valid and the device "
"supports some of the sources.";
ASSERT_TRUE(flags[0] && flags[1] && !flags[2] && !flags[3]);
flags[3] = 1;
ASSERT_FALSE(mReader->hasKeys(-1, AINPUT_SOURCE_TRACKBALL, keyCodes, flags))
<< "Should return false when the device id is < 0 but the sources are not supported by "
"any device.";
ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]);
flags[3] = 1;
ASSERT_TRUE(
mReader->hasKeys(-1, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, keyCodes, flags))
<< "Should return value provided by mapper when device id is < 0 and one of the "
"devices supports some of the sources.";
ASSERT_TRUE(flags[0] && flags[1] && !flags[2] && !flags[3]);
}
TEST_F(InputReaderTest, LoopOnce_WhenDeviceScanFinished_SendsConfigurationChanged) {
constexpr int32_t eventHubId = 1;
addDevice(eventHubId, "ignored", InputDeviceClass::KEYBOARD, nullptr);
NotifyConfigurationChangedArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyConfigurationChangedWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
}
TEST_F(InputReaderTest, LoopOnce_ForwardsRawEventsToMappers) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD;
constexpr nsecs_t when = 0;
constexpr int32_t eventHubId = 1;
constexpr nsecs_t readTime = 2;
FakeInputMapper& mapper =
addDeviceWithFakeInputMapper(deviceId, eventHubId, "fake", deviceClass,
AINPUT_SOURCE_KEYBOARD, nullptr);
mFakeEventHub->enqueueEvent(when, readTime, eventHubId, EV_KEY, KEY_A, 1);
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakeEventHub->assertQueueIsEmpty());
RawEvent event;
ASSERT_NO_FATAL_FAILURE(mapper.assertProcessWasCalled(&event));
ASSERT_EQ(when, event.when);
ASSERT_EQ(readTime, event.readTime);
ASSERT_EQ(eventHubId, event.deviceId);
ASSERT_EQ(EV_KEY, event.type);
ASSERT_EQ(KEY_A, event.code);
ASSERT_EQ(1, event.value);
}
TEST_F(InputReaderTest, DeviceReset_RandomId) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD;
constexpr int32_t eventHubId = 1;
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake");
// Must add at least one mapper or the device will be ignored!
device->addMapper<FakeInputMapper>(eventHubId, AINPUT_SOURCE_KEYBOARD);
mReader->pushNextDevice(device);
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr));
NotifyDeviceResetArgs resetArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
int32_t prevId = resetArgs.id;
disableDevice(deviceId);
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_NE(prevId, resetArgs.id);
prevId = resetArgs.id;
enableDevice(deviceId);
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_NE(prevId, resetArgs.id);
prevId = resetArgs.id;
disableDevice(deviceId);
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_NE(prevId, resetArgs.id);
prevId = resetArgs.id;
}
TEST_F(InputReaderTest, DeviceReset_GenerateIdWithInputReaderSource) {
constexpr int32_t deviceId = 1;
constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD;
constexpr int32_t eventHubId = 1;
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake");
// Must add at least one mapper or the device will be ignored!
device->addMapper<FakeInputMapper>(eventHubId, AINPUT_SOURCE_KEYBOARD);
mReader->pushNextDevice(device);
ASSERT_NO_FATAL_FAILURE(addDevice(deviceId, "fake", deviceClass, nullptr));
NotifyDeviceResetArgs resetArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(IdGenerator::Source::INPUT_READER, IdGenerator::getSource(resetArgs.id));
}
TEST_F(InputReaderTest, Device_CanDispatchToDisplay) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD;
constexpr int32_t eventHubId = 1;
const char* DEVICE_LOCATION = "USB1";
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake", DEVICE_LOCATION);
FakeInputMapper& mapper =
device->addMapper<FakeInputMapper>(eventHubId, AINPUT_SOURCE_TOUCHSCREEN);
mReader->pushNextDevice(device);
const uint8_t hdmi1 = 1;
// Associated touch screen with second display.
mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi1);
// Add default and second display.
mFakePolicy->clearViewports();
mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, true /*isActive*/, "local:0", NO_PORT,
ViewportType::INTERNAL);
mFakePolicy->addDisplayViewport(SECONDARY_DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, true /*isActive*/, "local:1", hdmi1,
ViewportType::EXTERNAL);
mReader->requestRefreshConfiguration(InputReaderConfiguration::CHANGE_DISPLAY_INFO);
mReader->loopOnce();
// Add the device, and make sure all of the callbacks are triggered.
// The device is added after the input port associations are processed since
// we do not yet support dynamic device-to-display associations.
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyConfigurationChangedWasCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled());
ASSERT_NO_FATAL_FAILURE(mapper.assertConfigureWasCalled());
// Device should only dispatch to the specified display.
ASSERT_EQ(deviceId, device->getId());
ASSERT_FALSE(mReader->canDispatchToDisplay(deviceId, DISPLAY_ID));
ASSERT_TRUE(mReader->canDispatchToDisplay(deviceId, SECONDARY_DISPLAY_ID));
// Can't dispatch event from a disabled device.
disableDevice(deviceId);
mReader->loopOnce();
ASSERT_FALSE(mReader->canDispatchToDisplay(deviceId, SECONDARY_DISPLAY_ID));
}
TEST_F(InputReaderTest, WhenEnabledChanges_AllSubdevicesAreUpdated) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD;
constexpr int32_t eventHubIds[2] = {END_RESERVED_ID, END_RESERVED_ID + 1};
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake");
// Must add at least one mapper or the device will be ignored!
device->addMapper<FakeInputMapper>(eventHubIds[0], AINPUT_SOURCE_KEYBOARD);
device->addMapper<FakeInputMapper>(eventHubIds[1], AINPUT_SOURCE_KEYBOARD);
mReader->pushNextDevice(device);
mReader->pushNextDevice(device);
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubIds[0], "fake1", deviceClass, nullptr));
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubIds[1], "fake2", deviceClass, nullptr));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyConfigurationChangedWasCalled(nullptr));
NotifyDeviceResetArgs resetArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(deviceId, resetArgs.deviceId);
ASSERT_TRUE(device->isEnabled());
ASSERT_TRUE(mFakeEventHub->isDeviceEnabled(eventHubIds[0]));
ASSERT_TRUE(mFakeEventHub->isDeviceEnabled(eventHubIds[1]));
disableDevice(deviceId);
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(deviceId, resetArgs.deviceId);
ASSERT_FALSE(device->isEnabled());
ASSERT_FALSE(mFakeEventHub->isDeviceEnabled(eventHubIds[0]));
ASSERT_FALSE(mFakeEventHub->isDeviceEnabled(eventHubIds[1]));
enableDevice(deviceId);
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(deviceId, resetArgs.deviceId);
ASSERT_TRUE(device->isEnabled());
ASSERT_TRUE(mFakeEventHub->isDeviceEnabled(eventHubIds[0]));
ASSERT_TRUE(mFakeEventHub->isDeviceEnabled(eventHubIds[1]));
}
TEST_F(InputReaderTest, GetKeyCodeState_ForwardsRequestsToSubdeviceMappers) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD;
constexpr int32_t eventHubIds[2] = {END_RESERVED_ID, END_RESERVED_ID + 1};
// Add two subdevices to device
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake");
FakeInputMapper& mapperDevice1 =
device->addMapper<FakeInputMapper>(eventHubIds[0], AINPUT_SOURCE_KEYBOARD);
FakeInputMapper& mapperDevice2 =
device->addMapper<FakeInputMapper>(eventHubIds[1], AINPUT_SOURCE_KEYBOARD);
mReader->pushNextDevice(device);
mReader->pushNextDevice(device);
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubIds[0], "fake1", deviceClass, nullptr));
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubIds[1], "fake2", deviceClass, nullptr));
mapperDevice1.setKeyCodeState(AKEYCODE_A, AKEY_STATE_DOWN);
mapperDevice2.setKeyCodeState(AKEYCODE_B, AKEY_STATE_DOWN);
ASSERT_EQ(AKEY_STATE_DOWN,
mReader->getKeyCodeState(deviceId, AINPUT_SOURCE_KEYBOARD, AKEYCODE_A));
ASSERT_EQ(AKEY_STATE_DOWN,
mReader->getKeyCodeState(deviceId, AINPUT_SOURCE_KEYBOARD, AKEYCODE_B));
ASSERT_EQ(AKEY_STATE_UNKNOWN,
mReader->getKeyCodeState(deviceId, AINPUT_SOURCE_KEYBOARD, AKEYCODE_C));
}
TEST_F(InputReaderTest, ChangingPointerCaptureNotifiesInputListener) {
NotifyPointerCaptureChangedArgs args;
auto request = mFakePolicy->setPointerCapture(true);
mReader->requestRefreshConfiguration(InputReaderConfiguration::CHANGE_POINTER_CAPTURE);
mReader->loopOnce();
mFakeListener->assertNotifyCaptureWasCalled(&args);
ASSERT_TRUE(args.request.enable) << "Pointer Capture should be enabled.";
ASSERT_EQ(args.request, request) << "Pointer Capture sequence number should match.";
mFakePolicy->setPointerCapture(false);
mReader->requestRefreshConfiguration(InputReaderConfiguration::CHANGE_POINTER_CAPTURE);
mReader->loopOnce();
mFakeListener->assertNotifyCaptureWasCalled(&args);
ASSERT_FALSE(args.request.enable) << "Pointer Capture should be disabled.";
// Verify that the Pointer Capture state is not updated when the configuration value
// does not change.
mReader->requestRefreshConfiguration(InputReaderConfiguration::CHANGE_POINTER_CAPTURE);
mReader->loopOnce();
mFakeListener->assertNotifyCaptureWasNotCalled();
}
class FakeVibratorInputMapper : public FakeInputMapper {
public:
FakeVibratorInputMapper(InputDeviceContext& deviceContext, uint32_t sources)
: FakeInputMapper(deviceContext, sources) {}
std::vector<int32_t> getVibratorIds() override { return getDeviceContext().getVibratorIds(); }
};
TEST_F(InputReaderTest, VibratorGetVibratorIds) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
ftl::Flags<InputDeviceClass> deviceClass =
InputDeviceClass::KEYBOARD | InputDeviceClass::VIBRATOR;
constexpr int32_t eventHubId = 1;
const char* DEVICE_LOCATION = "BLUETOOTH";
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake", DEVICE_LOCATION);
FakeVibratorInputMapper& mapper =
device->addMapper<FakeVibratorInputMapper>(eventHubId, AINPUT_SOURCE_KEYBOARD);
mReader->pushNextDevice(device);
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr));
ASSERT_NO_FATAL_FAILURE(mapper.assertConfigureWasCalled());
ASSERT_EQ(mapper.getVibratorIds().size(), 2U);
ASSERT_EQ(mReader->getVibratorIds(deviceId).size(), 2U);
}
// --- FakePeripheralController ---
class FakePeripheralController : public PeripheralControllerInterface {
public:
FakePeripheralController(InputDeviceContext& deviceContext) : mDeviceContext(deviceContext) {}
~FakePeripheralController() override {}
int32_t getEventHubId() const { return getDeviceContext().getEventHubId(); }
void populateDeviceInfo(InputDeviceInfo* deviceInfo) override {}
void dump(std::string& dump) override {}
std::optional<int32_t> getBatteryCapacity(int32_t batteryId) override {
return getDeviceContext().getBatteryCapacity(batteryId);
}
std::optional<int32_t> getBatteryStatus(int32_t batteryId) override {
return getDeviceContext().getBatteryStatus(batteryId);
}
bool setLightColor(int32_t lightId, int32_t color) override {
getDeviceContext().setLightBrightness(lightId, color >> 24);
return true;
}
std::optional<int32_t> getLightColor(int32_t lightId) override {
std::optional<int32_t> result = getDeviceContext().getLightBrightness(lightId);
if (!result.has_value()) {
return std::nullopt;
}
return result.value() << 24;
}
bool setLightPlayerId(int32_t lightId, int32_t playerId) override { return true; }
std::optional<int32_t> getLightPlayerId(int32_t lightId) override { return std::nullopt; }
private:
InputDeviceContext& mDeviceContext;
inline int32_t getDeviceId() { return mDeviceContext.getId(); }
inline InputDeviceContext& getDeviceContext() { return mDeviceContext; }
inline InputDeviceContext& getDeviceContext() const { return mDeviceContext; }
};
TEST_F(InputReaderTest, BatteryGetCapacity) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
ftl::Flags<InputDeviceClass> deviceClass =
InputDeviceClass::KEYBOARD | InputDeviceClass::BATTERY;
constexpr int32_t eventHubId = 1;
const char* DEVICE_LOCATION = "BLUETOOTH";
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake", DEVICE_LOCATION);
FakePeripheralController& controller =
device->addController<FakePeripheralController>(eventHubId);
mReader->pushNextDevice(device);
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr));
ASSERT_EQ(controller.getBatteryCapacity(DEFAULT_BATTERY), BATTERY_CAPACITY);
ASSERT_EQ(mReader->getBatteryCapacity(deviceId), BATTERY_CAPACITY);
}
TEST_F(InputReaderTest, BatteryGetStatus) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
ftl::Flags<InputDeviceClass> deviceClass =
InputDeviceClass::KEYBOARD | InputDeviceClass::BATTERY;
constexpr int32_t eventHubId = 1;
const char* DEVICE_LOCATION = "BLUETOOTH";
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake", DEVICE_LOCATION);
FakePeripheralController& controller =
device->addController<FakePeripheralController>(eventHubId);
mReader->pushNextDevice(device);
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr));
ASSERT_EQ(controller.getBatteryStatus(DEFAULT_BATTERY), BATTERY_STATUS);
ASSERT_EQ(mReader->getBatteryStatus(deviceId), BATTERY_STATUS);
}
TEST_F(InputReaderTest, BatteryGetDevicePath) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
ftl::Flags<InputDeviceClass> deviceClass =
InputDeviceClass::KEYBOARD | InputDeviceClass::BATTERY;
constexpr int32_t eventHubId = 1;
const char* DEVICE_LOCATION = "BLUETOOTH";
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake", DEVICE_LOCATION);
device->addController<FakePeripheralController>(eventHubId);
mReader->pushNextDevice(device);
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr));
ASSERT_EQ(mReader->getBatteryDevicePath(deviceId), BATTERY_DEVPATH);
}
TEST_F(InputReaderTest, LightGetColor) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD | InputDeviceClass::LIGHT;
constexpr int32_t eventHubId = 1;
const char* DEVICE_LOCATION = "BLUETOOTH";
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake", DEVICE_LOCATION);
FakePeripheralController& controller =
device->addController<FakePeripheralController>(eventHubId);
mReader->pushNextDevice(device);
RawLightInfo info = {.id = 1,
.name = "Mono",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS,
.path = ""};
mFakeEventHub->addRawLightInfo(1 /* rawId */, std::move(info));
mFakeEventHub->fakeLightBrightness(1 /* rawId */, 0x55);
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr));
ASSERT_TRUE(controller.setLightColor(1 /* lightId */, LIGHT_BRIGHTNESS));
ASSERT_EQ(controller.getLightColor(1 /* lightId */), LIGHT_BRIGHTNESS);
ASSERT_TRUE(mReader->setLightColor(deviceId, 1 /* lightId */, LIGHT_BRIGHTNESS));
ASSERT_EQ(mReader->getLightColor(deviceId, 1 /* lightId */), LIGHT_BRIGHTNESS);
}
// --- InputReaderIntegrationTest ---
// These tests create and interact with the InputReader only through its interface.
// The InputReader is started during SetUp(), which starts its processing in its own
// thread. The tests use linux uinput to emulate input devices.
// NOTE: Interacting with the physical device while these tests are running may cause
// the tests to fail.
class InputReaderIntegrationTest : public testing::Test {
protected:
std::unique_ptr<TestInputListener> mTestListener;
sp<FakeInputReaderPolicy> mFakePolicy;
std::unique_ptr<InputReaderInterface> mReader;
std::shared_ptr<FakePointerController> mFakePointerController;
void SetUp() override {
mFakePolicy = sp<FakeInputReaderPolicy>::make();
mFakePointerController = std::make_shared<FakePointerController>();
mFakePolicy->setPointerController(mFakePointerController);
mTestListener = std::make_unique<TestInputListener>(2000ms /*eventHappenedTimeout*/,
30ms /*eventDidNotHappenTimeout*/);
mReader = std::make_unique<InputReader>(std::make_shared<EventHub>(), mFakePolicy,
*mTestListener);
ASSERT_EQ(mReader->start(), OK);
// Since this test is run on a real device, all the input devices connected
// to the test device will show up in mReader. We wait for those input devices to
// show up before beginning the tests.
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled());
}
void TearDown() override {
ASSERT_EQ(mReader->stop(), OK);
mReader.reset();
mTestListener.reset();
mFakePolicy.clear();
}
};
TEST_F(InputReaderIntegrationTest, TestInvalidDevice) {
// An invalid input device that is only used for this test.
class InvalidUinputDevice : public UinputDevice {
public:
InvalidUinputDevice() : UinputDevice("Invalid Device") {}
private:
void configureDevice(int fd, uinput_user_dev* device) override {}
};
const size_t numDevices = mFakePolicy->getInputDevices().size();
// UinputDevice does not set any event or key bits, so InputReader should not
// consider it as a valid device.
std::unique_ptr<UinputDevice> invalidDevice = createUinputDevice<InvalidUinputDevice>();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesNotChanged());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasNotCalled());
ASSERT_EQ(numDevices, mFakePolicy->getInputDevices().size());
invalidDevice.reset();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesNotChanged());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasNotCalled());
ASSERT_EQ(numDevices, mFakePolicy->getInputDevices().size());
}
TEST_F(InputReaderIntegrationTest, AddNewDevice) {
const size_t initialNumDevices = mFakePolicy->getInputDevices().size();
std::unique_ptr<UinputHomeKey> keyboard = createUinputDevice<UinputHomeKey>();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled());
ASSERT_EQ(initialNumDevices + 1, mFakePolicy->getInputDevices().size());
// Find the test device by its name.
const std::vector<InputDeviceInfo> inputDevices = mFakePolicy->getInputDevices();
const auto& it =
std::find_if(inputDevices.begin(), inputDevices.end(),
[&keyboard](const InputDeviceInfo& info) {
return info.getIdentifier().name == keyboard->getName();
});
ASSERT_NE(it, inputDevices.end());
ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC, it->getKeyboardType());
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, it->getSources());
ASSERT_EQ(0U, it->getMotionRanges().size());
keyboard.reset();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled());
ASSERT_EQ(initialNumDevices, mFakePolicy->getInputDevices().size());
}
TEST_F(InputReaderIntegrationTest, SendsEventsToInputListener) {
std::unique_ptr<UinputHomeKey> keyboard = createUinputDevice<UinputHomeKey>();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
NotifyConfigurationChangedArgs configChangedArgs;
ASSERT_NO_FATAL_FAILURE(
mTestListener->assertNotifyConfigurationChangedWasCalled(&configChangedArgs));
int32_t prevId = configChangedArgs.id;
nsecs_t prevTimestamp = configChangedArgs.eventTime;
NotifyKeyArgs keyArgs;
keyboard->pressAndReleaseHomeKey();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_NE(prevId, keyArgs.id);
prevId = keyArgs.id;
ASSERT_LE(prevTimestamp, keyArgs.eventTime);
ASSERT_LE(keyArgs.eventTime, keyArgs.readTime);
prevTimestamp = keyArgs.eventTime;
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_NE(prevId, keyArgs.id);
ASSERT_LE(prevTimestamp, keyArgs.eventTime);
ASSERT_LE(keyArgs.eventTime, keyArgs.readTime);
}
/**
* The Steam controller sends BTN_GEAR_DOWN and BTN_GEAR_UP for the two "paddle" buttons
* on the back. In this test, we make sure that BTN_GEAR_DOWN / BTN_WHEEL and BTN_GEAR_UP
* are passed to the listener.
*/
static_assert(BTN_GEAR_DOWN == BTN_WHEEL);
TEST_F(InputReaderIntegrationTest, SendsGearDownAndUpToInputListener) {
std::unique_ptr<UinputSteamController> controller = createUinputDevice<UinputSteamController>();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
NotifyKeyArgs keyArgs;
controller->pressAndReleaseKey(BTN_GEAR_DOWN);
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs)); // ACTION_DOWN
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs)); // ACTION_UP
ASSERT_EQ(BTN_GEAR_DOWN, keyArgs.scanCode);
controller->pressAndReleaseKey(BTN_GEAR_UP);
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs)); // ACTION_DOWN
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs)); // ACTION_UP
ASSERT_EQ(BTN_GEAR_UP, keyArgs.scanCode);
}
// --- TouchProcessTest ---
class TouchIntegrationTest : public InputReaderIntegrationTest {
protected:
const std::string UNIQUE_ID = "local:0";
void SetUp() override {
InputReaderIntegrationTest::SetUp();
// At least add an internal display.
setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, UNIQUE_ID, NO_PORT,
ViewportType::INTERNAL);
mDevice = createUinputDevice<UinputTouchScreen>(Rect(0, 0, DISPLAY_WIDTH, DISPLAY_HEIGHT));
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled());
}
void setDisplayInfoAndReconfigure(int32_t displayId, int32_t width, int32_t height,
int32_t orientation, const std::string& uniqueId,
std::optional<uint8_t> physicalPort,
ViewportType viewportType) {
mFakePolicy->addDisplayViewport(displayId, width, height, orientation, true /*isActive*/,
uniqueId, physicalPort, viewportType);
mReader->requestRefreshConfiguration(InputReaderConfiguration::CHANGE_DISPLAY_INFO);
}
void assertReceivedMotion(int32_t action, const std::vector<Point>& points) {
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
EXPECT_EQ(action, args.action);
ASSERT_EQ(points.size(), args.pointerCount);
for (size_t i = 0; i < args.pointerCount; i++) {
EXPECT_EQ(points[i].x, args.pointerCoords[i].getX());
EXPECT_EQ(points[i].y, args.pointerCoords[i].getY());
}
}
std::unique_ptr<UinputTouchScreen> mDevice;
};
TEST_F(TouchIntegrationTest, InputEvent_ProcessSingleTouch) {
NotifyMotionArgs args;
const Point centerPoint = mDevice->getCenterPoint();
// ACTION_DOWN
mDevice->sendTrackingId(FIRST_TRACKING_ID);
mDevice->sendDown(centerPoint);
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
// ACTION_MOVE
mDevice->sendMove(centerPoint + Point(1, 1));
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
// ACTION_UP
mDevice->sendUp();
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
}
TEST_F(TouchIntegrationTest, InputEvent_ProcessMultiTouch) {
NotifyMotionArgs args;
const Point centerPoint = mDevice->getCenterPoint();
// ACTION_DOWN
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendTrackingId(FIRST_TRACKING_ID);
mDevice->sendDown(centerPoint);
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
// ACTION_POINTER_DOWN (Second slot)
const Point secondPoint = centerPoint + Point(100, 100);
mDevice->sendSlot(SECOND_SLOT);
mDevice->sendTrackingId(SECOND_TRACKING_ID);
mDevice->sendDown(secondPoint);
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(ACTION_POINTER_1_DOWN, args.action);
// ACTION_MOVE (Second slot)
mDevice->sendMove(secondPoint + Point(1, 1));
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
// ACTION_POINTER_UP (Second slot)
mDevice->sendPointerUp();
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(ACTION_POINTER_1_UP, args.action);
// ACTION_UP
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendUp();
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
}
/**
* What happens when a pointer goes up while another pointer moves in the same frame? Are POINTER_UP
* events guaranteed to contain the same data as a preceding MOVE, or can they contain different
* data?
* In this test, we try to send a change in coordinates in Pointer 0 in the same frame as the
* liftoff of Pointer 1. We check that POINTER_UP event is generated first, and the MOVE event
* for Pointer 0 only is generated after.
* Suppose we are only interested in learning the movement of Pointer 0. If we only observe MOVE
* events, we will not miss any information.
* Even though the Pointer 1 up event contains updated Pointer 0 coordinates, there is another MOVE
* event generated afterwards that contains the newest movement of pointer 0.
* This is important for palm rejection. If there is a subsequent InputListener stage that detects
* palms, and wants to cancel Pointer 1, then it is safe to simply drop POINTER_1_UP event without
* losing information about non-palm pointers.
*/
TEST_F(TouchIntegrationTest, MultiTouch_PointerMoveAndSecondPointerUp) {
NotifyMotionArgs args;
const Point centerPoint = mDevice->getCenterPoint();
// ACTION_DOWN
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendTrackingId(FIRST_TRACKING_ID);
mDevice->sendDown(centerPoint);
mDevice->sendSync();
assertReceivedMotion(AMOTION_EVENT_ACTION_DOWN, {centerPoint});
// ACTION_POINTER_DOWN (Second slot)
const Point secondPoint = centerPoint + Point(100, 100);
mDevice->sendSlot(SECOND_SLOT);
mDevice->sendTrackingId(SECOND_TRACKING_ID);
mDevice->sendDown(secondPoint);
mDevice->sendSync();
assertReceivedMotion(ACTION_POINTER_1_DOWN, {centerPoint, secondPoint});
// ACTION_MOVE (First slot)
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendMove(centerPoint + Point(5, 5));
// ACTION_POINTER_UP (Second slot)
mDevice->sendSlot(SECOND_SLOT);
mDevice->sendPointerUp();
// Send a single sync for the above 2 pointer updates
mDevice->sendSync();
// First, we should get POINTER_UP for the second pointer
assertReceivedMotion(ACTION_POINTER_1_UP,
{/*first pointer */ centerPoint + Point(5, 5),
/*second pointer*/ secondPoint});
// Next, the MOVE event for the first pointer
assertReceivedMotion(AMOTION_EVENT_ACTION_MOVE, {centerPoint + Point(5, 5)});
}
/**
* Similar scenario as above. The difference is that when the second pointer goes up, it will first
* move, and then it will go up, all in the same frame.
* In this scenario, the movement of the second pointer just prior to liftoff is ignored, and never
* gets sent to the listener.
*/
TEST_F(TouchIntegrationTest, MultiTouch_PointerMoveAndSecondPointerMoveAndUp) {
NotifyMotionArgs args;
const Point centerPoint = mDevice->getCenterPoint();
// ACTION_DOWN
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendTrackingId(FIRST_TRACKING_ID);
mDevice->sendDown(centerPoint);
mDevice->sendSync();
assertReceivedMotion(AMOTION_EVENT_ACTION_DOWN, {centerPoint});
// ACTION_POINTER_DOWN (Second slot)
const Point secondPoint = centerPoint + Point(100, 100);
mDevice->sendSlot(SECOND_SLOT);
mDevice->sendTrackingId(SECOND_TRACKING_ID);
mDevice->sendDown(secondPoint);
mDevice->sendSync();
assertReceivedMotion(ACTION_POINTER_1_DOWN, {centerPoint, secondPoint});
// ACTION_MOVE (First slot)
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendMove(centerPoint + Point(5, 5));
// ACTION_POINTER_UP (Second slot)
mDevice->sendSlot(SECOND_SLOT);
mDevice->sendMove(secondPoint + Point(6, 6));
mDevice->sendPointerUp();
// Send a single sync for the above 2 pointer updates
mDevice->sendSync();
// First, we should get POINTER_UP for the second pointer
// The movement of the second pointer during the liftoff frame is ignored.
// The coordinates 'secondPoint + Point(6, 6)' are never sent to the listener.
assertReceivedMotion(ACTION_POINTER_1_UP,
{/*first pointer */ centerPoint + Point(5, 5),
/*second pointer*/ secondPoint});
// Next, the MOVE event for the first pointer
assertReceivedMotion(AMOTION_EVENT_ACTION_MOVE, {centerPoint + Point(5, 5)});
}
TEST_F(TouchIntegrationTest, InputEvent_ProcessPalm) {
NotifyMotionArgs args;
const Point centerPoint = mDevice->getCenterPoint();
// ACTION_DOWN
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendTrackingId(FIRST_TRACKING_ID);
mDevice->sendDown(centerPoint);
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
// ACTION_POINTER_DOWN (second slot)
const Point secondPoint = centerPoint + Point(100, 100);
mDevice->sendSlot(SECOND_SLOT);
mDevice->sendTrackingId(SECOND_TRACKING_ID);
mDevice->sendDown(secondPoint);
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(ACTION_POINTER_1_DOWN, args.action);
// ACTION_MOVE (second slot)
mDevice->sendMove(secondPoint + Point(1, 1));
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
// Send MT_TOOL_PALM (second slot), which indicates that the touch IC has determined this to be
// a palm event.
