blob: 6fc6e51605bfad11c63a14aa15b57d3e6503234f [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Contains all the entry points to the C Neural Networks API.
// We do basic validation of the operands and then call the class
// that implements the functionality.
#define LOG_TAG "NeuralNetworks"
#include "NeuralNetworks.h"
#include "Callbacks.h"
#include "CompilationBuilder.h"
#include "ExecutionBuilder.h"
#include "Manager.h"
#include "Memory.h"
#include "NeuralNetworksOEM.h"
#include "ModelBuilder.h"
#include "Tracing.h"
#include "Utils.h"
#include <memory>
#include <vector>
// Make sure the constants defined in the header files have not changed values.
// IMPORTANT: When adding new values, update kNumberOfDataTypes or kNumberOfDataTypesOEM
// in Utils.h.
static_assert(ANEURALNETWORKS_FLOAT32 == 0, "ANEURALNETWORKS_FLOAT32 has changed");
static_assert(ANEURALNETWORKS_INT32 == 1, "ANEURALNETWORKS_INT32 has changed");
static_assert(ANEURALNETWORKS_UINT32 == 2, "ANEURALNETWORKS_UINT32 has changed");
static_assert(ANEURALNETWORKS_TENSOR_FLOAT32 == 3, "ANEURALNETWORKS_TENSOR_FLOAT32 has changed");
static_assert(ANEURALNETWORKS_TENSOR_INT32 == 4, "ANEURALNETWORKS_TENSOR_INT32 has changed");
static_assert(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM == 5,
"ANEURALNETWORKS_TENSOR_QUANT8_ASYMM has changed");
static_assert(ANEURALNETWORKS_BOOL == 6, "ANEURALNETWORKS_BOOL has changed");
static_assert(ANEURALNETWORKS_TENSOR_QUANT16_SYMM == 7,
"ANEURALNETWORKS_TENSOR_QUANT16_SYMM has changed");
static_assert(ANEURALNETWORKS_TENSOR_FLOAT16 == 8, "ANEURALNETWORKS_TENSOR_FLOAT16 has changed");
static_assert(ANEURALNETWORKS_OEM_SCALAR == 10000, "ANEURALNETWORKS_OEM_SCALAR has changed");
static_assert(ANEURALNETWORKS_TENSOR_OEM_BYTE == 10001,
"ANEURALNETWORKS_TENSOR_OEM_BYTE has changed");
// IMPORTANT: When adding new values, update kNumberOfOperationTypes or
// kNumberOfOperationTypesOEMin Utils.h.
static_assert(ANEURALNETWORKS_ADD == 0, "ANEURALNETWORKS_ADD has changed");
static_assert(ANEURALNETWORKS_AVERAGE_POOL_2D == 1,
"ANEURALNETWORKS_AVERAGE_POOL_2D has changed");
static_assert(ANEURALNETWORKS_CONCATENATION == 2, "ANEURALNETWORKS_CONCATENATION has changed");
static_assert(ANEURALNETWORKS_CONV_2D == 3, "ANEURALNETWORKS_CONV_2D has changed");
static_assert(ANEURALNETWORKS_DEPTHWISE_CONV_2D == 4,
"ANEURALNETWORKS_DEPTHWISE_CONV_2D has changed");
static_assert(ANEURALNETWORKS_DEPTH_TO_SPACE == 5,
"ANEURALNETWORKS_DEPTH_TO_SPACE has changed");
static_assert(ANEURALNETWORKS_DEQUANTIZE == 6, "ANEURALNETWORKS_DEQUANTIZE has changed");
static_assert(ANEURALNETWORKS_EMBEDDING_LOOKUP == 7,
"ANEURALNETWORKS_EMBEDDING_LOOKUP has changed");
static_assert(ANEURALNETWORKS_FLOOR == 8, "ANEURALNETWORKS_FLOOR has changed");
static_assert(ANEURALNETWORKS_FULLY_CONNECTED == 9,
"ANEURALNETWORKS_FULLY_CONNECTED has changed");
static_assert(ANEURALNETWORKS_HASHTABLE_LOOKUP == 10,
"ANEURALNETWORKS_HASHTABLE_LOOKUP has changed");
static_assert(ANEURALNETWORKS_L2_NORMALIZATION == 11,
"ANEURALNETWORKS_L2_NORMALIZATION has changed");
static_assert(ANEURALNETWORKS_L2_POOL_2D == 12, "ANEURALNETWORKS_L2_POOL has changed");
static_assert(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION == 13,
"ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION has changed");
static_assert(ANEURALNETWORKS_LOGISTIC == 14, "ANEURALNETWORKS_LOGISTIC has changed");
static_assert(ANEURALNETWORKS_LSH_PROJECTION == 15,
"ANEURALNETWORKS_LSH_PROJECTION has changed");
static_assert(ANEURALNETWORKS_LSTM == 16, "ANEURALNETWORKS_LSTM has changed");
