blob: 38fc022017ac9aefe808822dfbe4a0f47ff0c7bc [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Minikin"
#include "minikin/FontCollection.h"
#include <log/log.h>
#include <unicode/unorm2.h>
#include <algorithm>
#include "Locale.h"
#include "LocaleListCache.h"
#include "MinikinInternal.h"
#include "minikin/Characters.h"
#include "minikin/Emoji.h"
#include "minikin/FontFileParser.h"
using std::vector;
namespace minikin {
template <typename T>
static inline T max(T a, T b) {
return a > b ? a : b;
}
const uint32_t EMOJI_STYLE_VS = 0xFE0F;
const uint32_t TEXT_STYLE_VS = 0xFE0E;
static std::atomic<uint32_t> gNextCollectionId = {0};
namespace {
inline bool isEmojiBreak(uint32_t prevCh, uint32_t ch) {
return !(isEmojiModifier(ch) || (isRegionalIndicator(prevCh) && isRegionalIndicator(ch)) ||
isKeyCap(ch) || isTagChar(ch) || ch == CHAR_ZWJ || prevCh == CHAR_ZWJ);
}
// Lower is better
uint32_t getGlyphScore(U16StringPiece text, uint32_t start, uint32_t end,
const HbFontUniquePtr& font) {
HbBufferUniquePtr buffer(hb_buffer_create());
hb_buffer_set_direction(buffer.get(), HB_DIRECTION_LTR);
hb_buffer_add_utf16(buffer.get(), text.data() + start, end - start, 0, end - start);
hb_buffer_guess_segment_properties(buffer.get());
unsigned int numGlyphs = -1;
hb_shape(font.get(), buffer.get(), nullptr, 0);
hb_glyph_info_t* info = hb_buffer_get_glyph_infos(buffer.get(), &numGlyphs);
// HarfBuzz squashed unsupported tag sequence into first emoji glyph. So, we cannot use glyph
// count for the font selection score. Give extra score if the base score is different from the
// first glyph.
if (numGlyphs == 1) {
constexpr uint32_t TAG_SEQUENCE_FALLBACK_PENALTY = 0x10000;
uint32_t ch = 0;
const uint16_t* string = text.data();
const uint32_t string_size = text.size();
uint32_t readLength = 0;
U16_NEXT(string, readLength, string_size, ch);
if (U_IS_SURROGATE(ch)) {
return numGlyphs; // Broken surrogate pair.
}
if (readLength >= string_size) {
return numGlyphs; // No more characters remaining.
}
uint32_t nextCh = 0;
U16_NEXT(string, readLength, string_size, nextCh);
if (!isTagChar(nextCh)) {
return numGlyphs; // Not a tag sequence.
}
uint32_t composedGlyphId = info[0].codepoint;
// Shape only the first base emoji.
hb_buffer_reset(buffer.get());
hb_buffer_set_direction(buffer.get(), HB_DIRECTION_LTR);
hb_buffer_add_codepoints(buffer.get(), &ch, 1, 0, 1);
hb_buffer_guess_segment_properties(buffer.get());
unsigned int numGlyphs = -1;
hb_shape(font.get(), buffer.get(), nullptr, 0);
info = hb_buffer_get_glyph_infos(buffer.get(), &numGlyphs);
if (numGlyphs != 1) {
// If the single code point of the first base emoji is decomposed to multiple glyphs,
// we don't support it.