// Expect to receive the ACTION_POINTER_UP with cancel flag.
mDevice->sendToolType(MT_TOOL_PALM);
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(ACTION_POINTER_1_UP, args.action);
ASSERT_EQ(AMOTION_EVENT_FLAG_CANCELED, args.flags);
// Send up to second slot, expect first slot send moving.
mDevice->sendPointerUp();
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
// Send ACTION_UP (first slot)
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendUp();
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
}
// --- InputDeviceTest ---
class InputDeviceTest : public testing::Test {
protected:
static const char* DEVICE_NAME;
static const char* DEVICE_LOCATION;
static const int32_t DEVICE_ID;
static const int32_t DEVICE_GENERATION;
static const int32_t DEVICE_CONTROLLER_NUMBER;
static const ftl::Flags<InputDeviceClass> DEVICE_CLASSES;
static const int32_t EVENTHUB_ID;
std::shared_ptr<FakeEventHub> mFakeEventHub;
sp<FakeInputReaderPolicy> mFakePolicy;
std::unique_ptr<TestInputListener> mFakeListener;
std::unique_ptr<InstrumentedInputReader> mReader;
std::shared_ptr<InputDevice> mDevice;
void SetUp() override {
mFakeEventHub = std::make_unique<FakeEventHub>();
mFakePolicy = sp<FakeInputReaderPolicy>::make();
mFakeListener = std::make_unique<TestInputListener>();
mReader = std::make_unique<InstrumentedInputReader>(mFakeEventHub, mFakePolicy,
*mFakeListener);
InputDeviceIdentifier identifier;
identifier.name = DEVICE_NAME;
identifier.location = DEVICE_LOCATION;
mDevice = std::make_shared<InputDevice>(mReader->getContext(), DEVICE_ID, DEVICE_GENERATION,
identifier);
mReader->pushNextDevice(mDevice);
mFakeEventHub->addDevice(EVENTHUB_ID, DEVICE_NAME, ftl::Flags<InputDeviceClass>(0));
mReader->loopOnce();
}
void TearDown() override {
mFakeListener.reset();
mFakePolicy.clear();
}
};
const char* InputDeviceTest::DEVICE_NAME = "device";
const char* InputDeviceTest::DEVICE_LOCATION = "USB1";
const int32_t InputDeviceTest::DEVICE_ID = END_RESERVED_ID + 1000;
const int32_t InputDeviceTest::DEVICE_GENERATION = 2;
const int32_t InputDeviceTest::DEVICE_CONTROLLER_NUMBER = 0;
const ftl::Flags<InputDeviceClass> InputDeviceTest::DEVICE_CLASSES =
InputDeviceClass::KEYBOARD | InputDeviceClass::TOUCH | InputDeviceClass::JOYSTICK;
const int32_t InputDeviceTest::EVENTHUB_ID = 1;
TEST_F(InputDeviceTest, ImmutableProperties) {
ASSERT_EQ(DEVICE_ID, mDevice->getId());
ASSERT_STREQ(DEVICE_NAME, mDevice->getName().c_str());
ASSERT_EQ(ftl::Flags<InputDeviceClass>(0), mDevice->getClasses());
}
TEST_F(InputDeviceTest, CountryCodeCorrectlyMapped) {
mFakeEventHub->setCountryCode(EVENTHUB_ID, InputDeviceCountryCode::INTERNATIONAL);
// Configuration
mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, AINPUT_SOURCE_KEYBOARD);
InputReaderConfiguration config;
std::list<NotifyArgs> unused = mDevice->configure(ARBITRARY_TIME, &config, 0);
ASSERT_EQ(InputDeviceCountryCode::INTERNATIONAL, mDevice->getDeviceInfo().getCountryCode());
}
TEST_F(InputDeviceTest, WhenDeviceCreated_EnabledIsFalse) {
ASSERT_EQ(mDevice->isEnabled(), false);
}
TEST_F(InputDeviceTest, WhenNoMappersAreRegistered_DeviceIsIgnored) {
// Configuration.
InputReaderConfiguration config;
std::list<NotifyArgs> unused = mDevice->configure(ARBITRARY_TIME, &config, 0);
// Reset.
unused += mDevice->reset(ARBITRARY_TIME);
NotifyDeviceResetArgs resetArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(ARBITRARY_TIME, resetArgs.eventTime);
ASSERT_EQ(DEVICE_ID, resetArgs.deviceId);
// Metadata.
ASSERT_TRUE(mDevice->isIgnored());
ASSERT_EQ(AINPUT_SOURCE_UNKNOWN, mDevice->getSources());
InputDeviceInfo info = mDevice->getDeviceInfo();
ASSERT_EQ(DEVICE_ID, info.getId());
ASSERT_STREQ(DEVICE_NAME, info.getIdentifier().name.c_str());
ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NONE, info.getKeyboardType());
ASSERT_EQ(AINPUT_SOURCE_UNKNOWN, info.getSources());
// State queries.
ASSERT_EQ(0, mDevice->getMetaState());
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_KEYBOARD, 0))
<< "Ignored device should return unknown key code state.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getScanCodeState(AINPUT_SOURCE_KEYBOARD, 0))
<< "Ignored device should return unknown scan code state.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getSwitchState(AINPUT_SOURCE_KEYBOARD, 0))
<< "Ignored device should return unknown switch state.";
const std::vector<int32_t> keyCodes{AKEYCODE_A, AKEYCODE_B};
uint8_t flags[2] = { 0, 1 };
ASSERT_FALSE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_KEYBOARD, keyCodes, flags))
<< "Ignored device should never mark any key codes.";
ASSERT_EQ(0, flags[0]) << "Flag for unsupported key should be unchanged.";
ASSERT_EQ(1, flags[1]) << "Flag for unsupported key should be unchanged.";
}
TEST_F(InputDeviceTest, WhenMappersAreRegistered_DeviceIsNotIgnoredAndForwardsRequestsToMappers) {
// Configuration.
mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, "key", "value");
FakeInputMapper& mapper1 =
mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, AINPUT_SOURCE_KEYBOARD);
mapper1.setKeyboardType(AINPUT_KEYBOARD_TYPE_ALPHABETIC);
mapper1.setMetaState(AMETA_ALT_ON);
mapper1.addSupportedKeyCode(AKEYCODE_A);
mapper1.addSupportedKeyCode(AKEYCODE_B);
mapper1.setKeyCodeState(AKEYCODE_A, AKEY_STATE_DOWN);
mapper1.setKeyCodeState(AKEYCODE_B, AKEY_STATE_UP);
mapper1.setScanCodeState(2, AKEY_STATE_DOWN);
mapper1.setScanCodeState(3, AKEY_STATE_UP);
mapper1.setSwitchState(4, AKEY_STATE_DOWN);
FakeInputMapper& mapper2 =
mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, AINPUT_SOURCE_TOUCHSCREEN);
mapper2.setMetaState(AMETA_SHIFT_ON);
InputReaderConfiguration config;
std::list<NotifyArgs> unused = mDevice->configure(ARBITRARY_TIME, &config, 0);
std::string propertyValue;
ASSERT_TRUE(mDevice->getConfiguration().tryGetProperty("key", propertyValue))
<< "Device should have read configuration during configuration phase.";
ASSERT_EQ("value", propertyValue);
ASSERT_NO_FATAL_FAILURE(mapper1.assertConfigureWasCalled());
ASSERT_NO_FATAL_FAILURE(mapper2.assertConfigureWasCalled());
// Reset
unused += mDevice->reset(ARBITRARY_TIME);
ASSERT_NO_FATAL_FAILURE(mapper1.assertResetWasCalled());
ASSERT_NO_FATAL_FAILURE(mapper2.assertResetWasCalled());
NotifyDeviceResetArgs resetArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(ARBITRARY_TIME, resetArgs.eventTime);
ASSERT_EQ(DEVICE_ID, resetArgs.deviceId);
// Metadata.
ASSERT_FALSE(mDevice->isIgnored());
ASSERT_EQ(uint32_t(AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TOUCHSCREEN), mDevice->getSources());
InputDeviceInfo info = mDevice->getDeviceInfo();
ASSERT_EQ(DEVICE_ID, info.getId());
ASSERT_STREQ(DEVICE_NAME, info.getIdentifier().name.c_str());
ASSERT_EQ(AINPUT_KEYBOARD_TYPE_ALPHABETIC, info.getKeyboardType());
ASSERT_EQ(uint32_t(AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TOUCHSCREEN), info.getSources());
// State queries.
ASSERT_EQ(AMETA_ALT_ON | AMETA_SHIFT_ON, mDevice->getMetaState())
<< "Should query mappers and combine meta states.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return unknown key code state when source not supported.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getScanCodeState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return unknown scan code state when source not supported.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getSwitchState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return unknown switch state when source not supported.";
ASSERT_EQ(AKEY_STATE_DOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_KEYBOARD, AKEYCODE_A))
<< "Should query mapper when source is supported.";
ASSERT_EQ(AKEY_STATE_UP, mDevice->getScanCodeState(AINPUT_SOURCE_KEYBOARD, 3))
<< "Should query mapper when source is supported.";
ASSERT_EQ(AKEY_STATE_DOWN, mDevice->getSwitchState(AINPUT_SOURCE_KEYBOARD, 4))
<< "Should query mapper when source is supported.";
const std::vector<int32_t> keyCodes{AKEYCODE_A, AKEYCODE_B, AKEYCODE_1, AKEYCODE_2};
uint8_t flags[4] = { 0, 0, 0, 1 };
ASSERT_FALSE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_TRACKBALL, keyCodes, flags))
<< "Should do nothing when source is unsupported.";
ASSERT_EQ(0, flags[0]) << "Flag should be unchanged when source is unsupported.";
ASSERT_EQ(0, flags[1]) << "Flag should be unchanged when source is unsupported.";
ASSERT_EQ(0, flags[2]) << "Flag should be unchanged when source is unsupported.";
ASSERT_EQ(1, flags[3]) << "Flag should be unchanged when source is unsupported.";
ASSERT_TRUE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_KEYBOARD, keyCodes, flags))
<< "Should query mapper when source is supported.";
ASSERT_EQ(1, flags[0]) << "Flag for supported key should be set.";
ASSERT_EQ(1, flags[1]) << "Flag for supported key should be set.";
ASSERT_EQ(0, flags[2]) << "Flag for unsupported key should be unchanged.";
ASSERT_EQ(1, flags[3]) << "Flag for unsupported key should be unchanged.";
// Event handling.
RawEvent event;
event.deviceId = EVENTHUB_ID;
unused += mDevice->process(&event, 1);
ASSERT_NO_FATAL_FAILURE(mapper1.assertProcessWasCalled());
ASSERT_NO_FATAL_FAILURE(mapper2.assertProcessWasCalled());
}
// A single input device is associated with a specific display. Check that:
// 1. Device is disabled if the viewport corresponding to the associated display is not found
// 2. Device is disabled when setEnabled API is called
TEST_F(InputDeviceTest, Configure_AssignsDisplayPort) {
mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, AINPUT_SOURCE_TOUCHSCREEN);
// First Configuration.
std::list<NotifyArgs> unused =
mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), 0);
// Device should be enabled by default.
ASSERT_TRUE(mDevice->isEnabled());
// Prepare associated info.
constexpr uint8_t hdmi = 1;
const std::string UNIQUE_ID = "local:1";
mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi);
unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::CHANGE_DISPLAY_INFO);
// Device should be disabled because it is associated with a specific display via
// input port <-> display port association, but the corresponding display is not found
ASSERT_FALSE(mDevice->isEnabled());
// Prepare displays.
mFakePolicy->addDisplayViewport(SECONDARY_DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, true /*isActive*/, UNIQUE_ID, hdmi,
ViewportType::INTERNAL);
unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::CHANGE_DISPLAY_INFO);
ASSERT_TRUE(mDevice->isEnabled());
// Device should be disabled after set disable.
mFakePolicy->addDisabledDevice(mDevice->getId());
unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::CHANGE_ENABLED_STATE);
ASSERT_FALSE(mDevice->isEnabled());
// Device should still be disabled even found the associated display.
unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::CHANGE_DISPLAY_INFO);
ASSERT_FALSE(mDevice->isEnabled());
}
TEST_F(InputDeviceTest, Configure_AssignsDisplayUniqueId) {
// Device should be enabled by default.
mFakePolicy->clearViewports();
mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, AINPUT_SOURCE_KEYBOARD);
std::list<NotifyArgs> unused =
mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), 0);
ASSERT_TRUE(mDevice->isEnabled());
// Device should be disabled because it is associated with a specific display, but the
// corresponding display is not found.
mFakePolicy->addInputUniqueIdAssociation(DEVICE_LOCATION, DISPLAY_UNIQUE_ID);
unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::CHANGE_DISPLAY_INFO);
ASSERT_FALSE(mDevice->isEnabled());
// Device should be enabled when a display is found.
mFakePolicy->addDisplayViewport(SECONDARY_DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, /* isActive= */ true, DISPLAY_UNIQUE_ID,
NO_PORT, ViewportType::INTERNAL);
unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::CHANGE_DISPLAY_INFO);
ASSERT_TRUE(mDevice->isEnabled());
// Device should be disabled after set disable.
mFakePolicy->addDisabledDevice(mDevice->getId());
unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::CHANGE_ENABLED_STATE);
ASSERT_FALSE(mDevice->isEnabled());
// Device should still be disabled even found the associated display.
unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::CHANGE_DISPLAY_INFO);
ASSERT_FALSE(mDevice->isEnabled());
}
TEST_F(InputDeviceTest, Configure_UniqueId_CorrectlyMatches) {
mFakePolicy->clearViewports();
mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, AINPUT_SOURCE_KEYBOARD);
std::list<NotifyArgs> unused =
mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), 0);
mFakePolicy->addInputUniqueIdAssociation(DEVICE_LOCATION, DISPLAY_UNIQUE_ID);
mFakePolicy->addDisplayViewport(SECONDARY_DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, /* isActive= */ true, DISPLAY_UNIQUE_ID,
NO_PORT, ViewportType::INTERNAL);
unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::CHANGE_DISPLAY_INFO);
ASSERT_EQ(DISPLAY_UNIQUE_ID, mDevice->getAssociatedDisplayUniqueId());
}
/**
* This test reproduces a crash caused by a dangling reference that remains after device is added
* and removed. The reference is accessed in InputDevice::dump(..);
*/
TEST_F(InputDeviceTest, DumpDoesNotCrash) {
constexpr int32_t TEST_EVENTHUB_ID = 10;
mFakeEventHub->addDevice(TEST_EVENTHUB_ID, "Test EventHub device", InputDeviceClass::BATTERY);
InputDevice device(mReader->getContext(), 1 /*id*/, 2 /*generation*/, {} /*identifier*/);
device.addEventHubDevice(TEST_EVENTHUB_ID, true /*populateMappers*/);
device.removeEventHubDevice(TEST_EVENTHUB_ID);
std::string dumpStr, eventHubDevStr;
device.dump(dumpStr, eventHubDevStr);
}
// --- InputMapperTest ---
class InputMapperTest : public testing::Test {
protected:
static const char* DEVICE_NAME;
static const char* DEVICE_LOCATION;
static const int32_t DEVICE_ID;
static const int32_t DEVICE_GENERATION;
static const int32_t DEVICE_CONTROLLER_NUMBER;
static const ftl::Flags<InputDeviceClass> DEVICE_CLASSES;
static const int32_t EVENTHUB_ID;
std::shared_ptr<FakeEventHub> mFakeEventHub;
sp<FakeInputReaderPolicy> mFakePolicy;
std::unique_ptr<TestInputListener> mFakeListener;
std::unique_ptr<InstrumentedInputReader> mReader;
std::shared_ptr<InputDevice> mDevice;
virtual void SetUp(ftl::Flags<InputDeviceClass> classes) {
mFakeEventHub = std::make_unique<FakeEventHub>();
mFakePolicy = sp<FakeInputReaderPolicy>::make();
mFakeListener = std::make_unique<TestInputListener>();
mReader = std::make_unique<InstrumentedInputReader>(mFakeEventHub, mFakePolicy,
*mFakeListener);
mDevice = newDevice(DEVICE_ID, DEVICE_NAME, DEVICE_LOCATION, EVENTHUB_ID, classes);
// Consume the device reset notification generated when adding a new device.
mFakeListener->assertNotifyDeviceResetWasCalled();
}
void SetUp() override {
SetUp(DEVICE_CLASSES);
}
void TearDown() override {
mFakeListener.reset();
mFakePolicy.clear();
}
void addConfigurationProperty(const char* key, const char* value) {
mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, key, value);
}
std::list<NotifyArgs> configureDevice(uint32_t changes) {
if (!changes ||
(changes &
(InputReaderConfiguration::CHANGE_DISPLAY_INFO |
InputReaderConfiguration::CHANGE_POINTER_CAPTURE))) {
mReader->requestRefreshConfiguration(changes);
mReader->loopOnce();
}
std::list<NotifyArgs> out =
mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), changes);
// Loop the reader to flush the input listener queue.
for (const NotifyArgs& args : out) {
mFakeListener->notify(args);
}
mReader->loopOnce();
return out;
}
std::shared_ptr<InputDevice> newDevice(int32_t deviceId, const std::string& name,
const std::string& location, int32_t eventHubId,
ftl::Flags<InputDeviceClass> classes) {
InputDeviceIdentifier identifier;
identifier.name = name;
identifier.location = location;
std::shared_ptr<InputDevice> device =
std::make_shared<InputDevice>(mReader->getContext(), deviceId, DEVICE_GENERATION,
identifier);
mReader->pushNextDevice(device);
mFakeEventHub->addDevice(eventHubId, name, classes);
mReader->loopOnce();
return device;
}
template <class T, typename... Args>
T& addMapperAndConfigure(Args... args) {
T& mapper = mDevice->addMapper<T>(EVENTHUB_ID, args...);
configureDevice(0);
std::list<NotifyArgs> resetArgList = mDevice->reset(ARBITRARY_TIME);
resetArgList += mapper.reset(ARBITRARY_TIME);
// Loop the reader to flush the input listener queue.
for (const NotifyArgs& loopArgs : resetArgList) {
mFakeListener->notify(loopArgs);
}
mReader->loopOnce();
return mapper;
}
void setDisplayInfoAndReconfigure(int32_t displayId, int32_t width, int32_t height,
int32_t orientation, const std::string& uniqueId,
std::optional<uint8_t> physicalPort, ViewportType viewportType) {
mFakePolicy->addDisplayViewport(displayId, width, height, orientation, true /*isActive*/,
uniqueId, physicalPort, viewportType);
configureDevice(InputReaderConfiguration::CHANGE_DISPLAY_INFO);
}
void clearViewports() {
mFakePolicy->clearViewports();
}
std::list<NotifyArgs> process(InputMapper& mapper, nsecs_t when, nsecs_t readTime, int32_t type,
int32_t code, int32_t value) {
RawEvent event;
event.when = when;
event.readTime = readTime;
event.deviceId = mapper.getDeviceContext().getEventHubId();
event.type = type;
event.code = code;
event.value = value;
std::list<NotifyArgs> processArgList = mapper.process(&event);
for (const NotifyArgs& args : processArgList) {
mFakeListener->notify(args);
}
// Loop the reader to flush the input listener queue.
mReader->loopOnce();
return processArgList;
}
static void assertMotionRange(const InputDeviceInfo& info,
int32_t axis, uint32_t source, float min, float max, float flat, float fuzz) {
const InputDeviceInfo::MotionRange* range = info.getMotionRange(axis, source);
ASSERT_TRUE(range != nullptr) << "Axis: " << axis << " Source: " << source;
ASSERT_EQ(axis, range->axis) << "Axis: " << axis << " Source: " << source;
ASSERT_EQ(source, range->source) << "Axis: " << axis << " Source: " << source;
ASSERT_NEAR(min, range->min, EPSILON) << "Axis: " << axis << " Source: " << source;
ASSERT_NEAR(max, range->max, EPSILON) << "Axis: " << axis << " Source: " << source;
ASSERT_NEAR(flat, range->flat, EPSILON) << "Axis: " << axis << " Source: " << source;
ASSERT_NEAR(fuzz, range->fuzz, EPSILON) << "Axis: " << axis << " Source: " << source;
}
static void assertPointerCoords(const PointerCoords& coords, float x, float y, float pressure,
float size, float touchMajor, float touchMinor, float toolMajor,
float toolMinor, float orientation, float distance,
float scaledAxisEpsilon = 1.f) {
ASSERT_NEAR(x, coords.getAxisValue(AMOTION_EVENT_AXIS_X), scaledAxisEpsilon);
ASSERT_NEAR(y, coords.getAxisValue(AMOTION_EVENT_AXIS_Y), scaledAxisEpsilon);
ASSERT_NEAR(pressure, coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE), EPSILON);
ASSERT_NEAR(size, coords.getAxisValue(AMOTION_EVENT_AXIS_SIZE), EPSILON);
ASSERT_NEAR(touchMajor, coords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR),
scaledAxisEpsilon);
ASSERT_NEAR(touchMinor, coords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR),
scaledAxisEpsilon);
ASSERT_NEAR(toolMajor, coords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR),
scaledAxisEpsilon);
ASSERT_NEAR(toolMinor, coords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR),
scaledAxisEpsilon);
ASSERT_NEAR(orientation, coords.getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION), EPSILON);
ASSERT_NEAR(distance, coords.getAxisValue(AMOTION_EVENT_AXIS_DISTANCE), EPSILON);
}
static void assertPosition(const FakePointerController& controller, float x, float y) {
float actualX, actualY;
controller.getPosition(&actualX, &actualY);
ASSERT_NEAR(x, actualX, 1);
ASSERT_NEAR(y, actualY, 1);
}
};
const char* InputMapperTest::DEVICE_NAME = "device";
const char* InputMapperTest::DEVICE_LOCATION = "USB1";
const int32_t InputMapperTest::DEVICE_ID = END_RESERVED_ID + 1000;
const int32_t InputMapperTest::DEVICE_GENERATION = 2;
const int32_t InputMapperTest::DEVICE_CONTROLLER_NUMBER = 0;
const ftl::Flags<InputDeviceClass> InputMapperTest::DEVICE_CLASSES =
ftl::Flags<InputDeviceClass>(0); // not needed for current tests
const int32_t InputMapperTest::EVENTHUB_ID = 1;
// --- SwitchInputMapperTest ---
class SwitchInputMapperTest : public InputMapperTest {
protected:
};
TEST_F(SwitchInputMapperTest, GetSources) {
SwitchInputMapper& mapper = addMapperAndConfigure<SwitchInputMapper>();
ASSERT_EQ(uint32_t(AINPUT_SOURCE_SWITCH), mapper.getSources());
}
TEST_F(SwitchInputMapperTest, GetSwitchState) {
SwitchInputMapper& mapper = addMapperAndConfigure<SwitchInputMapper>();
mFakeEventHub->setSwitchState(EVENTHUB_ID, SW_LID, 1);
ASSERT_EQ(1, mapper.getSwitchState(AINPUT_SOURCE_ANY, SW_LID));
mFakeEventHub->setSwitchState(EVENTHUB_ID, SW_LID, 0);
ASSERT_EQ(0, mapper.getSwitchState(AINPUT_SOURCE_ANY, SW_LID));
}
TEST_F(SwitchInputMapperTest, Process) {
SwitchInputMapper& mapper = addMapperAndConfigure<SwitchInputMapper>();
std::list<NotifyArgs> out;
out = process(mapper, ARBITRARY_TIME, READ_TIME, EV_SW, SW_LID, 1);
ASSERT_TRUE(out.empty());
out = process(mapper, ARBITRARY_TIME, READ_TIME, EV_SW, SW_JACK_PHYSICAL_INSERT, 1);
ASSERT_TRUE(out.empty());
out = process(mapper, ARBITRARY_TIME, READ_TIME, EV_SW, SW_HEADPHONE_INSERT, 0);
ASSERT_TRUE(out.empty());
out = process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_EQ(1u, out.size());
const NotifySwitchArgs& args = std::get<NotifySwitchArgs>(*out.begin());
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ((1U << SW_LID) | (1U << SW_JACK_PHYSICAL_INSERT), args.switchValues);
ASSERT_EQ((1U << SW_LID) | (1U << SW_JACK_PHYSICAL_INSERT) | (1 << SW_HEADPHONE_INSERT),
args.switchMask);
ASSERT_EQ(uint32_t(0), args.policyFlags);
}
// --- VibratorInputMapperTest ---
class VibratorInputMapperTest : public InputMapperTest {
protected:
void SetUp() override { InputMapperTest::SetUp(DEVICE_CLASSES | InputDeviceClass::VIBRATOR); }
};
TEST_F(VibratorInputMapperTest, GetSources) {
VibratorInputMapper& mapper = addMapperAndConfigure<VibratorInputMapper>();
ASSERT_EQ(AINPUT_SOURCE_UNKNOWN, mapper.getSources());
}
TEST_F(VibratorInputMapperTest, GetVibratorIds) {
VibratorInputMapper& mapper = addMapperAndConfigure<VibratorInputMapper>();
ASSERT_EQ(mapper.getVibratorIds().size(), 2U);
}
TEST_F(VibratorInputMapperTest, Vibrate) {
constexpr uint8_t DEFAULT_AMPLITUDE = 192;
constexpr int32_t VIBRATION_TOKEN = 100;
VibratorInputMapper& mapper = addMapperAndConfigure<VibratorInputMapper>();
VibrationElement pattern(2);
VibrationSequence sequence(2);
pattern.duration = std::chrono::milliseconds(200);
pattern.channels = {{0 /* vibratorId */, DEFAULT_AMPLITUDE / 2},
{1 /* vibratorId */, DEFAULT_AMPLITUDE}};
sequence.addElement(pattern);
pattern.duration = std::chrono::milliseconds(500);
pattern.channels = {{0 /* vibratorId */, DEFAULT_AMPLITUDE / 4},
{1 /* vibratorId */, DEFAULT_AMPLITUDE}};
sequence.addElement(pattern);
std::vector<int64_t> timings = {0, 1};
std::vector<uint8_t> amplitudes = {DEFAULT_AMPLITUDE, DEFAULT_AMPLITUDE / 2};
ASSERT_FALSE(mapper.isVibrating());
// Start vibrating
std::list<NotifyArgs> out = mapper.vibrate(sequence, -1 /* repeat */, VIBRATION_TOKEN);
ASSERT_TRUE(mapper.isVibrating());
// Verify vibrator state listener was notified.
mReader->loopOnce();
ASSERT_EQ(1u, out.size());
const NotifyVibratorStateArgs& vibrateArgs = std::get<NotifyVibratorStateArgs>(*out.begin());
ASSERT_EQ(DEVICE_ID, vibrateArgs.deviceId);
ASSERT_TRUE(vibrateArgs.isOn);
// Stop vibrating
out = mapper.cancelVibrate(VIBRATION_TOKEN);
ASSERT_FALSE(mapper.isVibrating());
// Verify vibrator state listener was notified.
