blob: 482e23f043c32c5da93a24e6be5e2a3e3f71f11d [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "InputDispatcher"
#define ATRACE_TAG ATRACE_TAG_INPUT
#define LOG_NDEBUG 1
#include <android-base/chrono_utils.h>
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android/os/IInputConstants.h>
#include <binder/Binder.h>
#include <ftl/enum.h>
#include <log/log_event_list.h>
#if defined(__ANDROID__)
#include <gui/SurfaceComposerClient.h>
#endif
#include <input/InputDevice.h>
#include <input/PrintTools.h>
#include <openssl/mem.h>
#include <powermanager/PowerManager.h>
#include <unistd.h>
#include <utils/Trace.h>
#include <cerrno>
#include <cinttypes>
#include <climits>
#include <cstddef>
#include <ctime>
#include <queue>
#include <sstream>
#include "Connection.h"
#include "DebugConfig.h"
#include "InputDispatcher.h"
#define INDENT " "
#define INDENT2 " "
#define INDENT3 " "
#define INDENT4 " "
using namespace android::ftl::flag_operators;
using android::base::Error;
using android::base::HwTimeoutMultiplier;
using android::base::Result;
using android::base::StringPrintf;
using android::gui::DisplayInfo;
using android::gui::FocusRequest;
using android::gui::TouchOcclusionMode;
using android::gui::WindowInfo;
using android::gui::WindowInfoHandle;
using android::os::InputEventInjectionResult;
using android::os::InputEventInjectionSync;
namespace android::inputdispatcher {
namespace {
// Temporarily releases a held mutex for the lifetime of the instance.
// Named to match std::scoped_lock
class scoped_unlock {
public:
explicit scoped_unlock(std::mutex& mutex) : mMutex(mutex) { mMutex.unlock(); }
~scoped_unlock() { mMutex.lock(); }
private:
std::mutex& mMutex;
};
// Default input dispatching timeout if there is no focused application or paused window
// from which to determine an appropriate dispatching timeout.
const std::chrono::duration DEFAULT_INPUT_DISPATCHING_TIMEOUT = std::chrono::milliseconds(
android::os::IInputConstants::UNMULTIPLIED_DEFAULT_DISPATCHING_TIMEOUT_MILLIS *
HwTimeoutMultiplier());
// Amount of time to allow for all pending events to be processed when an app switch
// key is on the way. This is used to preempt input dispatch and drop input events
// when an application takes too long to respond and the user has pressed an app switch key.
constexpr nsecs_t APP_SWITCH_TIMEOUT = 500 * 1000000LL; // 0.5sec
const std::chrono::duration STALE_EVENT_TIMEOUT = std::chrono::seconds(10) * HwTimeoutMultiplier();
// Log a warning when an event takes longer than this to process, even if an ANR does not occur.
constexpr nsecs_t SLOW_EVENT_PROCESSING_WARNING_TIMEOUT = 2000 * 1000000LL; // 2sec
// Log a warning when an interception call takes longer than this to process.
constexpr std::chrono::milliseconds SLOW_INTERCEPTION_THRESHOLD = 50ms;
// Additional key latency in case a connection is still processing some motion events.
// This will help with the case when a user touched a button that opens a new window,
// and gives us the chance to dispatch the key to this new window.
constexpr std::chrono::nanoseconds KEY_WAITING_FOR_EVENTS_TIMEOUT = 500ms;
// Number of recent events to keep for debugging purposes.
constexpr size_t RECENT_QUEUE_MAX_SIZE = 10;
// Event log tags. See EventLogTags.logtags for reference.
constexpr int LOGTAG_INPUT_INTERACTION = 62000;
constexpr int LOGTAG_INPUT_FOCUS = 62001;
constexpr int LOGTAG_INPUT_CANCEL = 62003;
const ui::Transform kIdentityTransform;
inline nsecs_t now() {
return systemTime(SYSTEM_TIME_MONOTONIC);
}
inline const std::string binderToString(const sp<IBinder>& binder) {
if (binder == nullptr) {
return "<null>";
}
return StringPrintf("%p", binder.get());
}
static std::string uidString(const gui::Uid& uid) {
return uid.toString();
}
inline int32_t getMotionEventActionPointerIndex(int32_t action) {
return (action & AMOTION_EVENT_ACTION_POINTER_INDEX_MASK) >>
AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
}
Result<void> checkKeyAction(int32_t action) {
switch (action) {
case AKEY_EVENT_ACTION_DOWN:
case AKEY_EVENT_ACTION_UP:
return {};
default:
return Error() << "Key event has invalid action code " << action;
}
}
Result<void> validateKeyEvent(int32_t action) {
return checkKeyAction(action);
}
Result<void> checkMotionAction(int32_t action, int32_t actionButton, int32_t pointerCount) {
switch (MotionEvent::getActionMasked(action)) {
case AMOTION_EVENT_ACTION_DOWN:
case AMOTION_EVENT_ACTION_UP: {
if (pointerCount != 1) {
return Error() << "invalid pointer count " << pointerCount;
}
return {};
}
case AMOTION_EVENT_ACTION_MOVE:
case AMOTION_EVENT_ACTION_HOVER_ENTER:
case AMOTION_EVENT_ACTION_HOVER_MOVE:
case AMOTION_EVENT_ACTION_HOVER_EXIT: {
if (pointerCount < 1) {
return Error() << "invalid pointer count " << pointerCount;
}
return {};
}
case AMOTION_EVENT_ACTION_CANCEL:
case AMOTION_EVENT_ACTION_OUTSIDE:
case AMOTION_EVENT_ACTION_SCROLL:
return {};
case AMOTION_EVENT_ACTION_POINTER_DOWN:
case AMOTION_EVENT_ACTION_POINTER_UP: {
const int32_t index = MotionEvent::getActionIndex(action);
if (index < 0) {
return Error() << "invalid index " << index << " for "
<< MotionEvent::actionToString(action);
}
if (index >= pointerCount) {
return Error() << "invalid index " << index << " for pointerCount " << pointerCount;
}
if (pointerCount <= 1) {
return Error() << "invalid pointer count " << pointerCount << " for "
<< MotionEvent::actionToString(action);
}
return {};
}
case AMOTION_EVENT_ACTION_BUTTON_PRESS:
case AMOTION_EVENT_ACTION_BUTTON_RELEASE: {
if (actionButton == 0) {
return Error() << "action button should be nonzero for "
<< MotionEvent::actionToString(action);
}
return {};
}
default:
return Error() << "invalid action " << action;
}
}
int64_t millis(std::chrono::nanoseconds t) {
return std::chrono::duration_cast<std::chrono::milliseconds>(t).count();
}
Result<void> validateMotionEvent(int32_t action, int32_t actionButton, size_t pointerCount,
const PointerProperties* pointerProperties) {
Result<void> actionCheck = checkMotionAction(action, actionButton, pointerCount);
if (!actionCheck.ok()) {
return actionCheck;
}
if (pointerCount < 1 || pointerCount > MAX_POINTERS) {
return Error() << "Motion event has invalid pointer count " << pointerCount
<< "; value must be between 1 and " << MAX_POINTERS << ".";
}
std::bitset<MAX_POINTER_ID + 1> pointerIdBits;
for (size_t i = 0; i < pointerCount; i++) {
int32_t id = pointerProperties[i].id;
if (id < 0 || id > MAX_POINTER_ID) {
return Error() << "Motion event has invalid pointer id " << id
<< "; value must be between 0 and " << MAX_POINTER_ID;
}
if (pointerIdBits.test(id)) {
return Error() << "Motion event has duplicate pointer id " << id;
}
pointerIdBits.set(id);
}
return {};
}
Result<void> validateInputEvent(const InputEvent& event) {
switch (event.getType()) {
case InputEventType::KEY: {
const KeyEvent& key = static_cast<const KeyEvent&>(event);
const int32_t action = key.getAction();
return validateKeyEvent(action);
}
case InputEventType::MOTION: {
const MotionEvent& motion = static_cast<const MotionEvent&>(event);
const int32_t action = motion.getAction();
const size_t pointerCount = motion.getPointerCount();
const PointerProperties* pointerProperties = motion.getPointerProperties();
const int32_t actionButton = motion.getActionButton();
return validateMotionEvent(action, actionButton, pointerCount, pointerProperties);
}
default: {
return {};
}
}
}
std::string dumpRegion(const Region& region) {
if (region.isEmpty()) {
return "<empty>";
}
std::string dump;
bool first = true;
Region::const_iterator cur = region.begin();
Region::const_iterator const tail = region.end();
while (cur != tail) {
if (first) {
first = false;
} else {
dump += "|";
}
dump += StringPrintf("[%d,%d][%d,%d]", cur->left, cur->top, cur->right, cur->bottom);
cur++;
}
return dump;
}
std::string dumpQueue(const std::deque<DispatchEntry*>& queue, nsecs_t currentTime) {
constexpr size_t maxEntries = 50; // max events to print
constexpr size_t skipBegin = maxEntries / 2;
const size_t skipEnd = queue.size() - maxEntries / 2;
// skip from maxEntries / 2 ... size() - maxEntries/2
// only print from 0 .. skipBegin and then from skipEnd .. size()
std::string dump;
for (size_t i = 0; i < queue.size(); i++) {
const DispatchEntry& entry = *queue[i];
if (i >= skipBegin && i < skipEnd) {
dump += StringPrintf(INDENT4 "<skipped %zu entries>\n", skipEnd - skipBegin);
i = skipEnd - 1; // it will be incremented to "skipEnd" by 'continue'
continue;
}
dump.append(INDENT4);
dump += entry.eventEntry->getDescription();
dump += StringPrintf(", seq=%" PRIu32 ", targetFlags=%s, resolvedAction=%d, age=%" PRId64
"ms",
entry.seq, entry.targetFlags.string().c_str(), entry.resolvedAction,
ns2ms(currentTime - entry.eventEntry->eventTime));
if (entry.deliveryTime != 0) {
// This entry was delivered, so add information on how long we've been waiting
dump += StringPrintf(", wait=%" PRId64 "ms", ns2ms(currentTime - entry.deliveryTime));
}
dump.append("\n");
}
return dump;
}
/**
* Find the entry in std::unordered_map by key, and return it.
* If the entry is not found, return a default constructed entry.
*
* Useful when the entries are vectors, since an empty vector will be returned
* if the entry is not found.
* Also useful when the entries are sp<>. If an entry is not found, nullptr is returned.
*/
template <typename K, typename V>
V getValueByKey(const std::unordered_map<K, V>& map, K key) {
auto it = map.find(key);
return it != map.end() ? it->second : V{};
}
bool haveSameToken(const sp<WindowInfoHandle>& first, const sp<WindowInfoHandle>& second) {
if (first == second) {
return true;
}
if (first == nullptr || second == nullptr) {
return false;
}
return first->getToken() == second->getToken();
}
bool haveSameApplicationToken(const WindowInfo* first, const WindowInfo* second) {
if (first == nullptr || second == nullptr) {
return false;
}
return first->applicationInfo.token != nullptr &&
first->applicationInfo.token == second->applicationInfo.token;
}
template <typename T>
size_t firstMarkedBit(T set) {
// TODO: replace with std::countr_zero from <bit> when that's available
LOG_ALWAYS_FATAL_IF(set.none());
size_t i = 0;
while (!set.test(i)) {
i++;
}
return i;
}
std::unique_ptr<DispatchEntry> createDispatchEntry(
const InputTarget& inputTarget, std::shared_ptr<EventEntry> eventEntry,
ftl::Flags<InputTarget::Flags> inputTargetFlags) {
if (inputTarget.useDefaultPointerTransform()) {
const ui::Transform& transform = inputTarget.getDefaultPointerTransform();
return std::make_unique<DispatchEntry>(eventEntry, inputTargetFlags, transform,
inputTarget.displayTransform,
inputTarget.globalScaleFactor);
}
ALOG_ASSERT(eventEntry->type == EventEntry::Type::MOTION);
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(*eventEntry);
std::vector<PointerCoords> pointerCoords;
pointerCoords.resize(motionEntry.pointerCount);
// Use the first pointer information to normalize all other pointers. This could be any pointer
// as long as all other pointers are normalized to the same value and the final DispatchEntry
// uses the transform for the normalized pointer.
const ui::Transform& firstPointerTransform =
inputTarget.pointerTransforms[firstMarkedBit(inputTarget.pointerIds)];
ui::Transform inverseFirstTransform = firstPointerTransform.inverse();
// Iterate through all pointers in the event to normalize against the first.
for (uint32_t pointerIndex = 0; pointerIndex < motionEntry.pointerCount; pointerIndex++) {
const PointerProperties& pointerProperties = motionEntry.pointerProperties[pointerIndex];
uint32_t pointerId = uint32_t(pointerProperties.id);
const ui::Transform& currTransform = inputTarget.pointerTransforms[pointerId];
pointerCoords[pointerIndex].copyFrom(motionEntry.pointerCoords[pointerIndex]);
// First, apply the current pointer's transform to update the coordinates into
// window space.
pointerCoords[pointerIndex].transform(currTransform);
// Next, apply the inverse transform of the normalized coordinates so the
// current coordinates are transformed into the normalized coordinate space.
pointerCoords[pointerIndex].transform(inverseFirstTransform);
}
std::unique_ptr<MotionEntry> combinedMotionEntry =
std::make_unique<MotionEntry>(motionEntry.id, motionEntry.eventTime,
motionEntry.deviceId, motionEntry.source,
motionEntry.displayId, motionEntry.policyFlags,
motionEntry.action, motionEntry.actionButton,
motionEntry.flags, motionEntry.metaState,
motionEntry.buttonState, motionEntry.classification,
motionEntry.edgeFlags, motionEntry.xPrecision,
motionEntry.yPrecision, motionEntry.xCursorPosition,
motionEntry.yCursorPosition, motionEntry.downTime,
motionEntry.pointerCount, motionEntry.pointerProperties,
pointerCoords.data());
if (motionEntry.injectionState) {
combinedMotionEntry->injectionState = motionEntry.injectionState;
combinedMotionEntry->injectionState->refCount += 1;
}
std::unique_ptr<DispatchEntry> dispatchEntry =
std::make_unique<DispatchEntry>(std::move(combinedMotionEntry), inputTargetFlags,
firstPointerTransform, inputTarget.displayTransform,
inputTarget.globalScaleFactor);
return dispatchEntry;
}
status_t openInputChannelPair(const std::string& name, std::shared_ptr<InputChannel>& serverChannel,
std::unique_ptr<InputChannel>& clientChannel) {
std::unique_ptr<InputChannel> uniqueServerChannel;
status_t result = InputChannel::openInputChannelPair(name, uniqueServerChannel, clientChannel);
serverChannel = std::move(uniqueServerChannel);
return result;
}
template <typename T>
bool sharedPointersEqual(const std::shared_ptr<T>& lhs, const std::shared_ptr<T>& rhs) {
if (lhs == nullptr && rhs == nullptr) {
return true;
}
if (lhs == nullptr || rhs == nullptr) {
return false;
}
return *lhs == *rhs;
}
KeyEvent createKeyEvent(const KeyEntry& entry) {
KeyEvent event;
event.initialize(entry.id, entry.deviceId, entry.source, entry.displayId, INVALID_HMAC,
entry.action, entry.flags, entry.keyCode, entry.scanCode, entry.metaState,
entry.repeatCount, entry.downTime, entry.eventTime);
return event;
}
bool shouldReportMetricsForConnection(const Connection& connection) {
// Do not keep track of gesture monitors. They receive every event and would disproportionately
// affect the statistics.
if (connection.monitor) {
return false;
}
// If the connection is experiencing ANR, let's skip it. We have separate ANR metrics
if (!connection.responsive) {
return false;
}
return true;
}
bool shouldReportFinishedEvent(const DispatchEntry& dispatchEntry, const Connection& connection) {
const EventEntry& eventEntry = *dispatchEntry.eventEntry;
const int32_t& inputEventId = eventEntry.id;
if (inputEventId != dispatchEntry.resolvedEventId) {
// Event was transmuted
return false;
}
if (inputEventId == android::os::IInputConstants::INVALID_INPUT_EVENT_ID) {
return false;
}
// Only track latency for events that originated from hardware
if (eventEntry.isSynthesized()) {
return false;
}
const EventEntry::Type& inputEventEntryType = eventEntry.type;
if (inputEventEntryType == EventEntry::Type::KEY) {
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(eventEntry);
if (keyEntry.flags & AKEY_EVENT_FLAG_CANCELED) {
return false;
}
} else if (inputEventEntryType == EventEntry::Type::MOTION) {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(eventEntry);
if (motionEntry.action == AMOTION_EVENT_ACTION_CANCEL ||
motionEntry.action == AMOTION_EVENT_ACTION_HOVER_EXIT) {
return false;
}
} else {
// Not a key or a motion
return false;
}
if (!shouldReportMetricsForConnection(connection)) {
return false;
}
return true;
}
/**
* Connection is responsive if it has no events in the waitQueue that are older than the
* current time.
*/
bool isConnectionResponsive(const Connection& connection) {
const nsecs_t currentTime = now();
for (const DispatchEntry* entry : connection.waitQueue) {
if (entry->timeoutTime < currentTime) {
return false;
}
}
return true;
}
// Returns true if the event type passed as argument represents a user activity.
bool isUserActivityEvent(const EventEntry& eventEntry) {
switch (eventEntry.type) {
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET:
case EventEntry::Type::DRAG:
case EventEntry::Type::FOCUS:
case EventEntry::Type::POINTER_CAPTURE_CHANGED:
case EventEntry::Type::SENSOR:
case EventEntry::Type::TOUCH_MODE_CHANGED:
return false;
case EventEntry::Type::KEY:
case EventEntry::Type::MOTION:
return true;
}
}
// Returns true if the given window can accept pointer events at the given display location.
bool windowAcceptsTouchAt(const WindowInfo& windowInfo, int32_t displayId, float x, float y,
bool isStylus, const ui::Transform& displayTransform) {
const auto inputConfig = windowInfo.inputConfig;
if (windowInfo.displayId != displayId ||
inputConfig.test(WindowInfo::InputConfig::NOT_VISIBLE)) {
return false;
}
const bool windowCanInterceptTouch = isStylus && windowInfo.interceptsStylus();
if (inputConfig.test(WindowInfo::InputConfig::NOT_TOUCHABLE) && !windowCanInterceptTouch) {
return false;
}
// Window Manager works in the logical display coordinate space. When it specifies bounds for a
// window as (l, t, r, b), the range of x in [l, r) and y in [t, b) are considered to be inside
// the window. Points on the right and bottom edges should not be inside the window, so we need
// to be careful about performing a hit test when the display is rotated, since the "right" and
// "bottom" of the window will be different in the display (un-rotated) space compared to in the
// logical display in which WM determined the bounds. Perform the hit test in the logical
// display space to ensure these edges are considered correctly in all orientations.
const auto touchableRegion = displayTransform.transform(windowInfo.touchableRegion);
const auto p = displayTransform.transform(x, y);
if (!touchableRegion.contains(std::floor(p.x), std::floor(p.y))) {
return false;
}
return true;
}
bool isPointerFromStylus(const MotionEntry& entry, int32_t pointerIndex) {
return isFromSource(entry.source, AINPUT_SOURCE_STYLUS) &&
isStylusToolType(entry.pointerProperties[pointerIndex].toolType);
}
// Determines if the given window can be targeted as InputTarget::Flags::FOREGROUND.
// Foreground events are only sent to "foreground targetable" windows, but not all gestures sent to
// such window are necessarily targeted with the flag. For example, an event with ACTION_OUTSIDE can
// be sent to such a window, but it is not a foreground event and doesn't use
// InputTarget::Flags::FOREGROUND.
bool canReceiveForegroundTouches(const WindowInfo& info) {
// A non-touchable window can still receive touch events (e.g. in the case of
// STYLUS_INTERCEPTOR), so prevent such windows from receiving foreground events for touches.
return !info.inputConfig.test(gui::WindowInfo::InputConfig::NOT_TOUCHABLE) && !info.isSpy();
}
bool isWindowOwnedBy(const sp<WindowInfoHandle>& windowHandle, gui::Pid pid, gui::Uid uid) {
if (windowHandle == nullptr) {
return false;
}
const WindowInfo* windowInfo = windowHandle->getInfo();
if (pid == windowInfo->ownerPid && uid == windowInfo->ownerUid) {
return true;
}
return false;
}
// Checks targeted injection using the window's owner's uid.
// Returns an empty string if an entry can be sent to the given window, or an error message if the
// entry is a targeted injection whose uid target doesn't match the window owner.
std::optional<std::string> verifyTargetedInjection(const sp<WindowInfoHandle>& window,
const EventEntry& entry) {
if (entry.injectionState == nullptr || !entry.injectionState->targetUid) {
// The event was not injected, or the injected event does not target a window.
return {};
}
const auto uid = *entry.injectionState->targetUid;
if (window == nullptr) {
return StringPrintf("No valid window target for injection into uid %s.",
uid.toString().c_str());
}
if (entry.injectionState->targetUid != window->getInfo()->ownerUid) {
return StringPrintf("Injected event targeted at uid %s would be dispatched to window '%s' "
"owned by uid %s.",
uid.toString().c_str(), window->getName().c_str(),
window->getInfo()->ownerUid.toString().c_str());
}
return {};
}
std::pair<float, float> resolveTouchedPosition(const MotionEntry& entry) {
const bool isFromMouse = isFromSource(entry.source, AINPUT_SOURCE_MOUSE);
// Always dispatch mouse events to cursor position.
if (isFromMouse) {
return {entry.xCursorPosition, entry.yCursorPosition};
}
const int32_t pointerIndex = getMotionEventActionPointerIndex(entry.action);
return {entry.pointerCoords[pointerIndex].getAxisValue(AMOTION_EVENT_AXIS_X),
entry.pointerCoords[pointerIndex].getAxisValue(AMOTION_EVENT_AXIS_Y)};
}
std::optional<nsecs_t> getDownTime(const EventEntry& eventEntry) {
if (eventEntry.type == EventEntry::Type::KEY) {
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(eventEntry);
return keyEntry.downTime;
} else if (eventEntry.type == EventEntry::Type::MOTION) {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(eventEntry);
return motionEntry.downTime;
}
return std::nullopt;
}
/**
* Compare the old touch state to the new touch state, and generate the corresponding touched
* windows (== input targets).
* If a window had the hovering pointer, but now it doesn't, produce HOVER_EXIT for that window.
* If the pointer just entered the new window, produce HOVER_ENTER.
* For pointers remaining in the window, produce HOVER_MOVE.
*/
std::vector<TouchedWindow> getHoveringWindowsLocked(const TouchState* oldState,
const TouchState& newTouchState,
const MotionEntry& entry) {
std::vector<TouchedWindow> out;
const int32_t maskedAction = MotionEvent::getActionMasked(entry.action);
if (maskedAction != AMOTION_EVENT_ACTION_HOVER_ENTER &&
maskedAction != AMOTION_EVENT_ACTION_HOVER_MOVE &&
maskedAction != AMOTION_EVENT_ACTION_HOVER_EXIT) {
// Not a hover event - don't need to do anything
return out;
}
// We should consider all hovering pointers here. But for now, just use the first one
const int32_t pointerId = entry.pointerProperties[0].id;
std::set<sp<WindowInfoHandle>> oldWindows;
if (oldState != nullptr) {
oldWindows = oldState->getWindowsWithHoveringPointer(entry.deviceId, pointerId);
}
std::set<sp<WindowInfoHandle>> newWindows =
newTouchState.getWindowsWithHoveringPointer(entry.deviceId, pointerId);
// If the pointer is no longer in the new window set, send HOVER_EXIT.
for (const sp<WindowInfoHandle>& oldWindow : oldWindows) {
if (newWindows.find(oldWindow) == newWindows.end()) {
TouchedWindow touchedWindow;
touchedWindow.windowHandle = oldWindow;
touchedWindow.targetFlags = InputTarget::Flags::DISPATCH_AS_HOVER_EXIT;
out.push_back(touchedWindow);
}
}
for (const sp<WindowInfoHandle>& newWindow : newWindows) {
TouchedWindow touchedWindow;
touchedWindow.windowHandle = newWindow;
if (oldWindows.find(newWindow) == oldWindows.end()) {
// Any windows that have this pointer now, and didn't have it before, should get
// HOVER_ENTER
touchedWindow.targetFlags = InputTarget::Flags::DISPATCH_AS_HOVER_ENTER;
} else {
// This pointer was already sent to the window. Use ACTION_HOVER_MOVE.
if (CC_UNLIKELY(maskedAction != AMOTION_EVENT_ACTION_HOVER_MOVE)) {
LOG(FATAL) << "Expected ACTION_HOVER_MOVE instead of " << entry.getDescription();
}
touchedWindow.targetFlags = InputTarget::Flags::DISPATCH_AS_IS;
}
touchedWindow.addHoveringPointer(entry.deviceId, pointerId);
if (canReceiveForegroundTouches(*newWindow->getInfo())) {
touchedWindow.targetFlags |= InputTarget::Flags::FOREGROUND;
}
out.push_back(touchedWindow);
}
return out;
}
template <typename T>
std::vector<T>& operator+=(std::vector<T>& left, const std::vector<T>& right) {
left.insert(left.end(), right.begin(), right.end());
return left;
}
// Filter windows in a TouchState and targets in a vector to remove untrusted windows/targets from
// both.
void filterUntrustedTargets(TouchState& touchState, std::vector<InputTarget>& targets) {
std::erase_if(touchState.windows, [&](const TouchedWindow& window) {
if (!window.windowHandle->getInfo()->inputConfig.test(
WindowInfo::InputConfig::TRUSTED_OVERLAY)) {
// In addition to TouchState, erase this window from the input targets! We don't have a
// good way to do this today except by adding a nested loop.
// TODO(b/282025641): simplify this code once InputTargets are being identified
// separately from TouchedWindows.
std::erase_if(targets, [&](const InputTarget& target) {
return target.inputChannel->getConnectionToken() == window.windowHandle->getToken();
});
return true;
}
return false;
});
}
} // namespace
// --- InputDispatcher ---
InputDispatcher::InputDispatcher(InputDispatcherPolicyInterface& policy)
: InputDispatcher(policy, STALE_EVENT_TIMEOUT) {}
InputDispatcher::InputDispatcher(InputDispatcherPolicyInterface& policy,
std::chrono::nanoseconds staleEventTimeout)
: mPolicy(policy),
mPendingEvent(nullptr),
mLastDropReason(DropReason::NOT_DROPPED),
mIdGenerator(IdGenerator::Source::INPUT_DISPATCHER),
mAppSwitchSawKeyDown(false),
mAppSwitchDueTime(LLONG_MAX),
mNextUnblockedEvent(nullptr),
mMonitorDispatchingTimeout(DEFAULT_INPUT_DISPATCHING_TIMEOUT),
mDispatchEnabled(false),
mDispatchFrozen(false),
mInputFilterEnabled(false),
mMaximumObscuringOpacityForTouch(1.0f),
mFocusedDisplayId(ADISPLAY_ID_DEFAULT),
mWindowTokenWithPointerCapture(nullptr),
mStaleEventTimeout(staleEventTimeout),
mLatencyAggregator(),
mLatencyTracker(&mLatencyAggregator) {
mLooper = sp<Looper>::make(false);
mReporter = createInputReporter();
mWindowInfoListener = sp<DispatcherWindowListener>::make(*this);
#if defined(__ANDROID__)
SurfaceComposerClient::getDefault()->addWindowInfosListener(mWindowInfoListener);
#endif
mKeyRepeatState.lastKeyEntry = nullptr;
}
InputDispatcher::~InputDispatcher() {
std::scoped_lock _l(mLock);
resetKeyRepeatLocked();
releasePendingEventLocked();
drainInboundQueueLocked();
mCommandQueue.clear();
while (!mConnectionsByToken.empty()) {
std::shared_ptr<Connection> connection = mConnectionsByToken.begin()->second;
removeInputChannelLocked(connection->inputChannel->getConnectionToken(), /*notify=*/false);
}
}
status_t InputDispatcher::start() {
if (mThread) {
return ALREADY_EXISTS;
}
mThread = std::make_unique<InputThread>(
"InputDispatcher", [this]() { dispatchOnce(); }, [this]() { mLooper->wake(); });
return OK;
}
status_t InputDispatcher::stop() {
if (mThread && mThread->isCallingThread()) {
ALOGE("InputDispatcher cannot be stopped from its own thread!");
return INVALID_OPERATION;
}
mThread.reset();
return OK;
}
void InputDispatcher::dispatchOnce() {
nsecs_t nextWakeupTime = LLONG_MAX;
{ // acquire lock
std::scoped_lock _l(mLock);
mDispatcherIsAlive.notify_all();
// Run a dispatch loop if there are no pending commands.
// The dispatch loop might enqueue commands to run afterwards.
if (!haveCommandsLocked()) {
dispatchOnceInnerLocked(&nextWakeupTime);
}
// Run all pending commands if there are any.
// If any commands were run then force the next poll to wake up immediately.
if (runCommandsLockedInterruptable()) {
nextWakeupTime = LLONG_MIN;
}
// If we are still waiting for ack on some events,
// we might have to wake up earlier to check if an app is anr'ing.
const nsecs_t nextAnrCheck = processAnrsLocked();
nextWakeupTime = std::min(nextWakeupTime, nextAnrCheck);
// We are about to enter an infinitely long sleep, because we have no commands or
// pending or queued events
if (nextWakeupTime == LLONG_MAX) {
mDispatcherEnteredIdle.notify_all();
}
} // release lock
// Wait for callback or timeout or wake. (make sure we round up, not down)
nsecs_t currentTime = now();
int timeoutMillis = toMillisecondTimeoutDelay(currentTime, nextWakeupTime);
mLooper->pollOnce(timeoutMillis);
}
/**
* Raise ANR if there is no focused window.
* Before the ANR is raised, do a final state check:
* 1. The currently focused application must be the same one we are waiting for.
* 2. Ensure we still don't have a focused window.
*/
void InputDispatcher::processNoFocusedWindowAnrLocked() {
// Check if the application that we are waiting for is still focused.
std::shared_ptr<InputApplicationHandle> focusedApplication =
getValueByKey(mFocusedApplicationHandlesByDisplay, mAwaitedApplicationDisplayId);
if (focusedApplication == nullptr ||
focusedApplication->getApplicationToken() !=
mAwaitedFocusedApplication->getApplicationToken()) {
// Unexpected because we should have reset the ANR timer when focused application changed
ALOGE("Waited for a focused window, but focused application has already changed to %s",
focusedApplication->getName().c_str());
return; // The focused application has changed.
}
const sp<WindowInfoHandle>& focusedWindowHandle =
getFocusedWindowHandleLocked(mAwaitedApplicationDisplayId);
if (focusedWindowHandle != nullptr) {
return; // We now have a focused window. No need for ANR.
}
onAnrLocked(mAwaitedFocusedApplication);
}
/**
* Check if any of the connections' wait queues have events that are too old.
* If we waited for events to be ack'ed for more than the window timeout, raise an ANR.
* Return the time at which we should wake up next.
*/
nsecs_t InputDispatcher::processAnrsLocked() {
const nsecs_t currentTime = now();
nsecs_t nextAnrCheck = LLONG_MAX;
// Check if we are waiting for a focused window to appear. Raise ANR if waited too long
if (mNoFocusedWindowTimeoutTime.has_value() && mAwaitedFocusedApplication != nullptr) {
if (currentTime >= *mNoFocusedWindowTimeoutTime) {
processNoFocusedWindowAnrLocked();
mAwaitedFocusedApplication.reset();
mNoFocusedWindowTimeoutTime = std::nullopt;
return LLONG_MIN;
} else {
// Keep waiting. We will drop the event when mNoFocusedWindowTimeoutTime comes.
nextAnrCheck = *mNoFocusedWindowTimeoutTime;
}
}
// Check if any connection ANRs are due
nextAnrCheck = std::min(nextAnrCheck, mAnrTracker.firstTimeout());
if (currentTime < nextAnrCheck) { // most likely scenario
return nextAnrCheck; // everything is normal. Let's check again at nextAnrCheck
}
// If we reached here, we have an unresponsive connection.
std::shared_ptr<Connection> connection = getConnectionLocked(mAnrTracker.firstToken());
if (connection == nullptr) {
ALOGE("Could not find connection for entry %" PRId64, mAnrTracker.firstTimeout());
return nextAnrCheck;
}
connection->responsive = false;
// Stop waking up for this unresponsive connection
mAnrTracker.eraseToken(connection->inputChannel->getConnectionToken());
onAnrLocked(connection);
return LLONG_MIN;
}
std::chrono::nanoseconds InputDispatcher::getDispatchingTimeoutLocked(
const std::shared_ptr<Connection>& connection) {
if (connection->monitor) {
return mMonitorDispatchingTimeout;
}
const sp<WindowInfoHandle> window =
getWindowHandleLocked(connection->inputChannel->getConnectionToken());
if (window != nullptr) {
return window->getDispatchingTimeout(DEFAULT_INPUT_DISPATCHING_TIMEOUT);
}
return DEFAULT_INPUT_DISPATCHING_TIMEOUT;
}
void InputDispatcher::dispatchOnceInnerLocked(nsecs_t* nextWakeupTime) {
nsecs_t currentTime = now();
// Reset the key repeat timer whenever normal dispatch is suspended while the
// device is in a non-interactive state. This is to ensure that we abort a key
// repeat if the device is just coming out of sleep.
if (!mDispatchEnabled) {
resetKeyRepeatLocked();
}
// If dispatching is frozen, do not process timeouts or try to deliver any new events.
if (mDispatchFrozen) {
if (DEBUG_FOCUS) {
ALOGD("Dispatch frozen. Waiting some more.");
}
return;
}
// Optimize latency of app switches.