return numGlyphs;
}
uint32_t baseGlyphId = info[0].codepoint;
if (composedGlyphId == baseGlyphId) {
return numGlyphs + TAG_SEQUENCE_FALLBACK_PENALTY;
} else {
return numGlyphs;
}
}
return numGlyphs;
}
} // namespace
FontCollection::FontCollection(std::shared_ptr<FontFamily>&& typeface) : mMaxChar(0) {
std::vector<std::shared_ptr<FontFamily>> typefaces;
typefaces.push_back(typeface);
init(typefaces);
}
FontCollection::FontCollection(const vector<std::shared_ptr<FontFamily>>& typefaces) : mMaxChar(0) {
init(typefaces);
}
void FontCollection::init(const vector<std::shared_ptr<FontFamily>>& typefaces) {
mId = gNextCollectionId++;
vector<uint32_t> lastChar;
size_t nTypefaces = typefaces.size();
const FontStyle defaultStyle;
for (size_t i = 0; i < nTypefaces; i++) {
const std::shared_ptr<FontFamily>& family = typefaces[i];
if (family->getClosestMatch(defaultStyle).font == nullptr) {
continue;
}
const SparseBitSet& coverage = family->getCoverage();
mFamilies.push_back(family); // emplace_back would be better
if (family->hasVSTable()) {
mVSFamilyVec.push_back(family);
}
mMaxChar = max(mMaxChar, coverage.length());
lastChar.push_back(coverage.nextSetBit(0));
const std::unordered_set<AxisTag>& supportedAxes = family->supportedAxes();
mSupportedAxes.insert(supportedAxes.begin(), supportedAxes.end());
}
nTypefaces = mFamilies.size();
MINIKIN_ASSERT(nTypefaces > 0, "Font collection must have at least one valid typeface");
MINIKIN_ASSERT(nTypefaces <= MAX_FAMILY_COUNT,
"Font collection may only have up to %d font families.", MAX_FAMILY_COUNT);
size_t nPages = (mMaxChar + kPageMask) >> kLogCharsPerPage;
// TODO: Use variation selector map for mRanges construction.
// A font can have a glyph for a base code point and variation selector pair but no glyph for
// the base code point without variation selector. The family won't be listed in the range in
// this case.
mOwnedRanges = std::make_unique<Range[]>(nPages);
mRanges = mOwnedRanges.get();
mRangesCount = nPages;
for (size_t i = 0; i < nPages; i++) {
Range* range = &mOwnedRanges[i];
range->start = mOwnedFamilyVec.size();
for (size_t j = 0; j < nTypefaces; j++) {
if (lastChar[j] < (i + 1) << kLogCharsPerPage) {
const std::shared_ptr<FontFamily>& family = mFamilies[j];
mOwnedFamilyVec.push_back(static_cast<uint8_t>(j));
uint32_t nextChar = family->getCoverage().nextSetBit((i + 1) << kLogCharsPerPage);
lastChar[j] = nextChar;
}
}
range->end = mOwnedFamilyVec.size();
}
// See the comment in Range for more details.
LOG_ALWAYS_FATAL_IF(mOwnedFamilyVec.size() >= 0xFFFF,
"Exceeded the maximum indexable cmap coverage.");
mFamilyVec = mOwnedFamilyVec.data();
mFamilyVecCount = mOwnedFamilyVec.size();
}
FontCollection::FontCollection(BufferReader* reader,
const std::vector<std::shared_ptr<FontFamily>>& families) {
mId = gNextCollectionId++;
mMaxChar = reader->read<uint32_t>();
uint32_t familiesCount = reader->read<uint32_t>();
mFamilies.reserve(familiesCount);
for (uint32_t i = 0; i < familiesCount; i++) {
uint32_t index = reader->read<uint32_t>();
if (index >= families.size()) {
ALOGE("Invalid FontFamily index: %zu", (size_t)index);
} else {
mFamilies.push_back(families[index]);
if (families[index]->hasVSTable()) {
mVSFamilyVec.push_back(families[index]);
}
}
}
// Range is two packed uint16_t
static_assert(sizeof(Range) == 4);
std::tie(mRanges, mRangesCount) = reader->readArray<Range>();
std::tie(mFamilyVec, mFamilyVecCount) = reader->readArray<uint8_t>();
const auto& [axesPtr, axesCount] = reader->readArray<AxisTag>();
mSupportedAxes.insert(axesPtr, axesPtr + axesCount);
}
void FontCollection::writeTo(BufferWriter* writer,
const std::unordered_map<std::shared_ptr<FontFamily>, uint32_t>&
fontFamilyToIndexMap) const {
writer->write<uint32_t>(mMaxChar);
writer->write<uint32_t>(mFamilies.size());
for (const std::shared_ptr<FontFamily>& fontFamily : mFamilies) {
auto it = fontFamilyToIndexMap.find(fontFamily);
if (it == fontFamilyToIndexMap.end()) {
ALOGE("fontFamily not found in fontFamilyToIndexMap");
writer->write<uint32_t>(-1);
} else {
writer->write<uint32_t>(it->second);
}
}
writer->writeArray<Range>(mRanges, mRangesCount);
writer->writeArray<uint8_t>(mFamilyVec, mFamilyVecCount);
// No need to serialize mVSFamilyVec as it can be reconstructed easily from mFamilies.
