blob: f5d9bdedd8b1237142dd32c893833cfc0255c50a [file] [log] [blame]
// clang-format off
// Generated file (from: l2_normalization_v1_2.mod.py). Do not edit
void CreateModel_dim1_axis0(Model *model) {
OperandType type2(Type::TENSOR_FLOAT32, {3});
// Phase 1, operands
auto op1 = model->addOperand(&type2);
auto op2 = model->addOperand(&type2);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_dim1_axis0(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_dim2_axis1(Model *model) {
OperandType type3(Type::TENSOR_FLOAT32, {2, 3});
// Phase 1, operands
auto op1 = model->addOperand(&type3);
auto op2 = model->addOperand(&type3);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_dim2_axis1(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_dim3_axis2(Model *model) {
OperandType type4(Type::TENSOR_FLOAT32, {2, 2, 3});
// Phase 1, operands
auto op1 = model->addOperand(&type4);
auto op2 = model->addOperand(&type4);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_dim3_axis2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_relaxed_dim1_axis0(Model *model) {
OperandType type2(Type::TENSOR_FLOAT32, {3});
// Phase 1, operands
auto op1 = model->addOperand(&type2);
auto op2 = model->addOperand(&type2);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_relaxed_dim1_axis0(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_relaxed_dim2_axis1(Model *model) {
OperandType type3(Type::TENSOR_FLOAT32, {2, 3});
// Phase 1, operands
auto op1 = model->addOperand(&type3);
auto op2 = model->addOperand(&type3);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_relaxed_dim2_axis1(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_relaxed_dim3_axis2(Model *model) {
OperandType type4(Type::TENSOR_FLOAT32, {2, 2, 3});
// Phase 1, operands
auto op1 = model->addOperand(&type4);
auto op2 = model->addOperand(&type4);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_relaxed_dim3_axis2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis0(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type5(Type::TENSOR_FLOAT32, {3, 2, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type5);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type5);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis0(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis0_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type5(Type::TENSOR_FLOAT32, {3, 2, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type5);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type5);
// Phase 2, operations
static int32_t axis_init[] = {-4};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis0_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis1(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type6(Type::TENSOR_FLOAT32, {2, 3, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type6);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type6);
// Phase 2, operations
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis1(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis1_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type6(Type::TENSOR_FLOAT32, {2, 3, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type6);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type6);
// Phase 2, operations
static int32_t axis_init[] = {-3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis1_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type7(Type::TENSOR_FLOAT32, {2, 2, 3, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type7);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type7);
// Phase 2, operations
static int32_t axis_init[] = {2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis2_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type7(Type::TENSOR_FLOAT32, {2, 2, 3, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type7);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type7);
// Phase 2, operations
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis2_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis3(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {2, 2, 2, 3});
OperandType type1(Type::INT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type0);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type0);
// Phase 2, operations
static int32_t axis_init[] = {3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim4_axis3_neg(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {2, 2, 2, 3});
OperandType type1(Type::INT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type0);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type0);
// Phase 2, operations
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim4_axis3_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis0(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type8(Type::TENSOR_FLOAT32, {3, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type8);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type8);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis0(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis0_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type8(Type::TENSOR_FLOAT32, {3, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type8);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type8);
// Phase 2, operations
static int32_t axis_init[] = {-3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis0_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis1(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type9(Type::TENSOR_FLOAT32, {2, 3, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type9);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type9);
// Phase 2, operations
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis1(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis1_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type9(Type::TENSOR_FLOAT32, {2, 3, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type9);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type9);
// Phase 2, operations
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis1_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type4(Type::TENSOR_FLOAT32, {2, 2, 3});
// Phase 1, operands
auto op1 = model->addOperand(&type4);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type4);
// Phase 2, operations
static int32_t axis_init[] = {2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim3_axis2_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type4(Type::TENSOR_FLOAT32, {2, 2, 3});
// Phase 1, operands
auto op1 = model->addOperand(&type4);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type4);
// Phase 2, operations
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim3_axis2_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim2_axis0(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type10(Type::TENSOR_FLOAT32, {3, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type10);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type10);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim2_axis0(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim2_axis0_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type10(Type::TENSOR_FLOAT32, {3, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type10);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type10);
// Phase 2, operations
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim2_axis0_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim2_axis1(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type3(Type::TENSOR_FLOAT32, {2, 3});
// Phase 1, operands
auto op1 = model->addOperand(&type3);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type3);
// Phase 2, operations
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim2_axis1(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim2_axis1_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type3(Type::TENSOR_FLOAT32, {2, 3});
// Phase 1, operands
auto op1 = model->addOperand(&type3);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type3);
// Phase 2, operations