// Essentially we start a short timeout when an app switch key (HOME / ENDCALL) has
// been pressed. When it expires, we preempt dispatch and drop all other pending events.
bool isAppSwitchDue = mAppSwitchDueTime <= currentTime;
if (mAppSwitchDueTime < *nextWakeupTime) {
*nextWakeupTime = mAppSwitchDueTime;
}
// Ready to start a new event.
// If we don't already have a pending event, go grab one.
if (!mPendingEvent) {
if (mInboundQueue.empty()) {
if (isAppSwitchDue) {
// The inbound queue is empty so the app switch key we were waiting
// for will never arrive. Stop waiting for it.
resetPendingAppSwitchLocked(false);
isAppSwitchDue = false;
}
// Synthesize a key repeat if appropriate.
if (mKeyRepeatState.lastKeyEntry) {
if (currentTime >= mKeyRepeatState.nextRepeatTime) {
mPendingEvent = synthesizeKeyRepeatLocked(currentTime);
} else {
if (mKeyRepeatState.nextRepeatTime < *nextWakeupTime) {
*nextWakeupTime = mKeyRepeatState.nextRepeatTime;
}
}
}
// Nothing to do if there is no pending event.
if (!mPendingEvent) {
return;
}
} else {
// Inbound queue has at least one entry.
mPendingEvent = mInboundQueue.front();
mInboundQueue.pop_front();
traceInboundQueueLengthLocked();
}
// Poke user activity for this event.
if (mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER) {
pokeUserActivityLocked(*mPendingEvent);
}
}
// Now we have an event to dispatch.
// All events are eventually dequeued and processed this way, even if we intend to drop them.
ALOG_ASSERT(mPendingEvent != nullptr);
bool done = false;
DropReason dropReason = DropReason::NOT_DROPPED;
if (!(mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER)) {
dropReason = DropReason::POLICY;
} else if (!mDispatchEnabled) {
dropReason = DropReason::DISABLED;
}
if (mNextUnblockedEvent == mPendingEvent) {
mNextUnblockedEvent = nullptr;
}
switch (mPendingEvent->type) {
case EventEntry::Type::CONFIGURATION_CHANGED: {
const ConfigurationChangedEntry& typedEntry =
static_cast<const ConfigurationChangedEntry&>(*mPendingEvent);
done = dispatchConfigurationChangedLocked(currentTime, typedEntry);
dropReason = DropReason::NOT_DROPPED; // configuration changes are never dropped
break;
}
case EventEntry::Type::DEVICE_RESET: {
const DeviceResetEntry& typedEntry =
static_cast<const DeviceResetEntry&>(*mPendingEvent);
done = dispatchDeviceResetLocked(currentTime, typedEntry);
dropReason = DropReason::NOT_DROPPED; // device resets are never dropped
break;
}
case EventEntry::Type::FOCUS: {
std::shared_ptr<FocusEntry> typedEntry =
std::static_pointer_cast<FocusEntry>(mPendingEvent);
dispatchFocusLocked(currentTime, typedEntry);
done = true;
dropReason = DropReason::NOT_DROPPED; // focus events are never dropped
break;
}
case EventEntry::Type::TOUCH_MODE_CHANGED: {
const auto typedEntry = std::static_pointer_cast<TouchModeEntry>(mPendingEvent);
dispatchTouchModeChangeLocked(currentTime, typedEntry);
done = true;
dropReason = DropReason::NOT_DROPPED; // touch mode events are never dropped
break;
}
case EventEntry::Type::POINTER_CAPTURE_CHANGED: {
const auto typedEntry =
std::static_pointer_cast<PointerCaptureChangedEntry>(mPendingEvent);
dispatchPointerCaptureChangedLocked(currentTime, typedEntry, dropReason);
done = true;
break;
}
case EventEntry::Type::DRAG: {
std::shared_ptr<DragEntry> typedEntry =
std::static_pointer_cast<DragEntry>(mPendingEvent);
dispatchDragLocked(currentTime, typedEntry);
done = true;
break;
}
case EventEntry::Type::KEY: {
std::shared_ptr<KeyEntry> keyEntry = std::static_pointer_cast<KeyEntry>(mPendingEvent);
if (isAppSwitchDue) {
if (isAppSwitchKeyEvent(*keyEntry)) {
resetPendingAppSwitchLocked(true);
isAppSwitchDue = false;
} else if (dropReason == DropReason::NOT_DROPPED) {
dropReason = DropReason::APP_SWITCH;
}
}
if (dropReason == DropReason::NOT_DROPPED && isStaleEvent(currentTime, *keyEntry)) {
dropReason = DropReason::STALE;
}
if (dropReason == DropReason::NOT_DROPPED && mNextUnblockedEvent) {
dropReason = DropReason::BLOCKED;
}
done = dispatchKeyLocked(currentTime, keyEntry, &dropReason, nextWakeupTime);
break;
}
case EventEntry::Type::MOTION: {
std::shared_ptr<MotionEntry> motionEntry =
std::static_pointer_cast<MotionEntry>(mPendingEvent);
if (dropReason == DropReason::NOT_DROPPED && isAppSwitchDue) {
dropReason = DropReason::APP_SWITCH;
}
if (dropReason == DropReason::NOT_DROPPED && isStaleEvent(currentTime, *motionEntry)) {
dropReason = DropReason::STALE;
}
if (dropReason == DropReason::NOT_DROPPED && mNextUnblockedEvent) {
dropReason = DropReason::BLOCKED;
}
done = dispatchMotionLocked(currentTime, motionEntry, &dropReason, nextWakeupTime);
break;
}
case EventEntry::Type::SENSOR: {
std::shared_ptr<SensorEntry> sensorEntry =
std::static_pointer_cast<SensorEntry>(mPendingEvent);
if (dropReason == DropReason::NOT_DROPPED && isAppSwitchDue) {
dropReason = DropReason::APP_SWITCH;
}
// Sensor timestamps use SYSTEM_TIME_BOOTTIME time base, so we can't use
// 'currentTime' here, get SYSTEM_TIME_BOOTTIME instead.
nsecs_t bootTime = systemTime(SYSTEM_TIME_BOOTTIME);
if (dropReason == DropReason::NOT_DROPPED && isStaleEvent(bootTime, *sensorEntry)) {
dropReason = DropReason::STALE;
}
dispatchSensorLocked(currentTime, sensorEntry, &dropReason, nextWakeupTime);
done = true;
break;
}
}
if (done) {
if (dropReason != DropReason::NOT_DROPPED) {
dropInboundEventLocked(*mPendingEvent, dropReason);
}
mLastDropReason = dropReason;
releasePendingEventLocked();
*nextWakeupTime = LLONG_MIN; // force next poll to wake up immediately
}
}
bool InputDispatcher::isStaleEvent(nsecs_t currentTime, const EventEntry& entry) {
return std::chrono::nanoseconds(currentTime - entry.eventTime) >= mStaleEventTimeout;
}
/**
* Return true if the events preceding this incoming motion event should be dropped
* Return false otherwise (the default behaviour)
*/
bool InputDispatcher::shouldPruneInboundQueueLocked(const MotionEntry& motionEntry) {
const bool isPointerDownEvent = motionEntry.action == AMOTION_EVENT_ACTION_DOWN &&
isFromSource(motionEntry.source, AINPUT_SOURCE_CLASS_POINTER);
// Optimize case where the current application is unresponsive and the user
// decides to touch a window in a different application.
// If the application takes too long to catch up then we drop all events preceding
// the touch into the other window.
if (isPointerDownEvent && mAwaitedFocusedApplication != nullptr) {
const int32_t displayId = motionEntry.displayId;
const auto [x, y] = resolveTouchedPosition(motionEntry);
const bool isStylus = isPointerFromStylus(motionEntry, /*pointerIndex=*/0);
auto [touchedWindowHandle, _] = findTouchedWindowAtLocked(displayId, x, y, isStylus);
if (touchedWindowHandle != nullptr &&
touchedWindowHandle->getApplicationToken() !=
mAwaitedFocusedApplication->getApplicationToken()) {
// User touched a different application than the one we are waiting on.
ALOGI("Pruning input queue because user touched a different application while waiting "
"for %s",
mAwaitedFocusedApplication->getName().c_str());
return true;
}
// Alternatively, maybe there's a spy window that could handle this event.
const std::vector<sp<WindowInfoHandle>> touchedSpies =
findTouchedSpyWindowsAtLocked(displayId, x, y, isStylus);
for (const auto& windowHandle : touchedSpies) {
const std::shared_ptr<Connection> connection =
getConnectionLocked(windowHandle->getToken());
if (connection != nullptr && connection->responsive) {
// This spy window could take more input. Drop all events preceding this
// event, so that the spy window can get a chance to receive the stream.
ALOGW("Pruning the input queue because %s is unresponsive, but we have a "
"responsive spy window that may handle the event.",
mAwaitedFocusedApplication->getName().c_str());
return true;
}
}
}
// Prevent getting stuck: if we have a pending key event, and some motion events that have not
// yet been processed by some connections, the dispatcher will wait for these motion
// events to be processed before dispatching the key event. This is because these motion events
// may cause a new window to be launched, which the user might expect to receive focus.
// To prevent waiting forever for such events, just send the key to the currently focused window
if (isPointerDownEvent && mKeyIsWaitingForEventsTimeout) {
ALOGD("Received a new pointer down event, stop waiting for events to process and "
"just send the pending key event to the focused window.");
mKeyIsWaitingForEventsTimeout = now();
}
return false;
}
bool InputDispatcher::enqueueInboundEventLocked(std::unique_ptr<EventEntry> newEntry) {
bool needWake = mInboundQueue.empty();
mInboundQueue.push_back(std::move(newEntry));
EventEntry& entry = *(mInboundQueue.back());
traceInboundQueueLengthLocked();
switch (entry.type) {
case EventEntry::Type::KEY: {
LOG_ALWAYS_FATAL_IF((entry.policyFlags & POLICY_FLAG_TRUSTED) == 0,
"Unexpected untrusted event.");
// Optimize app switch latency.
// If the application takes too long to catch up then we drop all events preceding
// the app switch key.
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(entry);
if (isAppSwitchKeyEvent(keyEntry)) {
if (keyEntry.action == AKEY_EVENT_ACTION_DOWN) {
mAppSwitchSawKeyDown = true;
} else if (keyEntry.action == AKEY_EVENT_ACTION_UP) {
if (mAppSwitchSawKeyDown) {
if (DEBUG_APP_SWITCH) {
ALOGD("App switch is pending!");
}
mAppSwitchDueTime = keyEntry.eventTime + APP_SWITCH_TIMEOUT;
mAppSwitchSawKeyDown = false;
needWake = true;
}
}
}
// If a new up event comes in, and the pending event with same key code has been asked
// to try again later because of the policy. We have to reset the intercept key wake up
// time for it may have been handled in the policy and could be dropped.
if (keyEntry.action == AKEY_EVENT_ACTION_UP && mPendingEvent &&
mPendingEvent->type == EventEntry::Type::KEY) {
KeyEntry& pendingKey = static_cast<KeyEntry&>(*mPendingEvent);
if (pendingKey.keyCode == keyEntry.keyCode &&
pendingKey.interceptKeyResult ==
KeyEntry::InterceptKeyResult::TRY_AGAIN_LATER) {
pendingKey.interceptKeyResult = KeyEntry::InterceptKeyResult::UNKNOWN;
pendingKey.interceptKeyWakeupTime = 0;
needWake = true;
}
}
break;
}
case EventEntry::Type::MOTION: {
LOG_ALWAYS_FATAL_IF((entry.policyFlags & POLICY_FLAG_TRUSTED) == 0,
"Unexpected untrusted event.");
if (shouldPruneInboundQueueLocked(static_cast<MotionEntry&>(entry))) {
mNextUnblockedEvent = mInboundQueue.back();
needWake = true;
}
break;
}
case EventEntry::Type::FOCUS: {
LOG_ALWAYS_FATAL("Focus events should be inserted using enqueueFocusEventLocked");
break;
}
case EventEntry::Type::TOUCH_MODE_CHANGED:
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET:
case EventEntry::Type::SENSOR:
case EventEntry::Type::POINTER_CAPTURE_CHANGED:
case EventEntry::Type::DRAG: {
// nothing to do
break;
}
}
return needWake;
}
void InputDispatcher::addRecentEventLocked(std::shared_ptr<EventEntry> entry) {
// Do not store sensor event in recent queue to avoid flooding the queue.
if (entry->type != EventEntry::Type::SENSOR) {
mRecentQueue.push_back(entry);
}
if (mRecentQueue.size() > RECENT_QUEUE_MAX_SIZE) {
mRecentQueue.pop_front();
}
}
std::pair<sp<WindowInfoHandle>, std::vector<InputTarget>>
InputDispatcher::findTouchedWindowAtLocked(int32_t displayId, float x, float y, bool isStylus,
bool ignoreDragWindow) const {
// Traverse windows from front to back to find touched window.
std::vector<InputTarget> outsideTargets;
const auto& windowHandles = getWindowHandlesLocked(displayId);
for (const sp<WindowInfoHandle>& windowHandle : windowHandles) {
if (ignoreDragWindow && haveSameToken(windowHandle, mDragState->dragWindow)) {
continue;
}
const WindowInfo& info = *windowHandle->getInfo();
if (!info.isSpy() &&
windowAcceptsTouchAt(info, displayId, x, y, isStylus, getTransformLocked(displayId))) {
return {windowHandle, outsideTargets};
}
if (info.inputConfig.test(WindowInfo::InputConfig::WATCH_OUTSIDE_TOUCH)) {
addWindowTargetLocked(windowHandle, InputTarget::Flags::DISPATCH_AS_OUTSIDE,
/*pointerIds=*/{}, /*firstDownTimeInTarget=*/std::nullopt,
outsideTargets);
}
}
return {nullptr, {}};
}
std::vector<sp<WindowInfoHandle>> InputDispatcher::findTouchedSpyWindowsAtLocked(
int32_t displayId, float x, float y, bool isStylus) const {
// Traverse windows from front to back and gather the touched spy windows.
std::vector<sp<WindowInfoHandle>> spyWindows;
const auto& windowHandles = getWindowHandlesLocked(displayId);
for (const sp<WindowInfoHandle>& windowHandle : windowHandles) {
const WindowInfo& info = *windowHandle->getInfo();
if (!windowAcceptsTouchAt(info, displayId, x, y, isStylus, getTransformLocked(displayId))) {
continue;
}
if (!info.isSpy()) {
// The first touched non-spy window was found, so return the spy windows touched so far.
return spyWindows;
}
spyWindows.push_back(windowHandle);
}
return spyWindows;
}
void InputDispatcher::dropInboundEventLocked(const EventEntry& entry, DropReason dropReason) {
const char* reason;
switch (dropReason) {
case DropReason::POLICY:
if (debugInboundEventDetails()) {
ALOGD("Dropped event because policy consumed it.");
}
reason = "inbound event was dropped because the policy consumed it";
break;
case DropReason::DISABLED:
if (mLastDropReason != DropReason::DISABLED) {
ALOGI("Dropped event because input dispatch is disabled.");
}
reason = "inbound event was dropped because input dispatch is disabled";
break;
case DropReason::APP_SWITCH:
ALOGI("Dropped event because of pending overdue app switch.");
reason = "inbound event was dropped because of pending overdue app switch";
break;
case DropReason::BLOCKED:
ALOGI("Dropped event because the current application is not responding and the user "
"has started interacting with a different application.");
reason = "inbound event was dropped because the current application is not responding "
"and the user has started interacting with a different application";
break;
case DropReason::STALE:
ALOGI("Dropped event because it is stale.");
reason = "inbound event was dropped because it is stale";
break;
case DropReason::NO_POINTER_CAPTURE:
ALOGI("Dropped event because there is no window with Pointer Capture.");
reason = "inbound event was dropped because there is no window with Pointer Capture";
break;
case DropReason::NOT_DROPPED: {
LOG_ALWAYS_FATAL("Should not be dropping a NOT_DROPPED event");
return;
}
}
switch (entry.type) {
case EventEntry::Type::KEY: {
CancelationOptions options(CancelationOptions::Mode::CANCEL_NON_POINTER_EVENTS, reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
break;
}
case EventEntry::Type::MOTION: {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(entry);
if (motionEntry.source & AINPUT_SOURCE_CLASS_POINTER) {
CancelationOptions options(CancelationOptions::Mode::CANCEL_POINTER_EVENTS, reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
} else {
CancelationOptions options(CancelationOptions::Mode::CANCEL_NON_POINTER_EVENTS,
reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
}
break;
}
case EventEntry::Type::SENSOR: {
break;
}
case EventEntry::Type::POINTER_CAPTURE_CHANGED:
case EventEntry::Type::DRAG: {
break;
}
case EventEntry::Type::FOCUS:
case EventEntry::Type::TOUCH_MODE_CHANGED:
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET: {
LOG_ALWAYS_FATAL("Should not drop %s events", ftl::enum_string(entry.type).c_str());
break;
}
}
}
static bool isAppSwitchKeyCode(int32_t keyCode) {
return keyCode == AKEYCODE_HOME || keyCode == AKEYCODE_ENDCALL ||
keyCode == AKEYCODE_APP_SWITCH;
}
bool InputDispatcher::isAppSwitchKeyEvent(const KeyEntry& keyEntry) {
return !(keyEntry.flags & AKEY_EVENT_FLAG_CANCELED) && isAppSwitchKeyCode(keyEntry.keyCode) &&
(keyEntry.policyFlags & POLICY_FLAG_TRUSTED) &&
(keyEntry.policyFlags & POLICY_FLAG_PASS_TO_USER);
}
bool InputDispatcher::isAppSwitchPendingLocked() const {
return mAppSwitchDueTime != LLONG_MAX;
}
void InputDispatcher::resetPendingAppSwitchLocked(bool handled) {
mAppSwitchDueTime = LLONG_MAX;
if (DEBUG_APP_SWITCH) {
if (handled) {
ALOGD("App switch has arrived.");
} else {
ALOGD("App switch was abandoned.");
}
}
}
bool InputDispatcher::haveCommandsLocked() const {
return !mCommandQueue.empty();
}
bool InputDispatcher::runCommandsLockedInterruptable() {
if (mCommandQueue.empty()) {
return false;
}
do {
auto command = std::move(mCommandQueue.front());
mCommandQueue.pop_front();
// Commands are run with the lock held, but may release and re-acquire the lock from within.
command();
} while (!mCommandQueue.empty());
return true;
}
void InputDispatcher::postCommandLocked(Command&& command) {
mCommandQueue.push_back(command);
}
void InputDispatcher::drainInboundQueueLocked() {
while (!mInboundQueue.empty()) {
std::shared_ptr<EventEntry> entry = mInboundQueue.front();
mInboundQueue.pop_front();
releaseInboundEventLocked(entry);
}
traceInboundQueueLengthLocked();
}
void InputDispatcher::releasePendingEventLocked() {
if (mPendingEvent) {
releaseInboundEventLocked(mPendingEvent);
mPendingEvent = nullptr;
}
}
void InputDispatcher::releaseInboundEventLocked(std::shared_ptr<EventEntry> entry) {
InjectionState* injectionState = entry->injectionState;
if (injectionState && injectionState->injectionResult == InputEventInjectionResult::PENDING) {
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("Injected inbound event was dropped.");
}
setInjectionResult(*entry, InputEventInjectionResult::FAILED);
}
if (entry == mNextUnblockedEvent) {
mNextUnblockedEvent = nullptr;
}
addRecentEventLocked(entry);
}
void InputDispatcher::resetKeyRepeatLocked() {
if (mKeyRepeatState.lastKeyEntry) {
mKeyRepeatState.lastKeyEntry = nullptr;
}
}
std::shared_ptr<KeyEntry> InputDispatcher::synthesizeKeyRepeatLocked(nsecs_t currentTime) {
std::shared_ptr<KeyEntry> entry = mKeyRepeatState.lastKeyEntry;
uint32_t policyFlags = entry->policyFlags &
(POLICY_FLAG_RAW_MASK | POLICY_FLAG_PASS_TO_USER | POLICY_FLAG_TRUSTED);
std::shared_ptr<KeyEntry> newEntry =
std::make_unique<KeyEntry>(mIdGenerator.nextId(), currentTime, entry->deviceId,
entry->source, entry->displayId, policyFlags, entry->action,
entry->flags, entry->keyCode, entry->scanCode,
entry->metaState, entry->repeatCount + 1, entry->downTime);
newEntry->syntheticRepeat = true;
mKeyRepeatState.lastKeyEntry = newEntry;
mKeyRepeatState.nextRepeatTime = currentTime + mConfig.keyRepeatDelay;
return newEntry;
}
bool InputDispatcher::dispatchConfigurationChangedLocked(nsecs_t currentTime,
const ConfigurationChangedEntry& entry) {
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("dispatchConfigurationChanged - eventTime=%" PRId64, entry.eventTime);
}
// Reset key repeating in case a keyboard device was added or removed or something.
resetKeyRepeatLocked();
// Enqueue a command to run outside the lock to tell the policy that the configuration changed.
auto command = [this, eventTime = entry.eventTime]() REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy.notifyConfigurationChanged(eventTime);
};
postCommandLocked(std::move(command));
return true;
}
bool InputDispatcher::dispatchDeviceResetLocked(nsecs_t currentTime,
const DeviceResetEntry& entry) {
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("dispatchDeviceReset - eventTime=%" PRId64 ", deviceId=%d", entry.eventTime,
entry.deviceId);
}
// Reset key repeating in case a keyboard device was disabled or enabled.
if (mKeyRepeatState.lastKeyEntry && mKeyRepeatState.lastKeyEntry->deviceId == entry.deviceId) {
resetKeyRepeatLocked();
}
CancelationOptions options(CancelationOptions::Mode::CANCEL_ALL_EVENTS, "device was reset");
options.deviceId = entry.deviceId;
synthesizeCancelationEventsForAllConnectionsLocked(options);
// Remove all active pointers from this device
for (auto& [_, touchState] : mTouchStatesByDisplay) {
touchState.removeAllPointersForDevice(entry.deviceId);
}
return true;
}
void InputDispatcher::enqueueFocusEventLocked(const sp<IBinder>& windowToken, bool hasFocus,
const std::string& reason) {
if (mPendingEvent != nullptr) {
// Move the pending event to the front of the queue. This will give the chance
// for the pending event to get dispatched to the newly focused window
mInboundQueue.push_front(mPendingEvent);
mPendingEvent = nullptr;
}
std::unique_ptr<FocusEntry> focusEntry =
std::make_unique<FocusEntry>(mIdGenerator.nextId(), now(), windowToken, hasFocus,
reason);
// This event should go to the front of the queue, but behind all other focus events
// Find the last focus event, and insert right after it
std::deque<std::shared_ptr<EventEntry>>::reverse_iterator it =
std::find_if(mInboundQueue.rbegin(), mInboundQueue.rend(),
[](const std::shared_ptr<EventEntry>& event) {
return event->type == EventEntry::Type::FOCUS;
});
// Maintain the order of focus events. Insert the entry after all other focus events.
mInboundQueue.insert(it.base(), std::move(focusEntry));
}
void InputDispatcher::dispatchFocusLocked(nsecs_t currentTime, std::shared_ptr<FocusEntry> entry) {
std::shared_ptr<InputChannel> channel = getInputChannelLocked(entry->connectionToken);
if (channel == nullptr) {
return; // Window has gone away
}
InputTarget target;
target.inputChannel = channel;
target.flags = InputTarget::Flags::DISPATCH_AS_IS;
entry->dispatchInProgress = true;
std::string message = std::string("Focus ") + (entry->hasFocus ? "entering " : "leaving ") +
channel->getName();
std::string reason = std::string("reason=").append(entry->reason);
android_log_event_list(LOGTAG_INPUT_FOCUS) << message << reason << LOG_ID_EVENTS;
dispatchEventLocked(currentTime, entry, {target});
}
void InputDispatcher::dispatchPointerCaptureChangedLocked(
nsecs_t currentTime, const std::shared_ptr<PointerCaptureChangedEntry>& entry,
DropReason& dropReason) {
dropReason = DropReason::NOT_DROPPED;
const bool haveWindowWithPointerCapture = mWindowTokenWithPointerCapture != nullptr;
sp<IBinder> token;
if (entry->pointerCaptureRequest.enable) {
// Enable Pointer Capture.
if (haveWindowWithPointerCapture &&
(entry->pointerCaptureRequest == mCurrentPointerCaptureRequest)) {
// This can happen if pointer capture is disabled and re-enabled before we notify the
// app of the state change, so there is no need to notify the app.
ALOGI("Skipping dispatch of Pointer Capture being enabled: no state change.");
return;
}
if (!mCurrentPointerCaptureRequest.enable) {
// This can happen if a window requests capture and immediately releases capture.
ALOGW("No window requested Pointer Capture.");
dropReason = DropReason::NO_POINTER_CAPTURE;
return;
}
if (entry->pointerCaptureRequest.seq != mCurrentPointerCaptureRequest.seq) {
ALOGI("Skipping dispatch of Pointer Capture being enabled: sequence number mismatch.");
return;
}
token = mFocusResolver.getFocusedWindowToken(mFocusedDisplayId);
LOG_ALWAYS_FATAL_IF(!token, "Cannot find focused window for Pointer Capture.");
mWindowTokenWithPointerCapture = token;
} else {
// Disable Pointer Capture.
// We do not check if the sequence number matches for requests to disable Pointer Capture
// for two reasons:
// 1. Pointer Capture can be disabled by a focus change, which means we can get two entries
// to disable capture with the same sequence number: one generated by
// disablePointerCaptureForcedLocked() and another as an acknowledgement of Pointer
// Capture being disabled in InputReader.
// 2. We respect any request to disable Pointer Capture generated by InputReader, since the
// actual Pointer Capture state that affects events being generated by input devices is
// in InputReader.
if (!haveWindowWithPointerCapture) {
// Pointer capture was already forcefully disabled because of focus change.
dropReason = DropReason::NOT_DROPPED;
return;
}
token = mWindowTokenWithPointerCapture;
mWindowTokenWithPointerCapture = nullptr;
if (mCurrentPointerCaptureRequest.enable) {
setPointerCaptureLocked(false);
}
}
auto channel = getInputChannelLocked(token);
if (channel == nullptr) {
// Window has gone away, clean up Pointer Capture state.
mWindowTokenWithPointerCapture = nullptr;
if (mCurrentPointerCaptureRequest.enable) {
setPointerCaptureLocked(false);
}
return;
}
InputTarget target;
target.inputChannel = channel;
target.flags = InputTarget::Flags::DISPATCH_AS_IS;
entry->dispatchInProgress = true;
dispatchEventLocked(currentTime, entry, {target});
dropReason = DropReason::NOT_DROPPED;
}
void InputDispatcher::dispatchTouchModeChangeLocked(nsecs_t currentTime,
const std::shared_ptr<TouchModeEntry>& entry) {
const std::vector<sp<WindowInfoHandle>>& windowHandles =
getWindowHandlesLocked(entry->displayId);
if (windowHandles.empty()) {
return;
}
const std::vector<InputTarget> inputTargets =
getInputTargetsFromWindowHandlesLocked(windowHandles);
if (inputTargets.empty()) {
return;
}
entry->dispatchInProgress = true;
dispatchEventLocked(currentTime, entry, inputTargets);
}
std::vector<InputTarget> InputDispatcher::getInputTargetsFromWindowHandlesLocked(
const std::vector<sp<WindowInfoHandle>>& windowHandles) const {
std::vector<InputTarget> inputTargets;
for (const sp<WindowInfoHandle>& handle : windowHandles) {
const sp<IBinder>& token = handle->getToken();
if (token == nullptr) {
continue;
}
std::shared_ptr<InputChannel> channel = getInputChannelLocked(token);
if (channel == nullptr) {
continue; // Window has gone away
}
InputTarget target;
target.inputChannel = channel;
target.flags = InputTarget::Flags::DISPATCH_AS_IS;
inputTargets.push_back(target);
}
return inputTargets;
}
bool InputDispatcher::dispatchKeyLocked(nsecs_t currentTime, std::shared_ptr<KeyEntry> entry,
DropReason* dropReason, nsecs_t* nextWakeupTime) {
// Preprocessing.
if (!entry->dispatchInProgress) {
if (entry->repeatCount == 0 && entry->action == AKEY_EVENT_ACTION_DOWN &&
(entry->policyFlags & POLICY_FLAG_TRUSTED) &&
(!(entry->policyFlags & POLICY_FLAG_DISABLE_KEY_REPEAT))) {
if (mKeyRepeatState.lastKeyEntry &&
mKeyRepeatState.lastKeyEntry->keyCode == entry->keyCode &&
// We have seen two identical key downs in a row which indicates that the device
// driver is automatically generating key repeats itself. We take note of the
// repeat here, but we disable our own next key repeat timer since it is clear that
// we will not need to synthesize key repeats ourselves.
mKeyRepeatState.lastKeyEntry->deviceId == entry->deviceId) {
// Make sure we don't get key down from a different device. If a different
// device Id has same key pressed down, the new device Id will replace the
// current one to hold the key repeat with repeat count reset.
// In the future when got a KEY_UP on the device id, drop it and do not
// stop the key repeat on current device.
entry->repeatCount = mKeyRepeatState.lastKeyEntry->repeatCount + 1;
resetKeyRepeatLocked();
mKeyRepeatState.nextRepeatTime = LLONG_MAX; // don't generate repeats ourselves
} else {
// Not a repeat. Save key down state in case we do see a repeat later.
resetKeyRepeatLocked();
mKeyRepeatState.nextRepeatTime = entry->eventTime + mConfig.keyRepeatTimeout;
}
mKeyRepeatState.lastKeyEntry = entry;
} else if (entry->action == AKEY_EVENT_ACTION_UP && mKeyRepeatState.lastKeyEntry &&
mKeyRepeatState.lastKeyEntry->deviceId != entry->deviceId) {
// The key on device 'deviceId' is still down, do not stop key repeat
if (debugInboundEventDetails()) {
ALOGD("deviceId=%d got KEY_UP as stale", entry->deviceId);
}
} else if (!entry->syntheticRepeat) {
resetKeyRepeatLocked();
}
if (entry->repeatCount == 1) {
entry->flags |= AKEY_EVENT_FLAG_LONG_PRESS;
} else {
entry->flags &= ~AKEY_EVENT_FLAG_LONG_PRESS;
}
entry->dispatchInProgress = true;
logOutboundKeyDetails("dispatchKey - ", *entry);
}
// Handle case where the policy asked us to try again later last time.
if (entry->interceptKeyResult == KeyEntry::InterceptKeyResult::TRY_AGAIN_LATER) {
if (currentTime < entry->interceptKeyWakeupTime) {
if (entry->interceptKeyWakeupTime < *nextWakeupTime) {
*nextWakeupTime = entry->interceptKeyWakeupTime;
}
return false; // wait until next wakeup
}
entry->interceptKeyResult = KeyEntry::InterceptKeyResult::UNKNOWN;
entry->interceptKeyWakeupTime = 0;
}
// Give the policy a chance to intercept the key.
if (entry->interceptKeyResult == KeyEntry::InterceptKeyResult::UNKNOWN) {
if (entry->policyFlags & POLICY_FLAG_PASS_TO_USER) {
sp<IBinder> focusedWindowToken =
mFocusResolver.getFocusedWindowToken(getTargetDisplayId(*entry));
auto command = [this, focusedWindowToken, entry]() REQUIRES(mLock) {
doInterceptKeyBeforeDispatchingCommand(focusedWindowToken, *entry);
};
postCommandLocked(std::move(command));
// Poke user activity for keys not passed to user
pokeUserActivityLocked(*entry);
return false; // wait for the command to run
} else {
entry->interceptKeyResult = KeyEntry::InterceptKeyResult::CONTINUE;
}
} else if (entry->interceptKeyResult == KeyEntry::InterceptKeyResult::SKIP) {
if (*dropReason == DropReason::NOT_DROPPED) {
*dropReason = DropReason::POLICY;
}
}
// Clean up if dropping the event.
if (*dropReason != DropReason::NOT_DROPPED) {
setInjectionResult(*entry,
*dropReason == DropReason::POLICY ? InputEventInjectionResult::SUCCEEDED
: InputEventInjectionResult::FAILED);
mReporter->reportDroppedKey(entry->id);
// Poke user activity for undispatched keys
pokeUserActivityLocked(*entry);
return true;
}
// Identify targets.
