blob: 19df2d266dfac852cf655afa16311f9561f390af [file] [log] [blame]
// clang-format off
// Generated file (from: local_response_normalization_v1_2.mod.py). Do not edit
void CreateModel_axis_dim4_axis0(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type3(Type::TENSOR_FLOAT32, {6, 2, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type3);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type3);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis0(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis0_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type3(Type::TENSOR_FLOAT32, {6, 2, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type3);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type3);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {-4};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis0_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis1(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type4(Type::TENSOR_FLOAT32, {2, 6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type4);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type4);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis1(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis1_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type4(Type::TENSOR_FLOAT32, {2, 6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type4);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type4);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {-3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis1_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type5(Type::TENSOR_FLOAT32, {2, 2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type5);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type5);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis2_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type5(Type::TENSOR_FLOAT32, {2, 2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type5);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type5);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis2_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis3(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {2, 2, 2, 6});
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type0);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type0);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis3_neg(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {2, 2, 2, 6});
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type0);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type0);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis3_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis0(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type6(Type::TENSOR_FLOAT32, {6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type6);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type6);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis0(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis0_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type6(Type::TENSOR_FLOAT32, {6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type6);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type6);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {-3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis0_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis1(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type7(Type::TENSOR_FLOAT32, {2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type7);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type7);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis1(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis1_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type7(Type::TENSOR_FLOAT32, {2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type7);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type7);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis1_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type8(Type::TENSOR_FLOAT32, {2, 2, 6});
// Phase 1, operands
auto op1 = model->addOperand(&type8);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type8);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis2_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type8(Type::TENSOR_FLOAT32, {2, 2, 6});
// Phase 1, operands
auto op1 = model->addOperand(&type8);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type8);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis2_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim2_axis0(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type9(Type::TENSOR_FLOAT32, {6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type9);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type9);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim2_axis0(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim2_axis0_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type9(Type::TENSOR_FLOAT32, {6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type9);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type9);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim2_axis0_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim2_axis1(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type10(Type::TENSOR_FLOAT32, {2, 6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type10);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type10);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim2_axis1(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim2_axis1_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type10(Type::TENSOR_FLOAT32, {2, 6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type10);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type10);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim2_axis1_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim1_axis0(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type11(Type::TENSOR_FLOAT32, {6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type11);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type11);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim1_axis0(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim1_axis0_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type11(Type::TENSOR_FLOAT32, {6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type11);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type11);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim1_axis0_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis0(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type3(Type::TENSOR_FLOAT32, {6, 2, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type3);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type3);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis0(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis0_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type3(Type::TENSOR_FLOAT32, {6, 2, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type3);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type3);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {-4};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis0_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis1(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type4(Type::TENSOR_FLOAT32, {2, 6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type4);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type4);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis1(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis1_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type4(Type::TENSOR_FLOAT32, {2, 6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type4);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type4);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {-3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis1_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type5(Type::TENSOR_FLOAT32, {2, 2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type5);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type5);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis2_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type5(Type::TENSOR_FLOAT32, {2, 2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type5);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type5);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis2_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis3(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {2, 2, 2, 6});
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type0);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type0);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis3_neg(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {2, 2, 2, 6});