mReader->loopOnce();
ASSERT_EQ(1u, out.size());
const NotifyVibratorStateArgs& cancelArgs = std::get<NotifyVibratorStateArgs>(*out.begin());
ASSERT_EQ(DEVICE_ID, cancelArgs.deviceId);
ASSERT_FALSE(cancelArgs.isOn);
}
// --- SensorInputMapperTest ---
class SensorInputMapperTest : public InputMapperTest {
protected:
static const int32_t ACCEL_RAW_MIN;
static const int32_t ACCEL_RAW_MAX;
static const int32_t ACCEL_RAW_FUZZ;
static const int32_t ACCEL_RAW_FLAT;
static const int32_t ACCEL_RAW_RESOLUTION;
static const int32_t GYRO_RAW_MIN;
static const int32_t GYRO_RAW_MAX;
static const int32_t GYRO_RAW_FUZZ;
static const int32_t GYRO_RAW_FLAT;
static const int32_t GYRO_RAW_RESOLUTION;
static const float GRAVITY_MS2_UNIT;
static const float DEGREE_RADIAN_UNIT;
void prepareAccelAxes();
void prepareGyroAxes();
void setAccelProperties();
void setGyroProperties();
void SetUp() override { InputMapperTest::SetUp(DEVICE_CLASSES | InputDeviceClass::SENSOR); }
};
const int32_t SensorInputMapperTest::ACCEL_RAW_MIN = -32768;
const int32_t SensorInputMapperTest::ACCEL_RAW_MAX = 32768;
const int32_t SensorInputMapperTest::ACCEL_RAW_FUZZ = 16;
const int32_t SensorInputMapperTest::ACCEL_RAW_FLAT = 0;
const int32_t SensorInputMapperTest::ACCEL_RAW_RESOLUTION = 8192;
const int32_t SensorInputMapperTest::GYRO_RAW_MIN = -2097152;
const int32_t SensorInputMapperTest::GYRO_RAW_MAX = 2097152;
const int32_t SensorInputMapperTest::GYRO_RAW_FUZZ = 16;
const int32_t SensorInputMapperTest::GYRO_RAW_FLAT = 0;
const int32_t SensorInputMapperTest::GYRO_RAW_RESOLUTION = 1024;
const float SensorInputMapperTest::GRAVITY_MS2_UNIT = 9.80665f;
const float SensorInputMapperTest::DEGREE_RADIAN_UNIT = 0.0174533f;
void SensorInputMapperTest::prepareAccelAxes() {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_X, ACCEL_RAW_MIN, ACCEL_RAW_MAX, ACCEL_RAW_FUZZ,
ACCEL_RAW_FLAT, ACCEL_RAW_RESOLUTION);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_Y, ACCEL_RAW_MIN, ACCEL_RAW_MAX, ACCEL_RAW_FUZZ,
ACCEL_RAW_FLAT, ACCEL_RAW_RESOLUTION);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_Z, ACCEL_RAW_MIN, ACCEL_RAW_MAX, ACCEL_RAW_FUZZ,
ACCEL_RAW_FLAT, ACCEL_RAW_RESOLUTION);
}
void SensorInputMapperTest::prepareGyroAxes() {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_RX, GYRO_RAW_MIN, GYRO_RAW_MAX, GYRO_RAW_FUZZ,
GYRO_RAW_FLAT, GYRO_RAW_RESOLUTION);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_RY, GYRO_RAW_MIN, GYRO_RAW_MAX, GYRO_RAW_FUZZ,
GYRO_RAW_FLAT, GYRO_RAW_RESOLUTION);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_RZ, GYRO_RAW_MIN, GYRO_RAW_MAX, GYRO_RAW_FUZZ,
GYRO_RAW_FLAT, GYRO_RAW_RESOLUTION);
}
void SensorInputMapperTest::setAccelProperties() {
mFakeEventHub->addSensorAxis(EVENTHUB_ID, /* absCode */ 0, InputDeviceSensorType::ACCELEROMETER,
/* sensorDataIndex */ 0);
mFakeEventHub->addSensorAxis(EVENTHUB_ID, /* absCode */ 1, InputDeviceSensorType::ACCELEROMETER,
/* sensorDataIndex */ 1);
mFakeEventHub->addSensorAxis(EVENTHUB_ID, /* absCode */ 2, InputDeviceSensorType::ACCELEROMETER,
/* sensorDataIndex */ 2);
mFakeEventHub->setMscEvent(EVENTHUB_ID, MSC_TIMESTAMP);
addConfigurationProperty("sensor.accelerometer.reportingMode", "0");
addConfigurationProperty("sensor.accelerometer.maxDelay", "100000");
addConfigurationProperty("sensor.accelerometer.minDelay", "5000");
addConfigurationProperty("sensor.accelerometer.power", "1.5");
}
void SensorInputMapperTest::setGyroProperties() {
mFakeEventHub->addSensorAxis(EVENTHUB_ID, /* absCode */ 3, InputDeviceSensorType::GYROSCOPE,
/* sensorDataIndex */ 0);
mFakeEventHub->addSensorAxis(EVENTHUB_ID, /* absCode */ 4, InputDeviceSensorType::GYROSCOPE,
/* sensorDataIndex */ 1);
mFakeEventHub->addSensorAxis(EVENTHUB_ID, /* absCode */ 5, InputDeviceSensorType::GYROSCOPE,
/* sensorDataIndex */ 2);
mFakeEventHub->setMscEvent(EVENTHUB_ID, MSC_TIMESTAMP);
addConfigurationProperty("sensor.gyroscope.reportingMode", "0");
addConfigurationProperty("sensor.gyroscope.maxDelay", "100000");
addConfigurationProperty("sensor.gyroscope.minDelay", "5000");
addConfigurationProperty("sensor.gyroscope.power", "0.8");
}
TEST_F(SensorInputMapperTest, GetSources) {
SensorInputMapper& mapper = addMapperAndConfigure<SensorInputMapper>();
ASSERT_EQ(static_cast<uint32_t>(AINPUT_SOURCE_SENSOR), mapper.getSources());
}
TEST_F(SensorInputMapperTest, ProcessAccelerometerSensor) {
setAccelProperties();
prepareAccelAxes();
SensorInputMapper& mapper = addMapperAndConfigure<SensorInputMapper>();
ASSERT_TRUE(mapper.enableSensor(InputDeviceSensorType::ACCELEROMETER,
std::chrono::microseconds(10000),
std::chrono::microseconds(0)));
ASSERT_TRUE(mFakeEventHub->isDeviceEnabled(EVENTHUB_ID));
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_X, 20000);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_Y, -20000);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_Z, 40000);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_MSC, MSC_TIMESTAMP, 1000);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
NotifySensorArgs args;
std::vector<float> values = {20000.0f / ACCEL_RAW_RESOLUTION * GRAVITY_MS2_UNIT,
-20000.0f / ACCEL_RAW_RESOLUTION * GRAVITY_MS2_UNIT,
40000.0f / ACCEL_RAW_RESOLUTION * GRAVITY_MS2_UNIT};
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifySensorWasCalled(&args));
ASSERT_EQ(args.source, AINPUT_SOURCE_SENSOR);
ASSERT_EQ(args.deviceId, DEVICE_ID);
ASSERT_EQ(args.sensorType, InputDeviceSensorType::ACCELEROMETER);
ASSERT_EQ(args.accuracy, InputDeviceSensorAccuracy::ACCURACY_HIGH);
ASSERT_EQ(args.hwTimestamp, ARBITRARY_TIME);
ASSERT_EQ(args.values, values);
mapper.flushSensor(InputDeviceSensorType::ACCELEROMETER);
}
TEST_F(SensorInputMapperTest, ProcessGyroscopeSensor) {
setGyroProperties();
prepareGyroAxes();
SensorInputMapper& mapper = addMapperAndConfigure<SensorInputMapper>();
ASSERT_TRUE(mapper.enableSensor(InputDeviceSensorType::GYROSCOPE,
std::chrono::microseconds(10000),
std::chrono::microseconds(0)));
ASSERT_TRUE(mFakeEventHub->isDeviceEnabled(EVENTHUB_ID));
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_RX, 20000);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_RY, -20000);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_RZ, 40000);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_MSC, MSC_TIMESTAMP, 1000);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
NotifySensorArgs args;
std::vector<float> values = {20000.0f / GYRO_RAW_RESOLUTION * DEGREE_RADIAN_UNIT,
-20000.0f / GYRO_RAW_RESOLUTION * DEGREE_RADIAN_UNIT,
40000.0f / GYRO_RAW_RESOLUTION * DEGREE_RADIAN_UNIT};
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifySensorWasCalled(&args));
ASSERT_EQ(args.source, AINPUT_SOURCE_SENSOR);
ASSERT_EQ(args.deviceId, DEVICE_ID);
ASSERT_EQ(args.sensorType, InputDeviceSensorType::GYROSCOPE);
ASSERT_EQ(args.accuracy, InputDeviceSensorAccuracy::ACCURACY_HIGH);
ASSERT_EQ(args.hwTimestamp, ARBITRARY_TIME);
ASSERT_EQ(args.values, values);
mapper.flushSensor(InputDeviceSensorType::GYROSCOPE);
}
// --- KeyboardInputMapperTest ---
class KeyboardInputMapperTest : public InputMapperTest {
protected:
const std::string UNIQUE_ID = "local:0";
void prepareDisplay(int32_t orientation);
void testDPadKeyRotation(KeyboardInputMapper& mapper, int32_t originalScanCode,
int32_t originalKeyCode, int32_t rotatedKeyCode,
int32_t displayId = ADISPLAY_ID_NONE);
};
/* Similar to setDisplayInfoAndReconfigure, but pre-populates all parameters except for the
* orientation.
*/
void KeyboardInputMapperTest::prepareDisplay(int32_t orientation) {
setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, orientation, UNIQUE_ID,
NO_PORT, ViewportType::INTERNAL);
}
void KeyboardInputMapperTest::testDPadKeyRotation(KeyboardInputMapper& mapper,
int32_t originalScanCode, int32_t originalKeyCode,
int32_t rotatedKeyCode, int32_t displayId) {
NotifyKeyArgs args;
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, originalScanCode, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(originalScanCode, args.scanCode);
ASSERT_EQ(rotatedKeyCode, args.keyCode);
ASSERT_EQ(displayId, args.displayId);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, originalScanCode, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(originalScanCode, args.scanCode);
ASSERT_EQ(rotatedKeyCode, args.keyCode);
ASSERT_EQ(displayId, args.displayId);
}
TEST_F(KeyboardInputMapperTest, GetSources) {
KeyboardInputMapper& mapper =
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, mapper.getSources());
}
TEST_F(KeyboardInputMapperTest, Process_SimpleKeyPress) {
const int32_t USAGE_A = 0x070004;
const int32_t USAGE_UNKNOWN = 0x07ffff;
mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, POLICY_FLAG_WAKE);
mFakeEventHub->addKey(EVENTHUB_ID, 0, USAGE_A, AKEYCODE_A, POLICY_FLAG_WAKE);
mFakeEventHub->addKey(EVENTHUB_ID, 0, KEY_NUMLOCK, AKEYCODE_NUM_LOCK, POLICY_FLAG_WAKE);
mFakeEventHub->addKey(EVENTHUB_ID, 0, KEY_CAPSLOCK, AKEYCODE_CAPS_LOCK, POLICY_FLAG_WAKE);
mFakeEventHub->addKey(EVENTHUB_ID, 0, KEY_SCROLLLOCK, AKEYCODE_SCROLL_LOCK, POLICY_FLAG_WAKE);
KeyboardInputMapper& mapper =
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
// Initial metastate is AMETA_NONE.
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
// Key down by scan code.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_HOME, 1);
NotifyKeyArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
ASSERT_EQ(KEY_HOME, args.scanCode);
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Key up by scan code.
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_HOME, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
ASSERT_EQ(KEY_HOME, args.scanCode);
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Key down by usage code.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_MSC, MSC_SCAN, USAGE_A);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, 0, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(AKEYCODE_A, args.keyCode);
ASSERT_EQ(0, args.scanCode);
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Key up by usage code.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_MSC, MSC_SCAN, USAGE_A);
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, 0, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(AKEYCODE_A, args.keyCode);
ASSERT_EQ(0, args.scanCode);
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Key down with unknown scan code or usage code.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_MSC, MSC_SCAN, USAGE_UNKNOWN);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UNKNOWN, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(0, args.keyCode);
ASSERT_EQ(KEY_UNKNOWN, args.scanCode);
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(0U, args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Key up with unknown scan code or usage code.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_MSC, MSC_SCAN, USAGE_UNKNOWN);
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_UNKNOWN, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(0, args.keyCode);
ASSERT_EQ(KEY_UNKNOWN, args.scanCode);
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(0U, args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
}
/**
* Ensure that the readTime is set to the time when the EV_KEY is received.
*/
TEST_F(KeyboardInputMapperTest, Process_SendsReadTime) {
mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, POLICY_FLAG_WAKE);
KeyboardInputMapper& mapper =
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
NotifyKeyArgs args;
// Key down
process(mapper, ARBITRARY_TIME, 12 /*readTime*/, EV_KEY, KEY_HOME, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(12, args.readTime);
// Key up
process(mapper, ARBITRARY_TIME, 15 /*readTime*/, EV_KEY, KEY_HOME, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(15, args.readTime);
}
TEST_F(KeyboardInputMapperTest, Process_ShouldUpdateMetaState) {
mFakeEventHub->addKey(EVENTHUB_ID, KEY_LEFTSHIFT, 0, AKEYCODE_SHIFT_LEFT, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_A, 0, AKEYCODE_A, 0);
mFakeEventHub->addKey(EVENTHUB_ID, 0, KEY_NUMLOCK, AKEYCODE_NUM_LOCK, 0);
mFakeEventHub->addKey(EVENTHUB_ID, 0, KEY_CAPSLOCK, AKEYCODE_CAPS_LOCK, 0);
mFakeEventHub->addKey(EVENTHUB_ID, 0, KEY_SCROLLLOCK, AKEYCODE_SCROLL_LOCK, 0);
KeyboardInputMapper& mapper =
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
// Initial metastate is AMETA_NONE.
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
// Metakey down.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_LEFTSHIFT, 1);
NotifyKeyArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper.getMetaState());
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertUpdateGlobalMetaStateWasCalled());
// Key down.
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_A, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper.getMetaState());
// Key up.
process(mapper, ARBITRARY_TIME + 2, READ_TIME, EV_KEY, KEY_A, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper.getMetaState());
// Metakey up.
process(mapper, ARBITRARY_TIME + 3, READ_TIME, EV_KEY, KEY_LEFTSHIFT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertUpdateGlobalMetaStateWasCalled());
}
TEST_F(KeyboardInputMapperTest, Process_WhenNotOrientationAware_ShouldNotRotateDPad) {
mFakeEventHub->addKey(EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_RIGHT, 0, AKEYCODE_DPAD_RIGHT, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_LEFT, 0, AKEYCODE_DPAD_LEFT, 0);
KeyboardInputMapper& mapper =
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
prepareDisplay(DISPLAY_ORIENTATION_90);
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_RIGHT));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_DOWN));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_LEFT));
}
TEST_F(KeyboardInputMapperTest, Process_WhenOrientationAware_ShouldRotateDPad) {
mFakeEventHub->addKey(EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_RIGHT, 0, AKEYCODE_DPAD_RIGHT, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_LEFT, 0, AKEYCODE_DPAD_LEFT, 0);
addConfigurationProperty("keyboard.orientationAware", "1");
KeyboardInputMapper& mapper =
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
prepareDisplay(DISPLAY_ORIENTATION_0);
ASSERT_NO_FATAL_FAILURE(
testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT,
AKEYCODE_DPAD_RIGHT, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN,
AKEYCODE_DPAD_DOWN, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT,
AKEYCODE_DPAD_LEFT, DISPLAY_ID));
clearViewports();
prepareDisplay(DISPLAY_ORIENTATION_90);
ASSERT_NO_FATAL_FAILURE(
testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT,
AKEYCODE_DPAD_UP, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN,
AKEYCODE_DPAD_RIGHT, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT,
AKEYCODE_DPAD_DOWN, DISPLAY_ID));
clearViewports();
prepareDisplay(DISPLAY_ORIENTATION_180);
ASSERT_NO_FATAL_FAILURE(
testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_DOWN, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT,
AKEYCODE_DPAD_LEFT, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN,
AKEYCODE_DPAD_UP, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT,
AKEYCODE_DPAD_RIGHT, DISPLAY_ID));
clearViewports();
prepareDisplay(DISPLAY_ORIENTATION_270);
ASSERT_NO_FATAL_FAILURE(
testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_RIGHT, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT,
AKEYCODE_DPAD_DOWN, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN,
AKEYCODE_DPAD_LEFT, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT,
AKEYCODE_DPAD_UP, DISPLAY_ID));
// Special case: if orientation changes while key is down, we still emit the same keycode
// in the key up as we did in the key down.
NotifyKeyArgs args;
clearViewports();
prepareDisplay(DISPLAY_ORIENTATION_270);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(KEY_UP, args.scanCode);
ASSERT_EQ(AKEYCODE_DPAD_RIGHT, args.keyCode);
clearViewports();
prepareDisplay(DISPLAY_ORIENTATION_180);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(KEY_UP, args.scanCode);
ASSERT_EQ(AKEYCODE_DPAD_RIGHT, args.keyCode);
}
TEST_F(KeyboardInputMapperTest, DisplayIdConfigurationChange_NotOrientationAware) {
// If the keyboard is not orientation aware,
// key events should not be associated with a specific display id
mFakeEventHub->addKey(EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0);
KeyboardInputMapper& mapper =
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
NotifyKeyArgs args;
// Display id should be ADISPLAY_ID_NONE without any display configuration.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(ADISPLAY_ID_NONE, args.displayId);
prepareDisplay(DISPLAY_ORIENTATION_0);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(ADISPLAY_ID_NONE, args.displayId);
}
TEST_F(KeyboardInputMapperTest, DisplayIdConfigurationChange_OrientationAware) {
// If the keyboard is orientation aware,
// key events should be associated with the internal viewport
mFakeEventHub->addKey(EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0);
addConfigurationProperty("keyboard.orientationAware", "1");
KeyboardInputMapper& mapper =
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
NotifyKeyArgs args;
// Display id should be ADISPLAY_ID_NONE without any display configuration.
// ^--- already checked by the previous test
setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0,
UNIQUE_ID, NO_PORT, ViewportType::INTERNAL);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DISPLAY_ID, args.displayId);
constexpr int32_t newDisplayId = 2;
clearViewports();
setDisplayInfoAndReconfigure(newDisplayId, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0,
UNIQUE_ID, NO_PORT, ViewportType::INTERNAL);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(newDisplayId, args.displayId);
}
TEST_F(KeyboardInputMapperTest, GetKeyCodeState) {
KeyboardInputMapper& mapper =
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
mFakeEventHub->setKeyCodeState(EVENTHUB_ID, AKEYCODE_A, 1);
ASSERT_EQ(1, mapper.getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A));
mFakeEventHub->setKeyCodeState(EVENTHUB_ID, AKEYCODE_A, 0);
ASSERT_EQ(0, mapper.getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A));
}
TEST_F(KeyboardInputMapperTest, GetKeyCodeForKeyLocation) {
KeyboardInputMapper& mapper =
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
mFakeEventHub->addKeyCodeMapping(EVENTHUB_ID, AKEYCODE_Y, AKEYCODE_Z);
ASSERT_EQ(AKEYCODE_Z, mapper.getKeyCodeForKeyLocation(AKEYCODE_Y))
<< "If a mapping is available, the result is equal to the mapping";
ASSERT_EQ(AKEYCODE_A, mapper.getKeyCodeForKeyLocation(AKEYCODE_A))
<< "If no mapping is available, the result is the key location";
}
TEST_F(KeyboardInputMapperTest, GetScanCodeState) {
KeyboardInputMapper& mapper =
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
mFakeEventHub->setScanCodeState(EVENTHUB_ID, KEY_A, 1);
ASSERT_EQ(1, mapper.getScanCodeState(AINPUT_SOURCE_ANY, KEY_A));
mFakeEventHub->setScanCodeState(EVENTHUB_ID, KEY_A, 0);
ASSERT_EQ(0, mapper.getScanCodeState(AINPUT_SOURCE_ANY, KEY_A));
}
TEST_F(KeyboardInputMapperTest, MarkSupportedKeyCodes) {
KeyboardInputMapper& mapper =
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_A, 0, AKEYCODE_A, 0);
uint8_t flags[2] = { 0, 0 };
ASSERT_TRUE(mapper.markSupportedKeyCodes(AINPUT_SOURCE_ANY, {AKEYCODE_A, AKEYCODE_B}, flags));
ASSERT_TRUE(flags[0]);
ASSERT_FALSE(flags[1]);
}
TEST_F(KeyboardInputMapperTest, Process_LockedKeysShouldToggleMetaStateAndLeds) {
mFakeEventHub->addLed(EVENTHUB_ID, LED_CAPSL, true /*initially on*/);
mFakeEventHub->addLed(EVENTHUB_ID, LED_NUML, false /*initially off*/);
mFakeEventHub->addLed(EVENTHUB_ID, LED_SCROLLL, false /*initially off*/);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_CAPSLOCK, 0, AKEYCODE_CAPS_LOCK, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_NUMLOCK, 0, AKEYCODE_NUM_LOCK, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_SCROLLLOCK, 0, AKEYCODE_SCROLL_LOCK, 0);
KeyboardInputMapper& mapper =
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
// Initial metastate is AMETA_NONE.
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
// Initialization should have turned all of the lights off.
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
// Toggle caps lock on.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 0);
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_CAPS_LOCK_ON, mapper.getMetaState());
// Toggle num lock on.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 0);
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_CAPS_LOCK_ON | AMETA_NUM_LOCK_ON, mapper.getMetaState());
// Toggle caps lock off.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_NUM_LOCK_ON, mapper.getMetaState());
// Toggle scroll lock on.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_NUM_LOCK_ON | AMETA_SCROLL_LOCK_ON, mapper.getMetaState());
// Toggle num lock off.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_SCROLL_LOCK_ON, mapper.getMetaState());
// Toggle scroll lock off.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
}
TEST_F(KeyboardInputMapperTest, NoMetaStateWhenMetaKeysNotPresent) {
mFakeEventHub->addKey(EVENTHUB_ID, BTN_A, 0, AKEYCODE_BUTTON_A, 0);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_B, 0, AKEYCODE_BUTTON_B, 0);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_X, 0, AKEYCODE_BUTTON_X, 0);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_Y, 0, AKEYCODE_BUTTON_Y, 0);
KeyboardInputMapper& mapper =
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC);
// Meta state should be AMETA_NONE after reset
std::list<NotifyArgs> unused = mapper.reset(ARBITRARY_TIME);
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
// Meta state should be AMETA_NONE with update, as device doesn't have the keys.
mapper.updateMetaState(AKEYCODE_NUM_LOCK);
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
NotifyKeyArgs args;
// Press button "A"
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_A, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(AKEYCODE_BUTTON_A, args.keyCode);
// Button up.
process(mapper, ARBITRARY_TIME + 2, READ_TIME, EV_KEY, BTN_A, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(AKEYCODE_BUTTON_A, args.keyCode);
}
TEST_F(KeyboardInputMapperTest, Configure_AssignsDisplayPort) {
// keyboard 1.
mFakeEventHub->addKey(EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_RIGHT, 0, AKEYCODE_DPAD_RIGHT, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_LEFT, 0, AKEYCODE_DPAD_LEFT, 0);
// keyboard 2.
const std::string USB2 = "USB2";
const std::string DEVICE_NAME2 = "KEYBOARD2";
constexpr int32_t SECOND_DEVICE_ID = DEVICE_ID + 1;
constexpr int32_t SECOND_EVENTHUB_ID = EVENTHUB_ID + 1;
std::shared_ptr<InputDevice> device2 =
newDevice(SECOND_DEVICE_ID, DEVICE_NAME2, USB2, SECOND_EVENTHUB_ID,
ftl::Flags<InputDeviceClass>(0));
mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0);
mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_RIGHT, 0, AKEYCODE_DPAD_RIGHT, 0);
mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0);
mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_LEFT, 0, AKEYCODE_DPAD_LEFT, 0);
KeyboardInputMapper& mapper =
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
KeyboardInputMapper& mapper2 =
device2->addMapper<KeyboardInputMapper>(SECOND_EVENTHUB_ID, AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
std::list<NotifyArgs> unused =
device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
0 /*changes*/);
unused += device2->reset(ARBITRARY_TIME);
// Prepared displays and associated info.
constexpr uint8_t hdmi1 = 0;
constexpr uint8_t hdmi2 = 1;
const std::string SECONDARY_UNIQUE_ID = "local:1";
mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi1);
mFakePolicy->addInputPortAssociation(USB2, hdmi2);
// No associated display viewport found, should disable the device.
unused += device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::CHANGE_DISPLAY_INFO);
ASSERT_FALSE(device2->isEnabled());
// Prepare second display.
constexpr int32_t newDisplayId = 2;
setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0,
UNIQUE_ID, hdmi1, ViewportType::INTERNAL);
setDisplayInfoAndReconfigure(newDisplayId, DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_ORIENTATION_0,
SECONDARY_UNIQUE_ID, hdmi2, ViewportType::EXTERNAL);
// Default device will reconfigure above, need additional reconfiguration for another device.
unused += device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::CHANGE_DISPLAY_INFO);
// Device should be enabled after the associated display is found.
ASSERT_TRUE(mDevice->isEnabled());
ASSERT_TRUE(device2->isEnabled());
// Test pad key events
ASSERT_NO_FATAL_FAILURE(
testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT,
AKEYCODE_DPAD_RIGHT, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN,
AKEYCODE_DPAD_DOWN, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT,
AKEYCODE_DPAD_LEFT, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(
testDPadKeyRotation(mapper2, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP, newDisplayId));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper2, KEY_RIGHT, AKEYCODE_DPAD_RIGHT,
AKEYCODE_DPAD_RIGHT, newDisplayId));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper2, KEY_DOWN, AKEYCODE_DPAD_DOWN,
AKEYCODE_DPAD_DOWN, newDisplayId));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper2, KEY_LEFT, AKEYCODE_DPAD_LEFT,
AKEYCODE_DPAD_LEFT, newDisplayId));
}
TEST_F(KeyboardInputMapperTest, Process_LockedKeysShouldToggleAfterReattach) {
mFakeEventHub->addLed(EVENTHUB_ID, LED_CAPSL, true /*initially on*/);
mFakeEventHub->addLed(EVENTHUB_ID, LED_NUML, false /*initially off*/);
mFakeEventHub->addLed(EVENTHUB_ID, LED_SCROLLL, false /*initially off*/);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_CAPSLOCK, 0, AKEYCODE_CAPS_LOCK, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_NUMLOCK, 0, AKEYCODE_NUM_LOCK, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_SCROLLLOCK, 0, AKEYCODE_SCROLL_LOCK, 0);
KeyboardInputMapper& mapper =
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
// Initial metastate is AMETA_NONE.
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
// Initialization should have turned all of the lights off.
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
// Toggle caps lock on.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 0);
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_EQ(AMETA_CAPS_LOCK_ON, mapper.getMetaState());
// Toggle num lock on.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 0);
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_EQ(AMETA_CAPS_LOCK_ON | AMETA_NUM_LOCK_ON, mapper.getMetaState());
// Toggle scroll lock on.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 0);
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_CAPS_LOCK_ON | AMETA_NUM_LOCK_ON | AMETA_SCROLL_LOCK_ON, mapper.getMetaState());
mFakeEventHub->removeDevice(EVENTHUB_ID);
mReader->loopOnce();
// keyboard 2 should default toggle keys.
const std::string USB2 = "USB2";
const std::string DEVICE_NAME2 = "KEYBOARD2";
constexpr int32_t SECOND_DEVICE_ID = DEVICE_ID + 1;
constexpr int32_t SECOND_EVENTHUB_ID = EVENTHUB_ID + 1;
std::shared_ptr<InputDevice> device2 =
newDevice(SECOND_DEVICE_ID, DEVICE_NAME2, USB2, SECOND_EVENTHUB_ID,
ftl::Flags<InputDeviceClass>(0));
mFakeEventHub->addLed(SECOND_EVENTHUB_ID, LED_CAPSL, true /*initially on*/);
mFakeEventHub->addLed(SECOND_EVENTHUB_ID, LED_NUML, false /*initially off*/);
mFakeEventHub->addLed(SECOND_EVENTHUB_ID, LED_SCROLLL, false /*initially off*/);
mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_CAPSLOCK, 0, AKEYCODE_CAPS_LOCK, 0);
mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_NUMLOCK, 0, AKEYCODE_NUM_LOCK, 0);
mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_SCROLLLOCK, 0, AKEYCODE_SCROLL_LOCK, 0);
KeyboardInputMapper& mapper2 =
device2->addMapper<KeyboardInputMapper>(SECOND_EVENTHUB_ID, AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
std::list<NotifyArgs> unused =
device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
0 /*changes*/);
unused += device2->reset(ARBITRARY_TIME);
ASSERT_TRUE(mFakeEventHub->getLedState(SECOND_EVENTHUB_ID, LED_CAPSL));
ASSERT_TRUE(mFakeEventHub->getLedState(SECOND_EVENTHUB_ID, LED_NUML));
ASSERT_TRUE(mFakeEventHub->getLedState(SECOND_EVENTHUB_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_CAPS_LOCK_ON | AMETA_NUM_LOCK_ON | AMETA_SCROLL_LOCK_ON,
mapper2.getMetaState());
}
TEST_F(KeyboardInputMapperTest, Process_toggleCapsLockState) {
mFakeEventHub->addKey(EVENTHUB_ID, KEY_CAPSLOCK, 0, AKEYCODE_CAPS_LOCK, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_NUMLOCK, 0, AKEYCODE_NUM_LOCK, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_SCROLLLOCK, 0, AKEYCODE_SCROLL_LOCK, 0);
// Suppose we have two mappers. (DPAD + KEYBOARD)
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_DPAD,
AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC);
KeyboardInputMapper& mapper =
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
// Initial metastate is AMETA_NONE.
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
mReader->toggleCapsLockState(DEVICE_ID);
ASSERT_EQ(AMETA_CAPS_LOCK_ON, mapper.getMetaState());
}
TEST_F(KeyboardInputMapperTest, Process_LockedKeysShouldToggleInMultiDevices) {
// keyboard 1.
mFakeEventHub->addLed(EVENTHUB_ID, LED_CAPSL, true /*initially on*/);
mFakeEventHub->addLed(EVENTHUB_ID, LED_NUML, false /*initially off*/);
mFakeEventHub->addLed(EVENTHUB_ID, LED_SCROLLL, false /*initially off*/);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_CAPSLOCK, 0, AKEYCODE_CAPS_LOCK, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_NUMLOCK, 0, AKEYCODE_NUM_LOCK, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_SCROLLLOCK, 0, AKEYCODE_SCROLL_LOCK, 0);
KeyboardInputMapper& mapper1 =
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
// keyboard 2.
const std::string USB2 = "USB2";
const std::string DEVICE_NAME2 = "KEYBOARD2";
constexpr int32_t SECOND_DEVICE_ID = DEVICE_ID + 1;
constexpr int32_t SECOND_EVENTHUB_ID = EVENTHUB_ID + 1;
std::shared_ptr<InputDevice> device2 =
newDevice(SECOND_DEVICE_ID, DEVICE_NAME2, USB2, SECOND_EVENTHUB_ID,
ftl::Flags<InputDeviceClass>(0));
mFakeEventHub->addLed(SECOND_EVENTHUB_ID, LED_CAPSL, true /*initially on*/);
mFakeEventHub->addLed(SECOND_EVENTHUB_ID, LED_NUML, false /*initially off*/);
mFakeEventHub->addLed(SECOND_EVENTHUB_ID, LED_SCROLLL, false /*initially off*/);
mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_CAPSLOCK, 0, AKEYCODE_CAPS_LOCK, 0);
mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_NUMLOCK, 0, AKEYCODE_NUM_LOCK, 0);
mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_SCROLLLOCK, 0, AKEYCODE_SCROLL_LOCK, 0);
KeyboardInputMapper& mapper2 =
device2->addMapper<KeyboardInputMapper>(SECOND_EVENTHUB_ID, AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
std::list<NotifyArgs> unused =
device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
0 /*changes*/);
unused += device2->reset(ARBITRARY_TIME);
// Initial metastate is AMETA_NONE.
ASSERT_EQ(AMETA_NONE, mapper1.getMetaState());
ASSERT_EQ(AMETA_NONE, mapper2.getMetaState());
// Toggle num lock on and off.