InputEventInjectionResult injectionResult;
sp<WindowInfoHandle> focusedWindow =
findFocusedWindowTargetLocked(currentTime, *entry, nextWakeupTime,
/*byref*/ injectionResult);
if (injectionResult == InputEventInjectionResult::PENDING) {
return false;
}
setInjectionResult(*entry, injectionResult);
if (injectionResult != InputEventInjectionResult::SUCCEEDED) {
return true;
}
LOG_ALWAYS_FATAL_IF(focusedWindow == nullptr);
std::vector<InputTarget> inputTargets;
addWindowTargetLocked(focusedWindow,
InputTarget::Flags::FOREGROUND | InputTarget::Flags::DISPATCH_AS_IS,
/*pointerIds=*/{}, getDownTime(*entry), inputTargets);
// Add monitor channels from event's or focused display.
addGlobalMonitoringTargetsLocked(inputTargets, getTargetDisplayId(*entry));
// Dispatch the key.
dispatchEventLocked(currentTime, entry, inputTargets);
return true;
}
void InputDispatcher::logOutboundKeyDetails(const char* prefix, const KeyEntry& entry) {
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("%seventTime=%" PRId64 ", deviceId=%d, source=0x%x, displayId=%" PRId32 ", "
"policyFlags=0x%x, action=0x%x, flags=0x%x, keyCode=0x%x, scanCode=0x%x, "
"metaState=0x%x, repeatCount=%d, downTime=%" PRId64,
prefix, entry.eventTime, entry.deviceId, entry.source, entry.displayId,
entry.policyFlags, entry.action, entry.flags, entry.keyCode, entry.scanCode,
entry.metaState, entry.repeatCount, entry.downTime);
}
}
void InputDispatcher::dispatchSensorLocked(nsecs_t currentTime,
const std::shared_ptr<SensorEntry>& entry,
DropReason* dropReason, nsecs_t* nextWakeupTime) {
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("notifySensorEvent eventTime=%" PRId64 ", hwTimestamp=%" PRId64 ", deviceId=%d, "
"source=0x%x, sensorType=%s",
entry->eventTime, entry->hwTimestamp, entry->deviceId, entry->source,
ftl::enum_string(entry->sensorType).c_str());
}
auto command = [this, entry]() REQUIRES(mLock) {
scoped_unlock unlock(mLock);
if (entry->accuracyChanged) {
mPolicy.notifySensorAccuracy(entry->deviceId, entry->sensorType, entry->accuracy);
}
mPolicy.notifySensorEvent(entry->deviceId, entry->sensorType, entry->accuracy,
entry->hwTimestamp, entry->values);
};
postCommandLocked(std::move(command));
}
bool InputDispatcher::flushSensor(int deviceId, InputDeviceSensorType sensorType) {
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("flushSensor deviceId=%d, sensorType=%s", deviceId,
ftl::enum_string(sensorType).c_str());
}
{ // acquire lock
std::scoped_lock _l(mLock);
for (auto it = mInboundQueue.begin(); it != mInboundQueue.end(); it++) {
std::shared_ptr<EventEntry> entry = *it;
if (entry->type == EventEntry::Type::SENSOR) {
it = mInboundQueue.erase(it);
releaseInboundEventLocked(entry);
}
}
}
return true;
}
bool InputDispatcher::dispatchMotionLocked(nsecs_t currentTime, std::shared_ptr<MotionEntry> entry,
DropReason* dropReason, nsecs_t* nextWakeupTime) {
ATRACE_CALL();
// Preprocessing.
if (!entry->dispatchInProgress) {
entry->dispatchInProgress = true;
logOutboundMotionDetails("dispatchMotion - ", *entry);
}
// Clean up if dropping the event.
if (*dropReason != DropReason::NOT_DROPPED) {
setInjectionResult(*entry,
*dropReason == DropReason::POLICY ? InputEventInjectionResult::SUCCEEDED
: InputEventInjectionResult::FAILED);
return true;
}
const bool isPointerEvent = isFromSource(entry->source, AINPUT_SOURCE_CLASS_POINTER);
// Identify targets.
std::vector<InputTarget> inputTargets;
bool conflictingPointerActions = false;
InputEventInjectionResult injectionResult;
if (isPointerEvent) {
// Pointer event. (eg. touchscreen)
if (mDragState &&
(entry->action & AMOTION_EVENT_ACTION_MASK) == AMOTION_EVENT_ACTION_POINTER_DOWN) {
// If drag and drop ongoing and pointer down occur: pilfer drag window pointers
pilferPointersLocked(mDragState->dragWindow->getToken());
}
inputTargets =
findTouchedWindowTargetsLocked(currentTime, *entry, &conflictingPointerActions,
/*byref*/ injectionResult);
LOG_ALWAYS_FATAL_IF(injectionResult != InputEventInjectionResult::SUCCEEDED &&
!inputTargets.empty());
} else {
// Non touch event. (eg. trackball)
sp<WindowInfoHandle> focusedWindow =
findFocusedWindowTargetLocked(currentTime, *entry, nextWakeupTime, injectionResult);
if (injectionResult == InputEventInjectionResult::SUCCEEDED) {
LOG_ALWAYS_FATAL_IF(focusedWindow == nullptr);
addWindowTargetLocked(focusedWindow,
InputTarget::Flags::FOREGROUND |
InputTarget::Flags::DISPATCH_AS_IS,
/*pointerIds=*/{}, getDownTime(*entry), inputTargets);
}
}
if (injectionResult == InputEventInjectionResult::PENDING) {
return false;
}
setInjectionResult(*entry, injectionResult);
if (injectionResult == InputEventInjectionResult::TARGET_MISMATCH) {
return true;
}
if (injectionResult != InputEventInjectionResult::SUCCEEDED) {
CancelationOptions::Mode mode(
isPointerEvent ? CancelationOptions::Mode::CANCEL_POINTER_EVENTS
: CancelationOptions::Mode::CANCEL_NON_POINTER_EVENTS);
CancelationOptions options(mode, "input event injection failed");
synthesizeCancelationEventsForMonitorsLocked(options);
return true;
}
// Add monitor channels from event's or focused display.
addGlobalMonitoringTargetsLocked(inputTargets, getTargetDisplayId(*entry));
// Dispatch the motion.
if (conflictingPointerActions) {
CancelationOptions options(CancelationOptions::Mode::CANCEL_POINTER_EVENTS,
"conflicting pointer actions");
synthesizeCancelationEventsForAllConnectionsLocked(options);
}
dispatchEventLocked(currentTime, entry, inputTargets);
return true;
}
void InputDispatcher::enqueueDragEventLocked(const sp<WindowInfoHandle>& windowHandle,
bool isExiting, const int32_t rawX,
const int32_t rawY) {
const vec2 xy = windowHandle->getInfo()->transform.transform(vec2(rawX, rawY));
std::unique_ptr<DragEntry> dragEntry =
std::make_unique<DragEntry>(mIdGenerator.nextId(), now(), windowHandle->getToken(),
isExiting, xy.x, xy.y);
enqueueInboundEventLocked(std::move(dragEntry));
}
void InputDispatcher::dispatchDragLocked(nsecs_t currentTime, std::shared_ptr<DragEntry> entry) {
std::shared_ptr<InputChannel> channel = getInputChannelLocked(entry->connectionToken);
if (channel == nullptr) {
return; // Window has gone away
}
InputTarget target;
target.inputChannel = channel;
target.flags = InputTarget::Flags::DISPATCH_AS_IS;
entry->dispatchInProgress = true;
dispatchEventLocked(currentTime, entry, {target});
}
void InputDispatcher::logOutboundMotionDetails(const char* prefix, const MotionEntry& entry) {
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("%seventTime=%" PRId64 ", deviceId=%d, source=%s, displayId=%" PRId32
", policyFlags=0x%x, "
"action=%s, actionButton=0x%x, flags=0x%x, "
"metaState=0x%x, buttonState=0x%x,"
"edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, downTime=%" PRId64,
prefix, entry.eventTime, entry.deviceId,
inputEventSourceToString(entry.source).c_str(), entry.displayId, entry.policyFlags,
MotionEvent::actionToString(entry.action).c_str(), entry.actionButton, entry.flags,
entry.metaState, entry.buttonState, entry.edgeFlags, entry.xPrecision,
entry.yPrecision, entry.downTime);
for (uint32_t i = 0; i < entry.pointerCount; i++) {
ALOGD(" Pointer %d: id=%d, toolType=%s, "
"x=%f, y=%f, pressure=%f, size=%f, "
"touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, "
"orientation=%f",
i, entry.pointerProperties[i].id,
ftl::enum_string(entry.pointerProperties[i].toolType).c_str(),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_X),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_Y),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_PRESSURE),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_SIZE),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION));
}
}
}
void InputDispatcher::dispatchEventLocked(nsecs_t currentTime,
std::shared_ptr<EventEntry> eventEntry,
const std::vector<InputTarget>& inputTargets) {
ATRACE_CALL();
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("dispatchEventToCurrentInputTargets");
}
processInteractionsLocked(*eventEntry, inputTargets);
ALOG_ASSERT(eventEntry->dispatchInProgress); // should already have been set to true
pokeUserActivityLocked(*eventEntry);
for (const InputTarget& inputTarget : inputTargets) {
std::shared_ptr<Connection> connection =
getConnectionLocked(inputTarget.inputChannel->getConnectionToken());
if (connection != nullptr) {
prepareDispatchCycleLocked(currentTime, connection, eventEntry, inputTarget);
} else {
if (DEBUG_FOCUS) {
ALOGD("Dropping event delivery to target with channel '%s' because it "
"is no longer registered with the input dispatcher.",
inputTarget.inputChannel->getName().c_str());
}
}
}
}
void InputDispatcher::cancelEventsForAnrLocked(const std::shared_ptr<Connection>& connection) {
// We will not be breaking any connections here, even if the policy wants us to abort dispatch.
// If the policy decides to close the app, we will get a channel removal event via
// unregisterInputChannel, and will clean up the connection that way. We are already not
// sending new pointers to the connection when it blocked, but focused events will continue to
// pile up.
ALOGW("Canceling events for %s because it is unresponsive",
connection->inputChannel->getName().c_str());
if (connection->status == Connection::Status::NORMAL) {
CancelationOptions options(CancelationOptions::Mode::CANCEL_ALL_EVENTS,
"application not responding");
synthesizeCancelationEventsForConnectionLocked(connection, options);
}
}
void InputDispatcher::resetNoFocusedWindowTimeoutLocked() {
if (DEBUG_FOCUS) {
ALOGD("Resetting ANR timeouts.");
}
// Reset input target wait timeout.
mNoFocusedWindowTimeoutTime = std::nullopt;
mAwaitedFocusedApplication.reset();
}
/**
* Get the display id that the given event should go to. If this event specifies a valid display id,
* then it should be dispatched to that display. Otherwise, the event goes to the focused display.
* Focused display is the display that the user most recently interacted with.
*/
int32_t InputDispatcher::getTargetDisplayId(const EventEntry& entry) {
int32_t displayId;
switch (entry.type) {
case EventEntry::Type::KEY: {
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(entry);
displayId = keyEntry.displayId;
break;
}
case EventEntry::Type::MOTION: {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(entry);
displayId = motionEntry.displayId;
break;
}
case EventEntry::Type::TOUCH_MODE_CHANGED:
case EventEntry::Type::POINTER_CAPTURE_CHANGED:
case EventEntry::Type::FOCUS:
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET:
case EventEntry::Type::SENSOR:
case EventEntry::Type::DRAG: {
ALOGE("%s events do not have a target display", ftl::enum_string(entry.type).c_str());
return ADISPLAY_ID_NONE;
}
}
return displayId == ADISPLAY_ID_NONE ? mFocusedDisplayId : displayId;
}
bool InputDispatcher::shouldWaitToSendKeyLocked(nsecs_t currentTime,
const char* focusedWindowName) {
if (mAnrTracker.empty()) {
// already processed all events that we waited for
mKeyIsWaitingForEventsTimeout = std::nullopt;
return false;
}
if (!mKeyIsWaitingForEventsTimeout.has_value()) {
// Start the timer
// Wait to send key because there are unprocessed events that may cause focus to change
mKeyIsWaitingForEventsTimeout = currentTime +
std::chrono::duration_cast<std::chrono::nanoseconds>(KEY_WAITING_FOR_EVENTS_TIMEOUT)
.count();
return true;
}
// We still have pending events, and already started the timer
if (currentTime < *mKeyIsWaitingForEventsTimeout) {
return true; // Still waiting
}
// Waited too long, and some connection still hasn't processed all motions
// Just send the key to the focused window
ALOGW("Dispatching key to %s even though there are other unprocessed events",
focusedWindowName);
mKeyIsWaitingForEventsTimeout = std::nullopt;
return false;
}
sp<WindowInfoHandle> InputDispatcher::findFocusedWindowTargetLocked(
nsecs_t currentTime, const EventEntry& entry, nsecs_t* nextWakeupTime,
InputEventInjectionResult& outInjectionResult) {
std::string reason;
outInjectionResult = InputEventInjectionResult::FAILED; // Default result
int32_t displayId = getTargetDisplayId(entry);
sp<WindowInfoHandle> focusedWindowHandle = getFocusedWindowHandleLocked(displayId);
std::shared_ptr<InputApplicationHandle> focusedApplicationHandle =
getValueByKey(mFocusedApplicationHandlesByDisplay, displayId);
// If there is no currently focused window and no focused application
// then drop the event.
if (focusedWindowHandle == nullptr && focusedApplicationHandle == nullptr) {
ALOGI("Dropping %s event because there is no focused window or focused application in "
"display %" PRId32 ".",
ftl::enum_string(entry.type).c_str(), displayId);
return nullptr;
}
// Drop key events if requested by input feature
if (focusedWindowHandle != nullptr && shouldDropInput(entry, focusedWindowHandle)) {
return nullptr;
}
// Compatibility behavior: raise ANR if there is a focused application, but no focused window.
// Only start counting when we have a focused event to dispatch. The ANR is canceled if we
// start interacting with another application via touch (app switch). This code can be removed
// if the "no focused window ANR" is moved to the policy. Input doesn't know whether
// an app is expected to have a focused window.
if (focusedWindowHandle == nullptr && focusedApplicationHandle != nullptr) {
if (!mNoFocusedWindowTimeoutTime.has_value()) {
// We just discovered that there's no focused window. Start the ANR timer
std::chrono::nanoseconds timeout = focusedApplicationHandle->getDispatchingTimeout(
DEFAULT_INPUT_DISPATCHING_TIMEOUT);
mNoFocusedWindowTimeoutTime = currentTime + timeout.count();
mAwaitedFocusedApplication = focusedApplicationHandle;
mAwaitedApplicationDisplayId = displayId;
ALOGW("Waiting because no window has focus but %s may eventually add a "
"window when it finishes starting up. Will wait for %" PRId64 "ms",
mAwaitedFocusedApplication->getName().c_str(), millis(timeout));
*nextWakeupTime = *mNoFocusedWindowTimeoutTime;
outInjectionResult = InputEventInjectionResult::PENDING;
return nullptr;
} else if (currentTime > *mNoFocusedWindowTimeoutTime) {
// Already raised ANR. Drop the event
ALOGE("Dropping %s event because there is no focused window",
ftl::enum_string(entry.type).c_str());
return nullptr;
} else {
// Still waiting for the focused window
outInjectionResult = InputEventInjectionResult::PENDING;
return nullptr;
}
}
// we have a valid, non-null focused window
resetNoFocusedWindowTimeoutLocked();
// Verify targeted injection.
if (const auto err = verifyTargetedInjection(focusedWindowHandle, entry); err) {
ALOGW("Dropping injected event: %s", (*err).c_str());
outInjectionResult = InputEventInjectionResult::TARGET_MISMATCH;
return nullptr;
}
if (focusedWindowHandle->getInfo()->inputConfig.test(
WindowInfo::InputConfig::PAUSE_DISPATCHING)) {
ALOGI("Waiting because %s is paused", focusedWindowHandle->getName().c_str());
outInjectionResult = InputEventInjectionResult::PENDING;
return nullptr;
}
// If the event is a key event, then we must wait for all previous events to
// complete before delivering it because previous events may have the
// side-effect of transferring focus to a different window and we want to
// ensure that the following keys are sent to the new window.
//
// Suppose the user touches a button in a window then immediately presses "A".
// If the button causes a pop-up window to appear then we want to ensure that
// the "A" key is delivered to the new pop-up window. This is because users
// often anticipate pending UI changes when typing on a keyboard.
// To obtain this behavior, we must serialize key events with respect to all
// prior input events.
if (entry.type == EventEntry::Type::KEY) {
if (shouldWaitToSendKeyLocked(currentTime, focusedWindowHandle->getName().c_str())) {
*nextWakeupTime = *mKeyIsWaitingForEventsTimeout;
outInjectionResult = InputEventInjectionResult::PENDING;
return nullptr;
}
}
outInjectionResult = InputEventInjectionResult::SUCCEEDED;
return focusedWindowHandle;
}
/**
* Given a list of monitors, remove the ones we cannot find a connection for, and the ones
* that are currently unresponsive.
*/
std::vector<Monitor> InputDispatcher::selectResponsiveMonitorsLocked(
const std::vector<Monitor>& monitors) const {
std::vector<Monitor> responsiveMonitors;
std::copy_if(monitors.begin(), monitors.end(), std::back_inserter(responsiveMonitors),
[this](const Monitor& monitor) REQUIRES(mLock) {
std::shared_ptr<Connection> connection =
getConnectionLocked(monitor.inputChannel->getConnectionToken());
if (connection == nullptr) {
ALOGE("Could not find connection for monitor %s",
monitor.inputChannel->getName().c_str());
return false;
}
if (!connection->responsive) {
ALOGW("Unresponsive monitor %s will not get the new gesture",
connection->inputChannel->getName().c_str());
return false;
}
return true;
});
return responsiveMonitors;
}
/**
* In general, touch should be always split between windows. Some exceptions:
* 1. Don't split touch is if we have an active pointer down, and a new pointer is going down that's
* from the same device, *and* the window that's receiving the current pointer does not support
* split touch.
* 2. Don't split mouse events
*/
bool InputDispatcher::shouldSplitTouch(const TouchState& touchState,
const MotionEntry& entry) const {
if (isFromSource(entry.source, AINPUT_SOURCE_MOUSE)) {
// We should never split mouse events
return false;
}
for (const TouchedWindow& touchedWindow : touchState.windows) {
if (touchedWindow.windowHandle->getInfo()->isSpy()) {
// Spy windows should not affect whether or not touch is split.
continue;
}
if (touchedWindow.windowHandle->getInfo()->supportsSplitTouch()) {
continue;
}
if (touchedWindow.windowHandle->getInfo()->inputConfig.test(
gui::WindowInfo::InputConfig::IS_WALLPAPER)) {
// Wallpaper window should not affect whether or not touch is split
continue;
}
if (touchedWindow.hasTouchingPointers(entry.deviceId)) {
return false;
}
}
return true;
}
std::vector<InputTarget> InputDispatcher::findTouchedWindowTargetsLocked(
nsecs_t currentTime, const MotionEntry& entry, bool* outConflictingPointerActions,
InputEventInjectionResult& outInjectionResult) {
ATRACE_CALL();
std::vector<InputTarget> targets;
// For security reasons, we defer updating the touch state until we are sure that
// event injection will be allowed.
const int32_t displayId = entry.displayId;
const int32_t action = entry.action;
const int32_t maskedAction = MotionEvent::getActionMasked(action);
// Update the touch state as needed based on the properties of the touch event.
outInjectionResult = InputEventInjectionResult::PENDING;
// Copy current touch state into tempTouchState.
// This state will be used to update mTouchStatesByDisplay at the end of this function.
// If no state for the specified display exists, then our initial state will be empty.
const TouchState* oldState = nullptr;
TouchState tempTouchState;
if (const auto it = mTouchStatesByDisplay.find(displayId); it != mTouchStatesByDisplay.end()) {
oldState = &(it->second);
tempTouchState = *oldState;
}
bool isSplit = shouldSplitTouch(tempTouchState, entry);
bool switchedDevice = false;
if (oldState != nullptr) {
std::set<int32_t> oldActiveDevices = oldState->getActiveDeviceIds();
const bool anotherDeviceIsActive =
oldActiveDevices.count(entry.deviceId) == 0 && !oldActiveDevices.empty();
switchedDevice |= anotherDeviceIsActive;
switchedDevice |= oldState->source != entry.source;
}
const bool isHoverAction = (maskedAction == AMOTION_EVENT_ACTION_HOVER_MOVE ||
maskedAction == AMOTION_EVENT_ACTION_HOVER_ENTER ||
maskedAction == AMOTION_EVENT_ACTION_HOVER_EXIT);
// A DOWN could be generated from POINTER_DOWN if the initial pointers did not land into any
// touchable windows.
const bool wasDown = oldState != nullptr && oldState->isDown();
const bool isDown = (maskedAction == AMOTION_EVENT_ACTION_DOWN) ||
(maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN && !wasDown);
const bool newGesture = isDown || maskedAction == AMOTION_EVENT_ACTION_SCROLL ||
maskedAction == AMOTION_EVENT_ACTION_HOVER_ENTER ||
maskedAction == AMOTION_EVENT_ACTION_HOVER_MOVE;
const bool isFromMouse = isFromSource(entry.source, AINPUT_SOURCE_MOUSE);
// If pointers are already down, let's finish the current gesture and ignore the new events
// from another device. However, if the new event is a down event, let's cancel the current
// touch and let the new one take over.
if (switchedDevice && wasDown && !isDown) {
LOG(INFO) << "Dropping event because a pointer for another device "
<< " is already down in display " << displayId << ": " << entry.getDescription();
// TODO(b/211379801): test multiple simultaneous input streams.
outInjectionResult = InputEventInjectionResult::FAILED;
return {}; // wrong device
}
if (newGesture) {
// If a new gesture is starting, clear the touch state completely.
tempTouchState.reset();
tempTouchState.source = entry.source;
isSplit = false;
} else if (switchedDevice && maskedAction == AMOTION_EVENT_ACTION_MOVE) {
ALOGI("Dropping move event because a pointer for a different device is already active "
"in display %" PRId32,
displayId);
// TODO(b/211379801): test multiple simultaneous input streams.
outInjectionResult = InputEventInjectionResult::FAILED;
return {}; // wrong device
}
if (isHoverAction) {
// For hover actions, we will treat 'tempTouchState' as a new state, so let's erase
// all of the existing hovering pointers and recompute.
tempTouchState.clearHoveringPointers();
}
if (newGesture || (isSplit && maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN)) {
/* Case 1: New splittable pointer going down, or need target for hover or scroll. */
const auto [x, y] = resolveTouchedPosition(entry);
const int32_t pointerIndex = getMotionEventActionPointerIndex(action);
// Outside targets should be added upon first dispatched DOWN event. That means, this should
// be a pointer that would generate ACTION_DOWN, *and* touch should not already be down.
const bool isStylus = isPointerFromStylus(entry, pointerIndex);
auto [newTouchedWindowHandle, outsideTargets] =
findTouchedWindowAtLocked(displayId, x, y, isStylus);
if (isDown) {
targets += outsideTargets;
}
// Handle the case where we did not find a window.
if (newTouchedWindowHandle == nullptr) {
ALOGD("No new touched window at (%.1f, %.1f) in display %" PRId32, x, y, displayId);
// Try to assign the pointer to the first foreground window we find, if there is one.
newTouchedWindowHandle = tempTouchState.getFirstForegroundWindowHandle();
}
// Verify targeted injection.
if (const auto err = verifyTargetedInjection(newTouchedWindowHandle, entry); err) {
ALOGW("Dropping injected touch event: %s", (*err).c_str());
outInjectionResult = os::InputEventInjectionResult::TARGET_MISMATCH;
newTouchedWindowHandle = nullptr;
return {};
}
// Figure out whether splitting will be allowed for this window.
if (newTouchedWindowHandle != nullptr) {
if (newTouchedWindowHandle->getInfo()->supportsSplitTouch()) {
// New window supports splitting, but we should never split mouse events.
isSplit = !isFromMouse;
} else if (isSplit) {
// New window does not support splitting but we have already split events.
// Ignore the new window.
newTouchedWindowHandle = nullptr;
}
} else {
// No window is touched, so set split to true. This will allow the next pointer down to
// be delivered to a new window which supports split touch. Pointers from a mouse device
// should never be split.
isSplit = !isFromMouse;
}
std::vector<sp<WindowInfoHandle>> newTouchedWindows =
findTouchedSpyWindowsAtLocked(displayId, x, y, isStylus);
if (newTouchedWindowHandle != nullptr) {
// Process the foreground window first so that it is the first to receive the event.
newTouchedWindows.insert(newTouchedWindows.begin(), newTouchedWindowHandle);
}
if (newTouchedWindows.empty()) {
ALOGI("Dropping event because there is no touchable window at (%.1f, %.1f) on display "
"%d.",
x, y, displayId);
outInjectionResult = InputEventInjectionResult::FAILED;
return {};
}
for (const sp<WindowInfoHandle>& windowHandle : newTouchedWindows) {
if (!canWindowReceiveMotionLocked(windowHandle, entry)) {
continue;
}
if (maskedAction == AMOTION_EVENT_ACTION_HOVER_ENTER ||
maskedAction == AMOTION_EVENT_ACTION_HOVER_MOVE) {
const int32_t pointerId = entry.pointerProperties[0].id;
// The "windowHandle" is the target of this hovering pointer.
tempTouchState.addHoveringPointerToWindow(windowHandle, entry.deviceId, pointerId);
}
// Set target flags.
ftl::Flags<InputTarget::Flags> targetFlags = InputTarget::Flags::DISPATCH_AS_IS;
if (canReceiveForegroundTouches(*windowHandle->getInfo())) {
// There should only be one touched window that can be "foreground" for the pointer.
targetFlags |= InputTarget::Flags::FOREGROUND;
}
if (isSplit) {
targetFlags |= InputTarget::Flags::SPLIT;
}
if (isWindowObscuredAtPointLocked(windowHandle, x, y)) {
targetFlags |= InputTarget::Flags::WINDOW_IS_OBSCURED;
} else if (isWindowObscuredLocked(windowHandle)) {
targetFlags |= InputTarget::Flags::WINDOW_IS_PARTIALLY_OBSCURED;
}
// Update the temporary touch state.
std::bitset<MAX_POINTER_ID + 1> pointerIds;
if (!isHoverAction) {
pointerIds.set(entry.pointerProperties[pointerIndex].id);
}
const bool isDownOrPointerDown = maskedAction == AMOTION_EVENT_ACTION_DOWN ||
maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN;
// TODO(b/211379801): Currently, even if pointerIds are empty (hover case), we would
// still add a window to the touch state. We should avoid doing that, but some of the
// later checks ("at least one foreground window") rely on this in order to dispatch
// the event properly, so that needs to be updated, possibly by looking at InputTargets.
tempTouchState.addOrUpdateWindow(windowHandle, targetFlags, entry.deviceId, pointerIds,
isDownOrPointerDown
? std::make_optional(entry.eventTime)
: std::nullopt);
// If this is the pointer going down and the touched window has a wallpaper
// then also add the touched wallpaper windows so they are locked in for the duration
// of the touch gesture.
// We do not collect wallpapers during HOVER_MOVE or SCROLL because the wallpaper
// engine only supports touch events. We would need to add a mechanism similar
// to View.onGenericMotionEvent to enable wallpapers to handle these events.
if (isDownOrPointerDown) {
if (targetFlags.test(InputTarget::Flags::FOREGROUND) &&
windowHandle->getInfo()->inputConfig.test(
gui::WindowInfo::InputConfig::DUPLICATE_TOUCH_TO_WALLPAPER)) {
sp<WindowInfoHandle> wallpaper = findWallpaperWindowBelow(windowHandle);
if (wallpaper != nullptr) {
ftl::Flags<InputTarget::Flags> wallpaperFlags =
InputTarget::Flags::WINDOW_IS_OBSCURED |
InputTarget::Flags::WINDOW_IS_PARTIALLY_OBSCURED |
InputTarget::Flags::DISPATCH_AS_IS;
if (isSplit) {
wallpaperFlags |= InputTarget::Flags::SPLIT;
}
tempTouchState.addOrUpdateWindow(wallpaper, wallpaperFlags, entry.deviceId,
pointerIds, entry.eventTime);
}
}
}
}
// If a window is already pilfering some pointers, give it this new pointer as well and
// make it pilfering. This will prevent other non-spy windows from getting this pointer,
// which is a specific behaviour that we want.
const int32_t pointerId = entry.pointerProperties[pointerIndex].id;
for (TouchedWindow& touchedWindow : tempTouchState.windows) {
if (touchedWindow.hasTouchingPointer(entry.deviceId, pointerId) &&
touchedWindow.hasPilferingPointers(entry.deviceId)) {
// This window is already pilfering some pointers, and this new pointer is also
// going to it. Therefore, take over this pointer and don't give it to anyone
// else.
touchedWindow.addPilferingPointer(entry.deviceId, pointerId);
}
}
// Restrict all pilfered pointers to the pilfering windows.
tempTouchState.cancelPointersForNonPilferingWindows();
} else {
/* Case 2: Pointer move, up, cancel or non-splittable pointer down. */
// If the pointer is not currently down, then ignore the event.
if (!tempTouchState.isDown() && maskedAction != AMOTION_EVENT_ACTION_HOVER_EXIT) {
LOG(INFO) << "Dropping event because the pointer is not down or we previously "
"dropped the pointer down event in display "
<< displayId << ": " << entry.getDescription();
outInjectionResult = InputEventInjectionResult::FAILED;
return {};
}
// If the pointer is not currently hovering, then ignore the event.
if (maskedAction == AMOTION_EVENT_ACTION_HOVER_EXIT) {
const int32_t pointerId = entry.pointerProperties[0].id;
if (oldState == nullptr ||
oldState->getWindowsWithHoveringPointer(entry.deviceId, pointerId).empty()) {
LOG(INFO) << "Dropping event because the hovering pointer is not in any windows in "
"display "
<< displayId << ": " << entry.getDescription();
outInjectionResult = InputEventInjectionResult::FAILED;
return {};
}
tempTouchState.removeHoveringPointer(entry.deviceId, pointerId);
}
addDragEventLocked(entry);
// Check whether touches should slip outside of the current foreground window.
if (maskedAction == AMOTION_EVENT_ACTION_MOVE && entry.pointerCount == 1 &&
tempTouchState.isSlippery()) {
const auto [x, y] = resolveTouchedPosition(entry);
const bool isStylus = isPointerFromStylus(entry, /*pointerIndex=*/0);
sp<WindowInfoHandle> oldTouchedWindowHandle =
tempTouchState.getFirstForegroundWindowHandle();
LOG_ALWAYS_FATAL_IF(oldTouchedWindowHandle == nullptr);
auto [newTouchedWindowHandle, _] = findTouchedWindowAtLocked(displayId, x, y, isStylus);
// Verify targeted injection.
if (const auto err = verifyTargetedInjection(newTouchedWindowHandle, entry); err) {
ALOGW("Dropping injected event: %s", (*err).c_str());
outInjectionResult = os::InputEventInjectionResult::TARGET_MISMATCH;
return {};
}
// Drop touch events if requested by input feature
if (newTouchedWindowHandle != nullptr &&
shouldDropInput(entry, newTouchedWindowHandle)) {
newTouchedWindowHandle = nullptr;
}
if (newTouchedWindowHandle != nullptr &&
!haveSameToken(oldTouchedWindowHandle, newTouchedWindowHandle)) {
ALOGD("Touch is slipping out of window %s into window %s in display %" PRId32,
oldTouchedWindowHandle->getName().c_str(),
newTouchedWindowHandle->getName().c_str(), displayId);
// Make a slippery exit from the old window.
std::bitset<MAX_POINTER_ID + 1> pointerIds;
const int32_t pointerId = entry.pointerProperties[0].id;
pointerIds.set(pointerId);
const TouchedWindow& touchedWindow =
tempTouchState.getTouchedWindow(oldTouchedWindowHandle);
addWindowTargetLocked(oldTouchedWindowHandle,
InputTarget::Flags::DISPATCH_AS_SLIPPERY_EXIT, pointerIds,
touchedWindow.getDownTimeInTarget(entry.deviceId), targets);
// Make a slippery entrance into the new window.
if (newTouchedWindowHandle->getInfo()->supportsSplitTouch()) {
isSplit = !isFromMouse;
}
ftl::Flags<InputTarget::Flags> targetFlags =
InputTarget::Flags::DISPATCH_AS_SLIPPERY_ENTER;
if (canReceiveForegroundTouches(*newTouchedWindowHandle->getInfo())) {
targetFlags |= InputTarget::Flags::FOREGROUND;
}
if (isSplit) {
targetFlags |= InputTarget::Flags::SPLIT;
}
if (isWindowObscuredAtPointLocked(newTouchedWindowHandle, x, y)) {
targetFlags |= InputTarget::Flags::WINDOW_IS_OBSCURED;
} else if (isWindowObscuredLocked(newTouchedWindowHandle)) {
targetFlags |= InputTarget::Flags::WINDOW_IS_PARTIALLY_OBSCURED;
}
tempTouchState.addOrUpdateWindow(newTouchedWindowHandle, targetFlags,
entry.deviceId, pointerIds, entry.eventTime);
// Check if the wallpaper window should deliver the corresponding event.
slipWallpaperTouch(targetFlags, oldTouchedWindowHandle, newTouchedWindowHandle,
tempTouchState, entry.deviceId, pointerId, targets);
tempTouchState.removeTouchingPointerFromWindow(entry.deviceId, pointerId,
oldTouchedWindowHandle);
}
}
// Update the pointerIds for non-splittable when it received pointer down.
if (!isSplit && maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN) {
// If no split, we suppose all touched windows should receive pointer down.
const int32_t pointerIndex = getMotionEventActionPointerIndex(action);
for (size_t i = 0; i < tempTouchState.windows.size(); i++) {
TouchedWindow& touchedWindow = tempTouchState.windows[i];
// Ignore drag window for it should just track one pointer.
if (mDragState && mDragState->dragWindow == touchedWindow.windowHandle) {
continue;
}
touchedWindow.addTouchingPointer(entry.deviceId,
entry.pointerProperties[pointerIndex].id);
}
}
}
// Update dispatching for hover enter and exit.