static_assert(ANEURALNETWORKS_MAX_POOL_2D == 17, "ANEURALNETWORKS_MAX_POOL has changed");
static_assert(ANEURALNETWORKS_MUL == 18, "ANEURALNETWORKS_MUL has changed");
static_assert(ANEURALNETWORKS_RELU == 19, "ANEURALNETWORKS_RELU has changed");
static_assert(ANEURALNETWORKS_RELU1 == 20, "ANEURALNETWORKS_RELU1 has changed");
static_assert(ANEURALNETWORKS_RELU6 == 21, "ANEURALNETWORKS_RELU6 has changed");
static_assert(ANEURALNETWORKS_RESHAPE == 22, "ANEURALNETWORKS_RESHAPE has changed");
static_assert(ANEURALNETWORKS_RESIZE_BILINEAR == 23,
"ANEURALNETWORKS_RESIZE_BILINEAR has changed");
static_assert(ANEURALNETWORKS_RNN == 24, "ANEURALNETWORKS_RNN has changed");
static_assert(ANEURALNETWORKS_SOFTMAX == 25, "ANEURALNETWORKS_SOFTMAX has changed");
static_assert(ANEURALNETWORKS_SPACE_TO_DEPTH == 26,
"ANEURALNETWORKS_SPACE_TO_DEPTH has changed");
static_assert(ANEURALNETWORKS_SVDF == 27, "ANEURALNETWORKS_SVDF has changed");
static_assert(ANEURALNETWORKS_TANH == 28, "ANEURALNETWORKS_TANH has changed");
static_assert(ANEURALNETWORKS_BATCH_TO_SPACE_ND == 29, "ANEURALNETWORKS_BATCH_TO_SPACE_ND has changed");
static_assert(ANEURALNETWORKS_DIV == 30, "ANEURALNETWORKS_DIV has changed");
static_assert(ANEURALNETWORKS_MEAN == 31, "ANEURALNETWORKS_MEAN has changed");
static_assert(ANEURALNETWORKS_PAD == 32, "ANEURALNETWORKS_PAD has changed");
static_assert(ANEURALNETWORKS_SPACE_TO_BATCH_ND == 33, "ANEURALNETWORKS_SPACE_TO_BATCH_ND has changed");
static_assert(ANEURALNETWORKS_SQUEEZE == 34, "ANEURALNETWORKS_SQUEEZE has changed");
static_assert(ANEURALNETWORKS_STRIDED_SLICE == 35, "ANEURALNETWORKS_STRIDED_SLICE has changed");
static_assert(ANEURALNETWORKS_SUB == 36, "ANEURALNETWORKS_TANH has changed");
static_assert(ANEURALNETWORKS_TRANSPOSE == 37, "ANEURALNETWORKS_TRANSPOSE has changed");
static_assert(ANEURALNETWORKS_OEM_OPERATION == 10000,
"ANEURALNETWORKS_OEM_OPERATION has changed");
static_assert(ANEURALNETWORKS_FUSED_NONE == 0, "ANEURALNETWORKS_FUSED_NONE has changed");
static_assert(ANEURALNETWORKS_FUSED_RELU == 1, "ANEURALNETWORKS_FUSED_RELU has changed");
static_assert(ANEURALNETWORKS_FUSED_RELU1 == 2, "ANEURALNETWORKS_FUSED_RELU1 has changed");
static_assert(ANEURALNETWORKS_FUSED_RELU6 == 3, "ANEURALNETWORKS_FUSED_RELU6 has changed");
static_assert(ANEURALNETWORKS_PREFER_LOW_POWER == 0,
"ANEURALNETWORKS_PREFER_LOW_POWER has changed");
static_assert(ANEURALNETWORKS_PREFER_FAST_SINGLE_ANSWER == 1,
"ANEURALNETWORKS_PREFER_FAST_SINGLE_ANSWER has changed");
static_assert(ANEURALNETWORKS_PREFER_SUSTAINED_SPEED == 2,
"ANEURALNETWORKS_PREFER_SUSTAINED_SPEED has changed");
static_assert(ANEURALNETWORKS_NO_ERROR == 0, "ANEURALNETWORKS_NO_ERROR has changed");
static_assert(ANEURALNETWORKS_OUT_OF_MEMORY == 1, "ANEURALNETWORKS_OUT_OF_MEMORY has changed");
static_assert(ANEURALNETWORKS_INCOMPLETE == 2, "ANEURALNETWORKS_INCOMPLETE has changed");
static_assert(ANEURALNETWORKS_UNEXPECTED_NULL == 3,
"ANEURALNETWORKS_UNEXPECTED_NULL has changed");
static_assert(ANEURALNETWORKS_BAD_DATA == 4, "ANEURALNETWORKS_BAD_DATA has changed");
static_assert(ANEURALNETWORKS_OP_FAILED == 5, "ANEURALNETWORKS_OP_FAILED has changed");
static_assert(ANEURALNETWORKS_BAD_STATE == 6, "ANEURALNETWORKS_BAD_STATE has changed");
static_assert(ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES == 128,
"ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES has changed");
// Make sure that the constants are compatible with the values defined in
// hardware/interfaces/neuralnetworks/1.0/types.hal.