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 1);
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 0);
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_EQ(AMETA_NUM_LOCK_ON, mapper1.getMetaState());
ASSERT_EQ(AMETA_NUM_LOCK_ON, mapper2.getMetaState());
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 1);
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_EQ(AMETA_NONE, mapper1.getMetaState());
ASSERT_EQ(AMETA_NONE, mapper2.getMetaState());
// Toggle caps lock on and off.
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 1);
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 0);
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_EQ(AMETA_CAPS_LOCK_ON, mapper1.getMetaState());
ASSERT_EQ(AMETA_CAPS_LOCK_ON, mapper2.getMetaState());
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 1);
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_EQ(AMETA_NONE, mapper1.getMetaState());
ASSERT_EQ(AMETA_NONE, mapper2.getMetaState());
// Toggle scroll lock on and off.
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 1);
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 0);
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_SCROLL_LOCK_ON, mapper1.getMetaState());
ASSERT_EQ(AMETA_SCROLL_LOCK_ON, mapper2.getMetaState());
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 1);
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_NONE, mapper1.getMetaState());
ASSERT_EQ(AMETA_NONE, mapper2.getMetaState());
}
TEST_F(KeyboardInputMapperTest, Process_DisabledDevice) {
const int32_t USAGE_A = 0x070004;
mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, POLICY_FLAG_WAKE);
mFakeEventHub->addKey(EVENTHUB_ID, 0, USAGE_A, AKEYCODE_A, POLICY_FLAG_WAKE);
KeyboardInputMapper& mapper =
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
// Key down by scan code.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_HOME, 1);
NotifyKeyArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
ASSERT_EQ(KEY_HOME, args.scanCode);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
// Disable device, it should synthesize cancellation events for down events.
mFakePolicy->addDisabledDevice(DEVICE_ID);
configureDevice(InputReaderConfiguration::CHANGE_ENABLED_STATE);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
ASSERT_EQ(KEY_HOME, args.scanCode);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_CANCELED, args.flags);
}
// --- KeyboardInputMapperTest_ExternalDevice ---
class KeyboardInputMapperTest_ExternalDevice : public InputMapperTest {
protected:
void SetUp() override { InputMapperTest::SetUp(DEVICE_CLASSES | InputDeviceClass::EXTERNAL); }
};
TEST_F(KeyboardInputMapperTest_ExternalDevice, WakeBehavior) {
// For external devices, non-media keys will trigger wake on key down. Media keys need to be
// marked as WAKE in the keylayout file to trigger wake.
mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_PLAY, 0, AKEYCODE_MEDIA_PLAY, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_PLAYPAUSE, 0, AKEYCODE_MEDIA_PLAY_PAUSE,
POLICY_FLAG_WAKE);
KeyboardInputMapper& mapper =
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_HOME, 1);
NotifyKeyArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_HOME, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(uint32_t(0), args.policyFlags);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_PLAY, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(uint32_t(0), args.policyFlags);
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_PLAY, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(uint32_t(0), args.policyFlags);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_PLAYPAUSE, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_PLAYPAUSE, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
}
TEST_F(KeyboardInputMapperTest_ExternalDevice, DoNotWakeByDefaultBehavior) {
// Tv Remote key's wake behavior is prescribed by the keylayout file.
mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, POLICY_FLAG_WAKE);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_PLAY, 0, AKEYCODE_MEDIA_PLAY, POLICY_FLAG_WAKE);
addConfigurationProperty("keyboard.doNotWakeByDefault", "1");
KeyboardInputMapper& mapper =
addMapperAndConfigure<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_HOME, 1);
NotifyKeyArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_HOME, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_DOWN, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(uint32_t(0), args.policyFlags);
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_DOWN, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(uint32_t(0), args.policyFlags);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_PLAY, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_PLAY, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
}
// --- CursorInputMapperTest ---
class CursorInputMapperTest : public InputMapperTest {
protected:
static const int32_t TRACKBALL_MOVEMENT_THRESHOLD;
std::shared_ptr<FakePointerController> mFakePointerController;
void SetUp() override {
InputMapperTest::SetUp();
mFakePointerController = std::make_shared<FakePointerController>();
mFakePolicy->setPointerController(mFakePointerController);
}
void testMotionRotation(CursorInputMapper& mapper, int32_t originalX, int32_t originalY,
int32_t rotatedX, int32_t rotatedY);
void prepareDisplay(int32_t orientation) {
setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, orientation,
DISPLAY_UNIQUE_ID, NO_PORT, ViewportType::INTERNAL);
}
void prepareSecondaryDisplay() {
setDisplayInfoAndReconfigure(SECONDARY_DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, SECONDARY_DISPLAY_UNIQUE_ID, NO_PORT,
ViewportType::EXTERNAL);
}
static void assertCursorPointerCoords(const PointerCoords& coords, float x, float y,
float pressure) {
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(coords, x, y, pressure, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, EPSILON));
}
};
const int32_t CursorInputMapperTest::TRACKBALL_MOVEMENT_THRESHOLD = 6;
void CursorInputMapperTest::testMotionRotation(CursorInputMapper& mapper, int32_t originalX,
int32_t originalY, int32_t rotatedX,
int32_t rotatedY) {
NotifyMotionArgs args;
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_X, originalX);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_Y, originalY);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(args.pointerCoords[0],
float(rotatedX) / TRACKBALL_MOVEMENT_THRESHOLD,
float(rotatedY) / TRACKBALL_MOVEMENT_THRESHOLD, 0.0f));
}
TEST_F(CursorInputMapperTest, WhenModeIsPointer_GetSources_ReturnsMouse) {
addConfigurationProperty("cursor.mode", "pointer");
CursorInputMapper& mapper = addMapperAndConfigure<CursorInputMapper>();
ASSERT_EQ(AINPUT_SOURCE_MOUSE, mapper.getSources());
}
TEST_F(CursorInputMapperTest, WhenModeIsNavigation_GetSources_ReturnsTrackball) {
addConfigurationProperty("cursor.mode", "navigation");
CursorInputMapper& mapper = addMapperAndConfigure<CursorInputMapper>();
ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, mapper.getSources());
}
TEST_F(CursorInputMapperTest, WhenModeIsPointer_PopulateDeviceInfo_ReturnsRangeFromPointerController) {
addConfigurationProperty("cursor.mode", "pointer");
CursorInputMapper& mapper = addMapperAndConfigure<CursorInputMapper>();
InputDeviceInfo info;
mapper.populateDeviceInfo(&info);
// Initially there may not be a valid motion range.
ASSERT_EQ(nullptr, info.getMotionRange(AINPUT_MOTION_RANGE_X, AINPUT_SOURCE_MOUSE));
ASSERT_EQ(nullptr, info.getMotionRange(AINPUT_MOTION_RANGE_Y, AINPUT_SOURCE_MOUSE));
ASSERT_NO_FATAL_FAILURE(assertMotionRange(info,
AINPUT_MOTION_RANGE_PRESSURE, AINPUT_SOURCE_MOUSE, 0.0f, 1.0f, 0.0f, 0.0f));
// When the bounds are set, then there should be a valid motion range.
mFakePointerController->setBounds(1, 2, 800 - 1, 480 - 1);
InputDeviceInfo info2;
mapper.populateDeviceInfo(&info2);
ASSERT_NO_FATAL_FAILURE(assertMotionRange(info2,
AINPUT_MOTION_RANGE_X, AINPUT_SOURCE_MOUSE,
1, 800 - 1, 0.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(assertMotionRange(info2,
AINPUT_MOTION_RANGE_Y, AINPUT_SOURCE_MOUSE,
2, 480 - 1, 0.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(assertMotionRange(info2,
AINPUT_MOTION_RANGE_PRESSURE, AINPUT_SOURCE_MOUSE,
0.0f, 1.0f, 0.0f, 0.0f));
}
TEST_F(CursorInputMapperTest, WhenModeIsNavigation_PopulateDeviceInfo_ReturnsScaledRange) {
addConfigurationProperty("cursor.mode", "navigation");
CursorInputMapper& mapper = addMapperAndConfigure<CursorInputMapper>();
InputDeviceInfo info;
mapper.populateDeviceInfo(&info);
ASSERT_NO_FATAL_FAILURE(assertMotionRange(info,
AINPUT_MOTION_RANGE_X, AINPUT_SOURCE_TRACKBALL,
-1.0f, 1.0f, 0.0f, 1.0f / TRACKBALL_MOVEMENT_THRESHOLD));
ASSERT_NO_FATAL_FAILURE(assertMotionRange(info,
AINPUT_MOTION_RANGE_Y, AINPUT_SOURCE_TRACKBALL,
-1.0f, 1.0f, 0.0f, 1.0f / TRACKBALL_MOVEMENT_THRESHOLD));
ASSERT_NO_FATAL_FAILURE(assertMotionRange(info,
AINPUT_MOTION_RANGE_PRESSURE, AINPUT_SOURCE_TRACKBALL,
0.0f, 1.0f, 0.0f, 0.0f));
}
TEST_F(CursorInputMapperTest, Process_ShouldSetAllFieldsAndIncludeGlobalMetaState) {
addConfigurationProperty("cursor.mode", "navigation");
CursorInputMapper& mapper = addMapperAndConfigure<CursorInputMapper>();
mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyMotionArgs args;
// Button press.
// Mostly testing non x/y behavior here so we don't need to check again elsewhere.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_MOUSE, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, args.source);
ASSERT_EQ(uint32_t(0), args.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(0, args.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, args.buttonState);
ASSERT_EQ(0, args.edgeFlags);
ASSERT_EQ(uint32_t(1), args.pointerCount);
ASSERT_EQ(0, args.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, args.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertCursorPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 1.0f));
ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.xPrecision);
ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.yPrecision);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, args.source);
ASSERT_EQ(uint32_t(0), args.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, args.action);
ASSERT_EQ(0, args.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, args.buttonState);
ASSERT_EQ(0, args.edgeFlags);
ASSERT_EQ(uint32_t(1), args.pointerCount);
ASSERT_EQ(0, args.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, args.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertCursorPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 1.0f));
ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.xPrecision);
ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.yPrecision);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Button release. Should have same down time.
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, BTN_MOUSE, 0);
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime);
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, args.source);
ASSERT_EQ(uint32_t(0), args.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, args.action);
ASSERT_EQ(0, args.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(0, args.buttonState);
ASSERT_EQ(0, args.edgeFlags);
ASSERT_EQ(uint32_t(1), args.pointerCount);
ASSERT_EQ(0, args.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, args.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertCursorPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 0.0f));
ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.xPrecision);
ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.yPrecision);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime);
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, args.source);
ASSERT_EQ(uint32_t(0), args.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
ASSERT_EQ(0, args.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(0, args.buttonState);
ASSERT_EQ(0, args.edgeFlags);
ASSERT_EQ(uint32_t(1), args.pointerCount);
ASSERT_EQ(0, args.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, args.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertCursorPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 0.0f));
ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.xPrecision);
ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.yPrecision);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
}
TEST_F(CursorInputMapperTest, Process_ShouldHandleIndependentXYUpdates) {
addConfigurationProperty("cursor.mode", "navigation");
CursorInputMapper& mapper = addMapperAndConfigure<CursorInputMapper>();
NotifyMotionArgs args;
// Motion in X but not Y.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_X, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(assertCursorPointerCoords(args.pointerCoords[0],
1.0f / TRACKBALL_MOVEMENT_THRESHOLD, 0.0f,
0.0f));
// Motion in Y but not X.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_Y, -2);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(assertCursorPointerCoords(args.pointerCoords[0], 0.0f,
-2.0f / TRACKBALL_MOVEMENT_THRESHOLD, 0.0f));
}
TEST_F(CursorInputMapperTest, Process_ShouldHandleIndependentButtonUpdates) {
addConfigurationProperty("cursor.mode", "navigation");
CursorInputMapper& mapper = addMapperAndConfigure<CursorInputMapper>();
NotifyMotionArgs args;
// Button press.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_MOUSE, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
ASSERT_NO_FATAL_FAILURE(assertCursorPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 1.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, args.action);
ASSERT_NO_FATAL_FAILURE(assertCursorPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 1.0f));
// Button release.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_MOUSE, 0);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, args.action);
ASSERT_NO_FATAL_FAILURE(assertCursorPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
ASSERT_NO_FATAL_FAILURE(assertCursorPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 0.0f));
}
TEST_F(CursorInputMapperTest, Process_ShouldHandleCombinedXYAndButtonUpdates) {
addConfigurationProperty("cursor.mode", "navigation");
CursorInputMapper& mapper = addMapperAndConfigure<CursorInputMapper>();
NotifyMotionArgs args;
// Combined X, Y and Button.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_X, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_Y, -2);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_MOUSE, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
ASSERT_NO_FATAL_FAILURE(assertCursorPointerCoords(args.pointerCoords[0],
1.0f / TRACKBALL_MOVEMENT_THRESHOLD,
-2.0f / TRACKBALL_MOVEMENT_THRESHOLD, 1.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, args.action);
ASSERT_NO_FATAL_FAILURE(assertCursorPointerCoords(args.pointerCoords[0],
1.0f / TRACKBALL_MOVEMENT_THRESHOLD,
-2.0f / TRACKBALL_MOVEMENT_THRESHOLD, 1.0f));
// Move X, Y a bit while pressed.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_X, 2);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_Y, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(assertCursorPointerCoords(args.pointerCoords[0],
2.0f / TRACKBALL_MOVEMENT_THRESHOLD,
1.0f / TRACKBALL_MOVEMENT_THRESHOLD, 1.0f));
// Release Button.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_MOUSE, 0);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, args.action);
ASSERT_NO_FATAL_FAILURE(assertCursorPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
ASSERT_NO_FATAL_FAILURE(assertCursorPointerCoords(args.pointerCoords[0], 0.0f, 0.0f, 0.0f));
}
TEST_F(CursorInputMapperTest, Process_WhenOrientationAware_ShouldNotRotateMotions) {
mFakePolicy->addInputUniqueIdAssociation(DEVICE_LOCATION, DISPLAY_UNIQUE_ID);
addConfigurationProperty("cursor.mode", "navigation");
// InputReader works in the un-rotated coordinate space, so orientation-aware devices do not
// need to be rotated.
addConfigurationProperty("cursor.orientationAware", "1");
CursorInputMapper& mapper = addMapperAndConfigure<CursorInputMapper>();
prepareDisplay(DISPLAY_ORIENTATION_90);
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 0, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, 1, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, 1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 0, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, -1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, -1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, -1, 1));
}
TEST_F(CursorInputMapperTest, Process_WhenNotOrientationAware_ShouldRotateMotions) {
mFakePolicy->addInputUniqueIdAssociation(DEVICE_LOCATION, DISPLAY_UNIQUE_ID);
addConfigurationProperty("cursor.mode", "navigation");
// Since InputReader works in the un-rotated coordinate space, only devices that are not
// orientation-aware are affected by display rotation.
CursorInputMapper& mapper = addMapperAndConfigure<CursorInputMapper>();
clearViewports();
prepareDisplay(DISPLAY_ORIENTATION_0);
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 0, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, 1, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, 1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 0, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, -1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, -1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, -1, 1));
clearViewports();
prepareDisplay(DISPLAY_ORIENTATION_90);
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, -1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, -1, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 0, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, 1, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, 1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, 0, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, -1, -1));
clearViewports();
prepareDisplay(DISPLAY_ORIENTATION_180);
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 0, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, -1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, -1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, -1, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 0, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, 1, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, 1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, 1, -1));
clearViewports();
prepareDisplay(DISPLAY_ORIENTATION_270);
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, 1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 0, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, -1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, -1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, -1, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, 0, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, 1, 1));
}
TEST_F(CursorInputMapperTest, Process_ShouldHandleAllButtons) {
addConfigurationProperty("cursor.mode", "pointer");
CursorInputMapper& mapper = addMapperAndConfigure<CursorInputMapper>();
mFakePointerController->setBounds(0, 0, 800 - 1, 480 - 1);
mFakePointerController->setPosition(100, 200);
mFakePointerController->setButtonState(0);
NotifyMotionArgs motionArgs;
NotifyKeyArgs keyArgs;
// press BTN_LEFT, release BTN_LEFT
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_LEFT, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 1.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 1.0f));
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_LEFT, 0);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
// press BTN_RIGHT + BTN_MIDDLE, release BTN_RIGHT, release BTN_MIDDLE
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_RIGHT, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_MIDDLE, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY,
motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY,
mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 1.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY,
mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 1.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY,
motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY,
mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 1.0f));
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_RIGHT, 0);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 1.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 1.0f));
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_MIDDLE, 0);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_MIDDLE, 0);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
// press BTN_BACK, release BTN_BACK
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_BACK, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_BACK, 0);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
// press BTN_SIDE, release BTN_SIDE
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_SIDE, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_SIDE, 0);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
// press BTN_FORWARD, release BTN_FORWARD
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_FORWARD, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_FORWARD, 0);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
// press BTN_EXTRA, release BTN_EXTRA
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_EXTRA, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_EXTRA, 0);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, mFakePointerController->getButtonState());
ASSERT_NO_FATAL_FAILURE(
assertCursorPointerCoords(motionArgs.pointerCoords[0], 100.0f, 200.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
}
TEST_F(CursorInputMapperTest, Process_WhenModeIsPointer_ShouldMoveThePointerAround) {
addConfigurationProperty("cursor.mode", "pointer");
CursorInputMapper& mapper = addMapperAndConfigure<CursorInputMapper>();
mFakePointerController->setBounds(0, 0, 800 - 1, 480 - 1);
mFakePointerController->setPosition(100, 200);
mFakePointerController->setButtonState(0);
NotifyMotionArgs args;
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_X, 10);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_Y, 20);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AINPUT_SOURCE_MOUSE, args.source);
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
110.0f, 220.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(assertPosition(*mFakePointerController, 110.0f, 220.0f));
}
TEST_F(CursorInputMapperTest, Process_PointerCapture) {
addConfigurationProperty("cursor.mode", "pointer");
mFakePolicy->setPointerCapture(true);
CursorInputMapper& mapper = addMapperAndConfigure<CursorInputMapper>();
NotifyDeviceResetArgs resetArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(ARBITRARY_TIME, resetArgs.eventTime);
ASSERT_EQ(DEVICE_ID, resetArgs.deviceId);
mFakePointerController->setBounds(0, 0, 800 - 1, 480 - 1);
mFakePointerController->setPosition(100, 200);
mFakePointerController->setButtonState(0);
NotifyMotionArgs args;
// Move.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_X, 10);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_Y, 20);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AINPUT_SOURCE_MOUSE_RELATIVE, args.source);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
10.0f, 20.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(assertPosition(*mFakePointerController, 100.0f, 200.0f));
// Button press.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_MOUSE, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AINPUT_SOURCE_MOUSE_RELATIVE, args.source);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AINPUT_SOURCE_MOUSE_RELATIVE, args.source);
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
// Button release.
process(mapper, ARBITRARY_TIME + 2, READ_TIME, EV_KEY, BTN_MOUSE, 0);
process(mapper, ARBITRARY_TIME + 2, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AINPUT_SOURCE_MOUSE_RELATIVE, args.source);
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AINPUT_SOURCE_MOUSE_RELATIVE, args.source);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
// Another move.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_X, 30);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_Y, 40);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AINPUT_SOURCE_MOUSE_RELATIVE, args.source);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
30.0f, 40.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(assertPosition(*mFakePointerController, 100.0f, 200.0f));
// Disable pointer capture and check that the device generation got bumped
// and events are generated the usual way.
const uint32_t generation = mReader->getContext()->getGeneration();
mFakePolicy->setPointerCapture(false);
configureDevice(InputReaderConfiguration::CHANGE_POINTER_CAPTURE);
ASSERT_TRUE(mReader->getContext()->getGeneration() != generation);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(DEVICE_ID, resetArgs.deviceId);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_X, 10);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_Y, 20);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AINPUT_SOURCE_MOUSE, args.source);
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
110.0f, 220.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
ASSERT_NO_FATAL_FAILURE(assertPosition(*mFakePointerController, 110.0f, 220.0f));
}
/**
* When Pointer Capture is enabled, we expect to report unprocessed relative movements, so any
* pointer acceleration or speed processing should not be applied.
*/
TEST_F(CursorInputMapperTest, PointerCaptureDisablesVelocityProcessing) {
addConfigurationProperty("cursor.mode", "pointer");
const VelocityControlParameters testParams(5.f /*scale*/, 0.f /*low threshold*/,
100.f /*high threshold*/, 10.f /*acceleration*/);
mFakePolicy->setVelocityControlParams(testParams);
CursorInputMapper& mapper = addMapperAndConfigure<CursorInputMapper>();
NotifyDeviceResetArgs resetArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(ARBITRARY_TIME, resetArgs.eventTime);
ASSERT_EQ(DEVICE_ID, resetArgs.deviceId);
NotifyMotionArgs args;
// Move and verify scale is applied.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_X, 10);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_Y, 20);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AINPUT_SOURCE_MOUSE, args.source);
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, args.action);
const float relX = args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X);
const float relY = args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y);
ASSERT_GT(relX, 10);
ASSERT_GT(relY, 20);
// Enable Pointer Capture
mFakePolicy->setPointerCapture(true);
configureDevice(InputReaderConfiguration::CHANGE_POINTER_CAPTURE);
NotifyPointerCaptureChangedArgs captureArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyCaptureWasCalled(&captureArgs));
ASSERT_TRUE(captureArgs.request.enable);
// Move and verify scale is not applied.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_X, 10);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_Y, 20);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AINPUT_SOURCE_MOUSE_RELATIVE, args.source);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_EQ(10, args.pointerCoords[0].getX());
ASSERT_EQ(20, args.pointerCoords[0].getY());
}
TEST_F(CursorInputMapperTest, PointerCaptureDisablesOrientationChanges) {
addConfigurationProperty("cursor.mode", "pointer");
CursorInputMapper& mapper = addMapperAndConfigure<CursorInputMapper>();
NotifyDeviceResetArgs resetArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(ARBITRARY_TIME, resetArgs.eventTime);
ASSERT_EQ(DEVICE_ID, resetArgs.deviceId);
// Ensure the display is rotated.
prepareDisplay(DISPLAY_ORIENTATION_90);
NotifyMotionArgs args;
// Verify that the coordinates are rotated.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_X, 10);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_Y, 20);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AINPUT_SOURCE_MOUSE, args.source);
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, args.action);
ASSERT_EQ(-20, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X));
ASSERT_EQ(10, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y));
// Enable Pointer Capture.
mFakePolicy->setPointerCapture(true);
configureDevice(InputReaderConfiguration::CHANGE_POINTER_CAPTURE);
NotifyPointerCaptureChangedArgs captureArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyCaptureWasCalled(&captureArgs));
ASSERT_TRUE(captureArgs.request.enable);
// Move and verify rotation is not applied.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_X, 10);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_Y, 20);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AINPUT_SOURCE_MOUSE_RELATIVE, args.source);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_EQ(10, args.pointerCoords[0].getX());
ASSERT_EQ(20, args.pointerCoords[0].getY());
}
TEST_F(CursorInputMapperTest, ConfigureDisplayId_NoAssociatedViewport) {
CursorInputMapper& mapper = addMapperAndConfigure<CursorInputMapper>();
// Set up the default display.
prepareDisplay(DISPLAY_ORIENTATION_90);
// Set up the secondary display as the display on which the pointer should be shown.
// The InputDevice is not associated with any display.
prepareSecondaryDisplay();
mFakePolicy->setDefaultPointerDisplayId(SECONDARY_DISPLAY_ID);
configureDevice(InputReaderConfiguration::CHANGE_DISPLAY_INFO);
mFakePointerController->setBounds(0, 0, DISPLAY_WIDTH - 1, DISPLAY_HEIGHT - 1);
mFakePointerController->setPosition(100, 200);
mFakePointerController->setButtonState(0);
// Ensure input events are generated for the secondary display.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_X, 10);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_Y, 20);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_MOVE),
WithSource(AINPUT_SOURCE_MOUSE), WithDisplayId(SECONDARY_DISPLAY_ID),
WithCoords(110.0f, 220.0f))));
ASSERT_NO_FATAL_FAILURE(assertPosition(*mFakePointerController, 110.0f, 220.0f));
}
TEST_F(CursorInputMapperTest, ConfigureDisplayId_WithAssociatedViewport) {
CursorInputMapper& mapper = addMapperAndConfigure<CursorInputMapper>();
// Set up the default display.
prepareDisplay(DISPLAY_ORIENTATION_90);
// Set up the secondary display as the display on which the pointer should be shown,
// and associate the InputDevice with the secondary display.
prepareSecondaryDisplay();
mFakePolicy->setDefaultPointerDisplayId(SECONDARY_DISPLAY_ID);
mFakePolicy->addInputUniqueIdAssociation(DEVICE_LOCATION, SECONDARY_DISPLAY_UNIQUE_ID);
configureDevice(InputReaderConfiguration::CHANGE_DISPLAY_INFO);
mFakePointerController->setBounds(0, 0, DISPLAY_WIDTH - 1, DISPLAY_HEIGHT - 1);
mFakePointerController->setPosition(100, 200);
mFakePointerController->setButtonState(0);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_X, 10);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_Y, 20);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_MOVE),
WithSource(AINPUT_SOURCE_MOUSE), WithDisplayId(SECONDARY_DISPLAY_ID),
WithCoords(110.0f, 220.0f))));
ASSERT_NO_FATAL_FAILURE(assertPosition(*mFakePointerController, 110.0f, 220.0f));
}
TEST_F(CursorInputMapperTest, ConfigureDisplayId_IgnoresEventsForMismatchedPointerDisplay) {
CursorInputMapper& mapper = addMapperAndConfigure<CursorInputMapper>();
// Set up the default display as the display on which the pointer should be shown.
prepareDisplay(DISPLAY_ORIENTATION_90);
mFakePolicy->setDefaultPointerDisplayId(DISPLAY_ID);
// Associate the InputDevice with the secondary display.