{
std::vector<TouchedWindow> hoveringWindows =
getHoveringWindowsLocked(oldState, tempTouchState, entry);
for (const TouchedWindow& touchedWindow : hoveringWindows) {
std::optional<InputTarget> target =
createInputTargetLocked(touchedWindow.windowHandle, touchedWindow.targetFlags,
touchedWindow.getDownTimeInTarget(entry.deviceId));
if (!target) {
continue;
}
// Hardcode to single hovering pointer for now.
std::bitset<MAX_POINTER_ID + 1> pointerIds;
pointerIds.set(entry.pointerProperties[0].id);
target->addPointers(pointerIds, touchedWindow.windowHandle->getInfo()->transform);
targets.push_back(*target);
}
}
// Ensure that all touched windows are valid for injection.
if (entry.injectionState != nullptr) {
std::string errs;
for (const TouchedWindow& touchedWindow : tempTouchState.windows) {
const auto err = verifyTargetedInjection(touchedWindow.windowHandle, entry);
if (err) errs += "\n - " + *err;
}
if (!errs.empty()) {
ALOGW("Dropping targeted injection: At least one touched window is not owned by uid "
"%s:%s",
entry.injectionState->targetUid->toString().c_str(), errs.c_str());
outInjectionResult = InputEventInjectionResult::TARGET_MISMATCH;
return {};
}
}
// Check whether windows listening for outside touches are owned by the same UID. If the owner
// has a different UID, then we will not reveal coordinate information to this window.
if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
sp<WindowInfoHandle> foregroundWindowHandle =
tempTouchState.getFirstForegroundWindowHandle();
if (foregroundWindowHandle) {
const auto foregroundWindowUid = foregroundWindowHandle->getInfo()->ownerUid;
for (InputTarget& target : targets) {
if (target.flags.test(InputTarget::Flags::DISPATCH_AS_OUTSIDE)) {
sp<WindowInfoHandle> targetWindow =
getWindowHandleLocked(target.inputChannel->getConnectionToken());
if (targetWindow->getInfo()->ownerUid != foregroundWindowUid) {
target.flags |= InputTarget::Flags::ZERO_COORDS;
}
}
}
}
}
// If this is a touchpad navigation gesture, it needs to only be sent to trusted targets, as we
// only want the system UI to handle these gestures.
const bool isTouchpadNavGesture = isFromSource(entry.source, AINPUT_SOURCE_MOUSE) &&
entry.classification == MotionClassification::MULTI_FINGER_SWIPE;
if (isTouchpadNavGesture) {
filterUntrustedTargets(/* byref */ tempTouchState, /* byref */ targets);
}
// Output targets from the touch state.
for (const TouchedWindow& touchedWindow : tempTouchState.windows) {
if (!touchedWindow.hasTouchingPointers(entry.deviceId) &&
!touchedWindow.hasHoveringPointers(entry.deviceId)) {
// Windows with hovering pointers are getting persisted inside TouchState.
// Do not send this event to those windows.
continue;
}
addWindowTargetLocked(touchedWindow.windowHandle, touchedWindow.targetFlags,
touchedWindow.getTouchingPointers(entry.deviceId),
touchedWindow.getDownTimeInTarget(entry.deviceId), targets);
}
// During targeted injection, only allow owned targets to receive events
std::erase_if(targets, [&](const InputTarget& target) {
LOG_ALWAYS_FATAL_IF(target.windowHandle == nullptr);
const auto err = verifyTargetedInjection(target.windowHandle, entry);
if (err) {
LOG(WARNING) << "Dropping injected event from " << target.windowHandle->getName()
<< ": " << (*err);
return true;
}
return false;
});
if (targets.empty()) {
LOG(INFO) << "Dropping event because no targets were found: " << entry.getDescription();
outInjectionResult = InputEventInjectionResult::FAILED;
return {};
}
// If we only have windows getting ACTION_OUTSIDE, then drop the event, because there is no
// window that is actually receiving the entire gesture.
if (std::all_of(targets.begin(), targets.end(), [](const InputTarget& target) {
return target.flags.test(InputTarget::Flags::DISPATCH_AS_OUTSIDE);
})) {
LOG(INFO) << "Dropping event because all windows would just receive ACTION_OUTSIDE: "
<< entry.getDescription();
outInjectionResult = InputEventInjectionResult::FAILED;
return {};
}
outInjectionResult = InputEventInjectionResult::SUCCEEDED;
// Drop the outside or hover touch windows since we will not care about them
// in the next iteration.
tempTouchState.filterNonAsIsTouchWindows();
// Update final pieces of touch state if the injector had permission.
if (switchedDevice) {
if (DEBUG_FOCUS) {
ALOGD("Conflicting pointer actions: Switched to a different device.");
}
*outConflictingPointerActions = true;
}
if (isHoverAction) {
// Started hovering, therefore no longer down.
if (oldState && oldState->isDown()) {
ALOGD_IF(DEBUG_FOCUS,
"Conflicting pointer actions: Hover received while pointer was down.");
*outConflictingPointerActions = true;
}
if (maskedAction == AMOTION_EVENT_ACTION_HOVER_ENTER ||
maskedAction == AMOTION_EVENT_ACTION_HOVER_MOVE) {
tempTouchState.source = entry.source;
}
} else if (maskedAction == AMOTION_EVENT_ACTION_UP) {
// Pointer went up.
tempTouchState.removeTouchingPointer(entry.deviceId, entry.pointerProperties[0].id);
} else if (maskedAction == AMOTION_EVENT_ACTION_CANCEL) {
// All pointers up or canceled.
tempTouchState.reset();
} else if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
// First pointer went down.
if (oldState && (oldState->isDown() || oldState->hasHoveringPointers())) {
ALOGD("Conflicting pointer actions: Down received while already down or hovering.");
*outConflictingPointerActions = true;
}
} else if (maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) {
// One pointer went up.
int32_t pointerIndex = getMotionEventActionPointerIndex(action);
uint32_t pointerId = entry.pointerProperties[pointerIndex].id;
for (size_t i = 0; i < tempTouchState.windows.size();) {
TouchedWindow& touchedWindow = tempTouchState.windows[i];
touchedWindow.removeTouchingPointer(entry.deviceId, pointerId);
if (!touchedWindow.hasTouchingPointers(entry.deviceId)) {
tempTouchState.windows.erase(tempTouchState.windows.begin() + i);
continue;
}
i += 1;
}
}
// Save changes unless the action was scroll in which case the temporary touch
// state was only valid for this one action.
if (maskedAction != AMOTION_EVENT_ACTION_SCROLL) {
if (displayId >= 0) {
tempTouchState.clearWindowsWithoutPointers();
mTouchStatesByDisplay[displayId] = tempTouchState;
} else {
mTouchStatesByDisplay.erase(displayId);
}
}
if (tempTouchState.windows.empty()) {
mTouchStatesByDisplay.erase(displayId);
}
return targets;
}
void InputDispatcher::finishDragAndDrop(int32_t displayId, float x, float y) {
// Prevent stylus interceptor windows from affecting drag and drop behavior for now, until we
// have an explicit reason to support it.
constexpr bool isStylus = false;
auto [dropWindow, _] =
findTouchedWindowAtLocked(displayId, x, y, isStylus, /*ignoreDragWindow=*/true);
if (dropWindow) {
vec2 local = dropWindow->getInfo()->transform.transform(x, y);
sendDropWindowCommandLocked(dropWindow->getToken(), local.x, local.y);
} else {
ALOGW("No window found when drop.");
sendDropWindowCommandLocked(nullptr, 0, 0);
}
mDragState.reset();
}
void InputDispatcher::addDragEventLocked(const MotionEntry& entry) {
if (!mDragState || mDragState->dragWindow->getInfo()->displayId != entry.displayId) {
return;
}
if (!mDragState->isStartDrag) {
mDragState->isStartDrag = true;
mDragState->isStylusButtonDownAtStart =
(entry.buttonState & AMOTION_EVENT_BUTTON_STYLUS_PRIMARY) != 0;
}
// Find the pointer index by id.
int32_t pointerIndex = 0;
for (; static_cast<uint32_t>(pointerIndex) < entry.pointerCount; pointerIndex++) {
const PointerProperties& pointerProperties = entry.pointerProperties[pointerIndex];
if (pointerProperties.id == mDragState->pointerId) {
break;
}
}
if (uint32_t(pointerIndex) == entry.pointerCount) {
LOG_ALWAYS_FATAL("Should find a valid pointer index by id %d", mDragState->pointerId);
}
const int32_t maskedAction = entry.action & AMOTION_EVENT_ACTION_MASK;
const int32_t x = entry.pointerCoords[pointerIndex].getX();
const int32_t y = entry.pointerCoords[pointerIndex].getY();
switch (maskedAction) {
case AMOTION_EVENT_ACTION_MOVE: {
// Handle the special case : stylus button no longer pressed.
bool isStylusButtonDown =
(entry.buttonState & AMOTION_EVENT_BUTTON_STYLUS_PRIMARY) != 0;
if (mDragState->isStylusButtonDownAtStart && !isStylusButtonDown) {
finishDragAndDrop(entry.displayId, x, y);
return;
}
// Prevent stylus interceptor windows from affecting drag and drop behavior for now,
// until we have an explicit reason to support it.
constexpr bool isStylus = false;
auto [hoverWindowHandle, _] = findTouchedWindowAtLocked(entry.displayId, x, y, isStylus,
/*ignoreDragWindow=*/true);
// enqueue drag exit if needed.
if (hoverWindowHandle != mDragState->dragHoverWindowHandle &&
!haveSameToken(hoverWindowHandle, mDragState->dragHoverWindowHandle)) {
if (mDragState->dragHoverWindowHandle != nullptr) {
enqueueDragEventLocked(mDragState->dragHoverWindowHandle, /*isExiting=*/true, x,
y);
}
mDragState->dragHoverWindowHandle = hoverWindowHandle;
}
// enqueue drag location if needed.
if (hoverWindowHandle != nullptr) {
enqueueDragEventLocked(hoverWindowHandle, /*isExiting=*/false, x, y);
}
break;
}
case AMOTION_EVENT_ACTION_POINTER_UP:
if (getMotionEventActionPointerIndex(entry.action) != pointerIndex) {
break;
}
// The drag pointer is up.
[[fallthrough]];
case AMOTION_EVENT_ACTION_UP:
finishDragAndDrop(entry.displayId, x, y);
break;
case AMOTION_EVENT_ACTION_CANCEL: {
ALOGD("Receiving cancel when drag and drop.");
sendDropWindowCommandLocked(nullptr, 0, 0);
mDragState.reset();
break;
}
}
}
std::optional<InputTarget> InputDispatcher::createInputTargetLocked(
const sp<android::gui::WindowInfoHandle>& windowHandle,
ftl::Flags<InputTarget::Flags> targetFlags,
std::optional<nsecs_t> firstDownTimeInTarget) const {
std::shared_ptr<InputChannel> inputChannel = getInputChannelLocked(windowHandle->getToken());
if (inputChannel == nullptr) {
ALOGW("Not creating InputTarget for %s, no input channel", windowHandle->getName().c_str());
return {};
}
InputTarget inputTarget;
inputTarget.inputChannel = inputChannel;
inputTarget.windowHandle = windowHandle;
inputTarget.flags = targetFlags;
inputTarget.globalScaleFactor = windowHandle->getInfo()->globalScaleFactor;
inputTarget.firstDownTimeInTarget = firstDownTimeInTarget;
const auto& displayInfoIt = mDisplayInfos.find(windowHandle->getInfo()->displayId);
if (displayInfoIt != mDisplayInfos.end()) {
inputTarget.displayTransform = displayInfoIt->second.transform;
} else {
// DisplayInfo not found for this window on display windowHandle->getInfo()->displayId.
// TODO(b/198444055): Make this an error message after 'setInputWindows' API is removed.
}
return inputTarget;
}
void InputDispatcher::addWindowTargetLocked(const sp<WindowInfoHandle>& windowHandle,
ftl::Flags<InputTarget::Flags> targetFlags,
std::bitset<MAX_POINTER_ID + 1> pointerIds,
std::optional<nsecs_t> firstDownTimeInTarget,
std::vector<InputTarget>& inputTargets) const {
std::vector<InputTarget>::iterator it =
std::find_if(inputTargets.begin(), inputTargets.end(),
[&windowHandle](const InputTarget& inputTarget) {
return inputTarget.inputChannel->getConnectionToken() ==
windowHandle->getToken();
});
const WindowInfo* windowInfo = windowHandle->getInfo();
if (it == inputTargets.end()) {
std::optional<InputTarget> target =
createInputTargetLocked(windowHandle, targetFlags, firstDownTimeInTarget);
if (!target) {
return;
}
inputTargets.push_back(*target);
it = inputTargets.end() - 1;
}
ALOG_ASSERT(it->flags == targetFlags);
ALOG_ASSERT(it->globalScaleFactor == windowInfo->globalScaleFactor);
it->addPointers(pointerIds, windowInfo->transform);
}
void InputDispatcher::addGlobalMonitoringTargetsLocked(std::vector<InputTarget>& inputTargets,
int32_t displayId) {
auto monitorsIt = mGlobalMonitorsByDisplay.find(displayId);
if (monitorsIt == mGlobalMonitorsByDisplay.end()) return;
for (const Monitor& monitor : selectResponsiveMonitorsLocked(monitorsIt->second)) {
InputTarget target;
target.inputChannel = monitor.inputChannel;
target.flags = InputTarget::Flags::DISPATCH_AS_IS;
// target.firstDownTimeInTarget is not set for global monitors. It is only required in split
// touch and global monitoring works as intended even without setting firstDownTimeInTarget
if (const auto& it = mDisplayInfos.find(displayId); it != mDisplayInfos.end()) {
target.displayTransform = it->second.transform;
}
target.setDefaultPointerTransform(target.displayTransform);
inputTargets.push_back(target);
}
}
/**
* Indicate whether one window handle should be considered as obscuring
* another window handle. We only check a few preconditions. Actually
* checking the bounds is left to the caller.
*/
static bool canBeObscuredBy(const sp<WindowInfoHandle>& windowHandle,
const sp<WindowInfoHandle>& otherHandle) {
// Compare by token so cloned layers aren't counted
if (haveSameToken(windowHandle, otherHandle)) {
return false;
}
auto info = windowHandle->getInfo();
auto otherInfo = otherHandle->getInfo();
if (otherInfo->inputConfig.test(WindowInfo::InputConfig::NOT_VISIBLE)) {
return false;
} else if (otherInfo->alpha == 0 &&
otherInfo->inputConfig.test(WindowInfo::InputConfig::NOT_TOUCHABLE)) {
// Those act as if they were invisible, so we don't need to flag them.
// We do want to potentially flag touchable windows even if they have 0
// opacity, since they can consume touches and alter the effects of the
// user interaction (eg. apps that rely on
// Flags::WINDOW_IS_PARTIALLY_OBSCURED should still be told about those
// windows), hence we also check for FLAG_NOT_TOUCHABLE.
return false;
} else if (info->ownerUid == otherInfo->ownerUid) {
// If ownerUid is the same we don't generate occlusion events as there
// is no security boundary within an uid.
return false;
} else if (otherInfo->inputConfig.test(gui::WindowInfo::InputConfig::TRUSTED_OVERLAY)) {
return false;
} else if (otherInfo->displayId != info->displayId) {
return false;
}
return true;
}
/**
* Returns touch occlusion information in the form of TouchOcclusionInfo. To check if the touch is
* untrusted, one should check:
*
* 1. If result.hasBlockingOcclusion is true.
* If it's, it means the touch should be blocked due to a window with occlusion mode of
* BLOCK_UNTRUSTED.
*
* 2. If result.obscuringOpacity > mMaximumObscuringOpacityForTouch.
* If it is (and 1 is false), then the touch should be blocked because a stack of windows
* (possibly only one) with occlusion mode of USE_OPACITY from one UID resulted in a composed
* obscuring opacity above the threshold. Note that if there was no window of occlusion mode
* USE_OPACITY, result.obscuringOpacity would've been 0 and since
* mMaximumObscuringOpacityForTouch >= 0, the condition above would never be true.
*
* If neither of those is true, then it means the touch can be allowed.
*/
InputDispatcher::TouchOcclusionInfo InputDispatcher::computeTouchOcclusionInfoLocked(
const sp<WindowInfoHandle>& windowHandle, int32_t x, int32_t y) const {
const WindowInfo* windowInfo = windowHandle->getInfo();
int32_t displayId = windowInfo->displayId;
const std::vector<sp<WindowInfoHandle>>& windowHandles = getWindowHandlesLocked(displayId);
TouchOcclusionInfo info;
info.hasBlockingOcclusion = false;
info.obscuringOpacity = 0;
info.obscuringUid = gui::Uid::INVALID;
std::map<gui::Uid, float> opacityByUid;
for (const sp<WindowInfoHandle>& otherHandle : windowHandles) {
if (windowHandle == otherHandle) {
break; // All future windows are below us. Exit early.
}
const WindowInfo* otherInfo = otherHandle->getInfo();
if (canBeObscuredBy(windowHandle, otherHandle) && otherInfo->frameContainsPoint(x, y) &&
!haveSameApplicationToken(windowInfo, otherInfo)) {
if (DEBUG_TOUCH_OCCLUSION) {
info.debugInfo.push_back(
dumpWindowForTouchOcclusion(otherInfo, /* isTouchedWindow */ false));
}
// canBeObscuredBy() has returned true above, which means this window is untrusted, so
// we perform the checks below to see if the touch can be propagated or not based on the
// window's touch occlusion mode
if (otherInfo->touchOcclusionMode == TouchOcclusionMode::BLOCK_UNTRUSTED) {
info.hasBlockingOcclusion = true;
info.obscuringUid = otherInfo->ownerUid;
info.obscuringPackage = otherInfo->packageName;
break;
}
if (otherInfo->touchOcclusionMode == TouchOcclusionMode::USE_OPACITY) {
const auto uid = otherInfo->ownerUid;
float opacity =
(opacityByUid.find(uid) == opacityByUid.end()) ? 0 : opacityByUid[uid];
// Given windows A and B:
// opacity(A, B) = 1 - [1 - opacity(A)] * [1 - opacity(B)]
opacity = 1 - (1 - opacity) * (1 - otherInfo->alpha);
opacityByUid[uid] = opacity;
if (opacity > info.obscuringOpacity) {
info.obscuringOpacity = opacity;
info.obscuringUid = uid;
info.obscuringPackage = otherInfo->packageName;
}
}
}
}
if (DEBUG_TOUCH_OCCLUSION) {
info.debugInfo.push_back(
dumpWindowForTouchOcclusion(windowInfo, /* isTouchedWindow */ true));
}
return info;
}
std::string InputDispatcher::dumpWindowForTouchOcclusion(const WindowInfo* info,
bool isTouchedWindow) const {
return StringPrintf(INDENT2 "* %spackage=%s/%s, id=%" PRId32 ", mode=%s, alpha=%.2f, "
"frame=[%" PRId32 ",%" PRId32 "][%" PRId32 ",%" PRId32
"], touchableRegion=%s, window={%s}, inputConfig={%s}, "
"hasToken=%s, applicationInfo.name=%s, applicationInfo.token=%s\n",
isTouchedWindow ? "[TOUCHED] " : "", info->packageName.c_str(),
info->ownerUid.toString().c_str(), info->id,
toString(info->touchOcclusionMode).c_str(), info->alpha, info->frameLeft,
info->frameTop, info->frameRight, info->frameBottom,
dumpRegion(info->touchableRegion).c_str(), info->name.c_str(),
info->inputConfig.string().c_str(), toString(info->token != nullptr),
info->applicationInfo.name.c_str(),
binderToString(info->applicationInfo.token).c_str());
}
bool InputDispatcher::isTouchTrustedLocked(const TouchOcclusionInfo& occlusionInfo) const {
if (occlusionInfo.hasBlockingOcclusion) {
ALOGW("Untrusted touch due to occlusion by %s/%s", occlusionInfo.obscuringPackage.c_str(),
occlusionInfo.obscuringUid.toString().c_str());
return false;
}
if (occlusionInfo.obscuringOpacity > mMaximumObscuringOpacityForTouch) {
ALOGW("Untrusted touch due to occlusion by %s/%s (obscuring opacity = "
"%.2f, maximum allowed = %.2f)",
occlusionInfo.obscuringPackage.c_str(), occlusionInfo.obscuringUid.toString().c_str(),
occlusionInfo.obscuringOpacity, mMaximumObscuringOpacityForTouch);
return false;
}
return true;
}
bool InputDispatcher::isWindowObscuredAtPointLocked(const sp<WindowInfoHandle>& windowHandle,
int32_t x, int32_t y) const {
int32_t displayId = windowHandle->getInfo()->displayId;
const std::vector<sp<WindowInfoHandle>>& windowHandles = getWindowHandlesLocked(displayId);
for (const sp<WindowInfoHandle>& otherHandle : windowHandles) {
if (windowHandle == otherHandle) {
break; // All future windows are below us. Exit early.
}
const WindowInfo* otherInfo = otherHandle->getInfo();
if (canBeObscuredBy(windowHandle, otherHandle) &&
otherInfo->frameContainsPoint(x, y)) {
return true;
}
}
return false;
}
bool InputDispatcher::isWindowObscuredLocked(const sp<WindowInfoHandle>& windowHandle) const {
int32_t displayId = windowHandle->getInfo()->displayId;
const std::vector<sp<WindowInfoHandle>>& windowHandles = getWindowHandlesLocked(displayId);
const WindowInfo* windowInfo = windowHandle->getInfo();
for (const sp<WindowInfoHandle>& otherHandle : windowHandles) {
if (windowHandle == otherHandle) {
break; // All future windows are below us. Exit early.
}
const WindowInfo* otherInfo = otherHandle->getInfo();
if (canBeObscuredBy(windowHandle, otherHandle) &&
otherInfo->overlaps(windowInfo)) {
return true;
}
}
return false;
}
std::string InputDispatcher::getApplicationWindowLabel(
const InputApplicationHandle* applicationHandle, const sp<WindowInfoHandle>& windowHandle) {
if (applicationHandle != nullptr) {
if (windowHandle != nullptr) {
return applicationHandle->getName() + " - " + windowHandle->getName();
} else {
return applicationHandle->getName();
}
} else if (windowHandle != nullptr) {
return windowHandle->getInfo()->applicationInfo.name + " - " + windowHandle->getName();
} else {
return "<unknown application or window>";
}
}
void InputDispatcher::pokeUserActivityLocked(const EventEntry& eventEntry) {
if (!isUserActivityEvent(eventEntry)) {
// Not poking user activity if the event type does not represent a user activity
return;
}
int32_t displayId = getTargetDisplayId(eventEntry);
sp<WindowInfoHandle> focusedWindowHandle = getFocusedWindowHandleLocked(displayId);
const WindowInfo* windowDisablingUserActivityInfo = nullptr;
if (focusedWindowHandle != nullptr) {
const WindowInfo* info = focusedWindowHandle->getInfo();
if (info->inputConfig.test(WindowInfo::InputConfig::DISABLE_USER_ACTIVITY)) {
windowDisablingUserActivityInfo = info;
}
}
int32_t eventType = USER_ACTIVITY_EVENT_OTHER;
switch (eventEntry.type) {
case EventEntry::Type::MOTION: {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(eventEntry);
if (motionEntry.action == AMOTION_EVENT_ACTION_CANCEL) {
return;
}
if (windowDisablingUserActivityInfo != nullptr) {
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("Not poking user activity: disabled by window '%s'.",
windowDisablingUserActivityInfo->name.c_str());
}
return;
}
if (MotionEvent::isTouchEvent(motionEntry.source, motionEntry.action)) {
eventType = USER_ACTIVITY_EVENT_TOUCH;
}
break;
}
case EventEntry::Type::KEY: {
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(eventEntry);
if (keyEntry.flags & AKEY_EVENT_FLAG_CANCELED) {
return;
}
// If the key code is unknown, we don't consider it user activity
if (keyEntry.keyCode == AKEYCODE_UNKNOWN) {
return;
}
// Don't inhibit events that were intercepted or are not passed to
// the apps, like system shortcuts
if (windowDisablingUserActivityInfo != nullptr &&
keyEntry.interceptKeyResult != KeyEntry::InterceptKeyResult::SKIP &&
keyEntry.policyFlags & POLICY_FLAG_PASS_TO_USER) {
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("Not poking user activity: disabled by window '%s'.",
windowDisablingUserActivityInfo->name.c_str());
}
return;
}
eventType = USER_ACTIVITY_EVENT_BUTTON;
break;
}
default: {
LOG_ALWAYS_FATAL("%s events are not user activity",
ftl::enum_string(eventEntry.type).c_str());
break;
}
}
auto command = [this, eventTime = eventEntry.eventTime, eventType, displayId]()
REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy.pokeUserActivity(eventTime, eventType, displayId);
};
postCommandLocked(std::move(command));
}
void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime,
const std::shared_ptr<Connection>& connection,
std::shared_ptr<EventEntry> eventEntry,
const InputTarget& inputTarget) {
if (ATRACE_ENABLED()) {
std::string message =
StringPrintf("prepareDispatchCycleLocked(inputChannel=%s, id=0x%" PRIx32 ")",
connection->getInputChannelName().c_str(), eventEntry->id);
ATRACE_NAME(message.c_str());
}
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("channel '%s' ~ prepareDispatchCycle - flags=%s, "
"globalScaleFactor=%f, pointerIds=%s %s",
connection->getInputChannelName().c_str(), inputTarget.flags.string().c_str(),
inputTarget.globalScaleFactor, bitsetToString(inputTarget.pointerIds).c_str(),
inputTarget.getPointerInfoString().c_str());
}
// Skip this event if the connection status is not normal.
// We don't want to enqueue additional outbound events if the connection is broken.
if (connection->status != Connection::Status::NORMAL) {
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("channel '%s' ~ Dropping event because the channel status is %s",
connection->getInputChannelName().c_str(),
ftl::enum_string(connection->status).c_str());
}
return;
}
// Split a motion event if needed.
if (inputTarget.flags.test(InputTarget::Flags::SPLIT)) {
LOG_ALWAYS_FATAL_IF(eventEntry->type != EventEntry::Type::MOTION,
"Entry type %s should not have Flags::SPLIT",
ftl::enum_string(eventEntry->type).c_str());
const MotionEntry& originalMotionEntry = static_cast<const MotionEntry&>(*eventEntry);
if (inputTarget.pointerIds.count() != originalMotionEntry.pointerCount) {
if (!inputTarget.firstDownTimeInTarget.has_value()) {
logDispatchStateLocked();
LOG(FATAL) << "Splitting motion events requires a down time to be set for the "
"target on connection "
<< connection->getInputChannelName() << " for "
<< originalMotionEntry.getDescription();
}
std::unique_ptr<MotionEntry> splitMotionEntry =
splitMotionEvent(originalMotionEntry, inputTarget.pointerIds,
inputTarget.firstDownTimeInTarget.value());
if (!splitMotionEntry) {
return; // split event was dropped
}
if (splitMotionEntry->action == AMOTION_EVENT_ACTION_CANCEL) {
std::string reason = std::string("reason=pointer cancel on split window");
android_log_event_list(LOGTAG_INPUT_CANCEL)
<< connection->getInputChannelName().c_str() << reason << LOG_ID_EVENTS;
}
if (DEBUG_FOCUS) {
ALOGD("channel '%s' ~ Split motion event.",
connection->getInputChannelName().c_str());
logOutboundMotionDetails(" ", *splitMotionEntry);
}
enqueueDispatchEntriesLocked(currentTime, connection, std::move(splitMotionEntry),
inputTarget);
return;
}
}
// Not splitting. Enqueue dispatch entries for the event as is.
enqueueDispatchEntriesLocked(currentTime, connection, eventEntry, inputTarget);
}
void InputDispatcher::enqueueDispatchEntriesLocked(nsecs_t currentTime,
const std::shared_ptr<Connection>& connection,
std::shared_ptr<EventEntry> eventEntry,
const InputTarget& inputTarget) {
if (ATRACE_ENABLED()) {
std::string message =
StringPrintf("enqueueDispatchEntriesLocked(inputChannel=%s, id=0x%" PRIx32 ")",
connection->getInputChannelName().c_str(), eventEntry->id);
ATRACE_NAME(message.c_str());
}
LOG_ALWAYS_FATAL_IF(!inputTarget.flags.any(InputTarget::DISPATCH_MASK),
"No dispatch flags are set for %s", eventEntry->getDescription().c_str());
const bool wasEmpty = connection->outboundQueue.empty();
// Enqueue dispatch entries for the requested modes.
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::Flags::DISPATCH_AS_HOVER_EXIT);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::Flags::DISPATCH_AS_OUTSIDE);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::Flags::DISPATCH_AS_HOVER_ENTER);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::Flags::DISPATCH_AS_IS);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::Flags::DISPATCH_AS_SLIPPERY_EXIT);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::Flags::DISPATCH_AS_SLIPPERY_ENTER);
// If the outbound queue was previously empty, start the dispatch cycle going.
if (wasEmpty && !connection->outboundQueue.empty()) {
startDispatchCycleLocked(currentTime, connection);
}
}
void InputDispatcher::enqueueDispatchEntryLocked(const std::shared_ptr<Connection>& connection,
std::shared_ptr<EventEntry> eventEntry,
const InputTarget& inputTarget,
ftl::Flags<InputTarget::Flags> dispatchMode) {
if (ATRACE_ENABLED()) {
std::string message = StringPrintf("enqueueDispatchEntry(inputChannel=%s, dispatchMode=%s)",
connection->getInputChannelName().c_str(),
dispatchMode.string().c_str());
ATRACE_NAME(message.c_str());
}
ftl::Flags<InputTarget::Flags> inputTargetFlags = inputTarget.flags;
if (!inputTargetFlags.any(dispatchMode)) {
return;
}
inputTargetFlags.clear(InputTarget::DISPATCH_MASK);
inputTargetFlags |= dispatchMode;
// This is a new event.
// Enqueue a new dispatch entry onto the outbound queue for this connection.
std::unique_ptr<DispatchEntry> dispatchEntry =
createDispatchEntry(inputTarget, eventEntry, inputTargetFlags);
// Use the eventEntry from dispatchEntry since the entry may have changed and can now be a
// different EventEntry than what was passed in.
EventEntry& newEntry = *(dispatchEntry->eventEntry);
// Apply target flags and update the connection's input state.
switch (newEntry.type) {
case EventEntry::Type::KEY: {
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(newEntry);
dispatchEntry->resolvedEventId = keyEntry.id;
dispatchEntry->resolvedAction = keyEntry.action;
dispatchEntry->resolvedFlags = keyEntry.flags;
if (!connection->inputState.trackKey(keyEntry, dispatchEntry->resolvedAction,
dispatchEntry->resolvedFlags)) {
LOG(WARNING) << "channel " << connection->getInputChannelName()
<< "~ dropping inconsistent event: " << *dispatchEntry;
return; // skip the inconsistent event
}
break;
}
case EventEntry::Type::MOTION: {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(newEntry);
// Assign a default value to dispatchEntry that will never be generated by InputReader,
// and assign a InputDispatcher value if it doesn't change in the if-else chain below.
constexpr int32_t DEFAULT_RESOLVED_EVENT_ID =
static_cast<int32_t>(IdGenerator::Source::OTHER);
dispatchEntry->resolvedEventId = DEFAULT_RESOLVED_EVENT_ID;
if (dispatchMode.test(InputTarget::Flags::DISPATCH_AS_OUTSIDE)) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_OUTSIDE;
} else if (dispatchMode.test(InputTarget::Flags::DISPATCH_AS_HOVER_EXIT)) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_HOVER_EXIT;
} else if (dispatchMode.test(InputTarget::Flags::DISPATCH_AS_HOVER_ENTER)) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_HOVER_ENTER;
} else if (dispatchMode.test(InputTarget::Flags::DISPATCH_AS_SLIPPERY_EXIT)) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_CANCEL;
} else if (dispatchMode.test(InputTarget::Flags::DISPATCH_AS_SLIPPERY_ENTER)) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_DOWN;
} else {
dispatchEntry->resolvedAction = motionEntry.action;
dispatchEntry->resolvedEventId = motionEntry.id;
}
if (dispatchEntry->resolvedAction == AMOTION_EVENT_ACTION_HOVER_MOVE &&
!connection->inputState.isHovering(motionEntry.deviceId, motionEntry.source,
motionEntry.displayId)) {
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("channel '%s' ~ enqueueDispatchEntryLocked: filling in missing hover "
"enter event",
connection->getInputChannelName().c_str());
}
// We keep the 'resolvedEventId' here equal to the original 'motionEntry.id' because
// this is a one-to-one event conversion.
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_HOVER_ENTER;
}
dispatchEntry->resolvedFlags = motionEntry.flags;
if (dispatchEntry->resolvedAction == AMOTION_EVENT_ACTION_CANCEL) {
dispatchEntry->resolvedFlags |= AMOTION_EVENT_FLAG_CANCELED;
}
if (dispatchEntry->targetFlags.test(InputTarget::Flags::WINDOW_IS_OBSCURED)) {
dispatchEntry->resolvedFlags |= AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED;
}
if (dispatchEntry->targetFlags.test(InputTarget::Flags::WINDOW_IS_PARTIALLY_OBSCURED)) {
dispatchEntry->resolvedFlags |= AMOTION_EVENT_FLAG_WINDOW_IS_PARTIALLY_OBSCURED;
}
if (!connection->inputState.trackMotion(motionEntry, dispatchEntry->resolvedAction,
dispatchEntry->resolvedFlags)) {
LOG(WARNING) << "channel " << connection->getInputChannelName()
<< "~ dropping inconsistent event: " << *dispatchEntry;
return; // skip the inconsistent event
}
dispatchEntry->resolvedEventId =
dispatchEntry->resolvedEventId == DEFAULT_RESOLVED_EVENT_ID
? mIdGenerator.nextId()
: motionEntry.id;
if (ATRACE_ENABLED() && dispatchEntry->resolvedEventId != motionEntry.id) {
std::string message = StringPrintf("Transmute MotionEvent(id=0x%" PRIx32
") to MotionEvent(id=0x%" PRIx32 ").",
motionEntry.id, dispatchEntry->resolvedEventId);
ATRACE_NAME(message.c_str());
}
if ((motionEntry.flags & AMOTION_EVENT_FLAG_NO_FOCUS_CHANGE) &&
(motionEntry.policyFlags & POLICY_FLAG_TRUSTED)) {
// Skip reporting pointer down outside focus to the policy.
break;
}
dispatchPointerDownOutsideFocus(motionEntry.source, dispatchEntry->resolvedAction,
inputTarget.inputChannel->getConnectionToken());
break;
}
case EventEntry::Type::FOCUS:
case EventEntry::Type::TOUCH_MODE_CHANGED:
case EventEntry::Type::POINTER_CAPTURE_CHANGED:
case EventEntry::Type::DRAG: {
break;
}
case EventEntry::Type::SENSOR: {
LOG_ALWAYS_FATAL("SENSOR events should not go to apps via input channel");
break;
}
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET: {
LOG_ALWAYS_FATAL("%s events should not go to apps",
ftl::enum_string(newEntry.type).c_str());
break;
}
}
// Remember that we are waiting for this dispatch to complete.
if (dispatchEntry->hasForegroundTarget()) {
incrementPendingForegroundDispatches(newEntry);
}
// Enqueue the dispatch entry.
connection->outboundQueue.push_back(dispatchEntry.release());
traceOutboundQueueLength(*connection);
}
/**
* This function is for debugging and metrics collection. It has two roles.