static_assert(static_cast<int32_t>(OperandType::OEM) == ANEURALNETWORKS_OEM_SCALAR,
"OEM != ANEURALNETWORKS_OEM");
static_assert(static_cast<int32_t>(OperandType::FLOAT32) == ANEURALNETWORKS_FLOAT32,
"FLOAT32 != ANEURALNETWORKS_FLOAT32");
static_assert(static_cast<int32_t>(OperandType::INT32) == ANEURALNETWORKS_INT32,
"INT32 != ANEURALNETWORKS_INT32");
static_assert(static_cast<int32_t>(OperandType::UINT32) == ANEURALNETWORKS_UINT32,
"UINT32 != ANEURALNETWORKS_UINT32");
static_assert(static_cast<int32_t>(OperandType::TENSOR_OEM_BYTE) == ANEURALNETWORKS_TENSOR_OEM_BYTE,
"TENSOR_OEM_BYTE != ANEURALNETWORKS_TENSOR_OEM_BYTE");
static_assert(static_cast<int32_t>(OperandType::TENSOR_FLOAT16) == ANEURALNETWORKS_TENSOR_FLOAT16,
"TENSOR_FLOAT16 != ANEURALNETWORKS_TENSOR_FLOAT16");
static_assert(static_cast<int32_t>(OperandType::TENSOR_FLOAT32) == ANEURALNETWORKS_TENSOR_FLOAT32,
"TENSOR_FLOAT32 != ANEURALNETWORKS_TENSOR_FLOAT32");
static_assert(static_cast<int32_t>(OperandType::TENSOR_QUANT8_ASYMM) ==
ANEURALNETWORKS_TENSOR_QUANT8_ASYMM,
"TENSOR_QUANT8_ASYMM != ANEURALNETWORKS_TENSOR_QUANT8_ASYMM");
static_assert(static_cast<int32_t>(OperandType::BOOL) == ANEURALNETWORKS_BOOL,
"BOOL != ANEURALNETWORKS_BOOL");
static_assert(static_cast<int32_t>(OperandType::TENSOR_QUANT16_SYMM) ==
ANEURALNETWORKS_TENSOR_QUANT16_SYMM,
"TENSOR_QUANT16_SYMM != ANEURALNETWORKS_TENSOR_QUANT16_SYMM");
static_assert(static_cast<int32_t>(OperationType::ADD) == ANEURALNETWORKS_ADD,
"OperationType::ADD != ANEURALNETWORKS_ADD");
static_assert(static_cast<int32_t>(OperationType::AVERAGE_POOL_2D) ==
ANEURALNETWORKS_AVERAGE_POOL_2D,
"OperationType::AVERAGE_POOL_2D != ANEURALNETWORKS_AVERAGE_POOL_2D");
static_assert(static_cast<int32_t>(OperationType::CONV_2D) == ANEURALNETWORKS_CONV_2D,
"OperationType::CONV_2D != ANEURALNETWORKS_CONV_2D");
static_assert(static_cast<int32_t>(OperationType::DEPTHWISE_CONV_2D) ==
ANEURALNETWORKS_DEPTHWISE_CONV_2D,
"OperationType::DEPTHWISE_CONV_2D != ANEURALNETWORKS_DEPTHWISE_CONV_2D");
static_assert(static_cast<int32_t>(OperationType::DEPTH_TO_SPACE) ==
ANEURALNETWORKS_DEPTH_TO_SPACE,
"OperationType::DEPTH_TO_SPACE != ANEURALNETWORKS_DEPTH_TO_SPACE");
static_assert(static_cast<int32_t>(OperationType::DEQUANTIZE) == ANEURALNETWORKS_DEQUANTIZE,
"OperationType::DEQUANTIZE != ANEURALNETWORKS_DEQUANTIZE");
static_assert(static_cast<int32_t>(OperationType::EMBEDDING_LOOKUP) ==
ANEURALNETWORKS_EMBEDDING_LOOKUP,
"OperationType::EMBEDDING_LOOKUP != ANEURALNETWORKS_EMBEDDING_LOOKUP");
static_assert(static_cast<int32_t>(OperationType::FLOOR) == ANEURALNETWORKS_FLOOR,
"OperationType::FLOOR != ANEURALNETWORKS_FLOOR");
static_assert(static_cast<int32_t>(OperationType::FULLY_CONNECTED) ==
ANEURALNETWORKS_FULLY_CONNECTED,
"OperationType::FULLY_CONNECTED != ANEURALNETWORKS_FULLY_CONNECTED");
static_assert(static_cast<int32_t>(OperationType::HASHTABLE_LOOKUP) ==
ANEURALNETWORKS_HASHTABLE_LOOKUP,
"OperationType::HASHTABLE_LOOKUP != ANEURALNETWORKS_HASHTABLE_LOOKUP");
static_assert(static_cast<int32_t>(OperationType::L2_NORMALIZATION) ==
ANEURALNETWORKS_L2_NORMALIZATION,
"OperationType::L2_NORMALIZATION != ANEURALNETWORKS_L2_NORMALIZATION");
static_assert(static_cast<int32_t>(OperationType::L2_POOL_2D) == ANEURALNETWORKS_L2_POOL_2D,
"OperationType::L2_POOL_2D != ANEURALNETWORKS_L2_POOL_2D");
static_assert(static_cast<int32_t>(OperationType::LOCAL_RESPONSE_NORMALIZATION) ==
ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION,
"OperationType::LOCAL_RESPONSE_NORMALIZATION != "
"ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION");