prepareSecondaryDisplay();
mFakePolicy->addInputUniqueIdAssociation(DEVICE_LOCATION, SECONDARY_DISPLAY_UNIQUE_ID);
configureDevice(InputReaderConfiguration::CHANGE_DISPLAY_INFO);
// The mapper should not generate any events because it is associated with a display that is
// different from the pointer display.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_X, 10);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_REL, REL_Y, 20);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
// --- TouchInputMapperTest ---
class TouchInputMapperTest : public InputMapperTest {
protected:
static const int32_t RAW_X_MIN;
static const int32_t RAW_X_MAX;
static const int32_t RAW_Y_MIN;
static const int32_t RAW_Y_MAX;
static const int32_t RAW_TOUCH_MIN;
static const int32_t RAW_TOUCH_MAX;
static const int32_t RAW_TOOL_MIN;
static const int32_t RAW_TOOL_MAX;
static const int32_t RAW_PRESSURE_MIN;
static const int32_t RAW_PRESSURE_MAX;
static const int32_t RAW_ORIENTATION_MIN;
static const int32_t RAW_ORIENTATION_MAX;
static const int32_t RAW_DISTANCE_MIN;
static const int32_t RAW_DISTANCE_MAX;
static const int32_t RAW_TILT_MIN;
static const int32_t RAW_TILT_MAX;
static const int32_t RAW_ID_MIN;
static const int32_t RAW_ID_MAX;
static const int32_t RAW_SLOT_MIN;
static const int32_t RAW_SLOT_MAX;
static const float X_PRECISION;
static const float Y_PRECISION;
static const float X_PRECISION_VIRTUAL;
static const float Y_PRECISION_VIRTUAL;
static const float GEOMETRIC_SCALE;
static const TouchAffineTransformation AFFINE_TRANSFORM;
static const VirtualKeyDefinition VIRTUAL_KEYS[2];
const std::string UNIQUE_ID = "local:0";
const std::string SECONDARY_UNIQUE_ID = "local:1";
enum Axes {
POSITION = 1 << 0,
TOUCH = 1 << 1,
TOOL = 1 << 2,
PRESSURE = 1 << 3,
ORIENTATION = 1 << 4,
MINOR = 1 << 5,
ID = 1 << 6,
DISTANCE = 1 << 7,
TILT = 1 << 8,
SLOT = 1 << 9,
TOOL_TYPE = 1 << 10,
};
void prepareDisplay(int32_t orientation, std::optional<uint8_t> port = NO_PORT);
void prepareSecondaryDisplay(ViewportType type, std::optional<uint8_t> port = NO_PORT);
void prepareVirtualDisplay(int32_t orientation);
void prepareVirtualKeys();
void prepareLocationCalibration();
int32_t toRawX(float displayX);
int32_t toRawY(float displayY);
int32_t toRotatedRawX(float displayX);
int32_t toRotatedRawY(float displayY);
float toCookedX(float rawX, float rawY);
float toCookedY(float rawX, float rawY);
float toDisplayX(int32_t rawX);
float toDisplayX(int32_t rawX, int32_t displayWidth);
float toDisplayY(int32_t rawY);
float toDisplayY(int32_t rawY, int32_t displayHeight);
};
const int32_t TouchInputMapperTest::RAW_X_MIN = 25;
const int32_t TouchInputMapperTest::RAW_X_MAX = 1019;
const int32_t TouchInputMapperTest::RAW_Y_MIN = 30;
const int32_t TouchInputMapperTest::RAW_Y_MAX = 1009;
const int32_t TouchInputMapperTest::RAW_TOUCH_MIN = 0;
const int32_t TouchInputMapperTest::RAW_TOUCH_MAX = 31;
const int32_t TouchInputMapperTest::RAW_TOOL_MIN = 0;
const int32_t TouchInputMapperTest::RAW_TOOL_MAX = 15;
const int32_t TouchInputMapperTest::RAW_PRESSURE_MIN = 0;
const int32_t TouchInputMapperTest::RAW_PRESSURE_MAX = 255;
const int32_t TouchInputMapperTest::RAW_ORIENTATION_MIN = -7;
const int32_t TouchInputMapperTest::RAW_ORIENTATION_MAX = 7;
const int32_t TouchInputMapperTest::RAW_DISTANCE_MIN = 0;
const int32_t TouchInputMapperTest::RAW_DISTANCE_MAX = 7;
const int32_t TouchInputMapperTest::RAW_TILT_MIN = 0;
const int32_t TouchInputMapperTest::RAW_TILT_MAX = 150;
const int32_t TouchInputMapperTest::RAW_ID_MIN = 0;
const int32_t TouchInputMapperTest::RAW_ID_MAX = 9;
const int32_t TouchInputMapperTest::RAW_SLOT_MIN = 0;
const int32_t TouchInputMapperTest::RAW_SLOT_MAX = 9;
const float TouchInputMapperTest::X_PRECISION = float(RAW_X_MAX - RAW_X_MIN + 1) / DISPLAY_WIDTH;
const float TouchInputMapperTest::Y_PRECISION = float(RAW_Y_MAX - RAW_Y_MIN + 1) / DISPLAY_HEIGHT;
const float TouchInputMapperTest::X_PRECISION_VIRTUAL =
float(RAW_X_MAX - RAW_X_MIN + 1) / VIRTUAL_DISPLAY_WIDTH;
const float TouchInputMapperTest::Y_PRECISION_VIRTUAL =
float(RAW_Y_MAX - RAW_Y_MIN + 1) / VIRTUAL_DISPLAY_HEIGHT;
const TouchAffineTransformation TouchInputMapperTest::AFFINE_TRANSFORM =
TouchAffineTransformation(1, -2, 3, -4, 5, -6);
const float TouchInputMapperTest::GEOMETRIC_SCALE =
avg(float(DISPLAY_WIDTH) / (RAW_X_MAX - RAW_X_MIN + 1),
float(DISPLAY_HEIGHT) / (RAW_Y_MAX - RAW_Y_MIN + 1));
const VirtualKeyDefinition TouchInputMapperTest::VIRTUAL_KEYS[2] = {
{ KEY_HOME, 60, DISPLAY_HEIGHT + 15, 20, 20 },
{ KEY_MENU, DISPLAY_HEIGHT - 60, DISPLAY_WIDTH + 15, 20, 20 },
};
void TouchInputMapperTest::prepareDisplay(int32_t orientation, std::optional<uint8_t> port) {
setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, orientation, UNIQUE_ID,
port, ViewportType::INTERNAL);
}
void TouchInputMapperTest::prepareSecondaryDisplay(ViewportType type, std::optional<uint8_t> port) {
setDisplayInfoAndReconfigure(SECONDARY_DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, SECONDARY_UNIQUE_ID, port, type);
}
void TouchInputMapperTest::prepareVirtualDisplay(int32_t orientation) {
setDisplayInfoAndReconfigure(VIRTUAL_DISPLAY_ID, VIRTUAL_DISPLAY_WIDTH, VIRTUAL_DISPLAY_HEIGHT,
orientation, VIRTUAL_DISPLAY_UNIQUE_ID, NO_PORT,
ViewportType::VIRTUAL);
}
void TouchInputMapperTest::prepareVirtualKeys() {
mFakeEventHub->addVirtualKeyDefinition(EVENTHUB_ID, VIRTUAL_KEYS[0]);
mFakeEventHub->addVirtualKeyDefinition(EVENTHUB_ID, VIRTUAL_KEYS[1]);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, POLICY_FLAG_WAKE);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_MENU, 0, AKEYCODE_MENU, POLICY_FLAG_WAKE);
}
void TouchInputMapperTest::prepareLocationCalibration() {
mFakePolicy->setTouchAffineTransformation(AFFINE_TRANSFORM);
}
int32_t TouchInputMapperTest::toRawX(float displayX) {
return int32_t(displayX * (RAW_X_MAX - RAW_X_MIN + 1) / DISPLAY_WIDTH + RAW_X_MIN);
}
int32_t TouchInputMapperTest::toRawY(float displayY) {
return int32_t(displayY * (RAW_Y_MAX - RAW_Y_MIN + 1) / DISPLAY_HEIGHT + RAW_Y_MIN);
}
int32_t TouchInputMapperTest::toRotatedRawX(float displayX) {
return int32_t(displayX * (RAW_X_MAX - RAW_X_MIN + 1) / DISPLAY_HEIGHT + RAW_X_MIN);
}
int32_t TouchInputMapperTest::toRotatedRawY(float displayY) {
return int32_t(displayY * (RAW_Y_MAX - RAW_Y_MIN + 1) / DISPLAY_WIDTH + RAW_Y_MIN);
}
float TouchInputMapperTest::toCookedX(float rawX, float rawY) {
AFFINE_TRANSFORM.applyTo(rawX, rawY);
return rawX;
}
float TouchInputMapperTest::toCookedY(float rawX, float rawY) {
AFFINE_TRANSFORM.applyTo(rawX, rawY);
return rawY;
}
float TouchInputMapperTest::toDisplayX(int32_t rawX) {
return toDisplayX(rawX, DISPLAY_WIDTH);
}
float TouchInputMapperTest::toDisplayX(int32_t rawX, int32_t displayWidth) {
return float(rawX - RAW_X_MIN) * displayWidth / (RAW_X_MAX - RAW_X_MIN + 1);
}
float TouchInputMapperTest::toDisplayY(int32_t rawY) {
return toDisplayY(rawY, DISPLAY_HEIGHT);
}
float TouchInputMapperTest::toDisplayY(int32_t rawY, int32_t displayHeight) {
return float(rawY - RAW_Y_MIN) * displayHeight / (RAW_Y_MAX - RAW_Y_MIN + 1);
}
// --- SingleTouchInputMapperTest ---
class SingleTouchInputMapperTest : public TouchInputMapperTest {
protected:
void prepareButtons();
void prepareAxes(int axes);
void processDown(SingleTouchInputMapper& mapper, int32_t x, int32_t y);
void processMove(SingleTouchInputMapper& mapper, int32_t x, int32_t y);
void processUp(SingleTouchInputMapper& mappery);
void processPressure(SingleTouchInputMapper& mapper, int32_t pressure);
void processToolMajor(SingleTouchInputMapper& mapper, int32_t toolMajor);
void processDistance(SingleTouchInputMapper& mapper, int32_t distance);
void processTilt(SingleTouchInputMapper& mapper, int32_t tiltX, int32_t tiltY);
void processKey(SingleTouchInputMapper& mapper, int32_t code, int32_t value);
void processSync(SingleTouchInputMapper& mapper);
};
void SingleTouchInputMapperTest::prepareButtons() {
mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOUCH, 0, AKEYCODE_UNKNOWN, 0);
}
void SingleTouchInputMapperTest::prepareAxes(int axes) {
if (axes & POSITION) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_X, RAW_X_MIN, RAW_X_MAX, 0, 0);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_Y, RAW_Y_MIN, RAW_Y_MAX, 0, 0);
}
if (axes & PRESSURE) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_PRESSURE, RAW_PRESSURE_MIN,
RAW_PRESSURE_MAX, 0, 0);
}
if (axes & TOOL) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_TOOL_WIDTH, RAW_TOOL_MIN, RAW_TOOL_MAX, 0,
0);
}
if (axes & DISTANCE) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_DISTANCE, RAW_DISTANCE_MIN,
RAW_DISTANCE_MAX, 0, 0);
}
if (axes & TILT) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_TILT_X, RAW_TILT_MIN, RAW_TILT_MAX, 0, 0);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_TILT_Y, RAW_TILT_MIN, RAW_TILT_MAX, 0, 0);
}
}
void SingleTouchInputMapperTest::processDown(SingleTouchInputMapper& mapper, int32_t x, int32_t y) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_TOUCH, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_X, x);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_Y, y);
}
void SingleTouchInputMapperTest::processMove(SingleTouchInputMapper& mapper, int32_t x, int32_t y) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_X, x);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_Y, y);
}
void SingleTouchInputMapperTest::processUp(SingleTouchInputMapper& mapper) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_TOUCH, 0);
}
void SingleTouchInputMapperTest::processPressure(SingleTouchInputMapper& mapper, int32_t pressure) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_PRESSURE, pressure);
}
void SingleTouchInputMapperTest::processToolMajor(SingleTouchInputMapper& mapper,
int32_t toolMajor) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_TOOL_WIDTH, toolMajor);
}
void SingleTouchInputMapperTest::processDistance(SingleTouchInputMapper& mapper, int32_t distance) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_DISTANCE, distance);
}
void SingleTouchInputMapperTest::processTilt(SingleTouchInputMapper& mapper, int32_t tiltX,
int32_t tiltY) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_TILT_X, tiltX);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_TILT_Y, tiltY);
}
void SingleTouchInputMapperTest::processKey(SingleTouchInputMapper& mapper, int32_t code,
int32_t value) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, code, value);
}
void SingleTouchInputMapperTest::processSync(SingleTouchInputMapper& mapper) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
}
TEST_F(SingleTouchInputMapperTest, GetSources_WhenDeviceTypeIsNotSpecifiedAndNotACursor_ReturnsPointer) {
prepareButtons();
prepareAxes(POSITION);
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
ASSERT_EQ(AINPUT_SOURCE_MOUSE, mapper.getSources());
}
TEST_F(SingleTouchInputMapperTest, GetSources_WhenDeviceTypeIsTouchScreen_ReturnsTouchScreen) {
prepareButtons();
prepareAxes(POSITION);
addConfigurationProperty("touch.deviceType", "touchScreen");
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, mapper.getSources());
}
TEST_F(SingleTouchInputMapperTest, GetKeyCodeState) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
// Unknown key.
ASSERT_EQ(AKEY_STATE_UNKNOWN, mapper.getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A));
// Virtual key is down.
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled());
ASSERT_EQ(AKEY_STATE_VIRTUAL, mapper.getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_HOME));
// Virtual key is up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled());
ASSERT_EQ(AKEY_STATE_UP, mapper.getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_HOME));
}
TEST_F(SingleTouchInputMapperTest, GetScanCodeState) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
// Unknown key.
ASSERT_EQ(AKEY_STATE_UNKNOWN, mapper.getScanCodeState(AINPUT_SOURCE_ANY, KEY_A));
// Virtual key is down.
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled());
ASSERT_EQ(AKEY_STATE_VIRTUAL, mapper.getScanCodeState(AINPUT_SOURCE_ANY, KEY_HOME));
// Virtual key is up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled());
ASSERT_EQ(AKEY_STATE_UP, mapper.getScanCodeState(AINPUT_SOURCE_ANY, KEY_HOME));
}
TEST_F(SingleTouchInputMapperTest, MarkSupportedKeyCodes) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
uint8_t flags[2] = { 0, 0 };
ASSERT_TRUE(
mapper.markSupportedKeyCodes(AINPUT_SOURCE_ANY, {AKEYCODE_HOME, AKEYCODE_A}, flags));
ASSERT_TRUE(flags[0]);
ASSERT_FALSE(flags[1]);
}
TEST_F(SingleTouchInputMapperTest, Process_WhenVirtualKeyIsPressedAndReleasedNormally_SendsKeyDownAndKeyUp) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyKeyArgs args;
// Press virtual key.
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(POLICY_FLAG_VIRTUAL, args.policyFlags);
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, args.flags);
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
ASSERT_EQ(KEY_HOME, args.scanCode);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Release virtual key.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(POLICY_FLAG_VIRTUAL, args.policyFlags);
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, args.flags);
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
ASSERT_EQ(KEY_HOME, args.scanCode);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Should not have sent any motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenVirtualKeyIsPressedAndMovedOutOfBounds_SendsKeyDownAndKeyCancel) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyKeyArgs keyArgs;
// Press virtual key.
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(ARBITRARY_TIME, keyArgs.eventTime);
ASSERT_EQ(DEVICE_ID, keyArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, keyArgs.source);
ASSERT_EQ(POLICY_FLAG_VIRTUAL, keyArgs.policyFlags);
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, keyArgs.flags);
ASSERT_EQ(AKEYCODE_HOME, keyArgs.keyCode);
ASSERT_EQ(KEY_HOME, keyArgs.scanCode);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, keyArgs.metaState);
ASSERT_EQ(ARBITRARY_TIME, keyArgs.downTime);
// Move out of bounds. This should generate a cancel and a pointer down since we moved
// into the display area.
y -= 100;
processMove(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(ARBITRARY_TIME, keyArgs.eventTime);
ASSERT_EQ(DEVICE_ID, keyArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, keyArgs.source);
ASSERT_EQ(POLICY_FLAG_VIRTUAL, keyArgs.policyFlags);
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY
| AKEY_EVENT_FLAG_CANCELED, keyArgs.flags);
ASSERT_EQ(AKEYCODE_HOME, keyArgs.keyCode);
ASSERT_EQ(KEY_HOME, keyArgs.scanCode);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, keyArgs.metaState);
ASSERT_EQ(ARBITRARY_TIME, keyArgs.downTime);
NotifyMotionArgs motionArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Keep moving out of bounds. Should generate a pointer move.
y -= 50;
processMove(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Release out of bounds. Should generate a pointer up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenTouchStartsOutsideDisplayAndMovesIn_SendsDownAsTouchEntersDisplay) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyMotionArgs motionArgs;
// Initially go down out of bounds.
int32_t x = -10;
int32_t y = -10;
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// Move into the display area. Should generate a pointer down.
x = 50;
y = 75;
processMove(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Release. Should generate a pointer up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_NormalSingleTouchGesture_VirtualDisplay) {
addConfigurationProperty("touch.deviceType", "touchScreen");
addConfigurationProperty("touch.displayId", VIRTUAL_DISPLAY_UNIQUE_ID);
prepareVirtualDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyMotionArgs motionArgs;
// Down.
int32_t x = 100;
int32_t y = 125;
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(VIRTUAL_DISPLAY_ID, motionArgs.displayId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x, VIRTUAL_DISPLAY_WIDTH), toDisplayY(y, VIRTUAL_DISPLAY_HEIGHT),
1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION_VIRTUAL, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION_VIRTUAL, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Move.
x += 50;
y += 75;
processMove(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(VIRTUAL_DISPLAY_ID, motionArgs.displayId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x, VIRTUAL_DISPLAY_WIDTH), toDisplayY(y, VIRTUAL_DISPLAY_HEIGHT),
1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION_VIRTUAL, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION_VIRTUAL, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(VIRTUAL_DISPLAY_ID, motionArgs.displayId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x, VIRTUAL_DISPLAY_WIDTH), toDisplayY(y, VIRTUAL_DISPLAY_HEIGHT),
1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION_VIRTUAL, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION_VIRTUAL, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_NormalSingleTouchGesture) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyMotionArgs motionArgs;
// Down.
int32_t x = 100;
int32_t y = 125;
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Move.
x += 50;
y += 75;
processMove(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenOrientationAware_DoesNotRotateMotions) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareButtons();
prepareAxes(POSITION);
// InputReader works in the un-rotated coordinate space, so orientation-aware devices do not
// need to be rotated. Touchscreens are orientation-aware by default.
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
NotifyMotionArgs args;
// Rotation 90.
prepareDisplay(DISPLAY_ORIENTATION_90);
processDown(mapper, toRawX(50), toRawY(75));
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenNotOrientationAware_RotatesMotions) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareButtons();
prepareAxes(POSITION);
// Since InputReader works in the un-rotated coordinate space, only devices that are not
// orientation-aware are affected by display rotation.
addConfigurationProperty("touch.orientationAware", "0");
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
NotifyMotionArgs args;
// Rotation 0.
clearViewports();
prepareDisplay(DISPLAY_ORIENTATION_0);
processDown(mapper, toRawX(50), toRawY(75));
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
// Rotation 90.
clearViewports();
prepareDisplay(DISPLAY_ORIENTATION_90);
processDown(mapper, toRawX(75), RAW_Y_MAX - toRawY(50) + RAW_Y_MIN);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
// Rotation 180.
clearViewports();
prepareDisplay(DISPLAY_ORIENTATION_180);
processDown(mapper, RAW_X_MAX - toRawX(50) + RAW_X_MIN, RAW_Y_MAX - toRawY(75) + RAW_Y_MIN);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
// Rotation 270.
clearViewports();
prepareDisplay(DISPLAY_ORIENTATION_270);
processDown(mapper, RAW_X_MAX - toRawX(75) + RAW_X_MIN, toRawY(50));
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenOrientation0_RotatesMotions) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareButtons();
prepareAxes(POSITION);
addConfigurationProperty("touch.orientationAware", "1");
addConfigurationProperty("touch.orientation", "ORIENTATION_0");
clearViewports();
prepareDisplay(DISPLAY_ORIENTATION_0);
auto& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
NotifyMotionArgs args;
// Orientation 0.
processDown(mapper, toRawX(50), toRawY(75));
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenOrientation90_RotatesMotions) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareButtons();
prepareAxes(POSITION);
addConfigurationProperty("touch.orientationAware", "1");
addConfigurationProperty("touch.orientation", "ORIENTATION_90");
clearViewports();
prepareDisplay(DISPLAY_ORIENTATION_0);
auto& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
NotifyMotionArgs args;
// Orientation 90.
processDown(mapper, RAW_X_MAX - toRotatedRawX(75) + RAW_X_MIN, toRotatedRawY(50));
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenOrientation180_RotatesMotions) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareButtons();
prepareAxes(POSITION);
addConfigurationProperty("touch.orientationAware", "1");
addConfigurationProperty("touch.orientation", "ORIENTATION_180");
clearViewports();
prepareDisplay(DISPLAY_ORIENTATION_0);
auto& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
NotifyMotionArgs args;
// Orientation 180.
processDown(mapper, RAW_X_MAX - toRawX(50) + RAW_X_MIN, RAW_Y_MAX - toRawY(75) + RAW_Y_MIN);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenOrientation270_RotatesMotions) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareButtons();
prepareAxes(POSITION);
addConfigurationProperty("touch.orientationAware", "1");
addConfigurationProperty("touch.orientation", "ORIENTATION_270");
clearViewports();
prepareDisplay(DISPLAY_ORIENTATION_0);
auto& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
NotifyMotionArgs args;
// Orientation 270.
processDown(mapper, toRotatedRawX(75), RAW_Y_MAX - toRotatedRawY(50) + RAW_Y_MIN);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenOrientationSpecified_RotatesMotionWithDisplay) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareButtons();
prepareAxes(POSITION);
// Since InputReader works in the un-rotated coordinate space, only devices that are not
// orientation-aware are affected by display rotation.
addConfigurationProperty("touch.orientationAware", "0");
addConfigurationProperty("touch.orientation", "ORIENTATION_90");
auto& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
NotifyMotionArgs args;
// Orientation 90, Rotation 0.
clearViewports();
prepareDisplay(DISPLAY_ORIENTATION_0);
processDown(mapper, RAW_X_MAX - toRotatedRawX(75) + RAW_X_MIN, toRotatedRawY(50));
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
// Orientation 90, Rotation 90.
clearViewports();
prepareDisplay(DISPLAY_ORIENTATION_90);
processDown(mapper, toRotatedRawX(50), toRotatedRawY(75));
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
// Orientation 90, Rotation 180.
clearViewports();
prepareDisplay(DISPLAY_ORIENTATION_180);
processDown(mapper, toRotatedRawX(75), RAW_Y_MAX - toRotatedRawY(50) + RAW_Y_MIN);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
// Orientation 90, Rotation 270.
clearViewports();
prepareDisplay(DISPLAY_ORIENTATION_270);
processDown(mapper, RAW_X_MAX - toRotatedRawX(50) + RAW_X_MIN,
RAW_Y_MAX - toRotatedRawY(75) + RAW_Y_MIN);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_AllAxes_DefaultCalibration) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION | PRESSURE | TOOL | DISTANCE | TILT);
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
// These calculations are based on the input device calibration documentation.
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawPressure = 10;
int32_t rawToolMajor = 12;
int32_t rawDistance = 2;
int32_t rawTiltX = 30;
int32_t rawTiltY = 110;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float pressure = float(rawPressure) / RAW_PRESSURE_MAX;
float size = float(rawToolMajor) / RAW_TOOL_MAX;
float tool = float(rawToolMajor) * GEOMETRIC_SCALE;
float distance = float(rawDistance);
float tiltCenter = (RAW_TILT_MAX + RAW_TILT_MIN) * 0.5f;
float tiltScale = M_PI / 180;
float tiltXAngle = (rawTiltX - tiltCenter) * tiltScale;
float tiltYAngle = (rawTiltY - tiltCenter) * tiltScale;
float orientation = atan2f(-sinf(tiltXAngle), sinf(tiltYAngle));
float tilt = acosf(cosf(tiltXAngle) * cosf(tiltYAngle));
processDown(mapper, rawX, rawY);
processPressure(mapper, rawPressure);
processToolMajor(mapper, rawToolMajor);
processDistance(mapper, rawDistance);
processTilt(mapper, rawTiltX, rawTiltY);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, pressure, size, tool, tool, tool, tool, orientation, distance));
ASSERT_EQ(tilt, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_TILT));
}
TEST_F(SingleTouchInputMapperTest, Process_XYAxes_AffineCalibration) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareLocationCalibration();
prepareButtons();
prepareAxes(POSITION);
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
int32_t rawX = 100;
int32_t rawY = 200;
float x = toDisplayX(toCookedX(rawX, rawY));
float y = toDisplayY(toCookedY(rawX, rawY));
processDown(mapper, rawX, rawY);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, 1, 0, 0, 0, 0, 0, 0, 0));
}
TEST_F(SingleTouchInputMapperTest, Process_ShouldHandleAllButtons) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
NotifyMotionArgs motionArgs;
NotifyKeyArgs keyArgs;
processDown(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// press BTN_LEFT, release BTN_LEFT
processKey(mapper, BTN_LEFT, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState);
processKey(mapper, BTN_LEFT, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// press BTN_RIGHT + BTN_MIDDLE, release BTN_RIGHT, release BTN_MIDDLE
processKey(mapper, BTN_RIGHT, 1);
processKey(mapper, BTN_MIDDLE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY,
motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY,
motionArgs.buttonState);
processKey(mapper, BTN_RIGHT, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState);
processKey(mapper, BTN_MIDDLE, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// press BTN_BACK, release BTN_BACK
processKey(mapper, BTN_BACK, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
processKey(mapper, BTN_BACK, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
// press BTN_SIDE, release BTN_SIDE
processKey(mapper, BTN_SIDE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
processKey(mapper, BTN_SIDE, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
// press BTN_FORWARD, release BTN_FORWARD
processKey(mapper, BTN_FORWARD, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
processKey(mapper, BTN_FORWARD, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
// press BTN_EXTRA, release BTN_EXTRA
processKey(mapper, BTN_EXTRA, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
processKey(mapper, BTN_EXTRA, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
// press BTN_STYLUS, release BTN_STYLUS
processKey(mapper, BTN_STYLUS, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY, motionArgs.buttonState);
processKey(mapper, BTN_STYLUS, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// press BTN_STYLUS2, release BTN_STYLUS2
processKey(mapper, BTN_STYLUS2, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_SECONDARY, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_SECONDARY, motionArgs.buttonState);
processKey(mapper, BTN_STYLUS2, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// release touch
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
}
TEST_F(SingleTouchInputMapperTest, Process_ShouldHandleAllToolTypes) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
NotifyMotionArgs motionArgs;
// default tool type is finger
processDown(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// eraser
processKey(mapper, BTN_TOOL_RUBBER, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_ERASER, motionArgs.pointerProperties[0].toolType);
// stylus
processKey(mapper, BTN_TOOL_RUBBER, 0);
processKey(mapper, BTN_TOOL_PEN, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// brush
processKey(mapper, BTN_TOOL_PEN, 0);
processKey(mapper, BTN_TOOL_BRUSH, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// pencil
processKey(mapper, BTN_TOOL_BRUSH, 0);
processKey(mapper, BTN_TOOL_PENCIL, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// air-brush
processKey(mapper, BTN_TOOL_PENCIL, 0);
processKey(mapper, BTN_TOOL_AIRBRUSH, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// mouse
processKey(mapper, BTN_TOOL_AIRBRUSH, 0);
processKey(mapper, BTN_TOOL_MOUSE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, motionArgs.pointerProperties[0].toolType);
// lens
processKey(mapper, BTN_TOOL_MOUSE, 0);
processKey(mapper, BTN_TOOL_LENS, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, motionArgs.pointerProperties[0].toolType);
// double-tap
processKey(mapper, BTN_TOOL_LENS, 0);
processKey(mapper, BTN_TOOL_DOUBLETAP, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// triple-tap
processKey(mapper, BTN_TOOL_DOUBLETAP, 0);
processKey(mapper, BTN_TOOL_TRIPLETAP, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// quad-tap
processKey(mapper, BTN_TOOL_TRIPLETAP, 0);
processKey(mapper, BTN_TOOL_QUADTAP, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// finger
processKey(mapper, BTN_TOOL_QUADTAP, 0);
processKey(mapper, BTN_TOOL_FINGER, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// stylus trumps finger
processKey(mapper, BTN_TOOL_PEN, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// eraser trumps stylus
processKey(mapper, BTN_TOOL_RUBBER, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_ERASER, motionArgs.pointerProperties[0].toolType);
// mouse trumps eraser
processKey(mapper, BTN_TOOL_MOUSE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, motionArgs.pointerProperties[0].toolType);
// back to default tool type
processKey(mapper, BTN_TOOL_MOUSE, 0);
processKey(mapper, BTN_TOOL_RUBBER, 0);
processKey(mapper, BTN_TOOL_PEN, 0);
processKey(mapper, BTN_TOOL_FINGER, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
}
TEST_F(SingleTouchInputMapperTest, Process_WhenBtnTouchPresent_HoversIfItsValueIsZero) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOOL_FINGER, 0, AKEYCODE_UNKNOWN, 0);
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
NotifyMotionArgs motionArgs;
// initially hovering because BTN_TOUCH not sent yet, pressure defaults to 0
processKey(mapper, BTN_TOOL_FINGER, 1);
processMove(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
// move a little
processMove(mapper, 150, 250);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// down when BTN_TOUCH is pressed, pressure defaults to 1
processKey(mapper, BTN_TOUCH, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
// up when BTN_TOUCH is released, hover restored
processKey(mapper, BTN_TOUCH, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// exit hover when pointer goes away
processKey(mapper, BTN_TOOL_FINGER, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
}
TEST_F(SingleTouchInputMapperTest, Process_WhenAbsPressureIsPresent_HoversIfItsValueIsZero) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION | PRESSURE);
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
NotifyMotionArgs motionArgs;
// initially hovering because pressure is 0
processDown(mapper, 100, 200);
processPressure(mapper, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
// move a little
processMove(mapper, 150, 250);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// down when pressure is non-zero
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
// up when pressure becomes 0, hover restored
processPressure(mapper, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// exit hover when pointer goes away
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
}
TEST_F(SingleTouchInputMapperTest, Reset_RecreatesTouchState) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION | PRESSURE);
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
// Set the initial state for the touch pointer.
mFakeEventHub->setAbsoluteAxisValue(EVENTHUB_ID, ABS_X, 100);
mFakeEventHub->setAbsoluteAxisValue(EVENTHUB_ID, ABS_Y, 200);
mFakeEventHub->setAbsoluteAxisValue(EVENTHUB_ID, ABS_PRESSURE, RAW_PRESSURE_MAX);
mFakeEventHub->setScanCodeState(EVENTHUB_ID, BTN_TOUCH, 1);
// Reset the mapper. When the mapper is reset, we expect it to attempt to recreate the touch
// state by reading the current axis values.
std::list<NotifyArgs> unused = mapper.reset(ARBITRARY_TIME);
// Send a sync to simulate an empty touch frame where nothing changes. The mapper should use
// the recreated touch state to generate a down event.
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), WithPressure(1.f))));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest,
Process_WhenViewportDisplayIdChanged_TouchIsCanceledAndDeviceIsReset) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
NotifyMotionArgs motionArgs;
// Down.
processDown(mapper, 100, 200);
processSync(mapper);
// We should receive a down event
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
// Change display id
clearViewports();
prepareSecondaryDisplay(ViewportType::INTERNAL);
// We should receive a cancel event
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionArgs.action);
// Then receive reset called
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled());
}
TEST_F(SingleTouchInputMapperTest,
Process_WhenViewportActiveStatusChanged_TouchIsCanceledAndDeviceIsReset) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled());
NotifyMotionArgs motionArgs;
// Start a new gesture.
processDown(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
// Make the viewport inactive. This will put the device in disabled mode.
auto viewport = mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL);
viewport->isActive = false;
mFakePolicy->updateViewport(*viewport);
configureDevice(InputReaderConfiguration::CHANGE_DISPLAY_INFO);
// We should receive a cancel event for the ongoing gesture.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionArgs.action);
// Then we should be notified that the device was reset.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled());
// No events are generated while the viewport is inactive.
processMove(mapper, 101, 201);
processSync(mapper);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// Start a new gesture while the viewport is still inactive.
processDown(mapper, 300, 400);
mFakeEventHub->setAbsoluteAxisValue(EVENTHUB_ID, ABS_X, 300);
mFakeEventHub->setAbsoluteAxisValue(EVENTHUB_ID, ABS_Y, 400);
mFakeEventHub->setScanCodeState(EVENTHUB_ID, BTN_TOUCH, 1);
processSync(mapper);
// Make the viewport active again. The device should resume processing events.
viewport->isActive = true;
mFakePolicy->updateViewport(*viewport);
configureDevice(InputReaderConfiguration::CHANGE_DISPLAY_INFO);
// The device is reset because it changes back to direct mode, without generating any events.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// In the next sync, the touch state that was recreated when the device was reset is reported.