*
* The first role is to log input interaction with windows, which helps determine what the user was
* interacting with. For example, if user is touching launcher, we will see an input_interaction log
* that user started interacting with launcher window, as well as any other window that received
* that gesture, such as the wallpaper or other spy windows. A new input_interaction is only logged
* when the set of tokens that received the event changes. It is not logged again as long as the
* user is interacting with the same windows.
*
* The second role is to track input device activity for metrics collection. For each input event,
* we report the set of UIDs that the input device interacted with to the policy. Unlike for the
* input_interaction logs, the device interaction is reported even when the set of interaction
* tokens do not change.
*
* For these purposes, we do not count ACTION_OUTSIDE, ACTION_UP and ACTION_CANCEL actions as
* interaction. This includes up and cancel events for both keys and motions.
*/
void InputDispatcher::processInteractionsLocked(const EventEntry& entry,
const std::vector<InputTarget>& targets) {
int32_t deviceId;
nsecs_t eventTime;
// Skip ACTION_UP events, and all events other than keys and motions
if (entry.type == EventEntry::Type::KEY) {
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(entry);
if (keyEntry.action == AKEY_EVENT_ACTION_UP) {
return;
}
deviceId = keyEntry.deviceId;
eventTime = keyEntry.eventTime;
} else if (entry.type == EventEntry::Type::MOTION) {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(entry);
if (motionEntry.action == AMOTION_EVENT_ACTION_UP ||
motionEntry.action == AMOTION_EVENT_ACTION_CANCEL ||
MotionEvent::getActionMasked(motionEntry.action) == AMOTION_EVENT_ACTION_POINTER_UP) {
return;
}
deviceId = motionEntry.deviceId;
eventTime = motionEntry.eventTime;
} else {
return; // Not a key or a motion
}
std::set<gui::Uid> interactionUids;
std::unordered_set<sp<IBinder>, StrongPointerHash<IBinder>> newConnectionTokens;
std::vector<std::shared_ptr<Connection>> newConnections;
for (const InputTarget& target : targets) {
if (target.flags.test(InputTarget::Flags::DISPATCH_AS_OUTSIDE)) {
continue; // Skip windows that receive ACTION_OUTSIDE
}
sp<IBinder> token = target.inputChannel->getConnectionToken();
std::shared_ptr<Connection> connection = getConnectionLocked(token);
if (connection == nullptr) {
continue;
}
newConnectionTokens.insert(std::move(token));
newConnections.emplace_back(connection);
if (target.windowHandle) {
interactionUids.emplace(target.windowHandle->getInfo()->ownerUid);
}
}
auto command = [this, deviceId, eventTime, uids = std::move(interactionUids)]()
REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy.notifyDeviceInteraction(deviceId, eventTime, uids);
};
postCommandLocked(std::move(command));
if (newConnectionTokens == mInteractionConnectionTokens) {
return; // no change
}
mInteractionConnectionTokens = newConnectionTokens;
std::string targetList;
for (const std::shared_ptr<Connection>& connection : newConnections) {
targetList += connection->getWindowName() + ", ";
}
std::string message = "Interaction with: " + targetList;
if (targetList.empty()) {
message += "<none>";
}
android_log_event_list(LOGTAG_INPUT_INTERACTION) << message << LOG_ID_EVENTS;
}
void InputDispatcher::dispatchPointerDownOutsideFocus(uint32_t source, int32_t action,
const sp<IBinder>& token) {
int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK;
uint32_t maskedSource = source & AINPUT_SOURCE_CLASS_MASK;
if (maskedSource != AINPUT_SOURCE_CLASS_POINTER || maskedAction != AMOTION_EVENT_ACTION_DOWN) {
return;
}
sp<IBinder> focusedToken = mFocusResolver.getFocusedWindowToken(mFocusedDisplayId);
if (focusedToken == token) {
// ignore since token is focused
return;
}
auto command = [this, token]() REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy.onPointerDownOutsideFocus(token);
};
postCommandLocked(std::move(command));
}
status_t InputDispatcher::publishMotionEvent(Connection& connection,
DispatchEntry& dispatchEntry) const {
const EventEntry& eventEntry = *(dispatchEntry.eventEntry);
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(eventEntry);
PointerCoords scaledCoords[MAX_POINTERS];
const PointerCoords* usingCoords = motionEntry.pointerCoords;
// Set the X and Y offset and X and Y scale depending on the input source.
if ((motionEntry.source & AINPUT_SOURCE_CLASS_POINTER) &&
!(dispatchEntry.targetFlags.test(InputTarget::Flags::ZERO_COORDS))) {
float globalScaleFactor = dispatchEntry.globalScaleFactor;
if (globalScaleFactor != 1.0f) {
for (uint32_t i = 0; i < motionEntry.pointerCount; i++) {
scaledCoords[i] = motionEntry.pointerCoords[i];
// Don't apply window scale here since we don't want scale to affect raw
// coordinates. The scale will be sent back to the client and applied
// later when requesting relative coordinates.
scaledCoords[i].scale(globalScaleFactor, /*windowXScale=*/1, /*windowYScale=*/1);
}
usingCoords = scaledCoords;
}
} else if (dispatchEntry.targetFlags.test(InputTarget::Flags::ZERO_COORDS)) {
// We don't want the dispatch target to know the coordinates
for (uint32_t i = 0; i < motionEntry.pointerCount; i++) {
scaledCoords[i].clear();
}
usingCoords = scaledCoords;
}
std::array<uint8_t, 32> hmac = getSignature(motionEntry, dispatchEntry);
// Publish the motion event.
return connection.inputPublisher
.publishMotionEvent(dispatchEntry.seq, dispatchEntry.resolvedEventId,
motionEntry.deviceId, motionEntry.source, motionEntry.displayId,
std::move(hmac), dispatchEntry.resolvedAction,
motionEntry.actionButton, dispatchEntry.resolvedFlags,
motionEntry.edgeFlags, motionEntry.metaState,
motionEntry.buttonState, motionEntry.classification,
dispatchEntry.transform, motionEntry.xPrecision,
motionEntry.yPrecision, motionEntry.xCursorPosition,
motionEntry.yCursorPosition, dispatchEntry.rawTransform,
motionEntry.downTime, motionEntry.eventTime,
motionEntry.pointerCount, motionEntry.pointerProperties,
usingCoords);
}
void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime,
const std::shared_ptr<Connection>& connection) {
if (ATRACE_ENABLED()) {
std::string message = StringPrintf("startDispatchCycleLocked(inputChannel=%s)",
connection->getInputChannelName().c_str());
ATRACE_NAME(message.c_str());
}
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("channel '%s' ~ startDispatchCycle", connection->getInputChannelName().c_str());
}
while (connection->status == Connection::Status::NORMAL && !connection->outboundQueue.empty()) {
DispatchEntry* dispatchEntry = connection->outboundQueue.front();
dispatchEntry->deliveryTime = currentTime;
const std::chrono::nanoseconds timeout = getDispatchingTimeoutLocked(connection);
dispatchEntry->timeoutTime = currentTime + timeout.count();
// Publish the event.
status_t status;
const EventEntry& eventEntry = *(dispatchEntry->eventEntry);
switch (eventEntry.type) {
case EventEntry::Type::KEY: {
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(eventEntry);
std::array<uint8_t, 32> hmac = getSignature(keyEntry, *dispatchEntry);
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
LOG(DEBUG) << "Publishing " << *dispatchEntry << " to "
<< connection->getInputChannelName();
}
// Publish the key event.
status = connection->inputPublisher
.publishKeyEvent(dispatchEntry->seq,
dispatchEntry->resolvedEventId, keyEntry.deviceId,
keyEntry.source, keyEntry.displayId,
std::move(hmac), dispatchEntry->resolvedAction,
dispatchEntry->resolvedFlags, keyEntry.keyCode,
keyEntry.scanCode, keyEntry.metaState,
keyEntry.repeatCount, keyEntry.downTime,
keyEntry.eventTime);
break;
}
case EventEntry::Type::MOTION: {
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
LOG(DEBUG) << "Publishing " << *dispatchEntry << " to "
<< connection->getInputChannelName();
}
status = publishMotionEvent(*connection, *dispatchEntry);
break;
}
case EventEntry::Type::FOCUS: {
const FocusEntry& focusEntry = static_cast<const FocusEntry&>(eventEntry);
status = connection->inputPublisher.publishFocusEvent(dispatchEntry->seq,
focusEntry.id,
focusEntry.hasFocus);
break;
}
case EventEntry::Type::TOUCH_MODE_CHANGED: {
const TouchModeEntry& touchModeEntry =
static_cast<const TouchModeEntry&>(eventEntry);
status = connection->inputPublisher
.publishTouchModeEvent(dispatchEntry->seq, touchModeEntry.id,
touchModeEntry.inTouchMode);
break;
}
case EventEntry::Type::POINTER_CAPTURE_CHANGED: {
const auto& captureEntry =
static_cast<const PointerCaptureChangedEntry&>(eventEntry);
status = connection->inputPublisher
.publishCaptureEvent(dispatchEntry->seq, captureEntry.id,
captureEntry.pointerCaptureRequest.enable);
break;
}
case EventEntry::Type::DRAG: {
const DragEntry& dragEntry = static_cast<const DragEntry&>(eventEntry);
status = connection->inputPublisher.publishDragEvent(dispatchEntry->seq,
dragEntry.id, dragEntry.x,
dragEntry.y,
dragEntry.isExiting);
break;
}
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET:
case EventEntry::Type::SENSOR: {
LOG_ALWAYS_FATAL("Should never start dispatch cycles for %s events",
ftl::enum_string(eventEntry.type).c_str());
return;
}
}
// Check the result.
if (status) {
if (status == WOULD_BLOCK) {
if (connection->waitQueue.empty()) {
ALOGE("channel '%s' ~ Could not publish event because the pipe is full. "
"This is unexpected because the wait queue is empty, so the pipe "
"should be empty and we shouldn't have any problems writing an "
"event to it, status=%s(%d)",
connection->getInputChannelName().c_str(), statusToString(status).c_str(),
status);
abortBrokenDispatchCycleLocked(currentTime, connection, /*notify=*/true);
} else {
// Pipe is full and we are waiting for the app to finish process some events
// before sending more events to it.
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("channel '%s' ~ Could not publish event because the pipe is full, "
"waiting for the application to catch up",
connection->getInputChannelName().c_str());
}
}
} else {
ALOGE("channel '%s' ~ Could not publish event due to an unexpected error, "
"status=%s(%d)",
connection->getInputChannelName().c_str(), statusToString(status).c_str(),
status);
abortBrokenDispatchCycleLocked(currentTime, connection, /*notify=*/true);
}
return;
}
// Re-enqueue the event on the wait queue.
connection->outboundQueue.erase(std::remove(connection->outboundQueue.begin(),
connection->outboundQueue.end(),
dispatchEntry));
traceOutboundQueueLength(*connection);
connection->waitQueue.push_back(dispatchEntry);
if (connection->responsive) {
mAnrTracker.insert(dispatchEntry->timeoutTime,
connection->inputChannel->getConnectionToken());
}
traceWaitQueueLength(*connection);
}
}
std::array<uint8_t, 32> InputDispatcher::sign(const VerifiedInputEvent& event) const {
size_t size;
switch (event.type) {
case VerifiedInputEvent::Type::KEY: {
size = sizeof(VerifiedKeyEvent);
break;
}
case VerifiedInputEvent::Type::MOTION: {
size = sizeof(VerifiedMotionEvent);
break;
}
}
const uint8_t* start = reinterpret_cast<const uint8_t*>(&event);
return mHmacKeyManager.sign(start, size);
}
const std::array<uint8_t, 32> InputDispatcher::getSignature(
const MotionEntry& motionEntry, const DispatchEntry& dispatchEntry) const {
const int32_t actionMasked = MotionEvent::getActionMasked(dispatchEntry.resolvedAction);
if (actionMasked != AMOTION_EVENT_ACTION_UP && actionMasked != AMOTION_EVENT_ACTION_DOWN) {
// Only sign events up and down events as the purely move events
// are tied to their up/down counterparts so signing would be redundant.
return INVALID_HMAC;
}
VerifiedMotionEvent verifiedEvent =
verifiedMotionEventFromMotionEntry(motionEntry, dispatchEntry.rawTransform);
verifiedEvent.actionMasked = actionMasked;
verifiedEvent.flags = dispatchEntry.resolvedFlags & VERIFIED_MOTION_EVENT_FLAGS;
return sign(verifiedEvent);
}
const std::array<uint8_t, 32> InputDispatcher::getSignature(
const KeyEntry& keyEntry, const DispatchEntry& dispatchEntry) const {
VerifiedKeyEvent verifiedEvent = verifiedKeyEventFromKeyEntry(keyEntry);
verifiedEvent.flags = dispatchEntry.resolvedFlags & VERIFIED_KEY_EVENT_FLAGS;
verifiedEvent.action = dispatchEntry.resolvedAction;
return sign(verifiedEvent);
}
void InputDispatcher::finishDispatchCycleLocked(nsecs_t currentTime,
const std::shared_ptr<Connection>& connection,
uint32_t seq, bool handled, nsecs_t consumeTime) {
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("channel '%s' ~ finishDispatchCycle - seq=%u, handled=%s",
connection->getInputChannelName().c_str(), seq, toString(handled));
}
if (connection->status == Connection::Status::BROKEN ||
connection->status == Connection::Status::ZOMBIE) {
return;
}
// Notify other system components and prepare to start the next dispatch cycle.
auto command = [this, currentTime, connection, seq, handled, consumeTime]() REQUIRES(mLock) {
doDispatchCycleFinishedCommand(currentTime, connection, seq, handled, consumeTime);
};
postCommandLocked(std::move(command));
}
void InputDispatcher::abortBrokenDispatchCycleLocked(nsecs_t currentTime,
const std::shared_ptr<Connection>& connection,
bool notify) {
if (DEBUG_DISPATCH_CYCLE) {
LOG(DEBUG) << "channel '" << connection->getInputChannelName() << "'~ " << __func__
<< " - notify=" << toString(notify);
}
// Clear the dispatch queues.
drainDispatchQueue(connection->outboundQueue);
traceOutboundQueueLength(*connection);
drainDispatchQueue(connection->waitQueue);
traceWaitQueueLength(*connection);
// The connection appears to be unrecoverably broken.
// Ignore already broken or zombie connections.
if (connection->status == Connection::Status::NORMAL) {
connection->status = Connection::Status::BROKEN;
if (notify) {
// Notify other system components.
ALOGE("channel '%s' ~ Channel is unrecoverably broken and will be disposed!",
connection->getInputChannelName().c_str());
auto command = [this, connection]() REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy.notifyInputChannelBroken(connection->inputChannel->getConnectionToken());
};
postCommandLocked(std::move(command));
}
}
}
void InputDispatcher::drainDispatchQueue(std::deque<DispatchEntry*>& queue) {
while (!queue.empty()) {
DispatchEntry* dispatchEntry = queue.front();
queue.pop_front();
releaseDispatchEntry(dispatchEntry);
}
}
void InputDispatcher::releaseDispatchEntry(DispatchEntry* dispatchEntry) {
if (dispatchEntry->hasForegroundTarget()) {
decrementPendingForegroundDispatches(*(dispatchEntry->eventEntry));
}
delete dispatchEntry;
}
int InputDispatcher::handleReceiveCallback(int events, sp<IBinder> connectionToken) {
std::scoped_lock _l(mLock);
std::shared_ptr<Connection> connection = getConnectionLocked(connectionToken);
if (connection == nullptr) {
ALOGW("Received looper callback for unknown input channel token %p. events=0x%x",
connectionToken.get(), events);
return 0; // remove the callback
}
bool notify;
if (!(events & (ALOOPER_EVENT_ERROR | ALOOPER_EVENT_HANGUP))) {
if (!(events & ALOOPER_EVENT_INPUT)) {
ALOGW("channel '%s' ~ Received spurious callback for unhandled poll event. "
"events=0x%x",
connection->getInputChannelName().c_str(), events);
return 1;
}
nsecs_t currentTime = now();
bool gotOne = false;
status_t status = OK;
for (;;) {
Result<InputPublisher::ConsumerResponse> result =
connection->inputPublisher.receiveConsumerResponse();
if (!result.ok()) {
status = result.error().code();
break;
}
if (std::holds_alternative<InputPublisher::Finished>(*result)) {
const InputPublisher::Finished& finish =
std::get<InputPublisher::Finished>(*result);
finishDispatchCycleLocked(currentTime, connection, finish.seq, finish.handled,
finish.consumeTime);
} else if (std::holds_alternative<InputPublisher::Timeline>(*result)) {
if (shouldReportMetricsForConnection(*connection)) {
const InputPublisher::Timeline& timeline =
std::get<InputPublisher::Timeline>(*result);
mLatencyTracker
.trackGraphicsLatency(timeline.inputEventId,
connection->inputChannel->getConnectionToken(),
std::move(timeline.graphicsTimeline));
}
}
gotOne = true;
}
if (gotOne) {
runCommandsLockedInterruptable();
if (status == WOULD_BLOCK) {
return 1;
}
}
notify = status != DEAD_OBJECT || !connection->monitor;
if (notify) {
ALOGE("channel '%s' ~ Failed to receive finished signal. status=%s(%d)",
connection->getInputChannelName().c_str(), statusToString(status).c_str(),
status);
}
} else {
// Monitor channels are never explicitly unregistered.
// We do it automatically when the remote endpoint is closed so don't warn about them.
const bool stillHaveWindowHandle =
getWindowHandleLocked(connection->inputChannel->getConnectionToken()) != nullptr;
notify = !connection->monitor && stillHaveWindowHandle;
if (notify) {
ALOGW("channel '%s' ~ Consumer closed input channel or an error occurred. events=0x%x",
connection->getInputChannelName().c_str(), events);
}
}
// Remove the channel.
removeInputChannelLocked(connection->inputChannel->getConnectionToken(), notify);
return 0; // remove the callback
}
void InputDispatcher::synthesizeCancelationEventsForAllConnectionsLocked(
const CancelationOptions& options) {
for (const auto& [token, connection] : mConnectionsByToken) {
synthesizeCancelationEventsForConnectionLocked(connection, options);
}
}
void InputDispatcher::synthesizeCancelationEventsForMonitorsLocked(
const CancelationOptions& options) {
for (const auto& [_, monitors] : mGlobalMonitorsByDisplay) {
for (const Monitor& monitor : monitors) {
synthesizeCancelationEventsForInputChannelLocked(monitor.inputChannel, options);
}
}
}
void InputDispatcher::synthesizeCancelationEventsForInputChannelLocked(
const std::shared_ptr<InputChannel>& channel, const CancelationOptions& options) {
std::shared_ptr<Connection> connection = getConnectionLocked(channel->getConnectionToken());
if (connection == nullptr) {
return;
}
synthesizeCancelationEventsForConnectionLocked(connection, options);
}
void InputDispatcher::synthesizeCancelationEventsForConnectionLocked(
const std::shared_ptr<Connection>& connection, const CancelationOptions& options) {
if (connection->status == Connection::Status::BROKEN) {
return;
}
nsecs_t currentTime = now();
std::vector<std::unique_ptr<EventEntry>> cancelationEvents =
connection->inputState.synthesizeCancelationEvents(currentTime, options);
if (cancelationEvents.empty()) {
return;
}
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("channel '%s' ~ Synthesized %zu cancelation events to bring channel back in sync "
"with reality: %s, mode=%s.",
connection->getInputChannelName().c_str(), cancelationEvents.size(), options.reason,
ftl::enum_string(options.mode).c_str());
}
std::string reason = std::string("reason=").append(options.reason);
android_log_event_list(LOGTAG_INPUT_CANCEL)
<< connection->getInputChannelName().c_str() << reason << LOG_ID_EVENTS;
InputTarget target;
sp<WindowInfoHandle> windowHandle =
getWindowHandleLocked(connection->inputChannel->getConnectionToken());
if (windowHandle != nullptr) {
const WindowInfo* windowInfo = windowHandle->getInfo();
target.setDefaultPointerTransform(windowInfo->transform);
target.globalScaleFactor = windowInfo->globalScaleFactor;
}
target.inputChannel = connection->inputChannel;
target.flags = InputTarget::Flags::DISPATCH_AS_IS;
const bool wasEmpty = connection->outboundQueue.empty();
for (size_t i = 0; i < cancelationEvents.size(); i++) {
std::unique_ptr<EventEntry> cancelationEventEntry = std::move(cancelationEvents[i]);
switch (cancelationEventEntry->type) {
case EventEntry::Type::KEY: {
logOutboundKeyDetails("cancel - ",
static_cast<const KeyEntry&>(*cancelationEventEntry));
break;
}
case EventEntry::Type::MOTION: {
logOutboundMotionDetails("cancel - ",
static_cast<const MotionEntry&>(*cancelationEventEntry));
break;
}
case EventEntry::Type::FOCUS:
case EventEntry::Type::TOUCH_MODE_CHANGED:
case EventEntry::Type::POINTER_CAPTURE_CHANGED:
case EventEntry::Type::DRAG: {
LOG_ALWAYS_FATAL("Canceling %s events is not supported",
ftl::enum_string(cancelationEventEntry->type).c_str());
break;
}
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET:
case EventEntry::Type::SENSOR: {
LOG_ALWAYS_FATAL("%s event should not be found inside Connections's queue",
ftl::enum_string(cancelationEventEntry->type).c_str());
break;
}
}
enqueueDispatchEntryLocked(connection, std::move(cancelationEventEntry), target,
InputTarget::Flags::DISPATCH_AS_IS);
}
// If the outbound queue was previously empty, start the dispatch cycle going.
if (wasEmpty && !connection->outboundQueue.empty()) {
startDispatchCycleLocked(currentTime, connection);
}
}
void InputDispatcher::synthesizePointerDownEventsForConnectionLocked(
const nsecs_t downTime, const std::shared_ptr<Connection>& connection,
ftl::Flags<InputTarget::Flags> targetFlags) {
if (connection->status == Connection::Status::BROKEN) {
return;
}
std::vector<std::unique_ptr<EventEntry>> downEvents =
connection->inputState.synthesizePointerDownEvents(downTime);
if (downEvents.empty()) {
return;
}
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("channel '%s' ~ Synthesized %zu down events to ensure consistent event stream.",
connection->getInputChannelName().c_str(), downEvents.size());
}
InputTarget target;
sp<WindowInfoHandle> windowHandle =
getWindowHandleLocked(connection->inputChannel->getConnectionToken());
if (windowHandle != nullptr) {
const WindowInfo* windowInfo = windowHandle->getInfo();
target.setDefaultPointerTransform(windowInfo->transform);
target.globalScaleFactor = windowInfo->globalScaleFactor;
}
target.inputChannel = connection->inputChannel;
target.flags = targetFlags;
const bool wasEmpty = connection->outboundQueue.empty();
for (std::unique_ptr<EventEntry>& downEventEntry : downEvents) {
switch (downEventEntry->type) {
case EventEntry::Type::MOTION: {
logOutboundMotionDetails("down - ",
static_cast<const MotionEntry&>(*downEventEntry));
break;
}
case EventEntry::Type::KEY:
case EventEntry::Type::FOCUS:
case EventEntry::Type::TOUCH_MODE_CHANGED:
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET:
case EventEntry::Type::POINTER_CAPTURE_CHANGED:
case EventEntry::Type::SENSOR:
case EventEntry::Type::DRAG: {
LOG_ALWAYS_FATAL("%s event should not be found inside Connections's queue",
ftl::enum_string(downEventEntry->type).c_str());
break;
}
}
enqueueDispatchEntryLocked(connection, std::move(downEventEntry), target,
InputTarget::Flags::DISPATCH_AS_IS);
}
// If the outbound queue was previously empty, start the dispatch cycle going.
if (wasEmpty && !connection->outboundQueue.empty()) {
startDispatchCycleLocked(downTime, connection);
}
}
void InputDispatcher::synthesizeCancelationEventsForWindowLocked(
const sp<WindowInfoHandle>& windowHandle, const CancelationOptions& options) {
if (windowHandle != nullptr) {
std::shared_ptr<Connection> wallpaperConnection =
getConnectionLocked(windowHandle->getToken());
if (wallpaperConnection != nullptr) {
synthesizeCancelationEventsForConnectionLocked(wallpaperConnection, options);
}
}
}
std::unique_ptr<MotionEntry> InputDispatcher::splitMotionEvent(
const MotionEntry& originalMotionEntry, std::bitset<MAX_POINTER_ID + 1> pointerIds,
nsecs_t splitDownTime) {
ALOG_ASSERT(pointerIds.any());
uint32_t splitPointerIndexMap[MAX_POINTERS];
PointerProperties splitPointerProperties[MAX_POINTERS];
PointerCoords splitPointerCoords[MAX_POINTERS];
uint32_t originalPointerCount = originalMotionEntry.pointerCount;
uint32_t splitPointerCount = 0;
for (uint32_t originalPointerIndex = 0; originalPointerIndex < originalPointerCount;
originalPointerIndex++) {
const PointerProperties& pointerProperties =
originalMotionEntry.pointerProperties[originalPointerIndex];
uint32_t pointerId = uint32_t(pointerProperties.id);
if (pointerIds.test(pointerId)) {
splitPointerIndexMap[splitPointerCount] = originalPointerIndex;
splitPointerProperties[splitPointerCount].copyFrom(pointerProperties);
splitPointerCoords[splitPointerCount].copyFrom(
originalMotionEntry.pointerCoords[originalPointerIndex]);
splitPointerCount += 1;
}
}
if (splitPointerCount != pointerIds.count()) {
// This is bad. We are missing some of the pointers that we expected to deliver.
// Most likely this indicates that we received an ACTION_MOVE events that has
// different pointer ids than we expected based on the previous ACTION_DOWN
// or ACTION_POINTER_DOWN events that caused us to decide to split the pointers
// in this way.
ALOGW("Dropping split motion event because the pointer count is %d but "
"we expected there to be %zu pointers. This probably means we received "
"a broken sequence of pointer ids from the input device: %s",
splitPointerCount, pointerIds.count(), originalMotionEntry.getDescription().c_str());
return nullptr;
}
int32_t action = originalMotionEntry.action;
int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK;
if (maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN ||
maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) {
int32_t originalPointerIndex = getMotionEventActionPointerIndex(action);
const PointerProperties& pointerProperties =
originalMotionEntry.pointerProperties[originalPointerIndex];
uint32_t pointerId = uint32_t(pointerProperties.id);
if (pointerIds.test(pointerId)) {
if (pointerIds.count() == 1) {
// The first/last pointer went down/up.
action = maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN
? AMOTION_EVENT_ACTION_DOWN
: (originalMotionEntry.flags & AMOTION_EVENT_FLAG_CANCELED) != 0
? AMOTION_EVENT_ACTION_CANCEL
: AMOTION_EVENT_ACTION_UP;
} else {
// A secondary pointer went down/up.
uint32_t splitPointerIndex = 0;
while (pointerId != uint32_t(splitPointerProperties[splitPointerIndex].id)) {
splitPointerIndex += 1;
}
action = maskedAction |
(splitPointerIndex << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
}
} else {
// An unrelated pointer changed.
action = AMOTION_EVENT_ACTION_MOVE;
}
}
if (action == AMOTION_EVENT_ACTION_DOWN && splitDownTime != originalMotionEntry.eventTime) {
logDispatchStateLocked();
LOG_ALWAYS_FATAL("Split motion event has mismatching downTime and eventTime for "
"ACTION_DOWN, motionEntry=%s, splitDownTime=%" PRId64,
originalMotionEntry.getDescription().c_str(), splitDownTime);
}
int32_t newId = mIdGenerator.nextId();
if (ATRACE_ENABLED()) {
std::string message = StringPrintf("Split MotionEvent(id=0x%" PRIx32
") to MotionEvent(id=0x%" PRIx32 ").",
originalMotionEntry.id, newId);
ATRACE_NAME(message.c_str());
}
std::unique_ptr<MotionEntry> splitMotionEntry =
std::make_unique<MotionEntry>(newId, originalMotionEntry.eventTime,
originalMotionEntry.deviceId, originalMotionEntry.source,
originalMotionEntry.displayId,
originalMotionEntry.policyFlags, action,
originalMotionEntry.actionButton,
originalMotionEntry.flags, originalMotionEntry.metaState,
originalMotionEntry.buttonState,
originalMotionEntry.classification,
originalMotionEntry.edgeFlags,
originalMotionEntry.xPrecision,
originalMotionEntry.yPrecision,
originalMotionEntry.xCursorPosition,
originalMotionEntry.yCursorPosition, splitDownTime,
splitPointerCount, splitPointerProperties,
splitPointerCoords);
if (originalMotionEntry.injectionState) {
splitMotionEntry->injectionState = originalMotionEntry.injectionState;
splitMotionEntry->injectionState->refCount += 1;
}
return splitMotionEntry;
}
void InputDispatcher::notifyConfigurationChanged(const NotifyConfigurationChangedArgs& args) {
if (debugInboundEventDetails()) {
ALOGD("notifyConfigurationChanged - eventTime=%" PRId64, args.eventTime);
}
bool needWake = false;
{ // acquire lock
std::scoped_lock _l(mLock);
std::unique_ptr<ConfigurationChangedEntry> newEntry =
std::make_unique<ConfigurationChangedEntry>(args.id, args.eventTime);
needWake = enqueueInboundEventLocked(std::move(newEntry));
} // release lock
if (needWake) {
mLooper->wake();
}
}
/**
* If one of the meta shortcuts is detected, process them here:
* Meta + Backspace; Meta + Grave; Meta + Left arrow -> generate BACK
* Most System shortcuts are handled in PhoneWindowManager.java except 'Back' shortcuts. Unlike
* Back, other shortcuts DO NOT need to be sent to applications and are fully handled by the system.
* But for Back key and Back shortcuts, we need to send KEYCODE_BACK to applications which can
* potentially handle the back key presses.
* Note: We don't send any Meta based KeyEvents to applications, so we need to convert to a KeyEvent
* where meta modifier is off before sending. Currently only use case is 'Back'.