std::vector<AxisTag> axes(mSupportedAxes.begin(), mSupportedAxes.end());
// Sort axes to be deterministic.
std::sort(axes.begin(), axes.end());
writer->writeArray<AxisTag>(axes.data(), axes.size());
}
// static
void FontCollection::collectAllFontFamilies(
const std::vector<std::shared_ptr<FontCollection>>& fontCollections,
std::vector<std::shared_ptr<FontFamily>>* outAllFontFamilies,
std::unordered_map<std::shared_ptr<FontFamily>, uint32_t>* outFontFamilyToIndexMap) {
for (const auto& fontCollection : fontCollections) {
for (const std::shared_ptr<FontFamily>& fontFamily : fontCollection->mFamilies) {
bool inserted =
outFontFamilyToIndexMap->emplace(fontFamily, outAllFontFamilies->size()).second;
if (inserted) {
outAllFontFamilies->push_back(fontFamily);
}
}
}
}
// Special scores for the font fallback.
const uint32_t kUnsupportedFontScore = 0;
const uint32_t kFirstFontScore = UINT32_MAX;
// Calculates a font score.
// The score of the font family is based on three subscores.
// - Coverage Score: How well the font family covers the given character or variation sequence.
// - Locale Score: How well the font family is appropriate for the locale.
// - Variant Score: Whether the font family matches the variant. Note that this variant is not the
// one in BCP47. This is our own font variant (e.g., elegant, compact).
//
// Then, there is a priority for these three subscores as follow:
// Coverage Score > Locale Score > Variant Score
// The returned score reflects this priority order.
//
// Note that there are two special scores.
// - kUnsupportedFontScore: When the font family doesn't support the variation sequence or even its
// base character.
// - kFirstFontScore: When the font is the first font family in the collection and it supports the
// given character or variation sequence.
uint32_t FontCollection::calcFamilyScore(uint32_t ch, uint32_t vs, FamilyVariant variant,
uint32_t localeListId,
const std::shared_ptr<FontFamily>& fontFamily) const {
const uint32_t coverageScore = calcCoverageScore(ch, vs, localeListId, fontFamily);
if (coverageScore == kFirstFontScore || coverageScore == kUnsupportedFontScore) {
// No need to calculate other scores.
return coverageScore;
}
const uint32_t localeScore = calcLocaleMatchingScore(localeListId, *fontFamily);
const uint32_t variantScore = calcVariantMatchingScore(variant, *fontFamily);
// Subscores are encoded into 31 bits representation to meet the subscore priority.
// The highest 2 bits are for coverage score, then following 28 bits are for locale score,
// then the last 1 bit is for variant score.
return coverageScore << 29 | localeScore << 1 | variantScore;
}
// Calculates a font score based on variation sequence coverage.
// - Returns kUnsupportedFontScore if the font doesn't support the variation sequence or its base
// character.
// - Returns kFirstFontScore if the font family is the first font family in the collection and it
// supports the given character or variation sequence.
// - Returns 3 if the font family supports the variation sequence.
// - Returns 2 if the vs is a color variation selector (U+FE0F) and if the font is an emoji font.
// - Returns 2 if the vs is a text variation selector (U+FE0E) and if the font is not an emoji font.