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_DOWN)));
// No more events.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasNotCalled());
}
// --- TouchDisplayProjectionTest ---
class TouchDisplayProjectionTest : public SingleTouchInputMapperTest {
public:
// The values inside DisplayViewport are expected to be pre-rotated. This updates the current
// DisplayViewport to pre-rotate the values. The viewport's physical display will be set to the
// rotated equivalent of the given un-rotated physical display bounds.
void configurePhysicalDisplay(int32_t orientation, Rect naturalPhysicalDisplay) {
uint32_t inverseRotationFlags;
auto width = DISPLAY_WIDTH;
auto height = DISPLAY_HEIGHT;
switch (orientation) {
case DISPLAY_ORIENTATION_90:
inverseRotationFlags = ui::Transform::ROT_270;
std::swap(width, height);
break;
case DISPLAY_ORIENTATION_180:
inverseRotationFlags = ui::Transform::ROT_180;
break;
case DISPLAY_ORIENTATION_270:
inverseRotationFlags = ui::Transform::ROT_90;
std::swap(width, height);
break;
case DISPLAY_ORIENTATION_0:
inverseRotationFlags = ui::Transform::ROT_0;
break;
default:
FAIL() << "Invalid orientation: " << orientation;
}
const ui::Transform rotation(inverseRotationFlags, width, height);
const Rect rotatedPhysicalDisplay = rotation.transform(naturalPhysicalDisplay);
std::optional<DisplayViewport> internalViewport =
*mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL);
DisplayViewport& v = *internalViewport;
v.displayId = DISPLAY_ID;
v.orientation = orientation;
v.logicalLeft = 0;
v.logicalTop = 0;
v.logicalRight = 100;
v.logicalBottom = 100;
v.physicalLeft = rotatedPhysicalDisplay.left;
v.physicalTop = rotatedPhysicalDisplay.top;
v.physicalRight = rotatedPhysicalDisplay.right;
v.physicalBottom = rotatedPhysicalDisplay.bottom;
v.deviceWidth = width;
v.deviceHeight = height;
v.isActive = true;
v.uniqueId = UNIQUE_ID;
v.type = ViewportType::INTERNAL;
mFakePolicy->updateViewport(v);
configureDevice(InputReaderConfiguration::CHANGE_DISPLAY_INFO);
}
void assertReceivedMove(const Point& point) {
NotifyMotionArgs motionArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], point.x, point.y,
1, 0, 0, 0, 0, 0, 0, 0));
}
};
TEST_F(TouchDisplayProjectionTest, IgnoresTouchesOutsidePhysicalDisplay) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
NotifyMotionArgs motionArgs;
// Configure the DisplayViewport such that the logical display maps to a subsection of
// the display panel called the physical display. Here, the physical display is bounded by the
// points (10, 20) and (70, 160) inside the display space, which is of the size 400 x 800.
static const Rect kPhysicalDisplay{10, 20, 70, 160};
static const std::array<Point, 6> kPointsOutsidePhysicalDisplay{
{{-10, -10}, {0, 0}, {5, 100}, {50, 15}, {75, 100}, {50, 165}}};
for (auto orientation : {DISPLAY_ORIENTATION_0, DISPLAY_ORIENTATION_90, DISPLAY_ORIENTATION_180,
DISPLAY_ORIENTATION_270}) {
configurePhysicalDisplay(orientation, kPhysicalDisplay);
// Touches outside the physical display should be ignored, and should not generate any
// events. Ensure touches at the following points that lie outside of the physical display
// area do not generate any events.
for (const auto& point : kPointsOutsidePhysicalDisplay) {
processDown(mapper, toRawX(point.x), toRawY(point.y));
processSync(mapper);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled())
<< "Unexpected event generated for touch outside physical display at point: "
<< point.x << ", " << point.y;
}
}
}
TEST_F(TouchDisplayProjectionTest, EmitsTouchDownAfterEnteringPhysicalDisplay) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareButtons();
prepareAxes(POSITION);
SingleTouchInputMapper& mapper = addMapperAndConfigure<SingleTouchInputMapper>();
NotifyMotionArgs motionArgs;
// Configure the DisplayViewport such that the logical display maps to a subsection of
// the display panel called the physical display. Here, the physical display is bounded by the
// points (10, 20) and (70, 160) inside the display space, which is of the size 400 x 800.
static const Rect kPhysicalDisplay{10, 20, 70, 160};
for (auto orientation : {DISPLAY_ORIENTATION_0, DISPLAY_ORIENTATION_90, DISPLAY_ORIENTATION_180,
DISPLAY_ORIENTATION_270}) {
configurePhysicalDisplay(orientation, kPhysicalDisplay);
// Touches that start outside the physical display should be ignored until it enters the
// physical display bounds, at which point it should generate a down event. Start a touch at
// the point (5, 100), which is outside the physical display bounds.
static const Point kOutsidePoint{5, 100};
processDown(mapper, toRawX(kOutsidePoint.x), toRawY(kOutsidePoint.y));
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// Move the touch into the physical display area. This should generate a pointer down.
processMove(mapper, toRawX(11), toRawY(21));
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(motionArgs.pointerCoords[0], 11, 21, 1, 0, 0, 0, 0, 0, 0, 0));
// Move the touch inside the physical display area. This should generate a pointer move.
processMove(mapper, toRawX(69), toRawY(159));
processSync(mapper);
assertReceivedMove({69, 159});
// Move outside the physical display area. Since the pointer is already down, this should
// now continue generating events.
processMove(mapper, toRawX(kOutsidePoint.x), toRawY(kOutsidePoint.y));
processSync(mapper);
assertReceivedMove(kOutsidePoint);
// Release. This should generate a pointer up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], kOutsidePoint.x,
kOutsidePoint.y, 1, 0, 0, 0, 0, 0, 0, 0));
// Ensure no more events were generated.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
}
// --- MultiTouchInputMapperTest ---
class MultiTouchInputMapperTest : public TouchInputMapperTest {
protected:
void prepareAxes(int axes);
void processPosition(MultiTouchInputMapper& mapper, int32_t x, int32_t y);
void processTouchMajor(MultiTouchInputMapper& mapper, int32_t touchMajor);
void processTouchMinor(MultiTouchInputMapper& mapper, int32_t touchMinor);
void processToolMajor(MultiTouchInputMapper& mapper, int32_t toolMajor);
void processToolMinor(MultiTouchInputMapper& mapper, int32_t toolMinor);
void processOrientation(MultiTouchInputMapper& mapper, int32_t orientation);
void processPressure(MultiTouchInputMapper& mapper, int32_t pressure);
void processDistance(MultiTouchInputMapper& mapper, int32_t distance);
void processId(MultiTouchInputMapper& mapper, int32_t id);
void processSlot(MultiTouchInputMapper& mapper, int32_t slot);
void processToolType(MultiTouchInputMapper& mapper, int32_t toolType);
void processKey(MultiTouchInputMapper& mapper, int32_t code, int32_t value);
void processMTSync(MultiTouchInputMapper& mapper);
void processSync(MultiTouchInputMapper& mapper);
};
void MultiTouchInputMapperTest::prepareAxes(int axes) {
if (axes & POSITION) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_X, RAW_X_MIN, RAW_X_MAX, 0, 0);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_Y, RAW_Y_MIN, RAW_Y_MAX, 0, 0);
}
if (axes & TOUCH) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TOUCH_MAJOR, RAW_TOUCH_MIN,
RAW_TOUCH_MAX, 0, 0);
if (axes & MINOR) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TOUCH_MINOR, RAW_TOUCH_MIN,
RAW_TOUCH_MAX, 0, 0);
}
}
if (axes & TOOL) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_WIDTH_MAJOR, RAW_TOOL_MIN, RAW_TOOL_MAX,
0, 0);
if (axes & MINOR) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_WIDTH_MINOR, RAW_TOOL_MIN,
RAW_TOOL_MAX, 0, 0);
}
}
if (axes & ORIENTATION) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_ORIENTATION, RAW_ORIENTATION_MIN,
RAW_ORIENTATION_MAX, 0, 0);
}
if (axes & PRESSURE) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_PRESSURE, RAW_PRESSURE_MIN,
RAW_PRESSURE_MAX, 0, 0);
}
if (axes & DISTANCE) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_DISTANCE, RAW_DISTANCE_MIN,
RAW_DISTANCE_MAX, 0, 0);
}
if (axes & ID) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TRACKING_ID, RAW_ID_MIN, RAW_ID_MAX, 0,
0);
}
if (axes & SLOT) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_SLOT, RAW_SLOT_MIN, RAW_SLOT_MAX, 0, 0);
mFakeEventHub->setAbsoluteAxisValue(EVENTHUB_ID, ABS_MT_SLOT, 0);
}
if (axes & TOOL_TYPE) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TOOL_TYPE, 0, MT_TOOL_MAX, 0, 0);
}
}
void MultiTouchInputMapperTest::processPosition(MultiTouchInputMapper& mapper, int32_t x,
int32_t y) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_POSITION_X, x);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_POSITION_Y, y);
}
void MultiTouchInputMapperTest::processTouchMajor(MultiTouchInputMapper& mapper,
int32_t touchMajor) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_TOUCH_MAJOR, touchMajor);
}
void MultiTouchInputMapperTest::processTouchMinor(MultiTouchInputMapper& mapper,
int32_t touchMinor) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_TOUCH_MINOR, touchMinor);
}
void MultiTouchInputMapperTest::processToolMajor(MultiTouchInputMapper& mapper, int32_t toolMajor) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_WIDTH_MAJOR, toolMajor);
}
void MultiTouchInputMapperTest::processToolMinor(MultiTouchInputMapper& mapper, int32_t toolMinor) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_WIDTH_MINOR, toolMinor);
}
void MultiTouchInputMapperTest::processOrientation(MultiTouchInputMapper& mapper,
int32_t orientation) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_ORIENTATION, orientation);
}
void MultiTouchInputMapperTest::processPressure(MultiTouchInputMapper& mapper, int32_t pressure) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_PRESSURE, pressure);
}
void MultiTouchInputMapperTest::processDistance(MultiTouchInputMapper& mapper, int32_t distance) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_DISTANCE, distance);
}
void MultiTouchInputMapperTest::processId(MultiTouchInputMapper& mapper, int32_t id) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_TRACKING_ID, id);
}
void MultiTouchInputMapperTest::processSlot(MultiTouchInputMapper& mapper, int32_t slot) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_SLOT, slot);
}
void MultiTouchInputMapperTest::processToolType(MultiTouchInputMapper& mapper, int32_t toolType) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_TOOL_TYPE, toolType);
}
void MultiTouchInputMapperTest::processKey(MultiTouchInputMapper& mapper, int32_t code,
int32_t value) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, code, value);
}
void MultiTouchInputMapperTest::processMTSync(MultiTouchInputMapper& mapper) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_MT_REPORT, 0);
}
void MultiTouchInputMapperTest::processSync(MultiTouchInputMapper& mapper) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
}
TEST_F(MultiTouchInputMapperTest, Process_NormalMultiTouchGesture_WithoutTrackingIds) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION);
prepareVirtualKeys();
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyMotionArgs motionArgs;
// Two fingers down at once.
int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500;
processPosition(mapper, x1, y1);
processMTSync(mapper);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(ACTION_POINTER_1_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Move.
x1 += 10; y1 += 15; x2 += 5; y2 -= 10;
processPosition(mapper, x1, y1);
processMTSync(mapper);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// First finger up.
x2 += 15; y2 -= 20;
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(ACTION_POINTER_0_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(1, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Move.
x2 += 20; y2 -= 25;
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(1, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// New finger down.
int32_t x3 = 700, y3 = 300;
processPosition(mapper, x2, y2);
processMTSync(mapper);
processPosition(mapper, x3, y3);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(ACTION_POINTER_0_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Second finger up.
x3 += 30; y3 -= 20;
processPosition(mapper, x3, y3);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(ACTION_POINTER_1_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Last finger up.
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(MultiTouchInputMapperTest, AxisResolution_IsPopulated) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_X, RAW_X_MIN, RAW_X_MAX, /*flat*/ 0,
/*fuzz*/ 0, /*resolution*/ 10);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_Y, RAW_Y_MIN, RAW_Y_MAX, /*flat*/ 0,
/*fuzz*/ 0, /*resolution*/ 11);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TOUCH_MAJOR, RAW_TOUCH_MIN, RAW_TOUCH_MAX,
/*flat*/ 0, /*fuzz*/ 0, /*resolution*/ 12);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TOUCH_MINOR, RAW_TOUCH_MIN, RAW_TOUCH_MAX,
/*flat*/ 0, /*fuzz*/ 0, /*resolution*/ 13);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_WIDTH_MAJOR, RAW_TOOL_MIN, RAW_TOOL_MAX,
/*flat*/ 0, /*flat*/ 0, /*resolution*/ 14);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_WIDTH_MINOR, RAW_TOOL_MIN, RAW_TOOL_MAX,
/*flat*/ 0, /*flat*/ 0, /*resolution*/ 15);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
// X and Y axes
assertAxisResolution(mapper, AMOTION_EVENT_AXIS_X, 10 / X_PRECISION);
assertAxisResolution(mapper, AMOTION_EVENT_AXIS_Y, 11 / Y_PRECISION);
// Touch major and minor
assertAxisResolution(mapper, AMOTION_EVENT_AXIS_TOUCH_MAJOR, 12 * GEOMETRIC_SCALE);
assertAxisResolution(mapper, AMOTION_EVENT_AXIS_TOUCH_MINOR, 13 * GEOMETRIC_SCALE);
// Tool major and minor
assertAxisResolution(mapper, AMOTION_EVENT_AXIS_TOOL_MAJOR, 14 * GEOMETRIC_SCALE);
assertAxisResolution(mapper, AMOTION_EVENT_AXIS_TOOL_MINOR, 15 * GEOMETRIC_SCALE);
}
TEST_F(MultiTouchInputMapperTest, TouchMajorAndMinorAxes_DoNotAppearIfNotSupported) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_X, RAW_X_MIN, RAW_X_MAX, /*flat*/ 0,
/*fuzz*/ 0, /*resolution*/ 10);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_Y, RAW_Y_MIN, RAW_Y_MAX, /*flat*/ 0,
/*fuzz*/ 0, /*resolution*/ 11);
// We do not add ABS_MT_TOUCH_MAJOR / MINOR or ABS_MT_WIDTH_MAJOR / MINOR axes
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
// Touch major and minor
assertAxisNotPresent(mapper, AMOTION_EVENT_AXIS_TOUCH_MAJOR);
assertAxisNotPresent(mapper, AMOTION_EVENT_AXIS_TOUCH_MINOR);
// Tool major and minor
assertAxisNotPresent(mapper, AMOTION_EVENT_AXIS_TOOL_MAJOR);
assertAxisNotPresent(mapper, AMOTION_EVENT_AXIS_TOOL_MINOR);
}
TEST_F(MultiTouchInputMapperTest, Process_NormalMultiTouchGesture_WithTrackingIds) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID);
prepareVirtualKeys();
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyMotionArgs motionArgs;
// Two fingers down at once.
int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500;
processPosition(mapper, x1, y1);
processId(mapper, 1);
processMTSync(mapper);
processPosition(mapper, x2, y2);
processId(mapper, 2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_1_DOWN, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// Move.
x1 += 10; y1 += 15; x2 += 5; y2 -= 10;
processPosition(mapper, x1, y1);
processId(mapper, 1);
processMTSync(mapper);
processPosition(mapper, x2, y2);
processId(mapper, 2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// First finger up.
x2 += 15; y2 -= 20;
processPosition(mapper, x2, y2);
processId(mapper, 2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_0_UP, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(1, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// Move.
x2 += 20; y2 -= 25;
processPosition(mapper, x2, y2);
processId(mapper, 2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(1, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// New finger down.
int32_t x3 = 700, y3 = 300;
processPosition(mapper, x2, y2);
processId(mapper, 2);
processMTSync(mapper);
processPosition(mapper, x3, y3);
processId(mapper, 3);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_0_DOWN, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// Second finger up.
x3 += 30; y3 -= 20;
processPosition(mapper, x3, y3);
processId(mapper, 3);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_1_UP, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
// Last finger up.
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(MultiTouchInputMapperTest, Process_NormalMultiTouchGesture_WithSlots) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID | SLOT);
prepareVirtualKeys();
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyMotionArgs motionArgs;
// Two fingers down at once.
int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500;
processPosition(mapper, x1, y1);
processId(mapper, 1);
processSlot(mapper, 1);
processPosition(mapper, x2, y2);
processId(mapper, 2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_1_DOWN, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// Move.
x1 += 10; y1 += 15; x2 += 5; y2 -= 10;
processSlot(mapper, 0);
processPosition(mapper, x1, y1);
processSlot(mapper, 1);
processPosition(mapper, x2, y2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// First finger up.
x2 += 15; y2 -= 20;
processSlot(mapper, 0);
processId(mapper, -1);
processSlot(mapper, 1);
processPosition(mapper, x2, y2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_0_UP, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(1, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// Move.
x2 += 20; y2 -= 25;
processPosition(mapper, x2, y2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(1, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// New finger down.
int32_t x3 = 700, y3 = 300;
processPosition(mapper, x2, y2);
processSlot(mapper, 0);
processId(mapper, 3);
processPosition(mapper, x3, y3);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_0_DOWN, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// Second finger up.
x3 += 30; y3 -= 20;
processSlot(mapper, 1);
processId(mapper, -1);
processSlot(mapper, 0);
processPosition(mapper, x3, y3);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_1_UP, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
// Last finger up.
processId(mapper, -1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(MultiTouchInputMapperTest, Process_AllAxes_WithDefaultCalibration) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | TOUCH | TOOL | PRESSURE | ORIENTATION | ID | MINOR | DISTANCE);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
// These calculations are based on the input device calibration documentation.
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawTouchMajor = 7;
int32_t rawTouchMinor = 6;
int32_t rawToolMajor = 9;
int32_t rawToolMinor = 8;
int32_t rawPressure = 11;
int32_t rawDistance = 0;
int32_t rawOrientation = 3;
int32_t id = 5;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float pressure = float(rawPressure) / RAW_PRESSURE_MAX;
float size = avg(rawTouchMajor, rawTouchMinor) / RAW_TOUCH_MAX;
float toolMajor = float(rawToolMajor) * GEOMETRIC_SCALE;
float toolMinor = float(rawToolMinor) * GEOMETRIC_SCALE;
float touchMajor = float(rawTouchMajor) * GEOMETRIC_SCALE;
float touchMinor = float(rawTouchMinor) * GEOMETRIC_SCALE;
float orientation = float(rawOrientation) / RAW_ORIENTATION_MAX * M_PI_2;
float distance = float(rawDistance);
processPosition(mapper, rawX, rawY);
processTouchMajor(mapper, rawTouchMajor);
processTouchMinor(mapper, rawTouchMinor);
processToolMajor(mapper, rawToolMajor);
processToolMinor(mapper, rawToolMinor);
processPressure(mapper, rawPressure);
processOrientation(mapper, rawOrientation);
processDistance(mapper, rawDistance);
processId(mapper, id);
processMTSync(mapper);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(0, args.pointerProperties[0].id);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, pressure, size, touchMajor, touchMinor, toolMajor, toolMinor,
orientation, distance));
}
TEST_F(MultiTouchInputMapperTest, Process_TouchAndToolAxes_GeometricCalibration) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | TOUCH | TOOL | MINOR);
addConfigurationProperty("touch.size.calibration", "geometric");
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
// These calculations are based on the input device calibration documentation.
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawTouchMajor = 140;
int32_t rawTouchMinor = 120;
int32_t rawToolMajor = 180;
int32_t rawToolMinor = 160;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float size = avg(rawTouchMajor, rawTouchMinor) / RAW_TOUCH_MAX;
float toolMajor = float(rawToolMajor) * GEOMETRIC_SCALE;
float toolMinor = float(rawToolMinor) * GEOMETRIC_SCALE;
float touchMajor = float(rawTouchMajor) * GEOMETRIC_SCALE;
float touchMinor = float(rawTouchMinor) * GEOMETRIC_SCALE;
processPosition(mapper, rawX, rawY);
processTouchMajor(mapper, rawTouchMajor);
processTouchMinor(mapper, rawTouchMinor);
processToolMajor(mapper, rawToolMajor);
processToolMinor(mapper, rawToolMinor);
processMTSync(mapper);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, 1.0f, size, touchMajor, touchMinor, toolMajor, toolMinor, 0, 0));
}
TEST_F(MultiTouchInputMapperTest, Process_TouchAndToolAxes_SummedLinearCalibration) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | TOUCH | TOOL);
addConfigurationProperty("touch.size.calibration", "diameter");
addConfigurationProperty("touch.size.scale", "10");
addConfigurationProperty("touch.size.bias", "160");
addConfigurationProperty("touch.size.isSummed", "1");
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
// These calculations are based on the input device calibration documentation.
// Note: We only provide a single common touch/tool value because the device is assumed
// not to emit separate values for each pointer (isSummed = 1).
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawX2 = 150;
int32_t rawY2 = 250;
int32_t rawTouchMajor = 5;
int32_t rawToolMajor = 8;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float x2 = toDisplayX(rawX2);
float y2 = toDisplayY(rawY2);
float size = float(rawTouchMajor) / 2 / RAW_TOUCH_MAX;
float touch = float(rawTouchMajor) / 2 * 10.0f + 160.0f;
float tool = float(rawToolMajor) / 2 * 10.0f + 160.0f;
processPosition(mapper, rawX, rawY);
processTouchMajor(mapper, rawTouchMajor);
processToolMajor(mapper, rawToolMajor);
processMTSync(mapper);
processPosition(mapper, rawX2, rawY2);
processTouchMajor(mapper, rawTouchMajor);
processToolMajor(mapper, rawToolMajor);
processMTSync(mapper);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(ACTION_POINTER_1_DOWN, args.action);
ASSERT_EQ(size_t(2), args.pointerCount);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, 1.0f, size, touch, touch, tool, tool, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[1],
x2, y2, 1.0f, size, touch, touch, tool, tool, 0, 0));
}
TEST_F(MultiTouchInputMapperTest, Process_TouchAndToolAxes_AreaCalibration) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | TOUCH | TOOL);
addConfigurationProperty("touch.size.calibration", "area");
addConfigurationProperty("touch.size.scale", "43");
addConfigurationProperty("touch.size.bias", "3");
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
// These calculations are based on the input device calibration documentation.
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawTouchMajor = 5;
int32_t rawToolMajor = 8;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float size = float(rawTouchMajor) / RAW_TOUCH_MAX;
float touch = sqrtf(rawTouchMajor) * 43.0f + 3.0f;
float tool = sqrtf(rawToolMajor) * 43.0f + 3.0f;
processPosition(mapper, rawX, rawY);
processTouchMajor(mapper, rawTouchMajor);
processToolMajor(mapper, rawToolMajor);
processMTSync(mapper);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, 1.0f, size, touch, touch, tool, tool, 0, 0));
}
TEST_F(MultiTouchInputMapperTest, Process_PressureAxis_AmplitudeCalibration) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | PRESSURE);
addConfigurationProperty("touch.pressure.calibration", "amplitude");
addConfigurationProperty("touch.pressure.scale", "0.01");
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
InputDeviceInfo info;
mapper.populateDeviceInfo(&info);
ASSERT_NO_FATAL_FAILURE(assertMotionRange(info,
AINPUT_MOTION_RANGE_PRESSURE, AINPUT_SOURCE_TOUCHSCREEN,
0.0f, RAW_PRESSURE_MAX * 0.01, 0.0f, 0.0f));
// These calculations are based on the input device calibration documentation.
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawPressure = 60;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float pressure = float(rawPressure) * 0.01f;
processPosition(mapper, rawX, rawY);
processPressure(mapper, rawPressure);
processMTSync(mapper);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, pressure, 0, 0, 0, 0, 0, 0, 0));
}
TEST_F(MultiTouchInputMapperTest, Process_ShouldHandleAllButtons) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID | SLOT);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
NotifyKeyArgs keyArgs;
processId(mapper, 1);
processPosition(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// press BTN_LEFT, release BTN_LEFT
processKey(mapper, BTN_LEFT, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState);
processKey(mapper, BTN_LEFT, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// press BTN_RIGHT + BTN_MIDDLE, release BTN_RIGHT, release BTN_MIDDLE
processKey(mapper, BTN_RIGHT, 1);
processKey(mapper, BTN_MIDDLE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY,
motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY,
motionArgs.buttonState);
processKey(mapper, BTN_RIGHT, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState);
processKey(mapper, BTN_MIDDLE, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// press BTN_BACK, release BTN_BACK
processKey(mapper, BTN_BACK, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
processKey(mapper, BTN_BACK, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
// press BTN_SIDE, release BTN_SIDE
processKey(mapper, BTN_SIDE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
processKey(mapper, BTN_SIDE, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
// press BTN_FORWARD, release BTN_FORWARD
processKey(mapper, BTN_FORWARD, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
processKey(mapper, BTN_FORWARD, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
// press BTN_EXTRA, release BTN_EXTRA
processKey(mapper, BTN_EXTRA, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
processKey(mapper, BTN_EXTRA, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
// press BTN_STYLUS, release BTN_STYLUS
processKey(mapper, BTN_STYLUS, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY, motionArgs.buttonState);
processKey(mapper, BTN_STYLUS, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// press BTN_STYLUS2, release BTN_STYLUS2
processKey(mapper, BTN_STYLUS2, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_SECONDARY, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_SECONDARY, motionArgs.buttonState);
processKey(mapper, BTN_STYLUS2, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// release touch
processId(mapper, -1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
}
TEST_F(MultiTouchInputMapperTest, Process_ShouldHandleAllToolTypes) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID | SLOT | TOOL_TYPE);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
// default tool type is finger
processId(mapper, 1);
processPosition(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// eraser
processKey(mapper, BTN_TOOL_RUBBER, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_ERASER, motionArgs.pointerProperties[0].toolType);
// stylus
processKey(mapper, BTN_TOOL_RUBBER, 0);
processKey(mapper, BTN_TOOL_PEN, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// brush
processKey(mapper, BTN_TOOL_PEN, 0);
processKey(mapper, BTN_TOOL_BRUSH, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// pencil
processKey(mapper, BTN_TOOL_BRUSH, 0);
processKey(mapper, BTN_TOOL_PENCIL, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// air-brush
processKey(mapper, BTN_TOOL_PENCIL, 0);
processKey(mapper, BTN_TOOL_AIRBRUSH, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// mouse
processKey(mapper, BTN_TOOL_AIRBRUSH, 0);
processKey(mapper, BTN_TOOL_MOUSE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, motionArgs.pointerProperties[0].toolType);
// lens
processKey(mapper, BTN_TOOL_MOUSE, 0);
processKey(mapper, BTN_TOOL_LENS, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, motionArgs.pointerProperties[0].toolType);
// double-tap
processKey(mapper, BTN_TOOL_LENS, 0);
processKey(mapper, BTN_TOOL_DOUBLETAP, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// triple-tap
processKey(mapper, BTN_TOOL_DOUBLETAP, 0);
processKey(mapper, BTN_TOOL_TRIPLETAP, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// quad-tap
processKey(mapper, BTN_TOOL_TRIPLETAP, 0);
processKey(mapper, BTN_TOOL_QUADTAP, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// finger
processKey(mapper, BTN_TOOL_QUADTAP, 0);
processKey(mapper, BTN_TOOL_FINGER, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// stylus trumps finger
processKey(mapper, BTN_TOOL_PEN, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// eraser trumps stylus
processKey(mapper, BTN_TOOL_RUBBER, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_ERASER, motionArgs.pointerProperties[0].toolType);
// mouse trumps eraser
processKey(mapper, BTN_TOOL_MOUSE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_MOUSE, motionArgs.pointerProperties[0].toolType);
// MT tool type trumps BTN tool types: MT_TOOL_FINGER
processToolType(mapper, MT_TOOL_FINGER); // this is the first time we send MT_TOOL_TYPE
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// MT tool type trumps BTN tool types: MT_TOOL_PEN
processToolType(mapper, MT_TOOL_PEN);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_STYLUS, motionArgs.pointerProperties[0].toolType);
// back to default tool type
processToolType(mapper, -1); // use a deliberately undefined tool type, for testing
processKey(mapper, BTN_TOOL_MOUSE, 0);
processKey(mapper, BTN_TOOL_RUBBER, 0);
processKey(mapper, BTN_TOOL_PEN, 0);
processKey(mapper, BTN_TOOL_FINGER, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
}
TEST_F(MultiTouchInputMapperTest, Process_WhenBtnTouchPresent_HoversIfItsValueIsZero) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID | SLOT);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOUCH, 0, AKEYCODE_UNKNOWN, 0);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
// initially hovering because BTN_TOUCH not sent yet, pressure defaults to 0
processId(mapper, 1);
processPosition(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
// move a little
processPosition(mapper, 150, 250);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// down when BTN_TOUCH is pressed, pressure defaults to 1
processKey(mapper, BTN_TOUCH, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
// up when BTN_TOUCH is released, hover restored
processKey(mapper, BTN_TOUCH, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// exit hover when pointer goes away
processId(mapper, -1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
}
TEST_F(MultiTouchInputMapperTest, Process_WhenAbsMTPressureIsPresent_HoversIfItsValueIsZero) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID | SLOT | PRESSURE);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
// initially hovering because pressure is 0
processId(mapper, 1);
processPosition(mapper, 100, 200);
processPressure(mapper, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
// move a little
processPosition(mapper, 150, 250);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// down when pressure becomes non-zero
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
// up when pressure becomes 0, hover restored
processPressure(mapper, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// exit hover when pointer goes away
processId(mapper, -1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
}
/**
* Set the input device port <--> display port associations, and check that the
* events are routed to the display that matches the display port.