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type0);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type0);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis3_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis0(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type6(Type::TENSOR_FLOAT32, {6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type6);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type6);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis0(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis0_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type6(Type::TENSOR_FLOAT32, {6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type6);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type6);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {-3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis0_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis1(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type7(Type::TENSOR_FLOAT32, {2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type7);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type7);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis1(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis1_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type7(Type::TENSOR_FLOAT32, {2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type7);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type7);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis1_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type8(Type::TENSOR_FLOAT32, {2, 2, 6});
// Phase 1, operands
auto op1 = model->addOperand(&type8);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type8);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis2_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type8(Type::TENSOR_FLOAT32, {2, 2, 6});
// Phase 1, operands
auto op1 = model->addOperand(&type8);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type8);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis2_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim2_axis0(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type9(Type::TENSOR_FLOAT32, {6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type9);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type9);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim2_axis0(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim2_axis0_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type9(Type::TENSOR_FLOAT32, {6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type9);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type9);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim2_axis0_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim2_axis1(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type10(Type::TENSOR_FLOAT32, {2, 6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type10);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type10);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim2_axis1(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim2_axis1_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type10(Type::TENSOR_FLOAT32, {2, 6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type10);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type10);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim2_axis1_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim1_axis0(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type11(Type::TENSOR_FLOAT32, {6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type11);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type11);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim1_axis0(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim1_axis0_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type11(Type::TENSOR_FLOAT32, {6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type11);
auto param = model->addOperand(&type1);
auto param1 = model->addOperand(&type2);
auto param2 = model->addOperand(&type2);
auto param3 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type11);
// Phase 2, operations
static int32_t param_init[] = {20};
model->setOperandValue(param, param_init, sizeof(int32_t) * 1);
static float param1_init[] = {0.0f};
model->setOperandValue(param1, param1_init, sizeof(float) * 1);
static float param2_init[] = {1.0f};
model->setOperandValue(param2, param2_init, sizeof(float) * 1);
static float param3_init[] = {0.5f};
model->setOperandValue(param3, param3_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param, param1, param2, param3, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim1_axis0_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis0_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type3(Type::TENSOR_FLOAT32, {6, 2, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type3);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type3);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis0_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis0_neg_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type3(Type::TENSOR_FLOAT32, {6, 2, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type3);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type3);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {-4};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis0_neg_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis1_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type4(Type::TENSOR_FLOAT32, {2, 6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type4);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type4);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis1_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis1_neg_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type4(Type::TENSOR_FLOAT32, {2, 6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type4);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type4);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {-3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis1_neg_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis2_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type5(Type::TENSOR_FLOAT32, {2, 2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type5);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type5);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis2_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis2_neg_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type5(Type::TENSOR_FLOAT32, {2, 2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type5);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type5);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis2_neg_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis3_2(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {2, 2, 2, 6});
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type0);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type0);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis3_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis3_neg_2(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {2, 2, 2, 6});
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type0);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type0);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis3_neg_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis0_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type6(Type::TENSOR_FLOAT32, {6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type6);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type6);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis0_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis0_neg_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type6(Type::TENSOR_FLOAT32, {6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type6);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type6);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {-3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis0_neg_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis1_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type7(Type::TENSOR_FLOAT32, {2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type7);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type7);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis1_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis1_neg_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type7(Type::TENSOR_FLOAT32, {2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type7);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type7);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis1_neg_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis2_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type8(Type::TENSOR_FLOAT32, {2, 2, 6});
// Phase 1, operands
auto op1 = model->addOperand(&type8);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type8);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis2_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis2_neg_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type8(Type::TENSOR_FLOAT32, {2, 2, 6});
// Phase 1, operands