// - Returns 1 if the variation selector is not specified or if the font family only supports the
// variation sequence's base character.
uint32_t FontCollection::calcCoverageScore(uint32_t ch, uint32_t vs, uint32_t localeListId,
const std::shared_ptr<FontFamily>& fontFamily) const {
const bool hasVSGlyph = (vs != 0) && fontFamily->hasGlyph(ch, vs);
if (!hasVSGlyph && !fontFamily->getCoverage().get(ch)) {
// The font doesn't support either variation sequence or even the base character.
return kUnsupportedFontScore;
}
if ((vs == 0 || hasVSGlyph) && (mFamilies[0] == fontFamily || fontFamily->isCustomFallback())) {
// If the first font family supports the given character or variation sequence, always use
// it.
return kFirstFontScore;
}
if (vs != 0 && hasVSGlyph) {
return 3;
}
bool colorEmojiRequest;
if (vs == EMOJI_STYLE_VS) {
colorEmojiRequest = true;
} else if (vs == TEXT_STYLE_VS) {
colorEmojiRequest = false;
} else {
switch (LocaleListCache::getById(localeListId).getEmojiStyle()) {
case EmojiStyle::EMOJI:
colorEmojiRequest = true;
break;
case EmojiStyle::TEXT:
colorEmojiRequest = false;
break;
case EmojiStyle::EMPTY:
case EmojiStyle::DEFAULT:
default:
// Do not give any extra score for the default emoji style.
return 1;
break;
}
}
return colorEmojiRequest == fontFamily->isColorEmojiFamily() ? 2 : 1;
}
// Calculate font scores based on the script matching, subtag matching and primary locale matching.
//
// 1. If only the font's language matches or there is no matches between requested font and
// supported font, then the font obtains a score of 0.
// 2. Without a match in language, considering subtag may change font's EmojiStyle over script,
// a match in subtag gets a score of 2 and a match in scripts gains a score of 1.
// 3. Regarding to two elements matchings, language-and-subtag matching has a score of 4, while
// language-and-script obtains a socre of 3 with the same reason above.
//
// If two locales in the requested list have the same locale score, the font matching with higher
// priority locale gets a higher score. For example, in the case the user requested locale list is
// "ja-Jpan,en-Latn". The score of for the font of "ja-Jpan" gets a higher score than the font of
// "en-Latn".
//
// To achieve score calculation with priorities, the locale score is determined as follows:
// LocaleScore = s(0) * 5^(m - 1) + s(1) * 5^(m - 2) + ... + s(m - 2) * 5 + s(m - 1)
// Here, m is the maximum number of locales to be compared, and s(i) is the i-th locale's matching
// score. The possible values of s(i) are 0, 1, 2, 3 and 4.
uint32_t FontCollection::calcLocaleMatchingScore(uint32_t userLocaleListId,
const FontFamily& fontFamily) {
const LocaleList& localeList = LocaleListCache::getById(userLocaleListId);
const LocaleList& fontLocaleList = LocaleListCache::getById(fontFamily.localeListId());
const size_t maxCompareNum = std::min(localeList.size(), FONT_LOCALE_LIMIT);
uint32_t score = 0;
for (size_t i = 0; i < maxCompareNum; ++i) {
score = score * 5u + localeList[i].calcScoreFor(fontLocaleList);
}
return score;
}
// Calculates a font score based on variant ("compact" or "elegant") matching.
// - Returns 1 if the font doesn't have variant or the variant matches with the text style.
// - No score if the font has a variant but it doesn't match with the text style.
uint32_t FontCollection::calcVariantMatchingScore(FamilyVariant variant,
const FontFamily& fontFamily) {
const FamilyVariant familyVariant = fontFamily.variant();
if (familyVariant == FamilyVariant::DEFAULT) {
return 1;
}
if (familyVariant == variant) {
return 1;
}
if (variant == FamilyVariant::DEFAULT && familyVariant == FamilyVariant::COMPACT) {
// If default is requested, prefer compat variation.
return 1;
}
return 0;
}
// Implement heuristic for choosing best-match font. Here are the rules:
// 1. If first font in the collection has the character, it wins.
// 2. Calculate a score for the font family. See comments in calcFamilyScore for the detail.
// 3. Highest score wins, with ties resolved to the first font.
// This method never returns nullptr.