static_assert(static_cast<int32_t>(OperationType::LOGISTIC) == ANEURALNETWORKS_LOGISTIC,
"OperationType::LOGISTIC != ANEURALNETWORKS_LOGISTIC");
static_assert(static_cast<int32_t>(OperationType::LSH_PROJECTION) ==
ANEURALNETWORKS_LSH_PROJECTION,
"OperationType::LSH_PROJECTION != ANEURALNETWORKS_LSH_PROJECTION");
static_assert(static_cast<int32_t>(OperationType::LSTM) == ANEURALNETWORKS_LSTM,
"OperationType::LSTM != ANEURALNETWORKS_LSTM");
static_assert(static_cast<int32_t>(OperationType::MAX_POOL_2D) == ANEURALNETWORKS_MAX_POOL_2D,
"OperationType::MAX_POOL_2D != ANEURALNETWORKS_MAX_POOL_2D");
static_assert(static_cast<int32_t>(OperationType::MUL) == ANEURALNETWORKS_MUL,
"OperationType::MUL != ANEURALNETWORKS_MUL");
static_assert(static_cast<int32_t>(OperationType::RELU) == ANEURALNETWORKS_RELU,
"OperationType::RELU != ANEURALNETWORKS_RELU");
static_assert(static_cast<int32_t>(OperationType::RELU1) == ANEURALNETWORKS_RELU1,
"OperationType::RELU1 != ANEURALNETWORKS_RELU1");
static_assert(static_cast<int32_t>(OperationType::RELU6) == ANEURALNETWORKS_RELU6,
"OperationType::RELU6 != ANEURALNETWORKS_RELU6");
static_assert(static_cast<int32_t>(OperationType::RESHAPE) == ANEURALNETWORKS_RESHAPE,
"OperationType::RESHAPE != ANEURALNETWORKS_RESHAPE");
static_assert(static_cast<int32_t>(OperationType::RESIZE_BILINEAR) ==
ANEURALNETWORKS_RESIZE_BILINEAR,
"OperationType::RESIZE_BILINEAR != ANEURALNETWORKS_RESIZE_BILINEAR");
static_assert(static_cast<int32_t>(OperationType::RNN) == ANEURALNETWORKS_RNN,
"OperationType::RNN != ANEURALNETWORKS_RNN");
static_assert(static_cast<int32_t>(OperationType::SOFTMAX) == ANEURALNETWORKS_SOFTMAX,
"OperationType::SOFTMAX != ANEURALNETWORKS_SOFTMAX");
static_assert(static_cast<int32_t>(OperationType::SPACE_TO_DEPTH) ==
ANEURALNETWORKS_SPACE_TO_DEPTH,
"OperationType::SPACE_TO_DEPTH != ANEURALNETWORKS_SPACE_TO_DEPTH");
static_assert(static_cast<int32_t>(OperationType::SVDF) == ANEURALNETWORKS_SVDF,
"OperationType::SVDF != ANEURALNETWORKS_SVDF");
static_assert(static_cast<int32_t>(OperationType::TANH) == ANEURALNETWORKS_TANH,
"OperationType::TANH != ANEURALNETWORKS_TANH");
static_assert(static_cast<int32_t>(OperationType::BATCH_TO_SPACE_ND) == ANEURALNETWORKS_BATCH_TO_SPACE_ND,
"OperationType::BATCH_TO_SPACE_ND != ANEURALNETWORKS_BATCH_TO_SPACE_ND");
static_assert(static_cast<int32_t>(OperationType::DIV) == ANEURALNETWORKS_DIV,
"OperationType::DIV != ANEURALNETWORKS_DIV");
static_assert(static_cast<int32_t>(OperationType::MEAN) == ANEURALNETWORKS_MEAN,
"OperationType::MEAN != ANEURALNETWORKS_MEAN");
static_assert(static_cast<int32_t>(OperationType::PAD) == ANEURALNETWORKS_PAD,
"OperationType::PAD != ANEURALNETWORKS_PAD");
static_assert(static_cast<int32_t>(OperationType::SPACE_TO_BATCH_ND) ==
ANEURALNETWORKS_SPACE_TO_BATCH_ND,
"OperationType::SPACE_TO_BATCH_ND != ANEURALNETWORKS_SPACE_TO_BATCH_ND");
static_assert(static_cast<int32_t>(OperationType::SQUEEZE) == ANEURALNETWORKS_SQUEEZE,
"OperationType::SQUEEZE != ANEURALNETWORKS_SQUEEZE");
static_assert(static_cast<int32_t>(OperationType::STRIDED_SLICE) ==
ANEURALNETWORKS_STRIDED_SLICE,
"OperationType::STRIDED_SLICE != ANEURALNETWORKS_STRIDED_SLICE");
static_assert(static_cast<int32_t>(OperationType::SUB) == ANEURALNETWORKS_SUB,
"OperationType::SUB != ANEURALNETWORKS_SUB");
static_assert(static_cast<int32_t>(OperationType::TRANSPOSE) == ANEURALNETWORKS_TRANSPOSE,
"OperationType::TRANSPOSE != ANEURALNETWORKS_TRANSPOSE");
static_assert(static_cast<int32_t>(FusedActivationFunc::NONE) == ANEURALNETWORKS_FUSED_NONE,