*/
void InputDispatcher::accelerateMetaShortcuts(const int32_t deviceId, const int32_t action,
int32_t& keyCode, int32_t& metaState) {
if (metaState & AMETA_META_ON && action == AKEY_EVENT_ACTION_DOWN) {
int32_t newKeyCode = AKEYCODE_UNKNOWN;
if (keyCode == AKEYCODE_DEL || keyCode == AKEYCODE_GRAVE || keyCode == AKEYCODE_DPAD_LEFT) {
newKeyCode = AKEYCODE_BACK;
}
if (newKeyCode != AKEYCODE_UNKNOWN) {
std::scoped_lock _l(mLock);
struct KeyReplacement replacement = {keyCode, deviceId};
mReplacedKeys[replacement] = newKeyCode;
keyCode = newKeyCode;
metaState &= ~(AMETA_META_ON | AMETA_META_LEFT_ON | AMETA_META_RIGHT_ON);
}
} else if (action == AKEY_EVENT_ACTION_UP) {
// In order to maintain a consistent stream of up and down events, check to see if the key
// going up is one we've replaced in a down event and haven't yet replaced in an up event,
// even if the modifier was released between the down and the up events.
std::scoped_lock _l(mLock);
struct KeyReplacement replacement = {keyCode, deviceId};
auto replacementIt = mReplacedKeys.find(replacement);
if (replacementIt != mReplacedKeys.end()) {
keyCode = replacementIt->second;
mReplacedKeys.erase(replacementIt);
metaState &= ~(AMETA_META_ON | AMETA_META_LEFT_ON | AMETA_META_RIGHT_ON);
}
}
}
void InputDispatcher::notifyKey(const NotifyKeyArgs& args) {
ALOGD_IF(debugInboundEventDetails(),
"notifyKey - id=%" PRIx32 ", eventTime=%" PRId64
", deviceId=%d, source=%s, displayId=%" PRId32
"policyFlags=0x%x, action=%s, flags=0x%x, keyCode=%s, scanCode=0x%x, metaState=0x%x, "
"downTime=%" PRId64,
args.id, args.eventTime, args.deviceId, inputEventSourceToString(args.source).c_str(),
args.displayId, args.policyFlags, KeyEvent::actionToString(args.action), args.flags,
KeyEvent::getLabel(args.keyCode), args.scanCode, args.metaState, args.downTime);
Result<void> keyCheck = validateKeyEvent(args.action);
if (!keyCheck.ok()) {
LOG(ERROR) << "invalid key event: " << keyCheck.error();
return;
}
uint32_t policyFlags = args.policyFlags;
int32_t flags = args.flags;
int32_t metaState = args.metaState;
// InputDispatcher tracks and generates key repeats on behalf of
// whatever notifies it, so repeatCount should always be set to 0
constexpr int32_t repeatCount = 0;
if ((policyFlags & POLICY_FLAG_VIRTUAL) || (flags & AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY)) {
policyFlags |= POLICY_FLAG_VIRTUAL;
flags |= AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY;
}
if (policyFlags & POLICY_FLAG_FUNCTION) {
metaState |= AMETA_FUNCTION_ON;
}
policyFlags |= POLICY_FLAG_TRUSTED;
int32_t keyCode = args.keyCode;
accelerateMetaShortcuts(args.deviceId, args.action, keyCode, metaState);
KeyEvent event;
event.initialize(args.id, args.deviceId, args.source, args.displayId, INVALID_HMAC, args.action,
flags, keyCode, args.scanCode, metaState, repeatCount, args.downTime,
args.eventTime);
android::base::Timer t;
mPolicy.interceptKeyBeforeQueueing(event, /*byref*/ policyFlags);
if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) {
ALOGW("Excessive delay in interceptKeyBeforeQueueing; took %s ms",
std::to_string(t.duration().count()).c_str());
}
bool needWake = false;
{ // acquire lock
mLock.lock();
if (shouldSendKeyToInputFilterLocked(args)) {
mLock.unlock();
policyFlags |= POLICY_FLAG_FILTERED;
if (!mPolicy.filterInputEvent(event, policyFlags)) {
return; // event was consumed by the filter
}
mLock.lock();
}
std::unique_ptr<KeyEntry> newEntry =
std::make_unique<KeyEntry>(args.id, args.eventTime, args.deviceId, args.source,
args.displayId, policyFlags, args.action, flags, keyCode,
args.scanCode, metaState, repeatCount, args.downTime);
needWake = enqueueInboundEventLocked(std::move(newEntry));
mLock.unlock();
} // release lock
if (needWake) {
mLooper->wake();
}
}
bool InputDispatcher::shouldSendKeyToInputFilterLocked(const NotifyKeyArgs& args) {
return mInputFilterEnabled;
}
void InputDispatcher::notifyMotion(const NotifyMotionArgs& args) {
if (debugInboundEventDetails()) {
ALOGD("notifyMotion - id=%" PRIx32 " eventTime=%" PRId64 ", deviceId=%d, source=%s, "
"displayId=%" PRId32 ", policyFlags=0x%x, "
"action=%s, actionButton=0x%x, flags=0x%x, metaState=0x%x, buttonState=0x%x, "
"edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, xCursorPosition=%f, "
"yCursorPosition=%f, downTime=%" PRId64,
args.id, args.eventTime, args.deviceId, inputEventSourceToString(args.source).c_str(),
args.displayId, args.policyFlags, MotionEvent::actionToString(args.action).c_str(),
args.actionButton, args.flags, args.metaState, args.buttonState, args.edgeFlags,
args.xPrecision, args.yPrecision, args.xCursorPosition, args.yCursorPosition,
args.downTime);
for (uint32_t i = 0; i < args.getPointerCount(); i++) {
ALOGD(" Pointer %d: id=%d, toolType=%s, x=%f, y=%f, pressure=%f, size=%f, "
"touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, orientation=%f",
i, args.pointerProperties[i].id,
ftl::enum_string(args.pointerProperties[i].toolType).c_str(),
args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_X),
args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_Y),
args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_PRESSURE),
args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_SIZE),
args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR),
args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR),
args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR),
args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR),
args.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION));
}
}
Result<void> motionCheck =
validateMotionEvent(args.action, args.actionButton, args.getPointerCount(),
args.pointerProperties.data());
if (!motionCheck.ok()) {
LOG(FATAL) << "Invalid event: " << args.dump() << "; reason: " << motionCheck.error();
return;
}
if (DEBUG_VERIFY_EVENTS) {
auto [it, _] =
mVerifiersByDisplay.try_emplace(args.displayId,
StringPrintf("display %" PRId32, args.displayId));
Result<void> result =
it->second.processMovement(args.deviceId, args.action, args.getPointerCount(),
args.pointerProperties.data(), args.pointerCoords.data(),
args.flags);
if (!result.ok()) {
LOG(FATAL) << "Bad stream: " << result.error() << " caused by " << args.dump();
}
}
uint32_t policyFlags = args.policyFlags;
policyFlags |= POLICY_FLAG_TRUSTED;
android::base::Timer t;
mPolicy.interceptMotionBeforeQueueing(args.displayId, args.eventTime, policyFlags);
if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) {
ALOGW("Excessive delay in interceptMotionBeforeQueueing; took %s ms",
std::to_string(t.duration().count()).c_str());
}
bool needWake = false;
{ // acquire lock
mLock.lock();
if (!(policyFlags & POLICY_FLAG_PASS_TO_USER)) {
// Set the flag anyway if we already have an ongoing gesture. That would allow us to
// complete the processing of the current stroke.
const auto touchStateIt = mTouchStatesByDisplay.find(args.displayId);
if (touchStateIt != mTouchStatesByDisplay.end()) {
const TouchState& touchState = touchStateIt->second;
if (touchState.hasTouchingPointers(args.deviceId)) {
policyFlags |= POLICY_FLAG_PASS_TO_USER;
}
}
}
if (shouldSendMotionToInputFilterLocked(args)) {
ui::Transform displayTransform;
if (const auto it = mDisplayInfos.find(args.displayId); it != mDisplayInfos.end()) {
displayTransform = it->second.transform;
}
mLock.unlock();
MotionEvent event;
event.initialize(args.id, args.deviceId, args.source, args.displayId, INVALID_HMAC,
args.action, args.actionButton, args.flags, args.edgeFlags,
args.metaState, args.buttonState, args.classification,
displayTransform, args.xPrecision, args.yPrecision,
args.xCursorPosition, args.yCursorPosition, displayTransform,
args.downTime, args.eventTime, args.getPointerCount(),
args.pointerProperties.data(), args.pointerCoords.data());
policyFlags |= POLICY_FLAG_FILTERED;
if (!mPolicy.filterInputEvent(event, policyFlags)) {
return; // event was consumed by the filter
}
mLock.lock();
}
// Just enqueue a new motion event.
std::unique_ptr<MotionEntry> newEntry =
std::make_unique<MotionEntry>(args.id, args.eventTime, args.deviceId, args.source,
args.displayId, policyFlags, args.action,
args.actionButton, args.flags, args.metaState,
args.buttonState, args.classification, args.edgeFlags,
args.xPrecision, args.yPrecision,
args.xCursorPosition, args.yCursorPosition,
args.downTime, args.getPointerCount(),
args.pointerProperties.data(),
args.pointerCoords.data());
if (args.id != android::os::IInputConstants::INVALID_INPUT_EVENT_ID &&
IdGenerator::getSource(args.id) == IdGenerator::Source::INPUT_READER &&
!mInputFilterEnabled) {
const bool isDown = args.action == AMOTION_EVENT_ACTION_DOWN;
mLatencyTracker.trackListener(args.id, isDown, args.eventTime, args.readTime);
}
needWake = enqueueInboundEventLocked(std::move(newEntry));
mLock.unlock();
} // release lock
if (needWake) {
mLooper->wake();
}
}
void InputDispatcher::notifySensor(const NotifySensorArgs& args) {
if (debugInboundEventDetails()) {
ALOGD("notifySensor - id=%" PRIx32 " eventTime=%" PRId64 ", deviceId=%d, source=0x%x, "
" sensorType=%s",
args.id, args.eventTime, args.deviceId, args.source,
ftl::enum_string(args.sensorType).c_str());
}
bool needWake = false;
{ // acquire lock
mLock.lock();
// Just enqueue a new sensor event.
std::unique_ptr<SensorEntry> newEntry =
std::make_unique<SensorEntry>(args.id, args.eventTime, args.deviceId, args.source,
/* policyFlags=*/0, args.hwTimestamp, args.sensorType,
args.accuracy, args.accuracyChanged, args.values);
needWake = enqueueInboundEventLocked(std::move(newEntry));
mLock.unlock();
} // release lock
if (needWake) {
mLooper->wake();
}
}
void InputDispatcher::notifyVibratorState(const NotifyVibratorStateArgs& args) {
if (debugInboundEventDetails()) {
ALOGD("notifyVibratorState - eventTime=%" PRId64 ", device=%d, isOn=%d", args.eventTime,
args.deviceId, args.isOn);
}
mPolicy.notifyVibratorState(args.deviceId, args.isOn);
}
bool InputDispatcher::shouldSendMotionToInputFilterLocked(const NotifyMotionArgs& args) {
return mInputFilterEnabled;
}
void InputDispatcher::notifySwitch(const NotifySwitchArgs& args) {
if (debugInboundEventDetails()) {
ALOGD("notifySwitch - eventTime=%" PRId64 ", policyFlags=0x%x, switchValues=0x%08x, "
"switchMask=0x%08x",
args.eventTime, args.policyFlags, args.switchValues, args.switchMask);
}
uint32_t policyFlags = args.policyFlags;
policyFlags |= POLICY_FLAG_TRUSTED;
mPolicy.notifySwitch(args.eventTime, args.switchValues, args.switchMask, policyFlags);
}
void InputDispatcher::notifyDeviceReset(const NotifyDeviceResetArgs& args) {
if (debugInboundEventDetails()) {
ALOGD("notifyDeviceReset - eventTime=%" PRId64 ", deviceId=%d", args.eventTime,
args.deviceId);
}
bool needWake = false;
{ // acquire lock
std::scoped_lock _l(mLock);
std::unique_ptr<DeviceResetEntry> newEntry =
std::make_unique<DeviceResetEntry>(args.id, args.eventTime, args.deviceId);
needWake = enqueueInboundEventLocked(std::move(newEntry));
for (auto& [_, verifier] : mVerifiersByDisplay) {
verifier.resetDevice(args.deviceId);
}
} // release lock
if (needWake) {
mLooper->wake();
}
}
void InputDispatcher::notifyPointerCaptureChanged(const NotifyPointerCaptureChangedArgs& args) {
if (debugInboundEventDetails()) {
ALOGD("notifyPointerCaptureChanged - eventTime=%" PRId64 ", enabled=%s", args.eventTime,
args.request.enable ? "true" : "false");
}
bool needWake = false;
{ // acquire lock
std::scoped_lock _l(mLock);
auto entry =
std::make_unique<PointerCaptureChangedEntry>(args.id, args.eventTime, args.request);
needWake = enqueueInboundEventLocked(std::move(entry));
} // release lock
if (needWake) {
mLooper->wake();
}
}
InputEventInjectionResult InputDispatcher::injectInputEvent(const InputEvent* event,
std::optional<gui::Uid> targetUid,
InputEventInjectionSync syncMode,
std::chrono::milliseconds timeout,
uint32_t policyFlags) {
Result<void> eventValidation = validateInputEvent(*event);
if (!eventValidation.ok()) {
LOG(INFO) << "Injection failed: invalid event: " << eventValidation.error();
return InputEventInjectionResult::FAILED;
}
if (debugInboundEventDetails()) {
LOG(DEBUG) << __func__ << ": targetUid=" << toString(targetUid, &uidString)
<< ", syncMode=" << ftl::enum_string(syncMode) << ", timeout=" << timeout.count()
<< "ms, policyFlags=0x" << std::hex << policyFlags << std::dec
<< ", event=" << *event;
}
nsecs_t endTime = now() + std::chrono::duration_cast<std::chrono::nanoseconds>(timeout).count();
policyFlags |= POLICY_FLAG_INJECTED | POLICY_FLAG_TRUSTED;
// For all injected events, set device id = VIRTUAL_KEYBOARD_ID. The only exception is events
// that have gone through the InputFilter. If the event passed through the InputFilter, assign
// the provided device id. If the InputFilter is accessibility, and it modifies or synthesizes
// the injected event, it is responsible for setting POLICY_FLAG_INJECTED_FROM_ACCESSIBILITY.
// For those events, we will set FLAG_IS_ACCESSIBILITY_EVENT to allow apps to distinguish them
// from events that originate from actual hardware.
int32_t resolvedDeviceId = VIRTUAL_KEYBOARD_ID;
if (policyFlags & POLICY_FLAG_FILTERED) {
resolvedDeviceId = event->getDeviceId();
}
std::queue<std::unique_ptr<EventEntry>> injectedEntries;
switch (event->getType()) {
case InputEventType::KEY: {
const KeyEvent& incomingKey = static_cast<const KeyEvent&>(*event);
const int32_t action = incomingKey.getAction();
int32_t flags = incomingKey.getFlags();
if (policyFlags & POLICY_FLAG_INJECTED_FROM_ACCESSIBILITY) {
flags |= AKEY_EVENT_FLAG_IS_ACCESSIBILITY_EVENT;
}
int32_t keyCode = incomingKey.getKeyCode();
int32_t metaState = incomingKey.getMetaState();
accelerateMetaShortcuts(resolvedDeviceId, action,
/*byref*/ keyCode, /*byref*/ metaState);
KeyEvent keyEvent;
keyEvent.initialize(incomingKey.getId(), resolvedDeviceId, incomingKey.getSource(),
incomingKey.getDisplayId(), INVALID_HMAC, action, flags, keyCode,
incomingKey.getScanCode(), metaState, incomingKey.getRepeatCount(),
incomingKey.getDownTime(), incomingKey.getEventTime());
if (flags & AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY) {
policyFlags |= POLICY_FLAG_VIRTUAL;
}
if (!(policyFlags & POLICY_FLAG_FILTERED)) {
android::base::Timer t;
mPolicy.interceptKeyBeforeQueueing(keyEvent, /*byref*/ policyFlags);
if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) {
ALOGW("Excessive delay in interceptKeyBeforeQueueing; took %s ms",
std::to_string(t.duration().count()).c_str());
}
}
mLock.lock();
std::unique_ptr<KeyEntry> injectedEntry =
std::make_unique<KeyEntry>(incomingKey.getId(), incomingKey.getEventTime(),
resolvedDeviceId, incomingKey.getSource(),
incomingKey.getDisplayId(), policyFlags, action,
flags, keyCode, incomingKey.getScanCode(), metaState,
incomingKey.getRepeatCount(),
incomingKey.getDownTime());
injectedEntries.push(std::move(injectedEntry));
break;
}
case InputEventType::MOTION: {
const MotionEvent& motionEvent = static_cast<const MotionEvent&>(*event);
const bool isPointerEvent =
isFromSource(event->getSource(), AINPUT_SOURCE_CLASS_POINTER);
// If a pointer event has no displayId specified, inject it to the default display.
const uint32_t displayId = isPointerEvent && (event->getDisplayId() == ADISPLAY_ID_NONE)
? ADISPLAY_ID_DEFAULT
: event->getDisplayId();
int32_t flags = motionEvent.getFlags();
if (!(policyFlags & POLICY_FLAG_FILTERED)) {
nsecs_t eventTime = motionEvent.getEventTime();
android::base::Timer t;
mPolicy.interceptMotionBeforeQueueing(displayId, eventTime, /*byref*/ policyFlags);
if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) {
ALOGW("Excessive delay in interceptMotionBeforeQueueing; took %s ms",
std::to_string(t.duration().count()).c_str());
}
}
if (policyFlags & POLICY_FLAG_INJECTED_FROM_ACCESSIBILITY) {
flags |= AMOTION_EVENT_FLAG_IS_ACCESSIBILITY_EVENT;
}
mLock.lock();
const nsecs_t* sampleEventTimes = motionEvent.getSampleEventTimes();
const PointerCoords* samplePointerCoords = motionEvent.getSamplePointerCoords();
std::unique_ptr<MotionEntry> injectedEntry =
std::make_unique<MotionEntry>(motionEvent.getId(), *sampleEventTimes,
resolvedDeviceId, motionEvent.getSource(),
displayId, policyFlags, motionEvent.getAction(),
motionEvent.getActionButton(), flags,
motionEvent.getMetaState(),
motionEvent.getButtonState(),
motionEvent.getClassification(),
motionEvent.getEdgeFlags(),
motionEvent.getXPrecision(),
motionEvent.getYPrecision(),
motionEvent.getRawXCursorPosition(),
motionEvent.getRawYCursorPosition(),
motionEvent.getDownTime(),
motionEvent.getPointerCount(),
motionEvent.getPointerProperties(),
samplePointerCoords);
transformMotionEntryForInjectionLocked(*injectedEntry, motionEvent.getTransform());
injectedEntries.push(std::move(injectedEntry));
for (size_t i = motionEvent.getHistorySize(); i > 0; i--) {
sampleEventTimes += 1;
samplePointerCoords += motionEvent.getPointerCount();
std::unique_ptr<MotionEntry> nextInjectedEntry =
std::make_unique<MotionEntry>(motionEvent.getId(), *sampleEventTimes,
resolvedDeviceId, motionEvent.getSource(),
displayId, policyFlags,
motionEvent.getAction(),
motionEvent.getActionButton(), flags,
motionEvent.getMetaState(),
motionEvent.getButtonState(),
motionEvent.getClassification(),
motionEvent.getEdgeFlags(),
motionEvent.getXPrecision(),
motionEvent.getYPrecision(),
motionEvent.getRawXCursorPosition(),
motionEvent.getRawYCursorPosition(),
motionEvent.getDownTime(),
motionEvent.getPointerCount(),
motionEvent.getPointerProperties(),
samplePointerCoords);
transformMotionEntryForInjectionLocked(*nextInjectedEntry,
motionEvent.getTransform());
injectedEntries.push(std::move(nextInjectedEntry));
}
break;
}
default:
LOG(WARNING) << "Cannot inject " << ftl::enum_string(event->getType()) << " events";
return InputEventInjectionResult::FAILED;
}
InjectionState* injectionState = new InjectionState(targetUid);
if (syncMode == InputEventInjectionSync::NONE) {
injectionState->injectionIsAsync = true;
}
injectionState->refCount += 1;
injectedEntries.back()->injectionState = injectionState;
bool needWake = false;
while (!injectedEntries.empty()) {
if (DEBUG_INJECTION) {
LOG(DEBUG) << "Injecting " << injectedEntries.front()->getDescription();
}
needWake |= enqueueInboundEventLocked(std::move(injectedEntries.front()));
injectedEntries.pop();
}
mLock.unlock();
if (needWake) {
mLooper->wake();
}
InputEventInjectionResult injectionResult;
{ // acquire lock
std::unique_lock _l(mLock);
if (syncMode == InputEventInjectionSync::NONE) {
injectionResult = InputEventInjectionResult::SUCCEEDED;
} else {
for (;;) {
injectionResult = injectionState->injectionResult;
if (injectionResult != InputEventInjectionResult::PENDING) {
break;
}
nsecs_t remainingTimeout = endTime - now();
if (remainingTimeout <= 0) {
if (DEBUG_INJECTION) {
ALOGD("injectInputEvent - Timed out waiting for injection result "
"to become available.");
}
injectionResult = InputEventInjectionResult::TIMED_OUT;
break;
}
mInjectionResultAvailable.wait_for(_l, std::chrono::nanoseconds(remainingTimeout));
}
if (injectionResult == InputEventInjectionResult::SUCCEEDED &&
syncMode == InputEventInjectionSync::WAIT_FOR_FINISHED) {
while (injectionState->pendingForegroundDispatches != 0) {
if (DEBUG_INJECTION) {
ALOGD("injectInputEvent - Waiting for %d pending foreground dispatches.",
injectionState->pendingForegroundDispatches);
}
nsecs_t remainingTimeout = endTime - now();
if (remainingTimeout <= 0) {
if (DEBUG_INJECTION) {
ALOGD("injectInputEvent - Timed out waiting for pending foreground "
"dispatches to finish.");
}
injectionResult = InputEventInjectionResult::TIMED_OUT;
break;
}
mInjectionSyncFinished.wait_for(_l, std::chrono::nanoseconds(remainingTimeout));
}
}
}
injectionState->release();
} // release lock
if (DEBUG_INJECTION) {
LOG(DEBUG) << "injectInputEvent - Finished with result "
<< ftl::enum_string(injectionResult);
}
return injectionResult;
}
std::unique_ptr<VerifiedInputEvent> InputDispatcher::verifyInputEvent(const InputEvent& event) {
std::array<uint8_t, 32> calculatedHmac;
std::unique_ptr<VerifiedInputEvent> result;
switch (event.getType()) {
case InputEventType::KEY: {
const KeyEvent& keyEvent = static_cast<const KeyEvent&>(event);
VerifiedKeyEvent verifiedKeyEvent = verifiedKeyEventFromKeyEvent(keyEvent);
result = std::make_unique<VerifiedKeyEvent>(verifiedKeyEvent);
calculatedHmac = sign(verifiedKeyEvent);
break;
}
case InputEventType::MOTION: {
const MotionEvent& motionEvent = static_cast<const MotionEvent&>(event);
VerifiedMotionEvent verifiedMotionEvent =
verifiedMotionEventFromMotionEvent(motionEvent);
result = std::make_unique<VerifiedMotionEvent>(verifiedMotionEvent);
calculatedHmac = sign(verifiedMotionEvent);
break;
}
default: {
ALOGE("Cannot verify events of type %" PRId32, event.getType());
return nullptr;
}
}
if (calculatedHmac == INVALID_HMAC) {
return nullptr;
}
if (0 != CRYPTO_memcmp(calculatedHmac.data(), event.getHmac().data(), calculatedHmac.size())) {
return nullptr;
}
return result;
}
void InputDispatcher::setInjectionResult(EventEntry& entry,
InputEventInjectionResult injectionResult) {
InjectionState* injectionState = entry.injectionState;
if (injectionState) {
if (DEBUG_INJECTION) {
LOG(DEBUG) << "Setting input event injection result to "
<< ftl::enum_string(injectionResult);
}
if (injectionState->injectionIsAsync && !(entry.policyFlags & POLICY_FLAG_FILTERED)) {
// Log the outcome since the injector did not wait for the injection result.
switch (injectionResult) {
case InputEventInjectionResult::SUCCEEDED:
ALOGV("Asynchronous input event injection succeeded.");
break;
case InputEventInjectionResult::TARGET_MISMATCH:
ALOGV("Asynchronous input event injection target mismatch.");
break;
case InputEventInjectionResult::FAILED:
ALOGW("Asynchronous input event injection failed.");
break;
case InputEventInjectionResult::TIMED_OUT:
ALOGW("Asynchronous input event injection timed out.");
break;
case InputEventInjectionResult::PENDING:
ALOGE("Setting result to 'PENDING' for asynchronous injection");
break;
}
}
injectionState->injectionResult = injectionResult;
mInjectionResultAvailable.notify_all();
}
}
void InputDispatcher::transformMotionEntryForInjectionLocked(
MotionEntry& entry, const ui::Transform& injectedTransform) const {
// Input injection works in the logical display coordinate space, but the input pipeline works
// display space, so we need to transform the injected events accordingly.
const auto it = mDisplayInfos.find(entry.displayId);
if (it == mDisplayInfos.end()) return;
const auto& transformToDisplay = it->second.transform.inverse() * injectedTransform;
if (entry.xCursorPosition != AMOTION_EVENT_INVALID_CURSOR_POSITION &&
entry.yCursorPosition != AMOTION_EVENT_INVALID_CURSOR_POSITION) {
const vec2 cursor =
MotionEvent::calculateTransformedXY(entry.source, transformToDisplay,
{entry.xCursorPosition, entry.yCursorPosition});
entry.xCursorPosition = cursor.x;
entry.yCursorPosition = cursor.y;
}
for (uint32_t i = 0; i < entry.pointerCount; i++) {
entry.pointerCoords[i] =
MotionEvent::calculateTransformedCoords(entry.source, transformToDisplay,
entry.pointerCoords[i]);
}
}
void InputDispatcher::incrementPendingForegroundDispatches(EventEntry& entry) {
InjectionState* injectionState = entry.injectionState;
if (injectionState) {
injectionState->pendingForegroundDispatches += 1;
}
}
void InputDispatcher::decrementPendingForegroundDispatches(EventEntry& entry) {
InjectionState* injectionState = entry.injectionState;
if (injectionState) {
injectionState->pendingForegroundDispatches -= 1;
if (injectionState->pendingForegroundDispatches == 0) {
mInjectionSyncFinished.notify_all();
}
}
}
const std::vector<sp<WindowInfoHandle>>& InputDispatcher::getWindowHandlesLocked(
int32_t displayId) const {
static const std::vector<sp<WindowInfoHandle>> EMPTY_WINDOW_HANDLES;
auto it = mWindowHandlesByDisplay.find(displayId);
return it != mWindowHandlesByDisplay.end() ? it->second : EMPTY_WINDOW_HANDLES;
}
sp<WindowInfoHandle> InputDispatcher::getWindowHandleLocked(
const sp<IBinder>& windowHandleToken) const {
if (windowHandleToken == nullptr) {
return nullptr;
}
for (auto& it : mWindowHandlesByDisplay) {
const std::vector<sp<WindowInfoHandle>>& windowHandles = it.second;
for (const sp<WindowInfoHandle>& windowHandle : windowHandles) {
if (windowHandle->getToken() == windowHandleToken) {
return windowHandle;
}
}
}
return nullptr;
}
sp<WindowInfoHandle> InputDispatcher::getWindowHandleLocked(const sp<IBinder>& windowHandleToken,
int displayId) const {
if (windowHandleToken == nullptr) {
return nullptr;
}
for (const sp<WindowInfoHandle>& windowHandle : getWindowHandlesLocked(displayId)) {
if (windowHandle->getToken() == windowHandleToken) {
return windowHandle;
}
}
return nullptr;
}
sp<WindowInfoHandle> InputDispatcher::getWindowHandleLocked(
const sp<WindowInfoHandle>& windowHandle) const {
for (auto& it : mWindowHandlesByDisplay) {
const std::vector<sp<WindowInfoHandle>>& windowHandles = it.second;
for (const sp<WindowInfoHandle>& handle : windowHandles) {
if (handle->getId() == windowHandle->getId() &&
handle->getToken() == windowHandle->getToken()) {
if (windowHandle->getInfo()->displayId != it.first) {
ALOGE("Found window %s in display %" PRId32
", but it should belong to display %" PRId32,
windowHandle->getName().c_str(), it.first,
windowHandle->getInfo()->displayId);
}
return handle;
}
}
}
return nullptr;
}
sp<WindowInfoHandle> InputDispatcher::getFocusedWindowHandleLocked(int displayId) const {
sp<IBinder> focusedToken = mFocusResolver.getFocusedWindowToken(displayId);
return getWindowHandleLocked(focusedToken, displayId);
}
ui::Transform InputDispatcher::getTransformLocked(int32_t displayId) const {
auto displayInfoIt = mDisplayInfos.find(displayId);
return displayInfoIt != mDisplayInfos.end() ? displayInfoIt->second.transform
: kIdentityTransform;
}
bool InputDispatcher::canWindowReceiveMotionLocked(const sp<WindowInfoHandle>& window,
const MotionEntry& motionEntry) const {
const WindowInfo& info = *window->getInfo();
// Skip spy window targets that are not valid for targeted injection.
if (const auto err = verifyTargetedInjection(window, motionEntry); err) {
return false;
}
if (info.inputConfig.test(WindowInfo::InputConfig::PAUSE_DISPATCHING)) {
ALOGI("Not sending touch event to %s because it is paused", window->getName().c_str());
return false;
}
if (info.inputConfig.test(WindowInfo::InputConfig::NO_INPUT_CHANNEL)) {
ALOGW("Not sending touch gesture to %s because it has config NO_INPUT_CHANNEL",
window->getName().c_str());
return false;
}
std::shared_ptr<Connection> connection = getConnectionLocked(window->getToken());
if (connection == nullptr) {
ALOGW("Not sending touch to %s because there's no corresponding connection",
window->getName().c_str());
return false;
}
if (!connection->responsive) {
ALOGW("Not sending touch to %s because it is not responsive", window->getName().c_str());
return false;
}
// Drop events that can't be trusted due to occlusion
const auto [x, y] = resolveTouchedPosition(motionEntry);
TouchOcclusionInfo occlusionInfo = computeTouchOcclusionInfoLocked(window, x, y);
if (!isTouchTrustedLocked(occlusionInfo)) {
if (DEBUG_TOUCH_OCCLUSION) {
ALOGD("Stack of obscuring windows during untrusted touch (%.1f, %.1f):", x, y);
for (const auto& log : occlusionInfo.debugInfo) {
ALOGD("%s", log.c_str());
}
}
ALOGW("Dropping untrusted touch event due to %s/%s", occlusionInfo.obscuringPackage.c_str(),
occlusionInfo.obscuringUid.toString().c_str());
return false;
}
// Drop touch events if requested by input feature
if (shouldDropInput(motionEntry, window)) {
return false;
}
return true;
}
std::shared_ptr<InputChannel> InputDispatcher::getInputChannelLocked(
const sp<IBinder>& token) const {
auto connectionIt = mConnectionsByToken.find(token);
if (connectionIt == mConnectionsByToken.end()) {
return nullptr;
}
return connectionIt->second->inputChannel;
}
void InputDispatcher::updateWindowHandlesForDisplayLocked(
const std::vector<sp<WindowInfoHandle>>& windowInfoHandles, int32_t displayId) {
if (windowInfoHandles.empty()) {
// Remove all handles on a display if there are no windows left.
mWindowHandlesByDisplay.erase(displayId);
return;
}
// Since we compare the pointer of input window handles across window updates, we need
// to make sure the handle object for the same window stays unchanged across updates.
const std::vector<sp<WindowInfoHandle>>& oldHandles = getWindowHandlesLocked(displayId);
std::unordered_map<int32_t /*id*/, sp<WindowInfoHandle>> oldHandlesById;
for (const sp<WindowInfoHandle>& handle : oldHandles) {
oldHandlesById[handle->getId()] = handle;
}
std::vector<sp<WindowInfoHandle>> newHandles;
for (const sp<WindowInfoHandle>& handle : windowInfoHandles) {
const WindowInfo* info = handle->getInfo();
if (getInputChannelLocked(handle->getToken()) == nullptr) {
const bool noInputChannel =
info->inputConfig.test(WindowInfo::InputConfig::NO_INPUT_CHANNEL);
const bool canReceiveInput =
!info->inputConfig.test(WindowInfo::InputConfig::NOT_TOUCHABLE) ||
!info->inputConfig.test(WindowInfo::InputConfig::NOT_FOCUSABLE);
if (canReceiveInput && !noInputChannel) {
ALOGV("Window handle %s has no registered input channel",
handle->getName().c_str());
continue;
}
}
if (info->displayId != displayId) {
ALOGE("Window %s updated by wrong display %d, should belong to display %d",
handle->getName().c_str(), displayId, info->displayId);
continue;
}
if ((oldHandlesById.find(handle->getId()) != oldHandlesById.end()) &&
(oldHandlesById.at(handle->getId())->getToken() == handle->getToken())) {
const sp<WindowInfoHandle>& oldHandle = oldHandlesById.at(handle->getId());
oldHandle->updateFrom(handle);
newHandles.push_back(oldHandle);
} else {
newHandles.push_back(handle);
}
}
// Insert or replace
mWindowHandlesByDisplay[displayId] = newHandles;
}
void InputDispatcher::setInputWindows(
const std::unordered_map<int32_t, std::vector<sp<WindowInfoHandle>>>& handlesPerDisplay) {
// TODO(b/198444055): Remove setInputWindows from InputDispatcher.
{ // acquire lock
std::scoped_lock _l(mLock);
for (const auto& [displayId, handles] : handlesPerDisplay) {
setInputWindowsLocked(handles, displayId);
}
}
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
/**
* Called from InputManagerService, update window handle list by displayId that can receive input.
* A window handle contains information about InputChannel, Touch Region, Types, Focused,...
* If set an empty list, remove all handles from the specific display.
* For focused handle, check if need to change and send a cancel event to previous one.
* For removed handle, check if need to send a cancel event if already in touch.
*/
void InputDispatcher::setInputWindowsLocked(
const std::vector<sp<WindowInfoHandle>>& windowInfoHandles, int32_t displayId) {
if (DEBUG_FOCUS) {
std::string windowList;
for (const sp<WindowInfoHandle>& iwh : windowInfoHandles) {
windowList += iwh->getName() + " ";
}
ALOGD("setInputWindows displayId=%" PRId32 " %s", displayId, windowList.c_str());
}
// Check preconditions for new input windows
for (const sp<WindowInfoHandle>& window : windowInfoHandles) {
const WindowInfo& info = *window->getInfo();
// Ensure all tokens are null if the window has feature NO_INPUT_CHANNEL
const bool noInputWindow = info.inputConfig.test(WindowInfo::InputConfig::NO_INPUT_CHANNEL);
if (noInputWindow && window->getToken() != nullptr) {
ALOGE("%s has feature NO_INPUT_WINDOW, but a non-null token. Clearing",
window->getName().c_str());
window->releaseChannel();
}
// Ensure all spy windows are trusted overlays
LOG_ALWAYS_FATAL_IF(info.isSpy() &&
!info.inputConfig.test(
WindowInfo::InputConfig::TRUSTED_OVERLAY),
"%s has feature SPY, but is not a trusted overlay.",
window->getName().c_str());
// Ensure all stylus interceptors are trusted overlays
LOG_ALWAYS_FATAL_IF(info.interceptsStylus() &&
!info.inputConfig.test(
WindowInfo::InputConfig::TRUSTED_OVERLAY),
"%s has feature INTERCEPTS_STYLUS, but is not a trusted overlay.",
window->getName().c_str());
}
// Copy old handles for release if they are no longer present.
const std::vector<sp<WindowInfoHandle>> oldWindowHandles = getWindowHandlesLocked(displayId);
updateWindowHandlesForDisplayLocked(windowInfoHandles, displayId);
const std::vector<sp<WindowInfoHandle>>& windowHandles = getWindowHandlesLocked(displayId);
std::optional<FocusResolver::FocusChanges> changes =
mFocusResolver.setInputWindows(displayId, windowHandles);
if (changes) {
onFocusChangedLocked(*changes);
}
std::unordered_map<int32_t, TouchState>::iterator stateIt =
mTouchStatesByDisplay.find(displayId);
if (stateIt != mTouchStatesByDisplay.end()) {
TouchState& state = stateIt->second;
for (size_t i = 0; i < state.windows.size();) {
TouchedWindow& touchedWindow = state.windows[i];
if (getWindowHandleLocked(touchedWindow.windowHandle) == nullptr) {
if (DEBUG_FOCUS) {
ALOGD("Touched window was removed: %s in display %" PRId32,
touchedWindow.windowHandle->getName().c_str(), displayId);
}
std::shared_ptr<InputChannel> touchedInputChannel =
getInputChannelLocked(touchedWindow.windowHandle->getToken());
if (touchedInputChannel != nullptr) {
CancelationOptions options(CancelationOptions::Mode::CANCEL_POINTER_EVENTS,
"touched window was removed");
synthesizeCancelationEventsForInputChannelLocked(touchedInputChannel, options);
// Since we are about to drop the touch, cancel the events for the wallpaper as
// well.
if (touchedWindow.targetFlags.test(InputTarget::Flags::FOREGROUND) &&
touchedWindow.windowHandle->getInfo()->inputConfig.test(
gui::WindowInfo::InputConfig::DUPLICATE_TOUCH_TO_WALLPAPER)) {
sp<WindowInfoHandle> wallpaper = state.getWallpaperWindow();
synthesizeCancelationEventsForWindowLocked(wallpaper, options);
}
}
state.windows.erase(state.windows.begin() + i);
} else {
++i;
}
}
// If drag window is gone, it would receive a cancel event and broadcast the DRAG_END. We
// could just clear the state here.
if (mDragState && mDragState->dragWindow->getInfo()->displayId == displayId &&
std::find(windowHandles.begin(), windowHandles.end(), mDragState->dragWindow) ==
windowHandles.end()) {
ALOGI("Drag window went away: %s", mDragState->dragWindow->getName().c_str());
sendDropWindowCommandLocked(nullptr, 0, 0);
mDragState.reset();
}
}
// Release information for windows that are no longer present.