FontCollection::FamilyMatchResult FontCollection::getFamilyForChar(uint32_t ch, uint32_t vs,
uint32_t localeListId,
FamilyVariant variant) const {
if (ch >= mMaxChar) {
return FamilyMatchResult::Builder().add(0).build();
}
Range range = mRanges[ch >> kLogCharsPerPage];
if (vs != 0) {
range = {0, static_cast<uint16_t>(mFamilies.size())};
}
uint32_t bestScore = kUnsupportedFontScore;
FamilyMatchResult::Builder builder;
for (size_t i = range.start; i < range.end; i++) {
const uint8_t familyIndex = vs == 0 ? mFamilyVec[i] : i;
const std::shared_ptr<FontFamily>& family = mFamilies[familyIndex];
const uint32_t score = calcFamilyScore(ch, vs, variant, localeListId, family);
if (score == kFirstFontScore) {
// If the first font family supports the given character or variation sequence, always
// use it.
return builder.add(familyIndex).build();
}
if (score != kUnsupportedFontScore && score >= bestScore) {
if (score > bestScore) {
builder.reset();
bestScore = score;
}
builder.add(familyIndex);
}
}
if (builder.empty()) {
UErrorCode errorCode = U_ZERO_ERROR;
const UNormalizer2* normalizer = unorm2_getNFDInstance(&errorCode);
if (U_SUCCESS(errorCode)) {
UChar decomposed[4];
int len = unorm2_getRawDecomposition(normalizer, ch, decomposed, 4, &errorCode);
if (U_SUCCESS(errorCode) && len > 0) {
int off = 0;
U16_NEXT_UNSAFE(decomposed, off, ch);
return getFamilyForChar(ch, vs, localeListId, variant);
}
}
return FamilyMatchResult::Builder().add(0).build();
}
return builder.build();
}
// Characters where we want to continue using existing font run for (or stick to the next run if
// they start a string), even if the font does not support them explicitly. These are handled
// properly by Minikin or HarfBuzz even if the font does not explicitly support them and it's
// usually meaningless to switch to a different font to display them.
static bool doesNotNeedFontSupport(uint32_t c) {
return c == 0x00AD // SOFT HYPHEN
|| c == 0x034F // COMBINING GRAPHEME JOINER
|| c == 0x061C // ARABIC LETTER MARK
|| (0x200C <= c && c <= 0x200F) // ZERO WIDTH NON-JOINER..RIGHT-TO-LEFT MARK
|| (0x202A <= c && c <= 0x202E) // LEFT-TO-RIGHT EMBEDDING..RIGHT-TO-LEFT OVERRIDE
|| (0x2066 <= c && c <= 0x2069) // LEFT-TO-RIGHT ISOLATE..POP DIRECTIONAL ISOLATE
|| c == 0xFEFF // BYTE ORDER MARK
|| isVariationSelector(c);
}
// Characters where we want to continue using existing font run instead of
// recomputing the best match in the fallback list.
static const uint32_t stickyAllowlist[] = {
'!', ',', '-', '.', ':', ';', '?',
0x00A0, // NBSP
0x2010, // HYPHEN
0x2011, // NB_HYPHEN
0x202F, // NNBSP
0x2640, // FEMALE_SIGN,
0x2642, // MALE_SIGN,
0x2695, // STAFF_OF_AESCULAPIUS
};
static bool isStickyAllowlisted(uint32_t c) {
for (size_t i = 0; i < sizeof(stickyAllowlist) / sizeof(stickyAllowlist[0]); i++) {
if (stickyAllowlist[i] == c) return true;
}
return false;
}
static inline bool isCombining(uint32_t c) {
return (U_GET_GC_MASK(c) & U_GC_M_MASK) != 0;
}
bool FontCollection::hasVariationSelector(uint32_t baseCodepoint,
uint32_t variationSelector) const {
if (!isVariationSelector(variationSelector)) {
return false;
}
if (baseCodepoint >= mMaxChar) {
return false;
}
// Currently mRanges can not be used here since it isn't aware of the variation sequence.
for (size_t i = 0; i < mVSFamilyVec.size(); i++) {
if (mVSFamilyVec[i]->hasGlyph(baseCodepoint, variationSelector)) {
return true;
}
}
// Even if there is no cmap format 14 subtable entry for the given sequence, should return true
// for <char, text presentation selector> case since we have special fallback rule for the
// sequence. Note that we don't need to restrict this to already standardized variation
// sequences, since Unicode is adding variation sequences more frequently now and may even move
// towards allowing text and emoji variation selectors on any character.