"FusedActivationFunc::NONE != ANEURALNETWORKS_FUSED_NONE");
static_assert(static_cast<int32_t>(FusedActivationFunc::RELU) == ANEURALNETWORKS_FUSED_RELU,
"FusedActivationFunc::RELU != ANEURALNETWORKS_FUSED_RELU");
static_assert(static_cast<int32_t>(FusedActivationFunc::RELU1) == ANEURALNETWORKS_FUSED_RELU1,
"FusedActivationFunc::RELU1 != ANEURALNETWORKS_FUSED_RELU1");
static_assert(static_cast<int32_t>(FusedActivationFunc::RELU6) == ANEURALNETWORKS_FUSED_RELU6,
"FusedActivationFunc::RELU6 != ANEURALNETWORKS_FUSED_RELU6");
using android::sp;
using namespace android::nn;
int ANeuralNetworks_getDeviceCount(uint32_t* numDevices) {
if (numDevices == nullptr) {
LOG(ERROR) << "ANeuralNetworks_getDeviceCount passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
*numDevices = DeviceManager::get()->getDrivers().size();
return ANEURALNETWORKS_NO_ERROR;
}
int ANeuralNetworks_getDevice(uint32_t devIndex, ANeuralNetworksDevice** device) {
if (device == nullptr) {
LOG(ERROR) << "ANeuralNetworks_getDevice passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
const std::vector<std::shared_ptr<Device>>& devices = DeviceManager::get()->getDrivers();
if (devIndex >= devices.size()) {
LOG(ERROR) << "ANeuralNetworks_getDevice passed an invalid device index";
return ANEURALNETWORKS_BAD_DATA;
}
*device = reinterpret_cast<ANeuralNetworksDevice*>(devices.at(devIndex).get());
return ANEURALNETWORKS_NO_ERROR;
}
int ANeuralNetworksDevice_getName(const ANeuralNetworksDevice* device, const char** name) {
if (device == nullptr || name == nullptr) {
LOG(ERROR) << "ANeuralNetworksDevice_getName passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
const Device* d = reinterpret_cast<const Device*>(device);
*name = d->getName();
return ANEURALNETWORKS_NO_ERROR;
}
int ANeuralNetworksDevice_getVersion(const ANeuralNetworksDevice* device, const char** version) {
if (device == nullptr || version == nullptr) {
LOG(ERROR) << "ANeuralNetworksDevice_getVersion passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
const Device* d = reinterpret_cast<const Device*>(device);
*version = d->getVersionString();
return ANEURALNETWORKS_NO_ERROR;
}
int ANeuralNetworksDevice_getFeatureLevel(const ANeuralNetworksDevice* device,
int64_t* featureLevel) {
if (device == nullptr || featureLevel == nullptr) {
LOG(ERROR) << "ANeuralNetworksDevice_getFeatureLevel passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
Device* d = reinterpret_cast<Device*>(const_cast<ANeuralNetworksDevice*>(device));
int64_t dFeatureLevel = d->getInterface()->getFeatureLevel();
if (dFeatureLevel < 0) {
return ANEURALNETWORKS_BAD_STATE;
}
*featureLevel = dFeatureLevel;
return ANEURALNETWORKS_NO_ERROR;
}
int ANeuralNetworksModel_getSupportedOperationsForDevices(
const ANeuralNetworksModel* model, const ANeuralNetworksDevice* const* devices,
uint32_t numDevices, bool* supportedOps) {
NNTRACE_RT(NNTRACE_PHASE_COMPILATION, "ANeuralNetworksModel_getSupportedOperationsForDevices");
if (model == nullptr || devices == nullptr || supportedOps == nullptr) {
LOG(ERROR) << "ANeuralNetworksModel_getSupportedOperationsForDevices passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
const ModelBuilder* m = reinterpret_cast<const ModelBuilder*>(model);
if (!m->isFinished() || !m->isValid()) {
LOG(ERROR) << "ANeuralNetworksModel_getSupportedOperationsForDevices passed an unfinished "
"or invalid Model";
return ANEURALNETWORKS_BAD_STATE;
}
Model hidlModel;
m->setHidlModel(&hidlModel);
const std::vector<uint32_t>& opMap = m->getSortedOperationMapping();
// init the output array to false for all the operations.