* This can be checked by looking at the displayId of the resulting NotifyMotionArgs.
*/
TEST_F(MultiTouchInputMapperTest, Configure_AssignsDisplayPort) {
const std::string usb2 = "USB2";
const uint8_t hdmi1 = 0;
const uint8_t hdmi2 = 1;
const std::string secondaryUniqueId = "uniqueId2";
constexpr ViewportType type = ViewportType::EXTERNAL;
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareAxes(POSITION);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi1);
mFakePolicy->addInputPortAssociation(usb2, hdmi2);
// We are intentionally not adding the viewport for display 1 yet. Since the port association
// for this input device is specified, and the matching viewport is not present,
// the input device should be disabled (at the mapper level).
// Add viewport for display 2 on hdmi2
prepareSecondaryDisplay(type, hdmi2);
// Send a touch event
processPosition(mapper, 100, 100);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// Add viewport for display 1 on hdmi1
prepareDisplay(DISPLAY_ORIENTATION_0, hdmi1);
// Send a touch event again
processPosition(mapper, 100, 100);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(DISPLAY_ID, args.displayId);
}
TEST_F(MultiTouchInputMapperTest, Configure_AssignsDisplayUniqueId) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareAxes(POSITION);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
mFakePolicy->addInputUniqueIdAssociation(DEVICE_LOCATION, VIRTUAL_DISPLAY_UNIQUE_ID);
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareVirtualDisplay(DISPLAY_ORIENTATION_0);
// Send a touch event
processPosition(mapper, 100, 100);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(VIRTUAL_DISPLAY_ID, args.displayId);
}
TEST_F(MultiTouchInputMapperTest, Process_Pointer_ShouldHandleDisplayId) {
// Setup for second display.
std::shared_ptr<FakePointerController> fakePointerController =
std::make_shared<FakePointerController>();
fakePointerController->setBounds(0, 0, DISPLAY_WIDTH - 1, DISPLAY_HEIGHT - 1);
fakePointerController->setPosition(100, 200);
fakePointerController->setButtonState(0);
mFakePolicy->setPointerController(fakePointerController);
mFakePolicy->setDefaultPointerDisplayId(SECONDARY_DISPLAY_ID);
prepareSecondaryDisplay(ViewportType::EXTERNAL);
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
// Check source is mouse that would obtain the PointerController.
ASSERT_EQ(AINPUT_SOURCE_MOUSE, mapper.getSources());
NotifyMotionArgs motionArgs;
processPosition(mapper, 100, 100);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_EQ(SECONDARY_DISPLAY_ID, motionArgs.displayId);
}
/**
* Ensure that the readTime is set to the SYN_REPORT value when processing touch events.
*/
TEST_F(MultiTouchInputMapperTest, Process_SendsReadTime) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareAxes(POSITION);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
prepareDisplay(DISPLAY_ORIENTATION_0);
process(mapper, 10, 11 /*readTime*/, EV_ABS, ABS_MT_TRACKING_ID, 1);
process(mapper, 15, 16 /*readTime*/, EV_ABS, ABS_MT_POSITION_X, 100);
process(mapper, 20, 21 /*readTime*/, EV_ABS, ABS_MT_POSITION_Y, 100);
process(mapper, 25, 26 /*readTime*/, EV_SYN, SYN_REPORT, 0);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(26, args.readTime);
process(mapper, 30, 31 /*readTime*/, EV_ABS, ABS_MT_POSITION_X, 110);
process(mapper, 30, 32 /*readTime*/, EV_ABS, ABS_MT_POSITION_Y, 220);
process(mapper, 30, 33 /*readTime*/, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(33, args.readTime);
}
/**
* When the viewport is not active (isActive=false), the touch mapper should be disabled and the
* events should not be delivered to the listener.
*/
TEST_F(MultiTouchInputMapperTest, WhenViewportIsNotActive_TouchesAreDropped) {
addConfigurationProperty("touch.deviceType", "touchScreen");
mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, false /*isActive*/, UNIQUE_ID, NO_PORT,
ViewportType::INTERNAL);
configureDevice(InputReaderConfiguration::CHANGE_DISPLAY_INFO);
prepareAxes(POSITION);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
processPosition(mapper, 100, 100);
processSync(mapper);
mFakeListener->assertNotifyMotionWasNotCalled();
}
TEST_F(MultiTouchInputMapperTest, Process_DeactivateViewport_AbortTouches) {
addConfigurationProperty("touch.deviceType", "touchScreen");
mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT,
DISPLAY_ORIENTATION_0, true /*isActive*/, UNIQUE_ID, NO_PORT,
ViewportType::INTERNAL);
std::optional<DisplayViewport> optionalDisplayViewport =
mFakePolicy->getDisplayViewportByUniqueId(UNIQUE_ID);
ASSERT_TRUE(optionalDisplayViewport.has_value());
DisplayViewport displayViewport = *optionalDisplayViewport;
configureDevice(InputReaderConfiguration::CHANGE_DISPLAY_INFO);
prepareAxes(POSITION);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
// Finger down
int32_t x = 100, y = 100;
processPosition(mapper, x, y);
processSync(mapper);
NotifyMotionArgs motionArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
EXPECT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
// Deactivate display viewport
displayViewport.isActive = false;
ASSERT_TRUE(mFakePolicy->updateViewport(displayViewport));
configureDevice(InputReaderConfiguration::CHANGE_DISPLAY_INFO);
// The ongoing touch should be canceled immediately
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
EXPECT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionArgs.action);
// Finger move is ignored
x += 10, y += 10;
processPosition(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// Reactivate display viewport
displayViewport.isActive = true;
ASSERT_TRUE(mFakePolicy->updateViewport(displayViewport));
configureDevice(InputReaderConfiguration::CHANGE_DISPLAY_INFO);
// Finger move again starts new gesture
x += 10, y += 10;
processPosition(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
EXPECT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
}
TEST_F(MultiTouchInputMapperTest, Process_Pointer_ShowTouches) {
// Setup the first touch screen device.
prepareAxes(POSITION | ID | SLOT);
addConfigurationProperty("touch.deviceType", "touchScreen");
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
// Create the second touch screen device, and enable multi fingers.
const std::string USB2 = "USB2";
const std::string DEVICE_NAME2 = "TOUCHSCREEN2";
constexpr int32_t SECOND_DEVICE_ID = DEVICE_ID + 1;
constexpr int32_t SECOND_EVENTHUB_ID = EVENTHUB_ID + 1;
std::shared_ptr<InputDevice> device2 =
newDevice(SECOND_DEVICE_ID, DEVICE_NAME2, USB2, SECOND_EVENTHUB_ID,
ftl::Flags<InputDeviceClass>(0));
mFakeEventHub->addAbsoluteAxis(SECOND_EVENTHUB_ID, ABS_MT_POSITION_X, RAW_X_MIN, RAW_X_MAX,
0 /*flat*/, 0 /*fuzz*/);
mFakeEventHub->addAbsoluteAxis(SECOND_EVENTHUB_ID, ABS_MT_POSITION_Y, RAW_Y_MIN, RAW_Y_MAX,
0 /*flat*/, 0 /*fuzz*/);
mFakeEventHub->addAbsoluteAxis(SECOND_EVENTHUB_ID, ABS_MT_TRACKING_ID, RAW_ID_MIN, RAW_ID_MAX,
0 /*flat*/, 0 /*fuzz*/);
mFakeEventHub->addAbsoluteAxis(SECOND_EVENTHUB_ID, ABS_MT_SLOT, RAW_SLOT_MIN, RAW_SLOT_MAX,
0 /*flat*/, 0 /*fuzz*/);
mFakeEventHub->setAbsoluteAxisValue(SECOND_EVENTHUB_ID, ABS_MT_SLOT, 0 /*value*/);
mFakeEventHub->addConfigurationProperty(SECOND_EVENTHUB_ID, String8("touch.deviceType"),
String8("touchScreen"));
// Setup the second touch screen device.
MultiTouchInputMapper& mapper2 = device2->addMapper<MultiTouchInputMapper>(SECOND_EVENTHUB_ID);
std::list<NotifyArgs> unused =
device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
0 /*changes*/);
unused += device2->reset(ARBITRARY_TIME);
// Setup PointerController.
std::shared_ptr<FakePointerController> fakePointerController =
std::make_shared<FakePointerController>();
mFakePolicy->setPointerController(fakePointerController);
// Setup policy for associated displays and show touches.
const uint8_t hdmi1 = 0;
const uint8_t hdmi2 = 1;
mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi1);
mFakePolicy->addInputPortAssociation(USB2, hdmi2);
mFakePolicy->setShowTouches(true);
// Create displays.
prepareDisplay(DISPLAY_ORIENTATION_0, hdmi1);
prepareSecondaryDisplay(ViewportType::EXTERNAL, hdmi2);
// Default device will reconfigure above, need additional reconfiguration for another device.
unused += device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::CHANGE_DISPLAY_INFO |
InputReaderConfiguration::CHANGE_SHOW_TOUCHES);
// Two fingers down at default display.
int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500;
processPosition(mapper, x1, y1);
processId(mapper, 1);
processSlot(mapper, 1);
processPosition(mapper, x2, y2);
processId(mapper, 2);
processSync(mapper);
std::map<int32_t, std::vector<int32_t>>::const_iterator iter =
fakePointerController->getSpots().find(DISPLAY_ID);
ASSERT_TRUE(iter != fakePointerController->getSpots().end());
ASSERT_EQ(size_t(2), iter->second.size());
// Two fingers down at second display.
processPosition(mapper2, x1, y1);
processId(mapper2, 1);
processSlot(mapper2, 1);
processPosition(mapper2, x2, y2);
processId(mapper2, 2);
processSync(mapper2);
iter = fakePointerController->getSpots().find(SECONDARY_DISPLAY_ID);
ASSERT_TRUE(iter != fakePointerController->getSpots().end());
ASSERT_EQ(size_t(2), iter->second.size());
// Disable the show touches configuration and ensure the spots are cleared.
mFakePolicy->setShowTouches(false);
unused += device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::CHANGE_SHOW_TOUCHES);
ASSERT_TRUE(fakePointerController->getSpots().empty());
}
TEST_F(MultiTouchInputMapperTest, VideoFrames_ReceivedByListener) {
prepareAxes(POSITION);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
// Unrotated video frame
TouchVideoFrame frame(3, 2, {1, 2, 3, 4, 5, 6}, {1, 2});
std::vector<TouchVideoFrame> frames{frame};
mFakeEventHub->setVideoFrames({{EVENTHUB_ID, frames}});
processPosition(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(frames, motionArgs.videoFrames);
// Subsequent touch events should not have any videoframes
// This is implemented separately in FakeEventHub,
// but that should match the behaviour of TouchVideoDevice.
processPosition(mapper, 200, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(std::vector<TouchVideoFrame>(), motionArgs.videoFrames);
}
TEST_F(MultiTouchInputMapperTest, VideoFrames_AreNotRotated) {
prepareAxes(POSITION);
addConfigurationProperty("touch.deviceType", "touchScreen");
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
// Unrotated video frame
TouchVideoFrame frame(3, 2, {1, 2, 3, 4, 5, 6}, {1, 2});
NotifyMotionArgs motionArgs;
// Test all 4 orientations
for (int32_t orientation : {DISPLAY_ORIENTATION_0, DISPLAY_ORIENTATION_90,
DISPLAY_ORIENTATION_180, DISPLAY_ORIENTATION_270}) {
SCOPED_TRACE("Orientation " + StringPrintf("%i", orientation));
clearViewports();
prepareDisplay(orientation);
std::vector<TouchVideoFrame> frames{frame};
mFakeEventHub->setVideoFrames({{EVENTHUB_ID, frames}});
processPosition(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(frames, motionArgs.videoFrames);
}
}
TEST_F(MultiTouchInputMapperTest, VideoFrames_WhenNotOrientationAware_AreRotated) {
prepareAxes(POSITION);
addConfigurationProperty("touch.deviceType", "touchScreen");
// Since InputReader works in the un-rotated coordinate space, only devices that are not
// orientation-aware are affected by display rotation.
addConfigurationProperty("touch.orientationAware", "0");
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
// Unrotated video frame
TouchVideoFrame frame(3, 2, {1, 2, 3, 4, 5, 6}, {1, 2});
NotifyMotionArgs motionArgs;
// Test all 4 orientations
for (int32_t orientation : {DISPLAY_ORIENTATION_0, DISPLAY_ORIENTATION_90,
DISPLAY_ORIENTATION_180, DISPLAY_ORIENTATION_270}) {
SCOPED_TRACE("Orientation " + StringPrintf("%i", orientation));
clearViewports();
prepareDisplay(orientation);
std::vector<TouchVideoFrame> frames{frame};
mFakeEventHub->setVideoFrames({{EVENTHUB_ID, frames}});
processPosition(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
// We expect the raw coordinates of the MotionEvent to be rotated in the inverse direction
// compared to the display. This is so that when the window transform (which contains the
// display rotation) is applied later by InputDispatcher, the coordinates end up in the
// window's coordinate space.
frames[0].rotate(getInverseRotation(orientation));
ASSERT_EQ(frames, motionArgs.videoFrames);
// Release finger.
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
}
}
TEST_F(MultiTouchInputMapperTest, VideoFrames_MultipleFramesAreNotRotated) {
prepareAxes(POSITION);
addConfigurationProperty("touch.deviceType", "touchScreen");
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
// Unrotated video frames. There's no rule that they must all have the same dimensions,
// so mix these.
TouchVideoFrame frame1(3, 2, {1, 2, 3, 4, 5, 6}, {1, 2});
TouchVideoFrame frame2(3, 3, {0, 1, 2, 3, 4, 5, 6, 7, 8}, {1, 3});
TouchVideoFrame frame3(2, 2, {10, 20, 10, 0}, {1, 4});
std::vector<TouchVideoFrame> frames{frame1, frame2, frame3};
NotifyMotionArgs motionArgs;
prepareDisplay(DISPLAY_ORIENTATION_90);
mFakeEventHub->setVideoFrames({{EVENTHUB_ID, frames}});
processPosition(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(frames, motionArgs.videoFrames);
}
TEST_F(MultiTouchInputMapperTest, VideoFrames_WhenNotOrientationAware_MultipleFramesAreRotated) {
prepareAxes(POSITION);
addConfigurationProperty("touch.deviceType", "touchScreen");
// Since InputReader works in the un-rotated coordinate space, only devices that are not
// orientation-aware are affected by display rotation.
addConfigurationProperty("touch.orientationAware", "0");
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
// Unrotated video frames. There's no rule that they must all have the same dimensions,
// so mix these.
TouchVideoFrame frame1(3, 2, {1, 2, 3, 4, 5, 6}, {1, 2});
TouchVideoFrame frame2(3, 3, {0, 1, 2, 3, 4, 5, 6, 7, 8}, {1, 3});
TouchVideoFrame frame3(2, 2, {10, 20, 10, 0}, {1, 4});
std::vector<TouchVideoFrame> frames{frame1, frame2, frame3};
NotifyMotionArgs motionArgs;
prepareDisplay(DISPLAY_ORIENTATION_90);
mFakeEventHub->setVideoFrames({{EVENTHUB_ID, frames}});
processPosition(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
std::for_each(frames.begin(), frames.end(), [](TouchVideoFrame& frame) {
// We expect the raw coordinates of the MotionEvent to be rotated in the inverse direction
// compared to the display. This is so that when the window transform (which contains the
// display rotation) is applied later by InputDispatcher, the coordinates end up in the
// window's coordinate space.
frame.rotate(getInverseRotation(DISPLAY_ORIENTATION_90));
});
ASSERT_EQ(frames, motionArgs.videoFrames);
}
/**
* If we had defined port associations, but the viewport is not ready, the touch device would be
* expected to be disabled, and it should be enabled after the viewport has found.
*/
TEST_F(MultiTouchInputMapperTest, Configure_EnabledForAssociatedDisplay) {
constexpr uint8_t hdmi2 = 1;
const std::string secondaryUniqueId = "uniqueId2";
constexpr ViewportType type = ViewportType::EXTERNAL;
mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi2);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareAxes(POSITION);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
ASSERT_EQ(mDevice->isEnabled(), false);
// Add display on hdmi2, the device should be enabled and can receive touch event.
prepareSecondaryDisplay(type, hdmi2);
ASSERT_EQ(mDevice->isEnabled(), true);
// Send a touch event.
processPosition(mapper, 100, 100);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(SECONDARY_DISPLAY_ID, args.displayId);
}
TEST_F(MultiTouchInputMapperTest, Process_ShouldHandleSingleTouch) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID | SLOT | TOOL_TYPE);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
constexpr int32_t x1 = 100, y1 = 200, x2 = 120, y2 = 220, x3 = 140, y3 = 240;
// finger down
processId(mapper, 1);
processPosition(mapper, x1, y1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// finger move
processId(mapper, 1);
processPosition(mapper, x2, y2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// finger up.
processId(mapper, -1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// new finger down
processId(mapper, 1);
processPosition(mapper, x3, y3);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
}
/**
* Test single touch should be canceled when received the MT_TOOL_PALM event, and the following
* MOVE and UP events should be ignored.
*/
TEST_F(MultiTouchInputMapperTest, Process_ShouldHandlePalmToolType_SinglePointer) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID | SLOT | TOOL_TYPE);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
// default tool type is finger
constexpr int32_t x1 = 100, y1 = 200, x2 = 120, y2 = 220, x3 = 140, y3 = 240;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// Tool changed to MT_TOOL_PALM expect sending the cancel event.
processToolType(mapper, MT_TOOL_PALM);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionArgs.action);
// Ignore the following MOVE and UP events if had detect a palm event.
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x2, y2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// finger up.
processId(mapper, INVALID_TRACKING_ID);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// new finger down
processId(mapper, FIRST_TRACKING_ID);
processToolType(mapper, MT_TOOL_FINGER);
processPosition(mapper, x3, y3);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
}
/**
* Test multi-touch should sent POINTER_UP when received the MT_TOOL_PALM event from some finger,
* and the rest active fingers could still be allowed to receive the events
*/
TEST_F(MultiTouchInputMapperTest, Process_ShouldHandlePalmToolType_TwoPointers) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID | SLOT | TOOL_TYPE);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
// default tool type is finger
constexpr int32_t x1 = 100, y1 = 200, x2 = 120, y2 = 220;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// Second finger down.
processSlot(mapper, SECOND_SLOT);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_1_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[1].toolType);
// If the tool type of the first finger changes to MT_TOOL_PALM,
// we expect to receive ACTION_POINTER_UP with cancel flag.
processSlot(mapper, FIRST_SLOT);
processId(mapper, FIRST_TRACKING_ID);
processToolType(mapper, MT_TOOL_PALM);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_0_UP, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_FLAG_CANCELED, motionArgs.flags);
// The following MOVE events of second finger should be processed.
processSlot(mapper, SECOND_SLOT);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2 + 1, y2 + 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(uint32_t(1), motionArgs.pointerCount);
// First finger up. It used to be in palm mode, and we already generated ACTION_POINTER_UP for
// it. Second finger receive move.
processSlot(mapper, FIRST_SLOT);
processId(mapper, INVALID_TRACKING_ID);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(uint32_t(1), motionArgs.pointerCount);
// Second finger keeps moving.
processSlot(mapper, SECOND_SLOT);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2 + 2, y2 + 2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(uint32_t(1), motionArgs.pointerCount);
// Second finger up.
processId(mapper, INVALID_TRACKING_ID);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NE(AMOTION_EVENT_FLAG_CANCELED, motionArgs.flags);
}
/**
* Test multi-touch should sent POINTER_UP when received the MT_TOOL_PALM event, if only 1 finger
* is active, it should send CANCEL after receiving the MT_TOOL_PALM event.
*/
TEST_F(MultiTouchInputMapperTest, Process_ShouldHandlePalmToolType_ShouldCancelWhenAllTouchIsPalm) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID | SLOT | TOOL_TYPE);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
constexpr int32_t x1 = 100, y1 = 200, x2 = 120, y2 = 220, x3 = 140, y3 = 240;
// First finger down.
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// Second finger down.
processSlot(mapper, SECOND_SLOT);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_1_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// If the tool type of the first finger changes to MT_TOOL_PALM,
// we expect to receive ACTION_POINTER_UP with cancel flag.
processSlot(mapper, FIRST_SLOT);
processId(mapper, FIRST_TRACKING_ID);
processToolType(mapper, MT_TOOL_PALM);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_0_UP, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_FLAG_CANCELED, motionArgs.flags);
// Second finger keeps moving.
processSlot(mapper, SECOND_SLOT);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2 + 1, y2 + 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
// second finger becomes palm, receive cancel due to only 1 finger is active.
processId(mapper, SECOND_TRACKING_ID);
processToolType(mapper, MT_TOOL_PALM);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionArgs.action);
// third finger down.
processSlot(mapper, THIRD_SLOT);
processId(mapper, THIRD_TRACKING_ID);
processToolType(mapper, MT_TOOL_FINGER);
processPosition(mapper, x3, y3);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(uint32_t(1), motionArgs.pointerCount);
// third finger move
processId(mapper, THIRD_TRACKING_ID);
processPosition(mapper, x3 + 1, y3 + 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
// first finger up, third finger receive move.
processSlot(mapper, FIRST_SLOT);
processId(mapper, INVALID_TRACKING_ID);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(uint32_t(1), motionArgs.pointerCount);
// second finger up, third finger receive move.
processSlot(mapper, SECOND_SLOT);
processId(mapper, INVALID_TRACKING_ID);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(uint32_t(1), motionArgs.pointerCount);
// third finger up.
processSlot(mapper, THIRD_SLOT);
processId(mapper, INVALID_TRACKING_ID);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NE(AMOTION_EVENT_FLAG_CANCELED, motionArgs.flags);
}
/**
* Test multi-touch should sent POINTER_UP when received the MT_TOOL_PALM event from some finger,
* and the active finger could still be allowed to receive the events
*/
TEST_F(MultiTouchInputMapperTest, Process_ShouldHandlePalmToolType_KeepFirstPointer) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID | SLOT | TOOL_TYPE);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
// default tool type is finger
constexpr int32_t x1 = 100, y1 = 200, x2 = 120, y2 = 220;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// Second finger down.
processSlot(mapper, SECOND_SLOT);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_1_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
// If the tool type of the second finger changes to MT_TOOL_PALM,
// we expect to receive ACTION_POINTER_UP with cancel flag.
processId(mapper, SECOND_TRACKING_ID);
processToolType(mapper, MT_TOOL_PALM);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_1_UP, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_FLAG_CANCELED, motionArgs.flags);
// The following MOVE event should be processed.
processSlot(mapper, FIRST_SLOT);
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1 + 1, y1 + 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(uint32_t(1), motionArgs.pointerCount);
// second finger up.
processSlot(mapper, SECOND_SLOT);
processId(mapper, INVALID_TRACKING_ID);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
// first finger keep moving
processSlot(mapper, FIRST_SLOT);
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1 + 2, y1 + 2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
// first finger up.
processId(mapper, INVALID_TRACKING_ID);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NE(AMOTION_EVENT_FLAG_CANCELED, motionArgs.flags);
}
/**
* Test multi-touch should sent ACTION_POINTER_UP/ACTION_UP when received the INVALID_TRACKING_ID,
* to prevent the driver side may send unexpected data after set tracking id as INVALID_TRACKING_ID
* cause slot be valid again.
*/
TEST_F(MultiTouchInputMapperTest, Process_MultiTouch_WithInvalidTrackingId) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID | SLOT | PRESSURE);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
constexpr int32_t x1 = 100, y1 = 200, x2 = 0, y2 = 0;
// First finger down.
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(uint32_t(1), motionArgs.pointerCount);
// First finger move.
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1 + 1, y1 + 1);
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(uint32_t(1), motionArgs.pointerCount);
// Second finger down.
processSlot(mapper, SECOND_SLOT);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_1_DOWN, motionArgs.action);
ASSERT_EQ(uint32_t(2), motionArgs.pointerCount);
// second finger up with some unexpected data.
processSlot(mapper, SECOND_SLOT);
processId(mapper, INVALID_TRACKING_ID);
processPosition(mapper, x2, y2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_1_UP, motionArgs.action);
ASSERT_EQ(uint32_t(2), motionArgs.pointerCount);
// first finger up with some unexpected data.
processSlot(mapper, FIRST_SLOT);
processId(mapper, INVALID_TRACKING_ID);
processPosition(mapper, x2, y2);
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(uint32_t(1), motionArgs.pointerCount);
}
TEST_F(MultiTouchInputMapperTest, Reset_PreservesLastTouchState) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID | SLOT | PRESSURE);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
// First finger down.
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, 100, 200);
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_DOWN)));
// Second finger down.
processSlot(mapper, SECOND_SLOT);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, 300, 400);
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(
mFakeListener->assertNotifyMotionWasCalled(WithMotionAction(ACTION_POINTER_1_DOWN)));
// Reset the mapper. When the mapper is reset, we expect the current multi-touch state to be
// preserved. Resetting should not generate any events.
std::list<NotifyArgs> unused = mapper.reset(ARBITRARY_TIME);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// Send a sync to simulate an empty touch frame where nothing changes. The mapper should use
// the existing touch state to generate a down event.
processPosition(mapper, 301, 302);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), WithPressure(1.f))));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(ACTION_POINTER_1_DOWN), WithPressure(1.f))));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(MultiTouchInputMapperTest, Reset_PreservesLastTouchState_NoPointersDown) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID | SLOT | PRESSURE);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
// First finger touches down and releases.
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, 100, 200);
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_DOWN)));
processId(mapper, INVALID_TRACKING_ID);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(
mFakeListener->assertNotifyMotionWasCalled(WithMotionAction(AMOTION_EVENT_ACTION_UP)));
// Reset the mapper. When the mapper is reset, we expect it to restore the latest
// raw state where no pointers are down.
std::list<NotifyArgs> unused = mapper.reset(ARBITRARY_TIME);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// Send an empty sync frame. Since there are no pointers, no events are generated.
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
// --- MultiTouchInputMapperTest_ExternalDevice ---
class MultiTouchInputMapperTest_ExternalDevice : public MultiTouchInputMapperTest {
protected:
void SetUp() override { InputMapperTest::SetUp(DEVICE_CLASSES | InputDeviceClass::EXTERNAL); }
};
/**
* Expect fallback to internal viewport if device is external and external viewport is not present.
*/
TEST_F(MultiTouchInputMapperTest_ExternalDevice, Viewports_Fallback) {
prepareAxes(POSITION);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(DISPLAY_ORIENTATION_0);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, mapper.getSources());
NotifyMotionArgs motionArgs;
// Expect the event to be sent to the internal viewport,
// because an external viewport is not present.
processPosition(mapper, 100, 100);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ADISPLAY_ID_DEFAULT, motionArgs.displayId);
// Expect the event to be sent to the external viewport if it is present.
prepareSecondaryDisplay(ViewportType::EXTERNAL);
processPosition(mapper, 100, 100);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(SECONDARY_DISPLAY_ID, motionArgs.displayId);
}
TEST_F(MultiTouchInputMapperTest, Process_TouchpadCapture) {
// we need a pointer controller for mouse mode of touchpad (start pointer at 0,0)
std::shared_ptr<FakePointerController> fakePointerController =
std::make_shared<FakePointerController>();
fakePointerController->setBounds(0, 0, DISPLAY_WIDTH - 1, DISPLAY_HEIGHT - 1);
fakePointerController->setPosition(0, 0);
fakePointerController->setButtonState(0);
// prepare device and capture
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID | SLOT);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_LEFT, 0, AKEYCODE_UNKNOWN, 0);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOUCH, 0, AKEYCODE_UNKNOWN, 0);
mFakePolicy->setPointerCapture(true);
mFakePolicy->setPointerController(fakePointerController);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
// captured touchpad should be a touchpad source
NotifyDeviceResetArgs resetArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(AINPUT_SOURCE_TOUCHPAD, mapper.getSources());
InputDeviceInfo deviceInfo = mDevice->getDeviceInfo();
const InputDeviceInfo::MotionRange* relRangeX =
deviceInfo.getMotionRange(AMOTION_EVENT_AXIS_RELATIVE_X, AINPUT_SOURCE_TOUCHPAD);
ASSERT_NE(relRangeX, nullptr);
ASSERT_EQ(relRangeX->min, -(RAW_X_MAX - RAW_X_MIN));
ASSERT_EQ(relRangeX->max, RAW_X_MAX - RAW_X_MIN);
const InputDeviceInfo::MotionRange* relRangeY =
deviceInfo.getMotionRange(AMOTION_EVENT_AXIS_RELATIVE_Y, AINPUT_SOURCE_TOUCHPAD);
ASSERT_NE(relRangeY, nullptr);
ASSERT_EQ(relRangeY->min, -(RAW_Y_MAX - RAW_Y_MIN));
ASSERT_EQ(relRangeY->max, RAW_Y_MAX - RAW_Y_MIN);
// run captured pointer tests - note that this is unscaled, so input listener events should be
// identical to what the hardware sends (accounting for any
// calibration).