auto op1 = model->addOperand(&type8);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type8);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis2_neg_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim2_axis0_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type9(Type::TENSOR_FLOAT32, {6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type9);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type9);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim2_axis0_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim2_axis0_neg_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type9(Type::TENSOR_FLOAT32, {6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type9);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type9);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim2_axis0_neg_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim2_axis1_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type10(Type::TENSOR_FLOAT32, {2, 6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type10);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type10);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim2_axis1_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim2_axis1_neg_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type10(Type::TENSOR_FLOAT32, {2, 6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type10);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type10);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim2_axis1_neg_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim1_axis0_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type11(Type::TENSOR_FLOAT32, {6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type11);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type11);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim1_axis0_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim1_axis0_neg_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type11(Type::TENSOR_FLOAT32, {6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type11);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type11);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim1_axis0_neg_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis0_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type3(Type::TENSOR_FLOAT32, {6, 2, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type3);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type3);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis0_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis0_neg_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type3(Type::TENSOR_FLOAT32, {6, 2, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type3);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type3);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {-4};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis0_neg_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis1_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type4(Type::TENSOR_FLOAT32, {2, 6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type4);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type4);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis1_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis1_neg_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type4(Type::TENSOR_FLOAT32, {2, 6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type4);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type4);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {-3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis1_neg_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis2_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type5(Type::TENSOR_FLOAT32, {2, 2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type5);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type5);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis2_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis2_neg_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type5(Type::TENSOR_FLOAT32, {2, 2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type5);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type5);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis2_neg_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis3_2(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {2, 2, 2, 6});
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type0);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type0);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis3_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis3_neg_2(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {2, 2, 2, 6});
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type0);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type0);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis3_neg_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis0_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type6(Type::TENSOR_FLOAT32, {6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type6);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type6);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis0_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis0_neg_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type6(Type::TENSOR_FLOAT32, {6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type6);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type6);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {-3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis0_neg_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis1_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type7(Type::TENSOR_FLOAT32, {2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type7);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type7);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis1_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis1_neg_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type7(Type::TENSOR_FLOAT32, {2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type7);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type7);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis1_neg_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis2_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type8(Type::TENSOR_FLOAT32, {2, 2, 6});
// Phase 1, operands
auto op1 = model->addOperand(&type8);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type8);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis2_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis2_neg_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type8(Type::TENSOR_FLOAT32, {2, 2, 6});
// Phase 1, operands
auto op1 = model->addOperand(&type8);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type8);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis2_neg_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim2_axis0_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type9(Type::TENSOR_FLOAT32, {6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type9);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type9);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim2_axis0_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim2_axis0_neg_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type9(Type::TENSOR_FLOAT32, {6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type9);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type9);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim2_axis0_neg_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim2_axis1_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type10(Type::TENSOR_FLOAT32, {2, 6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type10);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type10);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim2_axis1_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim2_axis1_neg_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type10(Type::TENSOR_FLOAT32, {2, 6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type10);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type10);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim2_axis1_neg_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim1_axis0_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type11(Type::TENSOR_FLOAT32, {6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type11);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type11);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim1_axis0_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim1_axis0_neg_2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type11(Type::TENSOR_FLOAT32, {6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type11);
auto param4 = model->addOperand(&type1);
auto param5 = model->addOperand(&type2);
auto param6 = model->addOperand(&type2);
auto param7 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type11);
// Phase 2, operations
static int32_t param4_init[] = {20};
model->setOperandValue(param4, param4_init, sizeof(int32_t) * 1);
static float param5_init[] = {9.0f};
model->setOperandValue(param5, param5_init, sizeof(float) * 1);
static float param6_init[] = {4.0f};
model->setOperandValue(param6, param6_init, sizeof(float) * 1);
static float param7_init[] = {0.5f};
model->setOperandValue(param7, param7_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param4, param5, param6, param7, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim1_axis0_neg_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis0_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type3(Type::TENSOR_FLOAT32, {6, 2, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type3);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type3);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis0_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis0_neg_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type3(Type::TENSOR_FLOAT32, {6, 2, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type3);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type3);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {-4};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis0_neg_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis1_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type4(Type::TENSOR_FLOAT32, {2, 6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type4);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type4);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis1_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis1_neg_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type4(Type::TENSOR_FLOAT32, {2, 6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type4);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type4);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {-3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis1_neg_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis2_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type5(Type::TENSOR_FLOAT32, {2, 2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type5);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type5);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis2_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis2_neg_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type5(Type::TENSOR_FLOAT32, {2, 2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type5);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type5);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis2_neg_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis3_3(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {2, 2, 2, 6});