if (variationSelector == TEXT_STYLE_VS) {
for (size_t i = 0; i < mFamilies.size(); ++i) {
if (!mFamilies[i]->isColorEmojiFamily() && mFamilies[i]->hasGlyph(baseCodepoint, 0)) {
return true;
}
}
}
return false;
}
constexpr uint32_t REPLACEMENT_CHARACTER = 0xFFFD;
FontCollection::FamilyMatchResult FontCollection::FamilyMatchResult::intersect(
FontCollection::FamilyMatchResult l, FontCollection::FamilyMatchResult r) {
if (l == r) {
return l;
}
uint32_t li = 0;
uint32_t ri = 0;
FamilyMatchResult::Builder b;
while (li < l.size() && ri < r.size()) {
if (l[li] < r[ri]) {
li++;
} else if (l[li] > r[ri]) {
ri++;
} else { // l[li] == r[ri]
b.add(l[li]);
li++;
ri++;
}
}
return b.build();
}
std::vector<FontCollection::Run> FontCollection::itemize(U16StringPiece text, FontStyle,
uint32_t localeListId,
FamilyVariant familyVariant,
uint32_t runMax) const {
const uint16_t* string = text.data();
const uint32_t string_size = text.size();
FamilyMatchResult lastFamilyIndices = FamilyMatchResult();
if (string_size == 0) {
return std::vector<Run>();
}
const uint32_t kEndOfString = 0xFFFFFFFF;
std::vector<Run> result;
Run* run = nullptr;
uint32_t nextCh = 0;
uint32_t prevCh = 0;
size_t nextUtf16Pos = 0;
size_t readLength = 0;
U16_NEXT(string, readLength, string_size, nextCh);
if (U_IS_SURROGATE(nextCh)) {
nextCh = REPLACEMENT_CHARACTER;
}
do {
const uint32_t ch = nextCh;
const size_t utf16Pos = nextUtf16Pos;
nextUtf16Pos = readLength;
if (readLength < string_size) {
U16_NEXT(string, readLength, string_size, nextCh);
if (U_IS_SURROGATE(nextCh)) {
nextCh = REPLACEMENT_CHARACTER;
}
} else {
nextCh = kEndOfString;
}
bool shouldContinueRun = false;
if (doesNotNeedFontSupport(ch)) {
// Always continue if the character is a format character not needed to be in the font.
shouldContinueRun = true;
} else if (!lastFamilyIndices.empty() && (isStickyAllowlisted(ch) || isCombining(ch))) {
// Continue using existing font as long as it has coverage and is whitelisted.
const std::shared_ptr<FontFamily>& lastFamily = mFamilies[lastFamilyIndices[0]];
if (lastFamily->isColorEmojiFamily()) {
// If the last family is color emoji font, find the longest family.
shouldContinueRun = false;
for (uint8_t ix : lastFamilyIndices) {
shouldContinueRun |= mFamilies[ix]->getCoverage().get(ch);
}
} else {
shouldContinueRun = lastFamily->getCoverage().get(ch);
}
}
if (!shouldContinueRun) {
FamilyMatchResult familyIndices = getFamilyForChar(
ch, isVariationSelector(nextCh) ? nextCh : 0, localeListId, familyVariant);
bool breakRun;
if (utf16Pos == 0 || lastFamilyIndices.empty()) {
breakRun = true;
} else {
const std::shared_ptr<FontFamily>& lastFamily = mFamilies[lastFamilyIndices[0]];
if (lastFamily->isColorEmojiFamily()) {
FamilyMatchResult intersection =
FamilyMatchResult::intersect(familyIndices, lastFamilyIndices);
if (intersection.empty()) {
breakRun = true; // None of last family can draw the given char.