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim2_axis1_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim1_axis0(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::TENSOR_FLOAT32, {3});
// Phase 1, operands
auto op1 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type2);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim1_axis0(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_dim1_axis0_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::TENSOR_FLOAT32, {3});
// Phase 1, operands
auto op1 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type2);
// Phase 2, operations
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
assert(model->isValid());
}
inline bool is_ignored_axis_dim1_axis0_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis0(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type5(Type::TENSOR_FLOAT32, {3, 2, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type5);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type5);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis0(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis0_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type5(Type::TENSOR_FLOAT32, {3, 2, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type5);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type5);
// Phase 2, operations
static int32_t axis_init[] = {-4};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis0_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis1(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type6(Type::TENSOR_FLOAT32, {2, 3, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type6);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type6);
// Phase 2, operations
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis1(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis1_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type6(Type::TENSOR_FLOAT32, {2, 3, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type6);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type6);
// Phase 2, operations
static int32_t axis_init[] = {-3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis1_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type7(Type::TENSOR_FLOAT32, {2, 2, 3, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type7);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type7);
// Phase 2, operations
static int32_t axis_init[] = {2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis2_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type7(Type::TENSOR_FLOAT32, {2, 2, 3, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type7);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type7);
// Phase 2, operations
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis2_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis3(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {2, 2, 2, 3});
OperandType type1(Type::INT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type0);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type0);
// Phase 2, operations
static int32_t axis_init[] = {3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim4_axis3_neg(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {2, 2, 2, 3});
OperandType type1(Type::INT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type0);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type0);
// Phase 2, operations
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim4_axis3_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis0(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type8(Type::TENSOR_FLOAT32, {3, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type8);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type8);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis0(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis0_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type8(Type::TENSOR_FLOAT32, {3, 2, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type8);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type8);
// Phase 2, operations
static int32_t axis_init[] = {-3};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis0_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis1(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type9(Type::TENSOR_FLOAT32, {2, 3, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type9);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type9);
// Phase 2, operations
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis1(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis1_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type9(Type::TENSOR_FLOAT32, {2, 3, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type9);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type9);
// Phase 2, operations
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis1_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis2(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type4(Type::TENSOR_FLOAT32, {2, 2, 3});
// Phase 1, operands
auto op1 = model->addOperand(&type4);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type4);
// Phase 2, operations
static int32_t axis_init[] = {2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim3_axis2_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type4(Type::TENSOR_FLOAT32, {2, 2, 3});
// Phase 1, operands
auto op1 = model->addOperand(&type4);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type4);
// Phase 2, operations
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim3_axis2_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim2_axis0(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type10(Type::TENSOR_FLOAT32, {3, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type10);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type10);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim2_axis0(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim2_axis0_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type10(Type::TENSOR_FLOAT32, {3, 2});
// Phase 1, operands
auto op1 = model->addOperand(&type10);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type10);
// Phase 2, operations
static int32_t axis_init[] = {-2};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim2_axis0_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim2_axis1(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type3(Type::TENSOR_FLOAT32, {2, 3});
// Phase 1, operands
auto op1 = model->addOperand(&type3);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type3);
// Phase 2, operations
static int32_t axis_init[] = {1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim2_axis1(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim2_axis1_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type3(Type::TENSOR_FLOAT32, {2, 3});
// Phase 1, operands
auto op1 = model->addOperand(&type3);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type3);
// Phase 2, operations
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim2_axis1_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim1_axis0(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::TENSOR_FLOAT32, {3});
// Phase 1, operands
auto op1 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type2);
// Phase 2, operations
static int32_t axis_init[] = {0};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim1_axis0(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
void CreateModel_axis_relaxed_dim1_axis0_neg(Model *model) {
OperandType type1(Type::INT32, {});
OperandType type2(Type::TENSOR_FLOAT32, {3});
// Phase 1, operands
auto op1 = model->addOperand(&type2);
auto axis = model->addOperand(&type1);
auto op2 = model->addOperand(&type2);
// Phase 2, operations
static int32_t axis_init[] = {-1};
model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1, axis}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{op1},
{op2});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
inline bool is_ignored_axis_relaxed_dim1_axis0_neg(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}