// This ensures that unused input channels are released promptly.
// Otherwise, they might stick around until the window handle is destroyed
// which might not happen until the next GC.
for (const sp<WindowInfoHandle>& oldWindowHandle : oldWindowHandles) {
if (getWindowHandleLocked(oldWindowHandle) == nullptr) {
if (DEBUG_FOCUS) {
ALOGD("Window went away: %s", oldWindowHandle->getName().c_str());
}
oldWindowHandle->releaseChannel();
}
}
}
void InputDispatcher::setFocusedApplication(
int32_t displayId, const std::shared_ptr<InputApplicationHandle>& inputApplicationHandle) {
if (DEBUG_FOCUS) {
ALOGD("setFocusedApplication displayId=%" PRId32 " %s", displayId,
inputApplicationHandle ? inputApplicationHandle->getName().c_str() : "<nullptr>");
}
{ // acquire lock
std::scoped_lock _l(mLock);
setFocusedApplicationLocked(displayId, inputApplicationHandle);
} // release lock
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
void InputDispatcher::setFocusedApplicationLocked(
int32_t displayId, const std::shared_ptr<InputApplicationHandle>& inputApplicationHandle) {
std::shared_ptr<InputApplicationHandle> oldFocusedApplicationHandle =
getValueByKey(mFocusedApplicationHandlesByDisplay, displayId);
if (sharedPointersEqual(oldFocusedApplicationHandle, inputApplicationHandle)) {
return; // This application is already focused. No need to wake up or change anything.
}
// Set the new application handle.
if (inputApplicationHandle != nullptr) {
mFocusedApplicationHandlesByDisplay[displayId] = inputApplicationHandle;
} else {
mFocusedApplicationHandlesByDisplay.erase(displayId);
}
// No matter what the old focused application was, stop waiting on it because it is
// no longer focused.
resetNoFocusedWindowTimeoutLocked();
}
/**
* Sets the focused display, which is responsible for receiving focus-dispatched input events where
* the display not specified.
*
* We track any unreleased events for each window. If a window loses the ability to receive the
* released event, we will send a cancel event to it. So when the focused display is changed, we
* cancel all the unreleased display-unspecified events for the focused window on the old focused
* display. The display-specified events won't be affected.
*/
void InputDispatcher::setFocusedDisplay(int32_t displayId) {
if (DEBUG_FOCUS) {
ALOGD("setFocusedDisplay displayId=%" PRId32, displayId);
}
{ // acquire lock
std::scoped_lock _l(mLock);
if (mFocusedDisplayId != displayId) {
sp<IBinder> oldFocusedWindowToken =
mFocusResolver.getFocusedWindowToken(mFocusedDisplayId);
if (oldFocusedWindowToken != nullptr) {
std::shared_ptr<InputChannel> inputChannel =
getInputChannelLocked(oldFocusedWindowToken);
if (inputChannel != nullptr) {
CancelationOptions
options(CancelationOptions::Mode::CANCEL_NON_POINTER_EVENTS,
"The display which contains this window no longer has focus.");
options.displayId = ADISPLAY_ID_NONE;
synthesizeCancelationEventsForInputChannelLocked(inputChannel, options);
}
}
mFocusedDisplayId = displayId;
// Find new focused window and validate
sp<IBinder> newFocusedWindowToken = mFocusResolver.getFocusedWindowToken(displayId);
sendFocusChangedCommandLocked(oldFocusedWindowToken, newFocusedWindowToken);
if (newFocusedWindowToken == nullptr) {
ALOGW("Focused display #%" PRId32 " does not have a focused window.", displayId);
if (mFocusResolver.hasFocusedWindowTokens()) {
ALOGE("But another display has a focused window\n%s",
mFocusResolver.dumpFocusedWindows().c_str());
}
}
}
} // release lock
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
void InputDispatcher::setInputDispatchMode(bool enabled, bool frozen) {
if (DEBUG_FOCUS) {
ALOGD("setInputDispatchMode: enabled=%d, frozen=%d", enabled, frozen);
}
bool changed;
{ // acquire lock
std::scoped_lock _l(mLock);
if (mDispatchEnabled != enabled || mDispatchFrozen != frozen) {
if (mDispatchFrozen && !frozen) {
resetNoFocusedWindowTimeoutLocked();
}
if (mDispatchEnabled && !enabled) {
resetAndDropEverythingLocked("dispatcher is being disabled");
}
mDispatchEnabled = enabled;
mDispatchFrozen = frozen;
changed = true;
} else {
changed = false;
}
} // release lock
if (changed) {
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
}
void InputDispatcher::setInputFilterEnabled(bool enabled) {
if (DEBUG_FOCUS) {
ALOGD("setInputFilterEnabled: enabled=%d", enabled);
}
{ // acquire lock
std::scoped_lock _l(mLock);
if (mInputFilterEnabled == enabled) {
return;
}
mInputFilterEnabled = enabled;
resetAndDropEverythingLocked("input filter is being enabled or disabled");
} // release lock
// Wake up poll loop since there might be work to do to drop everything.
mLooper->wake();
}
bool InputDispatcher::setInTouchMode(bool inTouchMode, gui::Pid pid, gui::Uid uid,
bool hasPermission, int32_t displayId) {
bool needWake = false;
{
std::scoped_lock lock(mLock);
ALOGD_IF(DEBUG_TOUCH_MODE,
"Request to change touch mode to %s (calling pid=%s, uid=%s, "
"hasPermission=%s, target displayId=%d, mTouchModePerDisplay[displayId]=%s)",
toString(inTouchMode), pid.toString().c_str(), uid.toString().c_str(),
toString(hasPermission), displayId,
mTouchModePerDisplay.count(displayId) == 0
? "not set"
: std::to_string(mTouchModePerDisplay[displayId]).c_str());
auto touchModeIt = mTouchModePerDisplay.find(displayId);
if (touchModeIt != mTouchModePerDisplay.end() && touchModeIt->second == inTouchMode) {
return false;
}
if (!hasPermission) {
if (!focusedWindowIsOwnedByLocked(pid, uid) &&
!recentWindowsAreOwnedByLocked(pid, uid)) {
ALOGD("Touch mode switch rejected, caller (pid=%s, uid=%s) doesn't own the focused "
"window nor none of the previously interacted window",
pid.toString().c_str(), uid.toString().c_str());
return false;
}
}
mTouchModePerDisplay[displayId] = inTouchMode;
auto entry = std::make_unique<TouchModeEntry>(mIdGenerator.nextId(), now(), inTouchMode,
displayId);
needWake = enqueueInboundEventLocked(std::move(entry));
} // release lock
if (needWake) {
mLooper->wake();
}
return true;
}
bool InputDispatcher::focusedWindowIsOwnedByLocked(gui::Pid pid, gui::Uid uid) {
const sp<IBinder> focusedToken = mFocusResolver.getFocusedWindowToken(mFocusedDisplayId);
if (focusedToken == nullptr) {
return false;
}
sp<WindowInfoHandle> windowHandle = getWindowHandleLocked(focusedToken);
return isWindowOwnedBy(windowHandle, pid, uid);
}
bool InputDispatcher::recentWindowsAreOwnedByLocked(gui::Pid pid, gui::Uid uid) {
return std::find_if(mInteractionConnectionTokens.begin(), mInteractionConnectionTokens.end(),
[&](const sp<IBinder>& connectionToken) REQUIRES(mLock) {
const sp<WindowInfoHandle> windowHandle =
getWindowHandleLocked(connectionToken);
return isWindowOwnedBy(windowHandle, pid, uid);
}) != mInteractionConnectionTokens.end();
}
void InputDispatcher::setMaximumObscuringOpacityForTouch(float opacity) {
if (opacity < 0 || opacity > 1) {
LOG_ALWAYS_FATAL("Maximum obscuring opacity for touch should be >= 0 and <= 1");
return;
}
std::scoped_lock lock(mLock);
mMaximumObscuringOpacityForTouch = opacity;
}
std::tuple<TouchState*, TouchedWindow*, int32_t /*displayId*/>
InputDispatcher::findTouchStateWindowAndDisplayLocked(const sp<IBinder>& token) {
for (auto& [displayId, state] : mTouchStatesByDisplay) {
for (TouchedWindow& w : state.windows) {
if (w.windowHandle->getToken() == token) {
return std::make_tuple(&state, &w, displayId);
}
}
}
return std::make_tuple(nullptr, nullptr, ADISPLAY_ID_DEFAULT);
}
bool InputDispatcher::transferTouchFocus(const sp<IBinder>& fromToken, const sp<IBinder>& toToken,
bool isDragDrop) {
if (fromToken == toToken) {
if (DEBUG_FOCUS) {
ALOGD("Trivial transfer to same window.");
}
return true;
}
{ // acquire lock
std::scoped_lock _l(mLock);
// Find the target touch state and touched window by fromToken.
auto [state, touchedWindow, displayId] = findTouchStateWindowAndDisplayLocked(fromToken);
if (state == nullptr || touchedWindow == nullptr) {
ALOGD("Touch transfer failed because from window is not being touched.");
return false;
}
std::set<int32_t> deviceIds = touchedWindow->getTouchingDeviceIds();
if (deviceIds.size() != 1) {
LOG(DEBUG) << "Can't transfer touch. Currently touching devices: " << dumpSet(deviceIds)
<< " for window: " << touchedWindow->dump();
return false;
}
const int32_t deviceId = *deviceIds.begin();
sp<WindowInfoHandle> toWindowHandle = getWindowHandleLocked(toToken, displayId);
if (toWindowHandle == nullptr) {
ALOGW("Cannot transfer touch because to window not found.");
return false;
}
if (DEBUG_FOCUS) {
ALOGD("transferTouchFocus: fromWindowHandle=%s, toWindowHandle=%s",
touchedWindow->windowHandle->getName().c_str(),
toWindowHandle->getName().c_str());
}
// Erase old window.
ftl::Flags<InputTarget::Flags> oldTargetFlags = touchedWindow->targetFlags;
std::bitset<MAX_POINTER_ID + 1> pointerIds = touchedWindow->getTouchingPointers(deviceId);
sp<WindowInfoHandle> fromWindowHandle = touchedWindow->windowHandle;
state->removeWindowByToken(fromToken);
// Add new window.
nsecs_t downTimeInTarget = now();
ftl::Flags<InputTarget::Flags> newTargetFlags =
oldTargetFlags & (InputTarget::Flags::SPLIT | InputTarget::Flags::DISPATCH_AS_IS);
if (canReceiveForegroundTouches(*toWindowHandle->getInfo())) {
newTargetFlags |= InputTarget::Flags::FOREGROUND;
}
state->addOrUpdateWindow(toWindowHandle, newTargetFlags, deviceId, pointerIds,
downTimeInTarget);
// Store the dragging window.
if (isDragDrop) {
if (pointerIds.count() != 1) {
ALOGW("The drag and drop cannot be started when there is no pointer or more than 1"
" pointer on the window.");
return false;
}
// Track the pointer id for drag window and generate the drag state.
const size_t id = firstMarkedBit(pointerIds);
mDragState = std::make_unique<DragState>(toWindowHandle, id);
}
// Synthesize cancel for old window and down for new window.
std::shared_ptr<Connection> fromConnection = getConnectionLocked(fromToken);
std::shared_ptr<Connection> toConnection = getConnectionLocked(toToken);
if (fromConnection != nullptr && toConnection != nullptr) {
fromConnection->inputState.mergePointerStateTo(toConnection->inputState);
CancelationOptions options(CancelationOptions::Mode::CANCEL_POINTER_EVENTS,
"transferring touch from this window to another window");
synthesizeCancelationEventsForConnectionLocked(fromConnection, options);
synthesizePointerDownEventsForConnectionLocked(downTimeInTarget, toConnection,
newTargetFlags);
// Check if the wallpaper window should deliver the corresponding event.
transferWallpaperTouch(oldTargetFlags, newTargetFlags, fromWindowHandle, toWindowHandle,
*state, deviceId, pointerIds);
}
} // release lock
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
return true;
}
/**
* Get the touched foreground window on the given display.
* Return null if there are no windows touched on that display, or if more than one foreground
* window is being touched.
*/
sp<WindowInfoHandle> InputDispatcher::findTouchedForegroundWindowLocked(int32_t displayId) const {
auto stateIt = mTouchStatesByDisplay.find(displayId);
if (stateIt == mTouchStatesByDisplay.end()) {
ALOGI("No touch state on display %" PRId32, displayId);
return nullptr;
}
const TouchState& state = stateIt->second;
sp<WindowInfoHandle> touchedForegroundWindow;
// If multiple foreground windows are touched, return nullptr
for (const TouchedWindow& window : state.windows) {
if (window.targetFlags.test(InputTarget::Flags::FOREGROUND)) {
if (touchedForegroundWindow != nullptr) {
ALOGI("Two or more foreground windows: %s and %s",
touchedForegroundWindow->getName().c_str(),
window.windowHandle->getName().c_str());
return nullptr;
}
touchedForegroundWindow = window.windowHandle;
}
}
return touchedForegroundWindow;
}
// Binder call
bool InputDispatcher::transferTouch(const sp<IBinder>& destChannelToken, int32_t displayId) {
sp<IBinder> fromToken;
{ // acquire lock
std::scoped_lock _l(mLock);
sp<WindowInfoHandle> toWindowHandle = getWindowHandleLocked(destChannelToken, displayId);
if (toWindowHandle == nullptr) {
ALOGW("Could not find window associated with token=%p on display %" PRId32,
destChannelToken.get(), displayId);
return false;
}
sp<WindowInfoHandle> from = findTouchedForegroundWindowLocked(displayId);
if (from == nullptr) {
ALOGE("Could not find a source window in %s for %p", __func__, destChannelToken.get());
return false;
}
fromToken = from->getToken();
} // release lock
return transferTouchFocus(fromToken, destChannelToken);
}
void InputDispatcher::resetAndDropEverythingLocked(const char* reason) {
if (DEBUG_FOCUS) {
ALOGD("Resetting and dropping all events (%s).", reason);
}
CancelationOptions options(CancelationOptions::Mode::CANCEL_ALL_EVENTS, reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
resetKeyRepeatLocked();
releasePendingEventLocked();
drainInboundQueueLocked();
resetNoFocusedWindowTimeoutLocked();
mAnrTracker.clear();
mTouchStatesByDisplay.clear();
mReplacedKeys.clear();
}
void InputDispatcher::logDispatchStateLocked() const {
std::string dump;
dumpDispatchStateLocked(dump);
std::istringstream stream(dump);
std::string line;
while (std::getline(stream, line, '\n')) {
ALOGI("%s", line.c_str());
}
}
std::string InputDispatcher::dumpPointerCaptureStateLocked() const {
std::string dump;
dump += StringPrintf(INDENT "Pointer Capture Requested: %s\n",
toString(mCurrentPointerCaptureRequest.enable));
std::string windowName = "None";
if (mWindowTokenWithPointerCapture) {
const sp<WindowInfoHandle> captureWindowHandle =
getWindowHandleLocked(mWindowTokenWithPointerCapture);
windowName = captureWindowHandle ? captureWindowHandle->getName().c_str()
: "token has capture without window";
}
dump += StringPrintf(INDENT "Current Window with Pointer Capture: %s\n", windowName.c_str());
return dump;
}
void InputDispatcher::dumpDispatchStateLocked(std::string& dump) const {
dump += StringPrintf(INDENT "DispatchEnabled: %s\n", toString(mDispatchEnabled));
dump += StringPrintf(INDENT "DispatchFrozen: %s\n", toString(mDispatchFrozen));
dump += StringPrintf(INDENT "InputFilterEnabled: %s\n", toString(mInputFilterEnabled));
dump += StringPrintf(INDENT "FocusedDisplayId: %" PRId32 "\n", mFocusedDisplayId);
if (!mFocusedApplicationHandlesByDisplay.empty()) {
dump += StringPrintf(INDENT "FocusedApplications:\n");
for (auto& it : mFocusedApplicationHandlesByDisplay) {
const int32_t displayId = it.first;
const std::shared_ptr<InputApplicationHandle>& applicationHandle = it.second;
const std::chrono::duration timeout =
applicationHandle->getDispatchingTimeout(DEFAULT_INPUT_DISPATCHING_TIMEOUT);
dump += StringPrintf(INDENT2 "displayId=%" PRId32
", name='%s', dispatchingTimeout=%" PRId64 "ms\n",
displayId, applicationHandle->getName().c_str(), millis(timeout));
}
} else {
dump += StringPrintf(INDENT "FocusedApplications: <none>\n");
}
dump += mFocusResolver.dump();
dump += dumpPointerCaptureStateLocked();
if (!mTouchStatesByDisplay.empty()) {
dump += StringPrintf(INDENT "TouchStatesByDisplay:\n");
for (const auto& [displayId, state] : mTouchStatesByDisplay) {
std::string touchStateDump = addLinePrefix(state.dump(), INDENT2);
dump += INDENT2 + std::to_string(displayId) + " : " + touchStateDump;
}
} else {
dump += INDENT "TouchStates: <no displays touched>\n";
}
if (mDragState) {
dump += StringPrintf(INDENT "DragState:\n");
mDragState->dump(dump, INDENT2);
}
if (!mWindowHandlesByDisplay.empty()) {
for (const auto& [displayId, windowHandles] : mWindowHandlesByDisplay) {
dump += StringPrintf(INDENT "Display: %" PRId32 "\n", displayId);
if (const auto& it = mDisplayInfos.find(displayId); it != mDisplayInfos.end()) {
const auto& displayInfo = it->second;
dump += StringPrintf(INDENT2 "logicalSize=%dx%d\n", displayInfo.logicalWidth,
displayInfo.logicalHeight);
displayInfo.transform.dump(dump, "transform", INDENT4);
} else {
dump += INDENT2 "No DisplayInfo found!\n";
}
if (!windowHandles.empty()) {
dump += INDENT2 "Windows:\n";
for (size_t i = 0; i < windowHandles.size(); i++) {
const sp<WindowInfoHandle>& windowHandle = windowHandles[i];
const WindowInfo* windowInfo = windowHandle->getInfo();
dump += StringPrintf(INDENT3 "%zu: name='%s', id=%" PRId32 ", displayId=%d, "
"inputConfig=%s, alpha=%.2f, "
"frame=[%d,%d][%d,%d], globalScale=%f, "
"applicationInfo.name=%s, "
"applicationInfo.token=%s, "
"touchableRegion=",
i, windowInfo->name.c_str(), windowInfo->id,
windowInfo->displayId,
windowInfo->inputConfig.string().c_str(),
windowInfo->alpha, windowInfo->frameLeft,
windowInfo->frameTop, windowInfo->frameRight,
windowInfo->frameBottom, windowInfo->globalScaleFactor,
windowInfo->applicationInfo.name.c_str(),
binderToString(windowInfo->applicationInfo.token).c_str());
dump += dumpRegion(windowInfo->touchableRegion);
dump += StringPrintf(", ownerPid=%s, ownerUid=%s, dispatchingTimeout=%" PRId64
"ms, hasToken=%s, "
"touchOcclusionMode=%s\n",
windowInfo->ownerPid.toString().c_str(),
windowInfo->ownerUid.toString().c_str(),
millis(windowInfo->dispatchingTimeout),
binderToString(windowInfo->token).c_str(),
toString(windowInfo->touchOcclusionMode).c_str());
windowInfo->transform.dump(dump, "transform", INDENT4);
}
} else {
dump += INDENT2 "Windows: <none>\n";
}
}
} else {
dump += INDENT "Displays: <none>\n";
}
if (!mGlobalMonitorsByDisplay.empty()) {
for (const auto& [displayId, monitors] : mGlobalMonitorsByDisplay) {
dump += StringPrintf(INDENT "Global monitors on display %d:\n", displayId);
dumpMonitors(dump, monitors);
}
} else {
dump += INDENT "Global Monitors: <none>\n";
}
const nsecs_t currentTime = now();
// Dump recently dispatched or dropped events from oldest to newest.
if (!mRecentQueue.empty()) {
dump += StringPrintf(INDENT "RecentQueue: length=%zu\n", mRecentQueue.size());
for (const std::shared_ptr<EventEntry>& entry : mRecentQueue) {
dump += INDENT2;
dump += entry->getDescription();
dump += StringPrintf(", age=%" PRId64 "ms\n", ns2ms(currentTime - entry->eventTime));
}
} else {
dump += INDENT "RecentQueue: <empty>\n";
}
// Dump event currently being dispatched.
if (mPendingEvent) {
dump += INDENT "PendingEvent:\n";
dump += INDENT2;
dump += mPendingEvent->getDescription();
dump += StringPrintf(", age=%" PRId64 "ms\n",
ns2ms(currentTime - mPendingEvent->eventTime));
} else {
dump += INDENT "PendingEvent: <none>\n";
}
// Dump inbound events from oldest to newest.
if (!mInboundQueue.empty()) {
dump += StringPrintf(INDENT "InboundQueue: length=%zu\n", mInboundQueue.size());
for (const std::shared_ptr<EventEntry>& entry : mInboundQueue) {
dump += INDENT2;
dump += entry->getDescription();
dump += StringPrintf(", age=%" PRId64 "ms\n", ns2ms(currentTime - entry->eventTime));
}
} else {
dump += INDENT "InboundQueue: <empty>\n";
}
if (!mReplacedKeys.empty()) {
dump += INDENT "ReplacedKeys:\n";
for (const auto& [replacement, newKeyCode] : mReplacedKeys) {
dump += StringPrintf(INDENT2 "originalKeyCode=%d, deviceId=%d -> newKeyCode=%d\n",
replacement.keyCode, replacement.deviceId, newKeyCode);
}
} else {
dump += INDENT "ReplacedKeys: <empty>\n";
}
if (!mCommandQueue.empty()) {
dump += StringPrintf(INDENT "CommandQueue: size=%zu\n", mCommandQueue.size());
} else {
dump += INDENT "CommandQueue: <empty>\n";
}
if (!mConnectionsByToken.empty()) {
dump += INDENT "Connections:\n";
for (const auto& [token, connection] : mConnectionsByToken) {
dump += StringPrintf(INDENT2 "%i: channelName='%s', windowName='%s', "
"status=%s, monitor=%s, responsive=%s\n",
connection->inputChannel->getFd().get(),
connection->getInputChannelName().c_str(),
connection->getWindowName().c_str(),
ftl::enum_string(connection->status).c_str(),
toString(connection->monitor), toString(connection->responsive));
if (!connection->outboundQueue.empty()) {
dump += StringPrintf(INDENT3 "OutboundQueue: length=%zu\n",
connection->outboundQueue.size());
dump += dumpQueue(connection->outboundQueue, currentTime);
} else {
dump += INDENT3 "OutboundQueue: <empty>\n";
}
if (!connection->waitQueue.empty()) {
dump += StringPrintf(INDENT3 "WaitQueue: length=%zu\n",
connection->waitQueue.size());
dump += dumpQueue(connection->waitQueue, currentTime);
} else {
dump += INDENT3 "WaitQueue: <empty>\n";
}
}
} else {
dump += INDENT "Connections: <none>\n";
}
if (isAppSwitchPendingLocked()) {
dump += StringPrintf(INDENT "AppSwitch: pending, due in %" PRId64 "ms\n",
ns2ms(mAppSwitchDueTime - now()));
} else {
dump += INDENT "AppSwitch: not pending\n";
}
if (!mTouchModePerDisplay.empty()) {
dump += INDENT "TouchModePerDisplay:\n";
for (const auto& [displayId, touchMode] : mTouchModePerDisplay) {
dump += StringPrintf(INDENT2 "Display: %" PRId32 " TouchMode: %s\n", displayId,
std::to_string(touchMode).c_str());
}
} else {
dump += INDENT "TouchModePerDisplay: <none>\n";
}
dump += INDENT "Configuration:\n";
dump += StringPrintf(INDENT2 "KeyRepeatDelay: %" PRId64 "ms\n", ns2ms(mConfig.keyRepeatDelay));
dump += StringPrintf(INDENT2 "KeyRepeatTimeout: %" PRId64 "ms\n",
ns2ms(mConfig.keyRepeatTimeout));
dump += mLatencyTracker.dump(INDENT2);
dump += mLatencyAggregator.dump(INDENT2);
}
void InputDispatcher::dumpMonitors(std::string& dump, const std::vector<Monitor>& monitors) const {
const size_t numMonitors = monitors.size();
for (size_t i = 0; i < numMonitors; i++) {
const Monitor& monitor = monitors[i];
const std::shared_ptr<InputChannel>& channel = monitor.inputChannel;
dump += StringPrintf(INDENT2 "%zu: '%s', ", i, channel->getName().c_str());
dump += "\n";
}
}
class LooperEventCallback : public LooperCallback {
public:
LooperEventCallback(std::function<int(int events)> callback) : mCallback(callback) {}
int handleEvent(int /*fd*/, int events, void* /*data*/) override { return mCallback(events); }
private:
std::function<int(int events)> mCallback;
};
Result<std::unique_ptr<InputChannel>> InputDispatcher::createInputChannel(const std::string& name) {
if (DEBUG_CHANNEL_CREATION) {
ALOGD("channel '%s' ~ createInputChannel", name.c_str());
}
std::unique_ptr<InputChannel> serverChannel;
std::unique_ptr<InputChannel> clientChannel;
status_t result = InputChannel::openInputChannelPair(name, serverChannel, clientChannel);
if (result) {
return base::Error(result) << "Failed to open input channel pair with name " << name;
}
{ // acquire lock
std::scoped_lock _l(mLock);
const sp<IBinder>& token = serverChannel->getConnectionToken();
int fd = serverChannel->getFd();
std::shared_ptr<Connection> connection =
std::make_shared<Connection>(std::move(serverChannel), /*monitor=*/false,
mIdGenerator);
if (mConnectionsByToken.find(token) != mConnectionsByToken.end()) {
ALOGE("Created a new connection, but the token %p is already known", token.get());
}
mConnectionsByToken.emplace(token, connection);
std::function<int(int events)> callback = std::bind(&InputDispatcher::handleReceiveCallback,
this, std::placeholders::_1, token);
mLooper->addFd(fd, 0, ALOOPER_EVENT_INPUT, sp<LooperEventCallback>::make(callback),
nullptr);
} // release lock
// Wake the looper because some connections have changed.
mLooper->wake();
return clientChannel;
}
Result<std::unique_ptr<InputChannel>> InputDispatcher::createInputMonitor(int32_t displayId,
const std::string& name,
gui::Pid pid) {
std::shared_ptr<InputChannel> serverChannel;
std::unique_ptr<InputChannel> clientChannel;
status_t result = openInputChannelPair(name, serverChannel, clientChannel);
if (result) {
return base::Error(result) << "Failed to open input channel pair with name " << name;
}
{ // acquire lock
std::scoped_lock _l(mLock);
if (displayId < 0) {
return base::Error(BAD_VALUE) << "Attempted to create input monitor with name " << name
<< " without a specified display.";
}
std::shared_ptr<Connection> connection =
std::make_shared<Connection>(serverChannel, /*monitor=*/true, mIdGenerator);
const sp<IBinder>& token = serverChannel->getConnectionToken();
const int fd = serverChannel->getFd();
if (mConnectionsByToken.find(token) != mConnectionsByToken.end()) {
ALOGE("Created a new connection, but the token %p is already known", token.get());
}
mConnectionsByToken.emplace(token, connection);
std::function<int(int events)> callback = std::bind(&InputDispatcher::handleReceiveCallback,
this, std::placeholders::_1, token);
mGlobalMonitorsByDisplay[displayId].emplace_back(serverChannel, pid);
mLooper->addFd(fd, 0, ALOOPER_EVENT_INPUT, sp<LooperEventCallback>::make(callback),
nullptr);
}
// Wake the looper because some connections have changed.
mLooper->wake();
return clientChannel;
}
status_t InputDispatcher::removeInputChannel(const sp<IBinder>& connectionToken) {
{ // acquire lock
std::scoped_lock _l(mLock);
status_t status = removeInputChannelLocked(connectionToken, /*notify=*/false);
if (status) {
return status;
}
} // release lock
// Wake the poll loop because removing the connection may have changed the current
// synchronization state.
mLooper->wake();
return OK;
}
status_t InputDispatcher::removeInputChannelLocked(const sp<IBinder>& connectionToken,
bool notify) {
std::shared_ptr<Connection> connection = getConnectionLocked(connectionToken);
if (connection == nullptr) {
// Connection can be removed via socket hang up or an explicit call to 'removeInputChannel'
return BAD_VALUE;
}
removeConnectionLocked(connection);
if (connection->monitor) {
removeMonitorChannelLocked(connectionToken);
}
mLooper->removeFd(connection->inputChannel->getFd());
nsecs_t currentTime = now();
abortBrokenDispatchCycleLocked(currentTime, connection, notify);
connection->status = Connection::Status::ZOMBIE;
return OK;
}
void InputDispatcher::removeMonitorChannelLocked(const sp<IBinder>& connectionToken) {
for (auto it = mGlobalMonitorsByDisplay.begin(); it != mGlobalMonitorsByDisplay.end();) {
auto& [displayId, monitors] = *it;
std::erase_if(monitors, [connectionToken](const Monitor& monitor) {
return monitor.inputChannel->getConnectionToken() == connectionToken;
});
if (monitors.empty()) {
it = mGlobalMonitorsByDisplay.erase(it);
} else {
++it;
}
}
}
status_t InputDispatcher::pilferPointers(const sp<IBinder>& token) {
std::scoped_lock _l(mLock);
return pilferPointersLocked(token);
}
status_t InputDispatcher::pilferPointersLocked(const sp<IBinder>& token) {
const std::shared_ptr<InputChannel> requestingChannel = getInputChannelLocked(token);
if (!requestingChannel) {
ALOGW("Attempted to pilfer pointers from an un-registered channel or invalid token");
return BAD_VALUE;
}
auto [statePtr, windowPtr, displayId] = findTouchStateWindowAndDisplayLocked(token);
if (statePtr == nullptr || windowPtr == nullptr) {
ALOGW("Attempted to pilfer points from a channel without any on-going pointer streams."
" Ignoring.");
return BAD_VALUE;
}
std::set<int32_t> deviceIds = windowPtr->getTouchingDeviceIds();
if (deviceIds.size() != 1) {
LOG(WARNING) << "Can't pilfer. Currently touching devices: " << dumpSet(deviceIds)
<< " in window: " << windowPtr->dump();
return BAD_VALUE;
}
const int32_t deviceId = *deviceIds.begin();
TouchState& state = *statePtr;
TouchedWindow& window = *windowPtr;
// Send cancel events to all the input channels we're stealing from.
CancelationOptions options(CancelationOptions::Mode::CANCEL_POINTER_EVENTS,
"input channel stole pointer stream");
options.deviceId = deviceId;
options.displayId = displayId;
std::bitset<MAX_POINTER_ID + 1> pointerIds = window.getTouchingPointers(deviceId);
options.pointerIds = pointerIds;
std::string canceledWindows;
for (const TouchedWindow& w : state.windows) {
const std::shared_ptr<InputChannel> channel =
getInputChannelLocked(w.windowHandle->getToken());
if (channel != nullptr && channel->getConnectionToken() != token) {
synthesizeCancelationEventsForInputChannelLocked(channel, options);
canceledWindows += canceledWindows.empty() ? "[" : ", ";
canceledWindows += channel->getName();
}
}
canceledWindows += canceledWindows.empty() ? "[]" : "]";
ALOGI("Channel %s is stealing touch from %s", requestingChannel->getName().c_str(),
canceledWindows.c_str());
// Prevent the gesture from being sent to any other windows.