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type0);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type0);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis3_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis3_neg_3(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {2, 2, 2, 6});
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type0);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type0);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis3_neg_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis0_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type6(Type::TENSOR_FLOAT32, {6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type6);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type6);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis0_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis0_neg_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type6(Type::TENSOR_FLOAT32, {6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type6);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type6);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {-3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis0_neg_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis1_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type7(Type::TENSOR_FLOAT32, {2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type7);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type7);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis1_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis1_neg_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type7(Type::TENSOR_FLOAT32, {2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type7);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type7);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis1_neg_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis2_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type8(Type::TENSOR_FLOAT32, {2, 2, 6});
// Phase 1, operands
auto op1 = model->addOperand(&type8);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type8);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis2_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis2_neg_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type8(Type::TENSOR_FLOAT32, {2, 2, 6});
// Phase 1, operands
auto op1 = model->addOperand(&type8);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type8);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis2_neg_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim2_axis0_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type9(Type::TENSOR_FLOAT32, {6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type9);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type9);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim2_axis0_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim2_axis0_neg_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type9(Type::TENSOR_FLOAT32, {6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type9);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type9);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim2_axis0_neg_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim2_axis1_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type10(Type::TENSOR_FLOAT32, {2, 6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type10);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type10);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim2_axis1_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim2_axis1_neg_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type10(Type::TENSOR_FLOAT32, {2, 6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type10);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type10);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim2_axis1_neg_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim1_axis0_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type11(Type::TENSOR_FLOAT32, {6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type11);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type11);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim1_axis0_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim1_axis0_neg_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type11(Type::TENSOR_FLOAT32, {6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type11);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type11);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim1_axis0_neg_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis0_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type3(Type::TENSOR_FLOAT32, {6, 2, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type3);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type3);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis0_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis0_neg_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type3(Type::TENSOR_FLOAT32, {6, 2, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type3);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type3);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {-4};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis0_neg_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis1_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type4(Type::TENSOR_FLOAT32, {2, 6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type4);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type4);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis1_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis1_neg_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type4(Type::TENSOR_FLOAT32, {2, 6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type4);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type4);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {-3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis1_neg_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis2_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type5(Type::TENSOR_FLOAT32, {2, 2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type5);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type5);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis2_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis2_neg_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type5(Type::TENSOR_FLOAT32, {2, 2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type5);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type5);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis2_neg_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis3_3(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {2, 2, 2, 6});
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type0);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type0);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis3_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis3_neg_3(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {2, 2, 2, 6});
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type0);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type0);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis3_neg_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis0_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type6(Type::TENSOR_FLOAT32, {6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type6);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type6);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis0_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis0_neg_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type6(Type::TENSOR_FLOAT32, {6, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type6);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type6);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {-3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis0_neg_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis1_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type7(Type::TENSOR_FLOAT32, {2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type7);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type7);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis1_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis1_neg_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type7(Type::TENSOR_FLOAT32, {2, 6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type7);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type7);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis1_neg_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis2_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type8(Type::TENSOR_FLOAT32, {2, 2, 6});