std::fill(supportedOps, supportedOps + opMap.size(), false);
for (uint32_t i = 0; i < numDevices; i++) {
if (devices[i] == nullptr) {
LOG(ERROR) << "ANeuralNetworksModel_getSupportedOperationsForDevices passed a nullptr "
"as a device";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
for (uint32_t j = i + 1; j < numDevices; j++) {
if (devices[i] == devices[j]) {
LOG(ERROR) << "ANeuralNetworksModel_getSupportedOperationsForDevices passed "
"duplicate devices";
return ANEURALNETWORKS_BAD_DATA;
}
}
Device* d = reinterpret_cast<Device*>(const_cast<ANeuralNetworksDevice*>(devices[i]));
hidl_vec<bool> supportsByDevice;
d->getSupportedOperations(hidlModel, &supportsByDevice);
for (uint32_t j = 0; j < supportsByDevice.size(); j++) {
uint32_t originalIdx = opMap[j];
supportedOps[originalIdx] |= supportsByDevice[j];
}
}
return ANEURALNETWORKS_NO_ERROR;
}
int ANeuralNetworksCompilation_createForDevices(ANeuralNetworksModel* model,
const ANeuralNetworksDevice* const* devices,
uint32_t numDevices,
ANeuralNetworksCompilation** compilation) {
NNTRACE_RT(NNTRACE_PHASE_COMPILATION, "ANeuralNetworksCompilation_createForDevices");
if (model == nullptr || devices == nullptr || compilation == nullptr) {
LOG(ERROR) << "ANeuralNetworksCompilation_createForDevices passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
std::vector<std::shared_ptr<Device>> selectedDevices;
for (uint32_t i = 0; i < numDevices; i++) {
if (devices[i] == nullptr) {
LOG(ERROR)
<< "ANeuralNetworksCompilation_createForDevices passed a nullptr as a device";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
for (uint32_t j = i + 1; j < numDevices; j++) {
if (devices[i] == devices[j]) {
LOG(ERROR)
<< "ANeuralNetworksCompilation_createForDevices passed duplicate devices";
return ANEURALNETWORKS_BAD_DATA;
}
}
for (auto& device : DeviceManager::get()->getDrivers()) {
if (device.get() == reinterpret_cast<const Device*>(devices[i])) {
// Find a match
selectedDevices.push_back(device);
break;
}
}
}
if (selectedDevices.size() != numDevices) {
LOG(ERROR) << "ANeuralNetworksCompilation_createForDevices passed an invalid device set";
return ANEURALNETWORKS_BAD_DATA;
}
ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model);
CompilationBuilder* c = nullptr;
int result = m->createCompilation(&c, selectedDevices);
*compilation = reinterpret_cast<ANeuralNetworksCompilation*>(c);
return result;
}
int ANeuralNetworksExecution_compute(ANeuralNetworksExecution* execution) {
NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksExecution_compute");
if (!execution) {
LOG(ERROR) << "ANeuralNetworksExecution_compute passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
// TODO validate the rest
ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution);
return r->computeSynchronously();
}
int ANeuralNetworksMemory_createFromFd(size_t size, int prot, int fd, size_t offset,
ANeuralNetworksMemory** memory) {
NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksMemory_createFromFd");
*memory = nullptr;
std::unique_ptr<MemoryFd> m = std::make_unique<MemoryFd>();
if (m == nullptr) {
return ANEURALNETWORKS_OUT_OF_MEMORY;
}
int n = m->set(size, prot, fd, offset);
if (n != ANEURALNETWORKS_NO_ERROR) {
return n;
}
*memory = reinterpret_cast<ANeuralNetworksMemory*>(m.release());
return ANEURALNETWORKS_NO_ERROR;
}
void ANeuralNetworksMemory_free(ANeuralNetworksMemory* memory) {
NNTRACE_RT(NNTRACE_PHASE_TERMINATION, "ANeuralNetworksMemory_free");
// No validation. Free of nullptr is valid.
Memory* m = reinterpret_cast<Memory*>(memory);
delete m;
}
int ANeuralNetworksModel_create(ANeuralNetworksModel** model) {
NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksModel_create");
initVLogMask();
if (!model) {
LOG(ERROR) << "ANeuralNetworksModel_create passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
ModelBuilder* m = new (std::nothrow) ModelBuilder();
if (m == nullptr) {
*model = nullptr;
return ANEURALNETWORKS_OUT_OF_MEMORY;
}
*model = reinterpret_cast<ANeuralNetworksModel*>(m);
return ANEURALNETWORKS_NO_ERROR;
}
void ANeuralNetworksModel_free(ANeuralNetworksModel* model) {
NNTRACE_RT(NNTRACE_PHASE_TERMINATION, "ANeuralNetworksModel_free");
// No validation. Free of nullptr is valid.
ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model);
delete m;
}
int ANeuralNetworksModel_finish(ANeuralNetworksModel* model) {
NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksModel_finish");
if (!model) {
LOG(ERROR) << "ANeuralNetworksModel_finish passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model);
return m->finish();
}
int ANeuralNetworksModel_addOperand(ANeuralNetworksModel* model,
const ANeuralNetworksOperandType* type) {
NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksModel_addOperand");
if (!model || !type) {
LOG(ERROR) << "ANeuralNetworksModel_addOperand passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model);
return m->addOperand(*type);
}
int ANeuralNetworksModel_setOperandValue(ANeuralNetworksModel* model, int32_t index,
const void* buffer, size_t length) {
NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksModel_setOperandValue");
if (!model || (!buffer && length != 0)) {
LOG(ERROR) << "ANeuralNetworksModel_setOperandValue passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model);
return m->setOperandValue(index, buffer, length);
}
int ANeuralNetworksModel_setOperandValueFromMemory(ANeuralNetworksModel* model, int32_t index,
const ANeuralNetworksMemory* memory,
size_t offset, size_t length) {
NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksModel_setOperandValueFromMemory");
if (!model || !memory) {
LOG(ERROR) << "ANeuralNetworksModel_setOperandValue passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
const Memory* mem = reinterpret_cast<const Memory*>(memory);
ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model);
return m->setOperandValueFromMemory(index, mem, offset, length);
}
int ANeuralNetworksModel_addOperation(ANeuralNetworksModel* model,
ANeuralNetworksOperationType type, uint32_t inputCount,
const uint32_t* inputs, uint32_t outputCount,
const uint32_t* outputs) {
NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksModel_addOperation");
if (!model || !inputs || !outputs) {
LOG(ERROR) << "ANeuralNetworksModel_addOperation passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model);
return m->addOperation(type, inputCount, inputs, outputCount, outputs);
}
int ANeuralNetworksModel_identifyInputsAndOutputs(ANeuralNetworksModel* model, uint32_t inputCount,
const uint32_t* inputs, uint32_t outputCount,
const uint32_t* outputs) {
NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksModel_identifyInputsAndOutputs");
if (!model || !inputs || !outputs) {
LOG(ERROR) << ("ANeuralNetworksModel_identifyInputsAndOutputs passed a nullptr");
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model);
return m->identifyInputsAndOutputs(inputCount, inputs, outputCount, outputs);
}
int ANeuralNetworksModel_relaxComputationFloat32toFloat16(ANeuralNetworksModel* model,
bool allow) {
NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksModel_relaxComputationFloat32toFloat16");
if (!model) {
LOG(ERROR) << ("ANeuralNetworksModel_relaxComputationFloat32toFloat16 passed a nullptr");
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model);
return m->relaxComputationFloat32toFloat16(allow);
}
int ANeuralNetworksCompilation_create(ANeuralNetworksModel* model,
ANeuralNetworksCompilation** compilation) {
NNTRACE_RT(NNTRACE_PHASE_COMPILATION, "ANeuralNetworksCompilation_create");
if (!model || !compilation) {
LOG(ERROR) << "ANeuralNetworksCompilation_create passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model);
CompilationBuilder* c = nullptr;
int result = m->createCompilation(&c, DeviceManager::get()->getDrivers());
*compilation = reinterpret_cast<ANeuralNetworksCompilation*>(c);
return result;
}
void ANeuralNetworksCompilation_free(ANeuralNetworksCompilation* compilation) {
NNTRACE_RT(NNTRACE_PHASE_TERMINATION, "ANeuralNetworksCompilation_free");
// No validation. Free of nullptr is valid.
// TODO specification says that a compilation-in-flight can be deleted
CompilationBuilder* c = reinterpret_cast<CompilationBuilder*>(compilation);
delete c;
}
int ANeuralNetworksCompilation_setPreference(ANeuralNetworksCompilation* compilation,
int32_t preference) {
NNTRACE_RT(NNTRACE_PHASE_COMPILATION, "ANeuralNetworksCompilation_setPreference");
if (!compilation) {
LOG(ERROR) << "ANeuralNetworksCompilation_setPreference passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
CompilationBuilder* c = reinterpret_cast<CompilationBuilder*>(compilation);
return c->setPreference(preference);
}
int ANeuralNetworksCompilation_finish(ANeuralNetworksCompilation* compilation) {
NNTRACE_RT(NNTRACE_PHASE_COMPILATION, "ANeuralNetworksCompilation_finish");
if (!compilation) {
LOG(ERROR) << "ANeuralNetworksCompilation_finish passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
CompilationBuilder* c = reinterpret_cast<CompilationBuilder*>(compilation);
return c->finish();
}
int ANeuralNetworksExecution_create(ANeuralNetworksCompilation* compilation,
ANeuralNetworksExecution** execution) {
NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksExecution_create");
if (!compilation || !execution) {
LOG(ERROR) << "ANeuralNetworksExecution_create passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
CompilationBuilder* c = reinterpret_cast<CompilationBuilder*>(compilation);
ExecutionBuilder* r = nullptr;
int result = c->createExecution(&r);
*execution = reinterpret_cast<ANeuralNetworksExecution*>(r);
return result;
}
void ANeuralNetworksExecution_free(ANeuralNetworksExecution* execution) {
NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksExecution_free");
// TODO specification says that an execution-in-flight can be deleted
// No validation. Free of nullptr is valid.
ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution);
delete r;
}
int ANeuralNetworksExecution_setInput(ANeuralNetworksExecution* execution, int32_t index,
const ANeuralNetworksOperandType* type, const void* buffer,
size_t length) {
NNTRACE_RT(NNTRACE_PHASE_INPUTS_AND_OUTPUTS, "ANeuralNetworksExecution_setInput");
if (!execution || (!buffer && length != 0)) {
LOG(ERROR) << "ANeuralNetworksExecution_setInput passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution);
return r->setInput(index, type, buffer, length);
}
int ANeuralNetworksExecution_setInputFromMemory(ANeuralNetworksExecution* execution, int32_t index,
const ANeuralNetworksOperandType* type,
const ANeuralNetworksMemory* memory, size_t offset,
size_t length) {
NNTRACE_RT(NNTRACE_PHASE_INPUTS_AND_OUTPUTS, "ANeuralNetworksExecution_setInputFromMemory");
if (!execution || !memory) {
LOG(ERROR) << "ANeuralNetworksExecution_setInputFromMemory passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
const Memory* m = reinterpret_cast<const Memory*>(memory);
ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution);
return r->setInputFromMemory(index, type, m, offset, length);
}
int ANeuralNetworksExecution_setOutput(ANeuralNetworksExecution* execution, int32_t index,
const ANeuralNetworksOperandType* type, void* buffer,
size_t length) {
NNTRACE_RT(NNTRACE_PHASE_INPUTS_AND_OUTPUTS, "ANeuralNetworksExecution_setOutput");
if (!execution || (!buffer && length != 0)) {
LOG(ERROR) << "ANeuralNetworksExecution_setOutput passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution);
return r->setOutput(index, type, buffer, length);
}
int ANeuralNetworksExecution_setOutputFromMemory(ANeuralNetworksExecution* execution, int32_t index,
const ANeuralNetworksOperandType* type,
const ANeuralNetworksMemory* memory, size_t offset,
size_t length) {
NNTRACE_RT(NNTRACE_PHASE_INPUTS_AND_OUTPUTS, "ANeuralNetworksExecution_setOutputFromMemory");
if (!execution || !memory) {
LOG(ERROR) << "ANeuralNetworksExecution_setOutputFromMemory passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution);
const Memory* m = reinterpret_cast<const Memory*>(memory);
return r->setOutputFromMemory(index, type, m, offset, length);
}
int ANeuralNetworksExecution_startCompute(ANeuralNetworksExecution* execution,
ANeuralNetworksEvent** event) {
NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksExecution_startCompute");
if (!execution || !event) {
LOG(ERROR) << "ANeuralNetworksExecution_startCompute passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
// TODO validate the rest
ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution);
// Dynamically allocate an sp to wrap an ExecutionCallback, seen in the NN
// API as an abstract event object. The sp<ExecutionCallback> object is
// returned when the execution has been successfully launched, otherwise a
// nullptr is returned. The sp is used for ref-counting purposes. Without
// it, the HIDL service could attempt to communicate with a dead callback
// object.
std::unique_ptr<sp<ExecutionCallback>> e = std::make_unique<sp<ExecutionCallback>>();
*event = nullptr;
int n = r->computeAsynchronously(e.get());
if (n != ANEURALNETWORKS_NO_ERROR) {
return n;
}
*event = reinterpret_cast<ANeuralNetworksEvent*>(e.release());
return ANEURALNETWORKS_NO_ERROR;
}
int ANeuralNetworksEvent_wait(ANeuralNetworksEvent* event) {
NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksEvent_wait");
if (event == nullptr) {
LOG(ERROR) << "ANeuralNetworksEvent_wait passed a nullptr";
return ANEURALNETWORKS_UNEXPECTED_NULL;
}
sp<ExecutionCallback>* e = reinterpret_cast<sp<ExecutionCallback>*>(event);
(*e)->wait();
return convertErrorStatusToResultCode((*e)->getStatus());
}
void ANeuralNetworksEvent_free(ANeuralNetworksEvent* event) {
NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksEvent_free");
// No validation. Free of nullptr is valid.
if (event) {
sp<ExecutionCallback>* e = reinterpret_cast<sp<ExecutionCallback>*>(event);
(*e)->wait();
delete e;
}
}