} else {
breakRun = isEmojiBreak(prevCh, ch);
if (!breakRun) {
// To select sequence supported families, update family indices with the
// intersection between the supported families between prev char and
// current char.
familyIndices = intersection;
lastFamilyIndices = intersection;
run->familyMatch = intersection;
}
}
} else {
breakRun = familyIndices[0] != lastFamilyIndices[0];
}
}
if (breakRun) {
size_t start = utf16Pos;
// Workaround for combining marks and emoji modifiers until we implement
// per-cluster font selection: if a combining mark or an emoji modifier is found in
// a different font that also supports the previous character, attach previous
// character to the new run. U+20E3 COMBINING ENCLOSING KEYCAP, used in emoji, is
// handled properly by this since it's a combining mark too.
if (utf16Pos != 0 &&
(isCombining(ch) || (isEmojiModifier(ch) && isEmojiBase(prevCh)))) {
for (uint8_t ix : familyIndices) {
if (mFamilies[ix]->getCoverage().get(prevCh)) {
const size_t prevChLength = U16_LENGTH(prevCh);
if (run != nullptr) {
run->end -= prevChLength;
if (run->start == run->end) {
result.pop_back();
}
}
start -= prevChLength;
break;
}
}
}
if (lastFamilyIndices.empty()) {
// This is the first family ever assigned. We are either seeing the very first
// character (which means start would already be zero), or we have only seen
// characters that don't need any font support (which means we need to adjust
// start to be 0 to include those characters).
start = 0;
}
result.push_back({familyIndices, static_cast<int>(start), 0});
run = &result.back();
lastFamilyIndices = run->familyMatch;
}
}
prevCh = ch;
if (run != nullptr) {
run->end = nextUtf16Pos; // exclusive
}
// Stop searching the remaining characters if the result length gets runMax + 2.
// When result.size gets runMax + 2 here, the run between [0, runMax) was finalized.
// If the result.size() equals to runMax, the run may be still expanding.
// if the result.size() equals to runMax + 2, the last run may be removed and the last run
// may be exntended the previous run with above workaround.
if (result.size() >= 2 && runMax == result.size() - 2) {
break;
}
} while (nextCh != kEndOfString);
if (lastFamilyIndices.empty()) {
// No character needed any font support, so it doesn't really matter which font they end up
// getting displayed in. We put the whole string in one run, using the first font.
result.push_back(
{FamilyMatchResult::Builder().add(0).build(), 0, static_cast<int>(string_size)});
}
if (result.size() > runMax) {
// The itemization has terminated since it reaches the runMax. Remove last unfinalized runs.
return std::vector<Run>(result.begin(), result.begin() + runMax);
}
return result;
}
FakedFont FontCollection::getBestFont(U16StringPiece text, const Run& run, FontStyle style) {
uint8_t bestIndex = 0;
uint32_t bestScore = 0xFFFFFFFF;
const std::shared_ptr<FontFamily>& family = mFamilies[run.familyMatch[0]];
if (family->isColorEmojiFamily() && run.familyMatch.size() > 1) {
for (size_t i = 0; i < run.familyMatch.size(); ++i) {
const std::shared_ptr<FontFamily>& family = mFamilies[run.familyMatch[i]];
const HbFontUniquePtr& font = family->getFont(0)->baseFont();
uint32_t score = getGlyphScore(text, run.start, run.end, font);
if (score < bestScore) {
bestIndex = run.familyMatch[i];
bestScore = score;
}
}
} else {
bestIndex = run.familyMatch[0];
}
return mFamilies[bestIndex]->getClosestMatch(style);
}
FakedFont FontCollection::baseFontFaked(FontStyle style) {
return mFamilies[0]->getClosestMatch(style);
}
std::shared_ptr<FontCollection> FontCollection::createCollectionWithVariation(
const std::vector<FontVariation>& variations) {
if (variations.empty() || mSupportedAxes.empty()) {
return nullptr;
}
bool hasSupportedAxis = false;
for (const FontVariation& variation : variations) {
if (mSupportedAxes.find(variation.axisTag) != mSupportedAxes.end()) {
hasSupportedAxis = true;
break;
}
}
if (!hasSupportedAxis) {
// None of variation axes are supported by this font collection.
return nullptr;
}
std::vector<std::shared_ptr<FontFamily>> families;
for (const std::shared_ptr<FontFamily>& family : mFamilies) {
std::shared_ptr<FontFamily> newFamily = family->createFamilyWithVariation(variations);
if (newFamily) {
families.push_back(newFamily);
} else {
families.push_back(family);
}
}
return std::shared_ptr<FontCollection>(new FontCollection(families));
}
uint32_t FontCollection::getId() const {
return mId;
}
} // namespace minikin