// Phase 1, operands
auto op1 = model->addOperand(&type8);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type8);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis2_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis2_neg_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type8(Type::TENSOR_FLOAT32, {2, 2, 6});
// Phase 1, operands
auto op1 = model->addOperand(&type8);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type8);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis2_neg_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim2_axis0_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type9(Type::TENSOR_FLOAT32, {6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type9);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type9);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim2_axis0_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim2_axis0_neg_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type9(Type::TENSOR_FLOAT32, {6, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type9);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type9);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim2_axis0_neg_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim2_axis1_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type10(Type::TENSOR_FLOAT32, {2, 6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type10);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type10);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim2_axis1_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim2_axis1_neg_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type10(Type::TENSOR_FLOAT32, {2, 6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type10);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type10);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim2_axis1_neg_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim1_axis0_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type11(Type::TENSOR_FLOAT32, {6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type11);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type11);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim1_axis0_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim1_axis0_neg_3(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type11(Type::TENSOR_FLOAT32, {6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type11);
auto param8 = model->addOperand(&type1);
auto param9 = model->addOperand(&type2);
auto param10 = model->addOperand(&type2);
auto param11 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type11);
// Phase 2, operations
static int32_t param8_init[] = {2};
model->setOperandValue(param8, param8_init, sizeof(int32_t) * 1);
static float param9_init[] = {9.0f};
model->setOperandValue(param9, param9_init, sizeof(float) * 1);
static float param10_init[] = {4.0f};
model->setOperandValue(param10, param10_init, sizeof(float) * 1);
static float param11_init[] = {0.5f};
model->setOperandValue(param11, param11_init, sizeof(float) * 1);
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param8, param9, param10, param11, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim1_axis0_neg_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_dim1_axis0(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type11(Type::TENSOR_FLOAT32, {6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type11);
auto param12 = model->addOperand(&type1);
auto param13 = model->addOperand(&type2);
auto param14 = model->addOperand(&type2);
auto param15 = model->addOperand(&type2);
auto op2 = model->addOperand(&type11);
// Phase 2, operations
static int32_t param12_init[] = {2};
model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1);
static float param13_init[] = {9.0f};
model->setOperandValue(param13, param13_init, sizeof(float) * 1);
static float param14_init[] = {4.0f};
model->setOperandValue(param14, param14_init, sizeof(float) * 1);
static float param15_init[] = {0.5f};
model->setOperandValue(param15, param15_init, sizeof(float) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param12, param13, param14, param15}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_dim1_axis0(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_dim2_axis1(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type10(Type::TENSOR_FLOAT32, {2, 6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type10);
auto param12 = model->addOperand(&type1);
auto param13 = model->addOperand(&type2);
auto param14 = model->addOperand(&type2);
auto param15 = model->addOperand(&type2);
auto op2 = model->addOperand(&type10);
// Phase 2, operations
static int32_t param12_init[] = {2};
model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1);
static float param13_init[] = {9.0f};
model->setOperandValue(param13, param13_init, sizeof(float) * 1);
static float param14_init[] = {4.0f};
model->setOperandValue(param14, param14_init, sizeof(float) * 1);
static float param15_init[] = {0.5f};
model->setOperandValue(param15, param15_init, sizeof(float) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param12, param13, param14, param15}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_dim2_axis1(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_dim3_axis2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type8(Type::TENSOR_FLOAT32, {2, 2, 6});
// Phase 1, operands
auto op1 = model->addOperand(&type8);
auto param12 = model->addOperand(&type1);
auto param13 = model->addOperand(&type2);
auto param14 = model->addOperand(&type2);
auto param15 = model->addOperand(&type2);
auto op2 = model->addOperand(&type8);
// Phase 2, operations
static int32_t param12_init[] = {2};
model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1);
static float param13_init[] = {9.0f};
model->setOperandValue(param13, param13_init, sizeof(float) * 1);
static float param14_init[] = {4.0f};
model->setOperandValue(param14, param14_init, sizeof(float) * 1);
static float param15_init[] = {0.5f};
model->setOperandValue(param15, param15_init, sizeof(float) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param12, param13, param14, param15}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_dim3_axis2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_relaxed_dim1_axis0(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type11(Type::TENSOR_FLOAT32, {6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type11);
auto param12 = model->addOperand(&type1);
auto param13 = model->addOperand(&type2);
auto param14 = model->addOperand(&type2);
auto param15 = model->addOperand(&type2);
auto op2 = model->addOperand(&type11);
// Phase 2, operations
static int32_t param12_init[] = {2};
model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1);
static float param13_init[] = {9.0f};
model->setOperandValue(param13, param13_init, sizeof(float) * 1);
static float param14_init[] = {4.0f};
model->setOperandValue(param14, param14_init, sizeof(float) * 1);
static float param15_init[] = {0.5f};
model->setOperandValue(param15, param15_init, sizeof(float) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param12, param13, param14, param15}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_relaxed_dim1_axis0(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_relaxed_dim2_axis1(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type10(Type::TENSOR_FLOAT32, {2, 6});
OperandType type2(Type::FLOAT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type10);
auto param12 = model->addOperand(&type1);
auto param13 = model->addOperand(&type2);
auto param14 = model->addOperand(&type2);
auto param15 = model->addOperand(&type2);
auto op2 = model->addOperand(&type10);
// Phase 2, operations
static int32_t param12_init[] = {2};
model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1);
static float param13_init[] = {9.0f};
model->setOperandValue(param13, param13_init, sizeof(float) * 1);
static float param14_init[] = {4.0f};
model->setOperandValue(param14, param14_init, sizeof(float) * 1);
static float param15_init[] = {0.5f};
model->setOperandValue(param15, param15_init, sizeof(float) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param12, param13, param14, param15}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_relaxed_dim2_axis1(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_relaxed_dim3_axis2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::FLOAT32, {});
OperandType type8(Type::TENSOR_FLOAT32, {2, 2, 6});
// Phase 1, operands
auto op1 = model->addOperand(&type8);
auto param12 = model->addOperand(&type1);
auto param13 = model->addOperand(&type2);
auto param14 = model->addOperand(&type2);
auto param15 = model->addOperand(&type2);
auto op2 = model->addOperand(&type8);
// Phase 2, operations
static int32_t param12_init[] = {2};
model->setOperandValue(param12, param12_init, sizeof(int32_t) * 1);
static float param13_init[] = {9.0f};
model->setOperandValue(param13, param13_init, sizeof(float) * 1);
static float param14_init[] = {4.0f};
model->setOperandValue(param14, param14_init, sizeof(float) * 1);
static float param15_init[] = {0.5f};
model->setOperandValue(param15, param15_init, sizeof(float) * 1);
model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {op1, param12, param13, param14, param15}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_relaxed_dim3_axis2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}