// FINGER 0 DOWN
processSlot(mapper, 0);
processId(mapper, 1);
processPosition(mapper, 100 + RAW_X_MIN, 100 + RAW_Y_MIN);
processKey(mapper, BTN_TOUCH, 1);
processSync(mapper);
// expect coord[0] to contain initial location of touch 0
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(1U, args.pointerCount);
ASSERT_EQ(0, args.pointerProperties[0].id);
ASSERT_EQ(AINPUT_SOURCE_TOUCHPAD, args.source);
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(args.pointerCoords[0], 100, 100, 1, 0, 0, 0, 0, 0, 0, 0));
// FINGER 1 DOWN
processSlot(mapper, 1);
processId(mapper, 2);
processPosition(mapper, 560 + RAW_X_MIN, 154 + RAW_Y_MIN);
processSync(mapper);
// expect coord[0] to contain previous location, coord[1] to contain new touch 1 location
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(ACTION_POINTER_1_DOWN, args.action);
ASSERT_EQ(2U, args.pointerCount);
ASSERT_EQ(0, args.pointerProperties[0].id);
ASSERT_EQ(1, args.pointerProperties[1].id);
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(args.pointerCoords[0], 100, 100, 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(args.pointerCoords[1], 560, 154, 1, 0, 0, 0, 0, 0, 0, 0));
// FINGER 1 MOVE
processPosition(mapper, 540 + RAW_X_MIN, 690 + RAW_Y_MIN);
processSync(mapper);
// expect coord[0] to contain previous location, coord[1] to contain new touch 1 location
// from move
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(args.pointerCoords[0], 100, 100, 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(args.pointerCoords[1], 540, 690, 1, 0, 0, 0, 0, 0, 0, 0));
// FINGER 0 MOVE
processSlot(mapper, 0);
processPosition(mapper, 50 + RAW_X_MIN, 800 + RAW_Y_MIN);
processSync(mapper);
// expect coord[0] to contain new touch 0 location, coord[1] to contain previous location
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(args.pointerCoords[0], 50, 800, 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(args.pointerCoords[1], 540, 690, 1, 0, 0, 0, 0, 0, 0, 0));
// BUTTON DOWN
processKey(mapper, BTN_LEFT, 1);
processSync(mapper);
// touchinputmapper design sends a move before button press
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, args.action);
// BUTTON UP
processKey(mapper, BTN_LEFT, 0);
processSync(mapper);
// touchinputmapper design sends a move after button release
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, args.action);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
// FINGER 0 UP
processId(mapper, -1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | 0x0000, args.action);
// FINGER 1 MOVE
processSlot(mapper, 1);
processPosition(mapper, 320 + RAW_X_MIN, 900 + RAW_Y_MIN);
processSync(mapper);
// expect coord[0] to contain new location of touch 1, and properties[0].id to contain 1
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_EQ(1U, args.pointerCount);
ASSERT_EQ(1, args.pointerProperties[0].id);
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(args.pointerCoords[0], 320, 900, 1, 0, 0, 0, 0, 0, 0, 0));
// FINGER 1 UP
processId(mapper, -1);
processKey(mapper, BTN_TOUCH, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
// non captured touchpad should be a mouse source
mFakePolicy->setPointerCapture(false);
configureDevice(InputReaderConfiguration::CHANGE_POINTER_CAPTURE);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(AINPUT_SOURCE_MOUSE, mapper.getSources());
}
TEST_F(MultiTouchInputMapperTest, Process_UnCapturedTouchpadPointer) {
std::shared_ptr<FakePointerController> fakePointerController =
std::make_shared<FakePointerController>();
fakePointerController->setBounds(0, 0, DISPLAY_WIDTH - 1, DISPLAY_HEIGHT - 1);
fakePointerController->setPosition(0, 0);
fakePointerController->setButtonState(0);
// prepare device and capture
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID | SLOT);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_LEFT, 0, AKEYCODE_UNKNOWN, 0);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOUCH, 0, AKEYCODE_UNKNOWN, 0);
mFakePolicy->setPointerController(fakePointerController);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
// run uncaptured pointer tests - pushes out generic events
// FINGER 0 DOWN
processId(mapper, 3);
processPosition(mapper, 100, 100);
processKey(mapper, BTN_TOUCH, 1);
processSync(mapper);
// start at (100,100), cursor should be at (0,0) * scale
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(args.pointerCoords[0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
// FINGER 0 MOVE
processPosition(mapper, 200, 200);
processSync(mapper);
// compute scaling to help with touch position checking
float rawDiagonal = hypotf(RAW_X_MAX - RAW_X_MIN, RAW_Y_MAX - RAW_Y_MIN);
float displayDiagonal = hypotf(DISPLAY_WIDTH, DISPLAY_HEIGHT);
float scale =
mFakePolicy->getPointerGestureMovementSpeedRatio() * displayDiagonal / rawDiagonal;
// translate from (100,100) -> (200,200), cursor should have changed to (100,100) * scale)
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 100 * scale, 100 * scale, 0,
0, 0, 0, 0, 0, 0, 0));
}
TEST_F(MultiTouchInputMapperTest, WhenCapturedAndNotCaptured_GetSources) {
std::shared_ptr<FakePointerController> fakePointerController =
std::make_shared<FakePointerController>();
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION | ID | SLOT);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_LEFT, 0, AKEYCODE_UNKNOWN, 0);
mFakePolicy->setPointerController(fakePointerController);
mFakePolicy->setPointerCapture(false);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
// uncaptured touchpad should be a pointer device
ASSERT_EQ(AINPUT_SOURCE_MOUSE, mapper.getSources());
// captured touchpad should be a touchpad device
mFakePolicy->setPointerCapture(true);
configureDevice(InputReaderConfiguration::CHANGE_POINTER_CAPTURE);
ASSERT_EQ(AINPUT_SOURCE_TOUCHPAD, mapper.getSources());
}
class MultiTouchPointerModeTest : public MultiTouchInputMapperTest {
protected:
float mPointerMovementScale;
float mPointerXZoomScale;
void preparePointerMode(int xAxisResolution, int yAxisResolution) {
addConfigurationProperty("touch.deviceType", "pointer");
std::shared_ptr<FakePointerController> fakePointerController =
std::make_shared<FakePointerController>();
fakePointerController->setBounds(0, 0, DISPLAY_WIDTH - 1, DISPLAY_HEIGHT - 1);
fakePointerController->setPosition(0, 0);
fakePointerController->setButtonState(0);
prepareDisplay(DISPLAY_ORIENTATION_0);
prepareAxes(POSITION);
prepareAbsoluteAxisResolution(xAxisResolution, yAxisResolution);
// In order to enable swipe and freeform gesture in pointer mode, pointer capture
// needs to be disabled, and the pointer gesture needs to be enabled.
mFakePolicy->setPointerCapture(false);
mFakePolicy->setPointerGestureEnabled(true);
mFakePolicy->setPointerController(fakePointerController);
float rawDiagonal = hypotf(RAW_X_MAX - RAW_X_MIN, RAW_Y_MAX - RAW_Y_MIN);
float displayDiagonal = hypotf(DISPLAY_WIDTH, DISPLAY_HEIGHT);
mPointerMovementScale =
mFakePolicy->getPointerGestureMovementSpeedRatio() * displayDiagonal / rawDiagonal;
mPointerXZoomScale =
mFakePolicy->getPointerGestureZoomSpeedRatio() * displayDiagonal / rawDiagonal;
}
void prepareAbsoluteAxisResolution(int xAxisResolution, int yAxisResolution) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_X, RAW_X_MIN, RAW_X_MAX,
/*flat*/ 0,
/*fuzz*/ 0, /*resolution*/ xAxisResolution);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_Y, RAW_Y_MIN, RAW_Y_MAX,
/*flat*/ 0,
/*fuzz*/ 0, /*resolution*/ yAxisResolution);
}
};
/**
* Two fingers down on a pointer mode touch pad. The width
* of the two finger is larger than 1/4 of the touch pack diagnal length. However, it
* is smaller than the fixed min physical length 30mm. Two fingers' distance must
* be greater than the both value to be freeform gesture, so that after two
* fingers start to move downwards, the gesture should be swipe.
*/
TEST_F(MultiTouchPointerModeTest, PointerGestureMaxSwipeWidthSwipe) {
// The min freeform gesture width is 25units/mm x 30mm = 750
// which is greater than fraction of the diagnal length of the touchpad (349).
// Thus, MaxSwipWidth is 750.
preparePointerMode(25 /*xResolution*/, 25 /*yResolution*/);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
// Two fingers down at once.
// The two fingers are 450 units apart, expects the current gesture to be PRESS
// Pointer's initial position is used the [0,0] coordinate.
int32_t x1 = 100, y1 = 125, x2 = 550, y2 = 125;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processMTSync(mapper);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(1U, motionArgs.pointerCount);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(MotionClassification::NONE, motionArgs.classification);
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(motionArgs.pointerCoords[0], 0, 0, 1, 0, 0, 0, 0, 0, 0, 0));
// It should be recognized as a SWIPE gesture when two fingers start to move down,
// that there should be 1 pointer.
int32_t movingDistance = 200;
y1 += movingDistance;
y2 += movingDistance;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processMTSync(mapper);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(1U, motionArgs.pointerCount);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(MotionClassification::TWO_FINGER_SWIPE, motionArgs.classification);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 0,
movingDistance * mPointerMovementScale, 1, 0, 0, 0,
0, 0, 0, 0));
}
/**
* Two fingers down on a pointer mode touch pad. The width of the two finger is larger
* than the minimum freeform gesture width, 30mm. However, it is smaller than 1/4 of
* the touch pack diagnal length. Two fingers' distance must be greater than the both
* value to be freeform gesture, so that after two fingers start to move downwards,
* the gesture should be swipe.
*/
TEST_F(MultiTouchPointerModeTest, PointerGestureMaxSwipeWidthLowResolutionSwipe) {
// The min freeform gesture width is 5units/mm x 30mm = 150
// which is greater than fraction of the diagnal length of the touchpad (349).
// Thus, MaxSwipWidth is the fraction of the diagnal length, 349.
preparePointerMode(5 /*xResolution*/, 5 /*yResolution*/);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
// Two fingers down at once.
// The two fingers are 250 units apart, expects the current gesture to be PRESS
// Pointer's initial position is used the [0,0] coordinate.
int32_t x1 = 100, y1 = 125, x2 = 350, y2 = 125;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processMTSync(mapper);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(1U, motionArgs.pointerCount);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(MotionClassification::NONE, motionArgs.classification);
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(motionArgs.pointerCoords[0], 0, 0, 1, 0, 0, 0, 0, 0, 0, 0));
// It should be recognized as a SWIPE gesture when two fingers start to move down,
// and there should be 1 pointer.
int32_t movingDistance = 200;
y1 += movingDistance;
y2 += movingDistance;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processMTSync(mapper);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(1U, motionArgs.pointerCount);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(MotionClassification::TWO_FINGER_SWIPE, motionArgs.classification);
// New coordinate is the scaled relative coordinate from the initial coordinate.
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 0,
movingDistance * mPointerMovementScale, 1, 0, 0, 0,
0, 0, 0, 0));
}
/**
* Touch the touch pad with two fingers with a distance wider than the minimum freeform
* gesture width and 1/4 of the diagnal length of the touchpad. Expect to receive
* freeform gestures after two fingers start to move downwards.
*/
TEST_F(MultiTouchPointerModeTest, PointerGestureMaxSwipeWidthFreeform) {
preparePointerMode(25 /*xResolution*/, 25 /*yResolution*/);
MultiTouchInputMapper& mapper = addMapperAndConfigure<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
// Two fingers down at once. Wider than the max swipe width.
// The gesture is expected to be PRESS, then transformed to FREEFORM
int32_t x1 = 100, y1 = 125, x2 = 900, y2 = 125;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processMTSync(mapper);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(1U, motionArgs.pointerCount);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(MotionClassification::NONE, motionArgs.classification);
// One pointer for PRESS, and its coordinate is used as the origin for pointer coordinates.
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(motionArgs.pointerCoords[0], 0, 0, 1, 0, 0, 0, 0, 0, 0, 0));
int32_t movingDistance = 200;
// Move two fingers down, expect a cancel event because gesture is changing to freeform,
// then two down events for two pointers.
y1 += movingDistance;
y2 += movingDistance;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processMTSync(mapper);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
// The previous PRESS gesture is cancelled, because it is transformed to freeform
ASSERT_EQ(1U, motionArgs.pointerCount);
ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1U, motionArgs.pointerCount);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(MotionClassification::NONE, motionArgs.classification);
ASSERT_EQ(2U, motionArgs.pointerCount);
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN, motionArgs.action & AMOTION_EVENT_ACTION_MASK);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(MotionClassification::NONE, motionArgs.classification);
// Two pointers' scaled relative coordinates from their initial centroid.
// Initial y coordinates are 0 as y1 and y2 have the same value.
float cookedX1 = (x1 - x2) / 2 * mPointerXZoomScale;
float cookedX2 = (x2 - x1) / 2 * mPointerXZoomScale;
// When pointers move, the new coordinates equal to the initial coordinates plus
// scaled moving distance.
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], cookedX1,
movingDistance * mPointerMovementScale, 1, 0, 0, 0,
0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], cookedX2,
movingDistance * mPointerMovementScale, 1, 0, 0, 0,
0, 0, 0, 0));
// Move two fingers down again, expect one MOVE motion event.
y1 += movingDistance;
y2 += movingDistance;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processMTSync(mapper);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(2U, motionArgs.pointerCount);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_TOOL_TYPE_FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(MotionClassification::NONE, motionArgs.classification);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], cookedX1,
movingDistance * 2 * mPointerMovementScale, 1, 0, 0,
0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], cookedX2,
movingDistance * 2 * mPointerMovementScale, 1, 0, 0,
0, 0, 0, 0, 0));
}
// --- JoystickInputMapperTest ---
class JoystickInputMapperTest : public InputMapperTest {
protected:
static const int32_t RAW_X_MIN;
static const int32_t RAW_X_MAX;
static const int32_t RAW_Y_MIN;
static const int32_t RAW_Y_MAX;
void SetUp() override {
InputMapperTest::SetUp(InputDeviceClass::JOYSTICK | InputDeviceClass::EXTERNAL);
}
void prepareAxes() {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_X, RAW_X_MIN, RAW_X_MAX, 0, 0);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_Y, RAW_Y_MIN, RAW_Y_MAX, 0, 0);
}
void processAxis(JoystickInputMapper& mapper, int32_t axis, int32_t value) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, axis, value);
}
void processSync(JoystickInputMapper& mapper) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
}
void prepareVirtualDisplay(int32_t orientation) {
setDisplayInfoAndReconfigure(VIRTUAL_DISPLAY_ID, VIRTUAL_DISPLAY_WIDTH,
VIRTUAL_DISPLAY_HEIGHT, orientation, VIRTUAL_DISPLAY_UNIQUE_ID,
NO_PORT, ViewportType::VIRTUAL);
}
};
const int32_t JoystickInputMapperTest::RAW_X_MIN = -32767;
const int32_t JoystickInputMapperTest::RAW_X_MAX = 32767;
const int32_t JoystickInputMapperTest::RAW_Y_MIN = -32767;
const int32_t JoystickInputMapperTest::RAW_Y_MAX = 32767;
TEST_F(JoystickInputMapperTest, Configure_AssignsDisplayUniqueId) {
prepareAxes();
JoystickInputMapper& mapper = addMapperAndConfigure<JoystickInputMapper>();
mFakePolicy->addInputUniqueIdAssociation(DEVICE_LOCATION, VIRTUAL_DISPLAY_UNIQUE_ID);
prepareVirtualDisplay(DISPLAY_ORIENTATION_0);
// Send an axis event
processAxis(mapper, ABS_X, 100);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(VIRTUAL_DISPLAY_ID, args.displayId);
// Send another axis event
processAxis(mapper, ABS_Y, 100);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(VIRTUAL_DISPLAY_ID, args.displayId);
}
// --- PeripheralControllerTest ---
class PeripheralControllerTest : public testing::Test {
protected:
static const char* DEVICE_NAME;
static const char* DEVICE_LOCATION;
static const int32_t DEVICE_ID;
static const int32_t DEVICE_GENERATION;
static const int32_t DEVICE_CONTROLLER_NUMBER;
static const ftl::Flags<InputDeviceClass> DEVICE_CLASSES;
static const int32_t EVENTHUB_ID;
std::shared_ptr<FakeEventHub> mFakeEventHub;
sp<FakeInputReaderPolicy> mFakePolicy;
std::unique_ptr<TestInputListener> mFakeListener;
std::unique_ptr<InstrumentedInputReader> mReader;
std::shared_ptr<InputDevice> mDevice;
virtual void SetUp(ftl::Flags<InputDeviceClass> classes) {
mFakeEventHub = std::make_unique<FakeEventHub>();
mFakePolicy = sp<FakeInputReaderPolicy>::make();
mFakeListener = std::make_unique<TestInputListener>();
mReader = std::make_unique<InstrumentedInputReader>(mFakeEventHub, mFakePolicy,
*mFakeListener);
mDevice = newDevice(DEVICE_ID, DEVICE_NAME, DEVICE_LOCATION, EVENTHUB_ID, classes);
}
void SetUp() override { SetUp(DEVICE_CLASSES); }
void TearDown() override {
mFakeListener.reset();
mFakePolicy.clear();
}
std::list<NotifyArgs> configureDevice(uint32_t changes) {
if (!changes || (changes & InputReaderConfiguration::CHANGE_DISPLAY_INFO)) {
mReader->requestRefreshConfiguration(changes);
mReader->loopOnce();
}
return mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), changes);
}
std::shared_ptr<InputDevice> newDevice(int32_t deviceId, const std::string& name,
const std::string& location, int32_t eventHubId,
ftl::Flags<InputDeviceClass> classes) {
InputDeviceIdentifier identifier;
identifier.name = name;
identifier.location = location;
std::shared_ptr<InputDevice> device =
std::make_shared<InputDevice>(mReader->getContext(), deviceId, DEVICE_GENERATION,
identifier);
mReader->pushNextDevice(device);
mFakeEventHub->addDevice(eventHubId, name, classes);
mReader->loopOnce();
return device;
}
template <class T, typename... Args>
T& addControllerAndConfigure(Args... args) {
T& controller = mDevice->addController<T>(EVENTHUB_ID, args...);
return controller;
}
};
const char* PeripheralControllerTest::DEVICE_NAME = "device";
const char* PeripheralControllerTest::DEVICE_LOCATION = "BLUETOOTH";
const int32_t PeripheralControllerTest::DEVICE_ID = END_RESERVED_ID + 1000;
const int32_t PeripheralControllerTest::DEVICE_GENERATION = 2;
const int32_t PeripheralControllerTest::DEVICE_CONTROLLER_NUMBER = 0;
const ftl::Flags<InputDeviceClass> PeripheralControllerTest::DEVICE_CLASSES =
ftl::Flags<InputDeviceClass>(0); // not needed for current tests
const int32_t PeripheralControllerTest::EVENTHUB_ID = 1;
// --- BatteryControllerTest ---
class BatteryControllerTest : public PeripheralControllerTest {
protected:
void SetUp() override {
PeripheralControllerTest::SetUp(DEVICE_CLASSES | InputDeviceClass::BATTERY);
}
};
TEST_F(BatteryControllerTest, GetBatteryCapacity) {
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
ASSERT_TRUE(controller.getBatteryCapacity(DEFAULT_BATTERY));
ASSERT_EQ(controller.getBatteryCapacity(DEFAULT_BATTERY).value_or(-1), BATTERY_CAPACITY);
}
TEST_F(BatteryControllerTest, GetBatteryStatus) {
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
ASSERT_TRUE(controller.getBatteryStatus(DEFAULT_BATTERY));
ASSERT_EQ(controller.getBatteryStatus(DEFAULT_BATTERY).value_or(-1), BATTERY_STATUS);
}
// --- LightControllerTest ---
class LightControllerTest : public PeripheralControllerTest {
protected:
void SetUp() override {
PeripheralControllerTest::SetUp(DEVICE_CLASSES | InputDeviceClass::LIGHT);
}
};
TEST_F(LightControllerTest, MonoLight) {
RawLightInfo infoMono = {.id = 1,
.name = "mono_light",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS,
.path = ""};
mFakeEventHub->addRawLightInfo(infoMono.id, std::move(infoMono));
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
InputDeviceInfo info;
controller.populateDeviceInfo(&info);
std::vector<InputDeviceLightInfo> lights = info.getLights();
ASSERT_EQ(1U, lights.size());
ASSERT_EQ(InputDeviceLightType::INPUT, lights[0].type);
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS));
ASSERT_TRUE(controller.setLightColor(lights[0].id, LIGHT_BRIGHTNESS));
ASSERT_EQ(controller.getLightColor(lights[0].id).value_or(-1), LIGHT_BRIGHTNESS);
}
TEST_F(LightControllerTest, MonoKeyboardBacklight) {
RawLightInfo infoMono = {.id = 1,
.name = "mono_keyboard_backlight",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS |
InputLightClass::KEYBOARD_BACKLIGHT,
.path = ""};
mFakeEventHub->addRawLightInfo(infoMono.id, std::move(infoMono));
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
InputDeviceInfo info;
controller.populateDeviceInfo(&info);
std::vector<InputDeviceLightInfo> lights = info.getLights();
ASSERT_EQ(1U, lights.size());
ASSERT_EQ(InputDeviceLightType::KEYBOARD_BACKLIGHT, lights[0].type);
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS));
ASSERT_TRUE(controller.setLightColor(lights[0].id, LIGHT_BRIGHTNESS));
ASSERT_EQ(controller.getLightColor(lights[0].id).value_or(-1), LIGHT_BRIGHTNESS);
}
TEST_F(LightControllerTest, RGBLight) {
RawLightInfo infoRed = {.id = 1,
.name = "red",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS | InputLightClass::RED,
.path = ""};
RawLightInfo infoGreen = {.id = 2,
.name = "green",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS | InputLightClass::GREEN,
.path = ""};
RawLightInfo infoBlue = {.id = 3,
.name = "blue",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS | InputLightClass::BLUE,
.path = ""};
mFakeEventHub->addRawLightInfo(infoRed.id, std::move(infoRed));
mFakeEventHub->addRawLightInfo(infoGreen.id, std::move(infoGreen));
mFakeEventHub->addRawLightInfo(infoBlue.id, std::move(infoBlue));
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
InputDeviceInfo info;
controller.populateDeviceInfo(&info);
std::vector<InputDeviceLightInfo> lights = info.getLights();
ASSERT_EQ(1U, lights.size());
ASSERT_EQ(InputDeviceLightType::INPUT, lights[0].type);
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS));
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::RGB));
ASSERT_TRUE(controller.setLightColor(lights[0].id, LIGHT_COLOR));
ASSERT_EQ(controller.getLightColor(lights[0].id).value_or(-1), LIGHT_COLOR);
}
TEST_F(LightControllerTest, CorrectRGBKeyboardBacklight) {
RawLightInfo infoRed = {.id = 1,
.name = "red_keyboard_backlight",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS | InputLightClass::RED |
InputLightClass::KEYBOARD_BACKLIGHT,
.path = ""};
RawLightInfo infoGreen = {.id = 2,
.name = "green_keyboard_backlight",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS | InputLightClass::GREEN |
InputLightClass::KEYBOARD_BACKLIGHT,
.path = ""};
RawLightInfo infoBlue = {.id = 3,
.name = "blue_keyboard_backlight",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS | InputLightClass::BLUE |
InputLightClass::KEYBOARD_BACKLIGHT,
.path = ""};
mFakeEventHub->addRawLightInfo(infoRed.id, std::move(infoRed));
mFakeEventHub->addRawLightInfo(infoGreen.id, std::move(infoGreen));
mFakeEventHub->addRawLightInfo(infoBlue.id, std::move(infoBlue));
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
InputDeviceInfo info;
controller.populateDeviceInfo(&info);
std::vector<InputDeviceLightInfo> lights = info.getLights();
ASSERT_EQ(1U, lights.size());
ASSERT_EQ(InputDeviceLightType::KEYBOARD_BACKLIGHT, lights[0].type);
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS));
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::RGB));
ASSERT_TRUE(controller.setLightColor(lights[0].id, LIGHT_COLOR));
ASSERT_EQ(controller.getLightColor(lights[0].id).value_or(-1), LIGHT_COLOR);
}
TEST_F(LightControllerTest, IncorrectRGBKeyboardBacklight) {
RawLightInfo infoRed = {.id = 1,
.name = "red",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS | InputLightClass::RED,
.path = ""};
RawLightInfo infoGreen = {.id = 2,
.name = "green",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS | InputLightClass::GREEN,
.path = ""};
RawLightInfo infoBlue = {.id = 3,
.name = "blue",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS | InputLightClass::BLUE,
.path = ""};
RawLightInfo infoGlobal = {.id = 3,
.name = "global_keyboard_backlight",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS | InputLightClass::GLOBAL |
InputLightClass::KEYBOARD_BACKLIGHT,
.path = ""};
mFakeEventHub->addRawLightInfo(infoRed.id, std::move(infoRed));
mFakeEventHub->addRawLightInfo(infoGreen.id, std::move(infoGreen));
mFakeEventHub->addRawLightInfo(infoBlue.id, std::move(infoBlue));
mFakeEventHub->addRawLightInfo(infoBlue.id, std::move(infoGlobal));
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
InputDeviceInfo info;
controller.populateDeviceInfo(&info);
std::vector<InputDeviceLightInfo> lights = info.getLights();
ASSERT_EQ(1U, lights.size());
ASSERT_EQ(InputDeviceLightType::INPUT, lights[0].type);
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS));
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::RGB));
ASSERT_TRUE(controller.setLightColor(lights[0].id, LIGHT_COLOR));
ASSERT_EQ(controller.getLightColor(lights[0].id).value_or(-1), LIGHT_COLOR);
}
TEST_F(LightControllerTest, MultiColorRGBLight) {
RawLightInfo infoColor = {.id = 1,
.name = "multi_color",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS |
InputLightClass::MULTI_INTENSITY |
InputLightClass::MULTI_INDEX,
.path = ""};
mFakeEventHub->addRawLightInfo(infoColor.id, std::move(infoColor));
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
InputDeviceInfo info;
controller.populateDeviceInfo(&info);
std::vector<InputDeviceLightInfo> lights = info.getLights();
ASSERT_EQ(1U, lights.size());
ASSERT_EQ(InputDeviceLightType::INPUT, lights[0].type);
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS));
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::RGB));
ASSERT_TRUE(controller.setLightColor(lights[0].id, LIGHT_COLOR));
ASSERT_EQ(controller.getLightColor(lights[0].id).value_or(-1), LIGHT_COLOR);
}
TEST_F(LightControllerTest, MultiColorRGBKeyboardBacklight) {
RawLightInfo infoColor = {.id = 1,
.name = "multi_color_keyboard_backlight",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS |
InputLightClass::MULTI_INTENSITY |
InputLightClass::MULTI_INDEX |
InputLightClass::KEYBOARD_BACKLIGHT,
.path = ""};
mFakeEventHub->addRawLightInfo(infoColor.id, std::move(infoColor));
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
InputDeviceInfo info;
controller.populateDeviceInfo(&info);
std::vector<InputDeviceLightInfo> lights = info.getLights();
ASSERT_EQ(1U, lights.size());
ASSERT_EQ(InputDeviceLightType::KEYBOARD_BACKLIGHT, lights[0].type);
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS));
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::RGB));
ASSERT_TRUE(controller.setLightColor(lights[0].id, LIGHT_COLOR));
ASSERT_EQ(controller.getLightColor(lights[0].id).value_or(-1), LIGHT_COLOR);
}
TEST_F(LightControllerTest, PlayerIdLight) {
RawLightInfo info1 = {.id = 1,
.name = "player1",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS,
.path = ""};
RawLightInfo info2 = {.id = 2,
.name = "player2",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS,
.path = ""};
RawLightInfo info3 = {.id = 3,
.name = "player3",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS,
.path = ""};
RawLightInfo info4 = {.id = 4,
.name = "player4",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS,
.path = ""};
mFakeEventHub->addRawLightInfo(info1.id, std::move(info1));
mFakeEventHub->addRawLightInfo(info2.id, std::move(info2));
mFakeEventHub->addRawLightInfo(info3.id, std::move(info3));
mFakeEventHub->addRawLightInfo(info4.id, std::move(info4));
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
InputDeviceInfo info;
controller.populateDeviceInfo(&info);
std::vector<InputDeviceLightInfo> lights = info.getLights();
ASSERT_EQ(1U, lights.size());
ASSERT_EQ(InputDeviceLightType::PLAYER_ID, lights[0].type);
ASSERT_FALSE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS));
ASSERT_FALSE(lights[0].capabilityFlags.test(InputDeviceLightCapability::RGB));
ASSERT_FALSE(controller.setLightColor(lights[0].id, LIGHT_COLOR));
ASSERT_TRUE(controller.setLightPlayerId(lights[0].id, LIGHT_PLAYER_ID));
ASSERT_EQ(controller.getLightPlayerId(lights[0].id).value_or(-1), LIGHT_PLAYER_ID);
}
} // namespace android