// This only blocks relevant pointers to be sent to other windows
window.addPilferingPointers(deviceId, pointerIds);
state.cancelPointersForWindowsExcept(deviceId, pointerIds, token);
return OK;
}
void InputDispatcher::requestPointerCapture(const sp<IBinder>& windowToken, bool enabled) {
{ // acquire lock
std::scoped_lock _l(mLock);
if (DEBUG_FOCUS) {
const sp<WindowInfoHandle> windowHandle = getWindowHandleLocked(windowToken);
ALOGI("Request to %s Pointer Capture from: %s.", enabled ? "enable" : "disable",
windowHandle != nullptr ? windowHandle->getName().c_str()
: "token without window");
}
const sp<IBinder> focusedToken = mFocusResolver.getFocusedWindowToken(mFocusedDisplayId);
if (focusedToken != windowToken) {
ALOGW("Ignoring request to %s Pointer Capture: window does not have focus.",
enabled ? "enable" : "disable");
return;
}
if (enabled == mCurrentPointerCaptureRequest.enable) {
ALOGW("Ignoring request to %s Pointer Capture: "
"window has %s requested pointer capture.",
enabled ? "enable" : "disable", enabled ? "already" : "not");
return;
}
if (enabled) {
if (std::find(mIneligibleDisplaysForPointerCapture.begin(),
mIneligibleDisplaysForPointerCapture.end(),
mFocusedDisplayId) != mIneligibleDisplaysForPointerCapture.end()) {
ALOGW("Ignoring request to enable Pointer Capture: display is not eligible");
return;
}
}
setPointerCaptureLocked(enabled);
} // release lock
// Wake the thread to process command entries.
mLooper->wake();
}
void InputDispatcher::setDisplayEligibilityForPointerCapture(int32_t displayId, bool isEligible) {
{ // acquire lock
std::scoped_lock _l(mLock);
std::erase(mIneligibleDisplaysForPointerCapture, displayId);
if (!isEligible) {
mIneligibleDisplaysForPointerCapture.push_back(displayId);
}
} // release lock
}
std::optional<gui::Pid> InputDispatcher::findMonitorPidByTokenLocked(const sp<IBinder>& token) {
for (const auto& [_, monitors] : mGlobalMonitorsByDisplay) {
for (const Monitor& monitor : monitors) {
if (monitor.inputChannel->getConnectionToken() == token) {
return monitor.pid;
}
}
}
return std::nullopt;
}
std::shared_ptr<Connection> InputDispatcher::getConnectionLocked(
const sp<IBinder>& inputConnectionToken) const {
if (inputConnectionToken == nullptr) {
return nullptr;
}
for (const auto& [token, connection] : mConnectionsByToken) {
if (token == inputConnectionToken) {
return connection;
}
}
return nullptr;
}
std::string InputDispatcher::getConnectionNameLocked(const sp<IBinder>& connectionToken) const {
std::shared_ptr<Connection> connection = getConnectionLocked(connectionToken);
if (connection == nullptr) {
return "<nullptr>";
}
return connection->getInputChannelName();
}
void InputDispatcher::removeConnectionLocked(const std::shared_ptr<Connection>& connection) {
mAnrTracker.eraseToken(connection->inputChannel->getConnectionToken());
mConnectionsByToken.erase(connection->inputChannel->getConnectionToken());
}
void InputDispatcher::doDispatchCycleFinishedCommand(nsecs_t finishTime,
const std::shared_ptr<Connection>& connection,
uint32_t seq, bool handled,
nsecs_t consumeTime) {
// Handle post-event policy actions.
std::deque<DispatchEntry*>::iterator dispatchEntryIt = connection->findWaitQueueEntry(seq);
if (dispatchEntryIt == connection->waitQueue.end()) {
return;
}
DispatchEntry* dispatchEntry = *dispatchEntryIt;
const nsecs_t eventDuration = finishTime - dispatchEntry->deliveryTime;
if (eventDuration > SLOW_EVENT_PROCESSING_WARNING_TIMEOUT) {
ALOGI("%s spent %" PRId64 "ms processing %s", connection->getWindowName().c_str(),
ns2ms(eventDuration), dispatchEntry->eventEntry->getDescription().c_str());
}
if (shouldReportFinishedEvent(*dispatchEntry, *connection)) {
mLatencyTracker.trackFinishedEvent(dispatchEntry->eventEntry->id,
connection->inputChannel->getConnectionToken(),
dispatchEntry->deliveryTime, consumeTime, finishTime);
}
bool restartEvent;
if (dispatchEntry->eventEntry->type == EventEntry::Type::KEY) {
KeyEntry& keyEntry = static_cast<KeyEntry&>(*(dispatchEntry->eventEntry));
restartEvent =
afterKeyEventLockedInterruptable(connection, dispatchEntry, keyEntry, handled);
} else if (dispatchEntry->eventEntry->type == EventEntry::Type::MOTION) {
MotionEntry& motionEntry = static_cast<MotionEntry&>(*(dispatchEntry->eventEntry));
restartEvent = afterMotionEventLockedInterruptable(connection, dispatchEntry, motionEntry,
handled);
} else {
restartEvent = false;
}
// Dequeue the event and start the next cycle.
// Because the lock might have been released, it is possible that the
// contents of the wait queue to have been drained, so we need to double-check
// a few things.
dispatchEntryIt = connection->findWaitQueueEntry(seq);
if (dispatchEntryIt != connection->waitQueue.end()) {
dispatchEntry = *dispatchEntryIt;
connection->waitQueue.erase(dispatchEntryIt);
const sp<IBinder>& connectionToken = connection->inputChannel->getConnectionToken();
mAnrTracker.erase(dispatchEntry->timeoutTime, connectionToken);
if (!connection->responsive) {
connection->responsive = isConnectionResponsive(*connection);
if (connection->responsive) {
// The connection was unresponsive, and now it's responsive.
processConnectionResponsiveLocked(*connection);
}
}
traceWaitQueueLength(*connection);
if (restartEvent && connection->status == Connection::Status::NORMAL) {
connection->outboundQueue.push_front(dispatchEntry);
traceOutboundQueueLength(*connection);
} else {
releaseDispatchEntry(dispatchEntry);
}
}
// Start the next dispatch cycle for this connection.
startDispatchCycleLocked(now(), connection);
}
void InputDispatcher::sendFocusChangedCommandLocked(const sp<IBinder>& oldToken,
const sp<IBinder>& newToken) {
auto command = [this, oldToken, newToken]() REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy.notifyFocusChanged(oldToken, newToken);
};
postCommandLocked(std::move(command));
}
void InputDispatcher::sendDropWindowCommandLocked(const sp<IBinder>& token, float x, float y) {
auto command = [this, token, x, y]() REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy.notifyDropWindow(token, x, y);
};
postCommandLocked(std::move(command));
}
void InputDispatcher::onAnrLocked(const std::shared_ptr<Connection>& connection) {
if (connection == nullptr) {
LOG_ALWAYS_FATAL("Caller must check for nullness");
}
// Since we are allowing the policy to extend the timeout, maybe the waitQueue
// is already healthy again. Don't raise ANR in this situation
if (connection->waitQueue.empty()) {
ALOGI("Not raising ANR because the connection %s has recovered",
connection->inputChannel->getName().c_str());
return;
}
/**
* The "oldestEntry" is the entry that was first sent to the application. That entry, however,
* may not be the one that caused the timeout to occur. One possibility is that window timeout
* has changed. This could cause newer entries to time out before the already dispatched
* entries. In that situation, the newest entries caused ANR. But in all likelihood, the app
* processes the events linearly. So providing information about the oldest entry seems to be
* most useful.
*/
DispatchEntry* oldestEntry = *connection->waitQueue.begin();
const nsecs_t currentWait = now() - oldestEntry->deliveryTime;
std::string reason =
android::base::StringPrintf("%s is not responding. Waited %" PRId64 "ms for %s",
connection->inputChannel->getName().c_str(),
ns2ms(currentWait),
oldestEntry->eventEntry->getDescription().c_str());
sp<IBinder> connectionToken = connection->inputChannel->getConnectionToken();
updateLastAnrStateLocked(getWindowHandleLocked(connectionToken), reason);
processConnectionUnresponsiveLocked(*connection, std::move(reason));
// Stop waking up for events on this connection, it is already unresponsive
cancelEventsForAnrLocked(connection);
}
void InputDispatcher::onAnrLocked(std::shared_ptr<InputApplicationHandle> application) {
std::string reason =
StringPrintf("%s does not have a focused window", application->getName().c_str());
updateLastAnrStateLocked(*application, reason);
auto command = [this, app = std::move(application)]() REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy.notifyNoFocusedWindowAnr(app);
};
postCommandLocked(std::move(command));
}
void InputDispatcher::updateLastAnrStateLocked(const sp<WindowInfoHandle>& window,
const std::string& reason) {
const std::string windowLabel = getApplicationWindowLabel(nullptr, window);
updateLastAnrStateLocked(windowLabel, reason);
}
void InputDispatcher::updateLastAnrStateLocked(const InputApplicationHandle& application,
const std::string& reason) {
const std::string windowLabel = getApplicationWindowLabel(&application, nullptr);
updateLastAnrStateLocked(windowLabel, reason);
}
void InputDispatcher::updateLastAnrStateLocked(const std::string& windowLabel,
const std::string& reason) {
// Capture a record of the InputDispatcher state at the time of the ANR.
time_t t = time(nullptr);
struct tm tm;
localtime_r(&t, &tm);
char timestr[64];
strftime(timestr, sizeof(timestr), "%F %T", &tm);
mLastAnrState.clear();
mLastAnrState += INDENT "ANR:\n";
mLastAnrState += StringPrintf(INDENT2 "Time: %s\n", timestr);
mLastAnrState += StringPrintf(INDENT2 "Reason: %s\n", reason.c_str());
mLastAnrState += StringPrintf(INDENT2 "Window: %s\n", windowLabel.c_str());
dumpDispatchStateLocked(mLastAnrState);
}
void InputDispatcher::doInterceptKeyBeforeDispatchingCommand(const sp<IBinder>& focusedWindowToken,
KeyEntry& entry) {
const KeyEvent event = createKeyEvent(entry);
nsecs_t delay = 0;
{ // release lock
scoped_unlock unlock(mLock);
android::base::Timer t;
delay = mPolicy.interceptKeyBeforeDispatching(focusedWindowToken, event, entry.policyFlags);
if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) {
ALOGW("Excessive delay in interceptKeyBeforeDispatching; took %s ms",
std::to_string(t.duration().count()).c_str());
}
} // acquire lock
if (delay < 0) {
entry.interceptKeyResult = KeyEntry::InterceptKeyResult::SKIP;
} else if (delay == 0) {
entry.interceptKeyResult = KeyEntry::InterceptKeyResult::CONTINUE;
} else {
entry.interceptKeyResult = KeyEntry::InterceptKeyResult::TRY_AGAIN_LATER;
entry.interceptKeyWakeupTime = now() + delay;
}
}
void InputDispatcher::sendWindowUnresponsiveCommandLocked(const sp<IBinder>& token,
std::optional<gui::Pid> pid,
std::string reason) {
auto command = [this, token, pid, r = std::move(reason)]() REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy.notifyWindowUnresponsive(token, pid, r);
};
postCommandLocked(std::move(command));
}
void InputDispatcher::sendWindowResponsiveCommandLocked(const sp<IBinder>& token,
std::optional<gui::Pid> pid) {
auto command = [this, token, pid]() REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy.notifyWindowResponsive(token, pid);
};
postCommandLocked(std::move(command));
}
/**
* Tell the policy that a connection has become unresponsive so that it can start ANR.
* Check whether the connection of interest is a monitor or a window, and add the corresponding
* command entry to the command queue.
*/
void InputDispatcher::processConnectionUnresponsiveLocked(const Connection& connection,
std::string reason) {
const sp<IBinder>& connectionToken = connection.inputChannel->getConnectionToken();
std::optional<gui::Pid> pid;
if (connection.monitor) {
ALOGW("Monitor %s is unresponsive: %s", connection.inputChannel->getName().c_str(),
reason.c_str());
pid = findMonitorPidByTokenLocked(connectionToken);
} else {
// The connection is a window
ALOGW("Window %s is unresponsive: %s", connection.inputChannel->getName().c_str(),
reason.c_str());
const sp<WindowInfoHandle> handle = getWindowHandleLocked(connectionToken);
if (handle != nullptr) {
pid = handle->getInfo()->ownerPid;
}
}
sendWindowUnresponsiveCommandLocked(connectionToken, pid, std::move(reason));
}
/**
* Tell the policy that a connection has become responsive so that it can stop ANR.
*/
void InputDispatcher::processConnectionResponsiveLocked(const Connection& connection) {
const sp<IBinder>& connectionToken = connection.inputChannel->getConnectionToken();
std::optional<gui::Pid> pid;
if (connection.monitor) {
pid = findMonitorPidByTokenLocked(connectionToken);
} else {
// The connection is a window
const sp<WindowInfoHandle> handle = getWindowHandleLocked(connectionToken);
if (handle != nullptr) {
pid = handle->getInfo()->ownerPid;
}
}
sendWindowResponsiveCommandLocked(connectionToken, pid);
}
bool InputDispatcher::afterKeyEventLockedInterruptable(
const std::shared_ptr<Connection>& connection, DispatchEntry* dispatchEntry,
KeyEntry& keyEntry, bool handled) {
if (keyEntry.flags & AKEY_EVENT_FLAG_FALLBACK) {
if (!handled) {
// Report the key as unhandled, since the fallback was not handled.
mReporter->reportUnhandledKey(keyEntry.id);
}
return false;
}
// Get the fallback key state.
// Clear it out after dispatching the UP.
int32_t originalKeyCode = keyEntry.keyCode;
std::optional<int32_t> fallbackKeyCode = connection->inputState.getFallbackKey(originalKeyCode);
if (keyEntry.action == AKEY_EVENT_ACTION_UP) {
connection->inputState.removeFallbackKey(originalKeyCode);
}
if (handled || !dispatchEntry->hasForegroundTarget()) {
// If the application handles the original key for which we previously
// generated a fallback or if the window is not a foreground window,
// then cancel the associated fallback key, if any.
if (fallbackKeyCode) {
// Dispatch the unhandled key to the policy with the cancel flag.
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("Unhandled key event: Asking policy to cancel fallback action. "
"keyCode=%d, action=%d, repeatCount=%d, policyFlags=0x%08x",
keyEntry.keyCode, keyEntry.action, keyEntry.repeatCount,
keyEntry.policyFlags);
}
KeyEvent event = createKeyEvent(keyEntry);
event.setFlags(event.getFlags() | AKEY_EVENT_FLAG_CANCELED);
mLock.unlock();
if (const auto unhandledKeyFallback =
mPolicy.dispatchUnhandledKey(connection->inputChannel->getConnectionToken(),
event, keyEntry.policyFlags);
unhandledKeyFallback) {
event = *unhandledKeyFallback;
}
mLock.lock();
// Cancel the fallback key.
if (*fallbackKeyCode != AKEYCODE_UNKNOWN) {
CancelationOptions options(CancelationOptions::Mode::CANCEL_FALLBACK_EVENTS,
"application handled the original non-fallback key "
"or is no longer a foreground target, "
"canceling previously dispatched fallback key");
options.keyCode = *fallbackKeyCode;
synthesizeCancelationEventsForConnectionLocked(connection, options);
}
connection->inputState.removeFallbackKey(originalKeyCode);
}
} else {
// If the application did not handle a non-fallback key, first check
// that we are in a good state to perform unhandled key event processing
// Then ask the policy what to do with it.
bool initialDown = keyEntry.action == AKEY_EVENT_ACTION_DOWN && keyEntry.repeatCount == 0;
if (!fallbackKeyCode && !initialDown) {
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("Unhandled key event: Skipping unhandled key event processing "
"since this is not an initial down. "
"keyCode=%d, action=%d, repeatCount=%d, policyFlags=0x%08x",
originalKeyCode, keyEntry.action, keyEntry.repeatCount, keyEntry.policyFlags);
}
return false;
}
// Dispatch the unhandled key to the policy.
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("Unhandled key event: Asking policy to perform fallback action. "
"keyCode=%d, action=%d, repeatCount=%d, policyFlags=0x%08x",
keyEntry.keyCode, keyEntry.action, keyEntry.repeatCount, keyEntry.policyFlags);
}
KeyEvent event = createKeyEvent(keyEntry);
mLock.unlock();
bool fallback = false;
if (auto fb = mPolicy.dispatchUnhandledKey(connection->inputChannel->getConnectionToken(),
event, keyEntry.policyFlags);
fb) {
fallback = true;
event = *fb;
}
mLock.lock();
if (connection->status != Connection::Status::NORMAL) {
connection->inputState.removeFallbackKey(originalKeyCode);
return false;
}
// Latch the fallback keycode for this key on an initial down.
// The fallback keycode cannot change at any other point in the lifecycle.
if (initialDown) {
if (fallback) {
*fallbackKeyCode = event.getKeyCode();
} else {
*fallbackKeyCode = AKEYCODE_UNKNOWN;
}
connection->inputState.setFallbackKey(originalKeyCode, *fallbackKeyCode);
}
ALOG_ASSERT(fallbackKeyCode);
// Cancel the fallback key if the policy decides not to send it anymore.
// We will continue to dispatch the key to the policy but we will no
// longer dispatch a fallback key to the application.
if (*fallbackKeyCode != AKEYCODE_UNKNOWN &&
(!fallback || *fallbackKeyCode != event.getKeyCode())) {
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
if (fallback) {
ALOGD("Unhandled key event: Policy requested to send key %d"
"as a fallback for %d, but on the DOWN it had requested "
"to send %d instead. Fallback canceled.",
event.getKeyCode(), originalKeyCode, *fallbackKeyCode);
} else {
ALOGD("Unhandled key event: Policy did not request fallback for %d, "
"but on the DOWN it had requested to send %d. "
"Fallback canceled.",
originalKeyCode, *fallbackKeyCode);
}
}
CancelationOptions options(CancelationOptions::Mode::CANCEL_FALLBACK_EVENTS,
"canceling fallback, policy no longer desires it");
options.keyCode = *fallbackKeyCode;
synthesizeCancelationEventsForConnectionLocked(connection, options);
fallback = false;
*fallbackKeyCode = AKEYCODE_UNKNOWN;
if (keyEntry.action != AKEY_EVENT_ACTION_UP) {
connection->inputState.setFallbackKey(originalKeyCode, *fallbackKeyCode);
}
}
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
{
std::string msg;
const std::map<int32_t, int32_t>& fallbackKeys =
connection->inputState.getFallbackKeys();
for (const auto& [key, value] : fallbackKeys) {
msg += StringPrintf(", %d->%d", key, value);
}
ALOGD("Unhandled key event: %zu currently tracked fallback keys%s.",
fallbackKeys.size(), msg.c_str());
}
}
if (fallback) {
// Restart the dispatch cycle using the fallback key.
keyEntry.eventTime = event.getEventTime();
keyEntry.deviceId = event.getDeviceId();
keyEntry.source = event.getSource();
keyEntry.displayId = event.getDisplayId();
keyEntry.flags = event.getFlags() | AKEY_EVENT_FLAG_FALLBACK;
keyEntry.keyCode = *fallbackKeyCode;
keyEntry.scanCode = event.getScanCode();
keyEntry.metaState = event.getMetaState();
keyEntry.repeatCount = event.getRepeatCount();
keyEntry.downTime = event.getDownTime();
keyEntry.syntheticRepeat = false;
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("Unhandled key event: Dispatching fallback key. "
"originalKeyCode=%d, fallbackKeyCode=%d, fallbackMetaState=%08x",
originalKeyCode, *fallbackKeyCode, keyEntry.metaState);
}
return true; // restart the event
} else {
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("Unhandled key event: No fallback key.");
}
// Report the key as unhandled, since there is no fallback key.
mReporter->reportUnhandledKey(keyEntry.id);
}
}
return false;
}
bool InputDispatcher::afterMotionEventLockedInterruptable(
const std::shared_ptr<Connection>& connection, DispatchEntry* dispatchEntry,
MotionEntry& motionEntry, bool handled) {
return false;
}
void InputDispatcher::traceInboundQueueLengthLocked() {
if (ATRACE_ENABLED()) {
ATRACE_INT("iq", mInboundQueue.size());
}
}
void InputDispatcher::traceOutboundQueueLength(const Connection& connection) {
if (ATRACE_ENABLED()) {
char counterName[40];
snprintf(counterName, sizeof(counterName), "oq:%s", connection.getWindowName().c_str());
ATRACE_INT(counterName, connection.outboundQueue.size());
}
}
void InputDispatcher::traceWaitQueueLength(const Connection& connection) {
if (ATRACE_ENABLED()) {
char counterName[40];
snprintf(counterName, sizeof(counterName), "wq:%s", connection.getWindowName().c_str());
ATRACE_INT(counterName, connection.waitQueue.size());
}
}
void InputDispatcher::dump(std::string& dump) {
std::scoped_lock _l(mLock);
dump += "Input Dispatcher State:\n";
dumpDispatchStateLocked(dump);
if (!mLastAnrState.empty()) {
dump += "\nInput Dispatcher State at time of last ANR:\n";
dump += mLastAnrState;
}
}
void InputDispatcher::monitor() {
// Acquire and release the lock to ensure that the dispatcher has not deadlocked.
std::unique_lock _l(mLock);
mLooper->wake();
mDispatcherIsAlive.wait(_l);
}
/**
* Wake up the dispatcher and wait until it processes all events and commands.
* The notification of mDispatcherEnteredIdle is guaranteed to happen after wake(), so
* this method can be safely called from any thread, as long as you've ensured that
* the work you are interested in completing has already been queued.
*/
bool InputDispatcher::waitForIdle() const {
/**
* Timeout should represent the longest possible time that a device might spend processing
* events and commands.
*/
constexpr std::chrono::duration TIMEOUT = 100ms;
std::unique_lock lock(mLock);
mLooper->wake();
std::cv_status result = mDispatcherEnteredIdle.wait_for(lock, TIMEOUT);
return result == std::cv_status::no_timeout;
}
/**
* Sets focus to the window identified by the token. This must be called
* after updating any input window handles.
*
* Params:
* request.token - input channel token used to identify the window that should gain focus.
* request.focusedToken - the token that the caller expects currently to be focused. If the
* specified token does not match the currently focused window, this request will be dropped.
* If the specified focused token matches the currently focused window, the call will succeed.
* Set this to "null" if this call should succeed no matter what the currently focused token is.
* request.timestamp - SYSTEM_TIME_MONOTONIC timestamp in nanos set by the client (wm)
* when requesting the focus change. This determines which request gets
* precedence if there is a focus change request from another source such as pointer down.
*/
void InputDispatcher::setFocusedWindow(const FocusRequest& request) {
{ // acquire lock
std::scoped_lock _l(mLock);
std::optional<FocusResolver::FocusChanges> changes =
mFocusResolver.setFocusedWindow(request, getWindowHandlesLocked(request.displayId));
if (changes) {
onFocusChangedLocked(*changes);
}
} // release lock
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
void InputDispatcher::onFocusChangedLocked(const FocusResolver::FocusChanges& changes) {
if (changes.oldFocus) {
std::shared_ptr<InputChannel> focusedInputChannel = getInputChannelLocked(changes.oldFocus);
if (focusedInputChannel) {
CancelationOptions options(CancelationOptions::Mode::CANCEL_NON_POINTER_EVENTS,
"focus left window");
synthesizeCancelationEventsForInputChannelLocked(focusedInputChannel, options);
enqueueFocusEventLocked(changes.oldFocus, /*hasFocus=*/false, changes.reason);
}
}
if (changes.newFocus) {
enqueueFocusEventLocked(changes.newFocus, /*hasFocus=*/true, changes.reason);
}
// If a window has pointer capture, then it must have focus. We need to ensure that this
// contract is upheld when pointer capture is being disabled due to a loss of window focus.
// If the window loses focus before it loses pointer capture, then the window can be in a state
// where it has pointer capture but not focus, violating the contract. Therefore we must
// dispatch the pointer capture event before the focus event. Since focus events are added to
// the front of the queue (above), we add the pointer capture event to the front of the queue
// after the focus events are added. This ensures the pointer capture event ends up at the
// front.
disablePointerCaptureForcedLocked();
if (mFocusedDisplayId == changes.displayId) {
sendFocusChangedCommandLocked(changes.oldFocus, changes.newFocus);
}
}
void InputDispatcher::disablePointerCaptureForcedLocked() {
if (!mCurrentPointerCaptureRequest.enable && !mWindowTokenWithPointerCapture) {
return;
}
ALOGD_IF(DEBUG_FOCUS, "Disabling Pointer Capture because the window lost focus.");
if (mCurrentPointerCaptureRequest.enable) {
setPointerCaptureLocked(false);
}
if (!mWindowTokenWithPointerCapture) {
// No need to send capture changes because no window has capture.
return;
}
if (mPendingEvent != nullptr) {
// Move the pending event to the front of the queue. This will give the chance
// for the pending event to be dropped if it is a captured event.
mInboundQueue.push_front(mPendingEvent);
mPendingEvent = nullptr;
}
auto entry = std::make_unique<PointerCaptureChangedEntry>(mIdGenerator.nextId(), now(),
mCurrentPointerCaptureRequest);
mInboundQueue.push_front(std::move(entry));
}
void InputDispatcher::setPointerCaptureLocked(bool enable) {
mCurrentPointerCaptureRequest.enable = enable;
mCurrentPointerCaptureRequest.seq++;
auto command = [this, request = mCurrentPointerCaptureRequest]() REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy.setPointerCapture(request);
};
postCommandLocked(std::move(command));
}
void InputDispatcher::displayRemoved(int32_t displayId) {
{ // acquire lock
std::scoped_lock _l(mLock);
// Set an empty list to remove all handles from the specific display.
setInputWindowsLocked(/* window handles */ {}, displayId);
setFocusedApplicationLocked(displayId, nullptr);
// Call focus resolver to clean up stale requests. This must be called after input windows
// have been removed for the removed display.
mFocusResolver.displayRemoved(displayId);
// Reset pointer capture eligibility, regardless of previous state.
std::erase(mIneligibleDisplaysForPointerCapture, displayId);
// Remove the associated touch mode state.
mTouchModePerDisplay.erase(displayId);
mVerifiersByDisplay.erase(displayId);
} // release lock
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
void InputDispatcher::onWindowInfosChanged(const gui::WindowInfosUpdate& update) {
// The listener sends the windows as a flattened array. Separate the windows by display for
// more convenient parsing.
std::unordered_map<int32_t, std::vector<sp<WindowInfoHandle>>> handlesPerDisplay;
for (const auto& info : update.windowInfos) {
handlesPerDisplay.emplace(info.displayId, std::vector<sp<WindowInfoHandle>>());
handlesPerDisplay[info.displayId].push_back(sp<WindowInfoHandle>::make(info));
}
{ // acquire lock
std::scoped_lock _l(mLock);
// Ensure that we have an entry created for all existing displays so that if a displayId has
// no windows, we can tell that the windows were removed from the display.
for (const auto& [displayId, _] : mWindowHandlesByDisplay) {
handlesPerDisplay[displayId];
}
mDisplayInfos.clear();
for (const auto& displayInfo : update.displayInfos) {
mDisplayInfos.emplace(displayInfo.displayId, displayInfo);
}
for (const auto& [displayId, handles] : handlesPerDisplay) {
setInputWindowsLocked(handles, displayId);
}
if (update.vsyncId < mWindowInfosVsyncId) {
ALOGE("Received out of order window infos update. Last update vsync id: %" PRId64
", current update vsync id: %" PRId64,
mWindowInfosVsyncId, update.vsyncId);
}
mWindowInfosVsyncId = update.vsyncId;
}
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
bool InputDispatcher::shouldDropInput(
const EventEntry& entry, const sp<android::gui::WindowInfoHandle>& windowHandle) const {
if (windowHandle->getInfo()->inputConfig.test(WindowInfo::InputConfig::DROP_INPUT) ||
(windowHandle->getInfo()->inputConfig.test(
WindowInfo::InputConfig::DROP_INPUT_IF_OBSCURED) &&
isWindowObscuredLocked(windowHandle))) {
ALOGW("Dropping %s event targeting %s as requested by the input configuration {%s} on "
"display %" PRId32 ".",
ftl::enum_string(entry.type).c_str(), windowHandle->getName().c_str(),
windowHandle->getInfo()->inputConfig.string().c_str(),
windowHandle->getInfo()->displayId);
return true;
}
return false;
}
void InputDispatcher::DispatcherWindowListener::onWindowInfosChanged(
const gui::WindowInfosUpdate& update) {
mDispatcher.onWindowInfosChanged(update);
}
void InputDispatcher::cancelCurrentTouch() {
{
std::scoped_lock _l(mLock);
ALOGD("Canceling all ongoing pointer gestures on all displays.");
CancelationOptions options(CancelationOptions::Mode::CANCEL_POINTER_EVENTS,
"cancel current touch");
synthesizeCancelationEventsForAllConnectionsLocked(options);
mTouchStatesByDisplay.clear();
}
// Wake up poll loop since there might be work to do.
mLooper->wake();
}
void InputDispatcher::setMonitorDispatchingTimeoutForTest(std::chrono::nanoseconds timeout) {
std::scoped_lock _l(mLock);
mMonitorDispatchingTimeout = timeout;
}
void InputDispatcher::slipWallpaperTouch(ftl::Flags<InputTarget::Flags> targetFlags,
const sp<WindowInfoHandle>& oldWindowHandle,
const sp<WindowInfoHandle>& newWindowHandle,
TouchState& state, int32_t deviceId, int32_t pointerId,
std::vector<InputTarget>& targets) const {
std::bitset<MAX_POINTER_ID + 1> pointerIds;
pointerIds.set(pointerId);
const bool oldHasWallpaper = oldWindowHandle->getInfo()->inputConfig.test(
gui::WindowInfo::InputConfig::DUPLICATE_TOUCH_TO_WALLPAPER);
const bool newHasWallpaper = targetFlags.test(InputTarget::Flags::FOREGROUND) &&
newWindowHandle->getInfo()->inputConfig.test(
gui::WindowInfo::InputConfig::DUPLICATE_TOUCH_TO_WALLPAPER);
const sp<WindowInfoHandle> oldWallpaper =
oldHasWallpaper ? state.getWallpaperWindow() : nullptr;
const sp<WindowInfoHandle> newWallpaper =
newHasWallpaper ? findWallpaperWindowBelow(newWindowHandle) : nullptr;
if (oldWallpaper == newWallpaper) {
return;
}
if (oldWallpaper != nullptr) {
const TouchedWindow& oldTouchedWindow = state.getTouchedWindow(oldWallpaper);
addWindowTargetLocked(oldWallpaper,
oldTouchedWindow.targetFlags |
InputTarget::Flags::DISPATCH_AS_SLIPPERY_EXIT,
pointerIds, oldTouchedWindow.getDownTimeInTarget(deviceId), targets);
state.removeTouchingPointerFromWindow(deviceId, pointerId, oldWallpaper);
}
if (newWallpaper != nullptr) {
state.addOrUpdateWindow(newWallpaper,
InputTarget::Flags::DISPATCH_AS_SLIPPERY_ENTER |
InputTarget::Flags::WINDOW_IS_OBSCURED |
InputTarget::Flags::WINDOW_IS_PARTIALLY_OBSCURED,
deviceId, pointerIds);
}
}
void InputDispatcher::transferWallpaperTouch(ftl::Flags<InputTarget::Flags> oldTargetFlags,
ftl::Flags<InputTarget::Flags> newTargetFlags,
const sp<WindowInfoHandle> fromWindowHandle,
const sp<WindowInfoHandle> toWindowHandle,
TouchState& state, int32_t deviceId,
std::bitset<MAX_POINTER_ID + 1> pointerIds) {
const bool oldHasWallpaper = oldTargetFlags.test(InputTarget::Flags::FOREGROUND) &&
fromWindowHandle->getInfo()->inputConfig.test(
gui::WindowInfo::InputConfig::DUPLICATE_TOUCH_TO_WALLPAPER);
const bool newHasWallpaper = newTargetFlags.test(InputTarget::Flags::FOREGROUND) &&
toWindowHandle->getInfo()->inputConfig.test(
gui::WindowInfo::InputConfig::DUPLICATE_TOUCH_TO_WALLPAPER);
const sp<WindowInfoHandle> oldWallpaper =
oldHasWallpaper ? state.getWallpaperWindow() : nullptr;
const sp<WindowInfoHandle> newWallpaper =
newHasWallpaper ? findWallpaperWindowBelow(toWindowHandle) : nullptr;
if (oldWallpaper == newWallpaper) {
return;
}
if (oldWallpaper != nullptr) {
CancelationOptions options(CancelationOptions::Mode::CANCEL_POINTER_EVENTS,
"transferring touch focus to another window");
state.removeWindowByToken(oldWallpaper->getToken());
synthesizeCancelationEventsForWindowLocked(oldWallpaper, options);
}
if (newWallpaper != nullptr) {
nsecs_t downTimeInTarget = now();
ftl::Flags<InputTarget::Flags> wallpaperFlags =
oldTargetFlags & (InputTarget::Flags::SPLIT | InputTarget::Flags::DISPATCH_AS_IS);
wallpaperFlags |= InputTarget::Flags::WINDOW_IS_OBSCURED |
InputTarget::Flags::WINDOW_IS_PARTIALLY_OBSCURED;
state.addOrUpdateWindow(newWallpaper, wallpaperFlags, deviceId, pointerIds,
downTimeInTarget);
std::shared_ptr<Connection> wallpaperConnection =
getConnectionLocked(newWallpaper->getToken());
if (wallpaperConnection != nullptr) {
std::shared_ptr<Connection> toConnection =
getConnectionLocked(toWindowHandle->getToken());
toConnection->inputState.mergePointerStateTo(wallpaperConnection->inputState);
synthesizePointerDownEventsForConnectionLocked(downTimeInTarget, wallpaperConnection,
wallpaperFlags);
}
}
}
sp<WindowInfoHandle> InputDispatcher::findWallpaperWindowBelow(
const sp<WindowInfoHandle>& windowHandle) const {
const std::vector<sp<WindowInfoHandle>>& windowHandles =
getWindowHandlesLocked(windowHandle->getInfo()->displayId);
bool foundWindow = false;
for (const sp<WindowInfoHandle>& otherHandle : windowHandles) {
if (!foundWindow && otherHandle != windowHandle) {
continue;
}
if (windowHandle == otherHandle) {
foundWindow = true;
continue;
}
if (otherHandle->getInfo()->inputConfig.test(WindowInfo::InputConfig::IS_WALLPAPER)) {
return otherHandle;
}
}
return nullptr;
}
void InputDispatcher::setKeyRepeatConfiguration(nsecs_t timeout, nsecs_t delay) {
std::scoped_lock _l(mLock);
mConfig.keyRepeatTimeout = timeout;
mConfig.keyRepeatDelay = delay;
}
} // namespace android::inputdispatcher