blob: 33047e82d61fc537a6771083a93a0cc372137f44 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINIKIN_SPARSE_BIT_SET_H
#define MINIKIN_SPARSE_BIT_SET_H
#include <minikin/Buffer.h>
#include <sys/types.h>
#include <cstdint>
#include <memory>
// ---------------------------------------------------------------------------
namespace minikin {
// This is an implementation of a set of integers. It is optimized for
// values that are somewhat sparse, in the ballpark of a maximum value
// of thousands to millions. It is particularly efficient when there are
// large gaps. The motivating example is Unicode coverage of a font, but
// the abstraction itself is fully general.
class SparseBitSet {
public:
// Create an empty bit set.
SparseBitSet() : mData(nullptr) {}
// Initialize the set to a new value, represented by ranges. For
// simplicity, these ranges are arranged as pairs of values,
// inclusive of start, exclusive of end, laid out in a uint32 array.
SparseBitSet(const uint32_t* ranges, size_t nRanges) : SparseBitSet() {
initFromRanges(ranges, nRanges);
}
explicit SparseBitSet(BufferReader* reader) : SparseBitSet() { initFromBuffer(reader); }
SparseBitSet(SparseBitSet&&) = default;
SparseBitSet& operator=(SparseBitSet&&) = default;
void writeTo(BufferWriter* writer) const;
// Determine whether the value is included in the set
bool get(uint32_t ch) const {
if (ch >= length()) return false;
const uint32_t* bitmap = mData->bitmaps() + mData->indices()[ch >> kLogValuesPerPage];
uint32_t index = ch & kPageMask;
return (bitmap[index >> kLogBitsPerEl] & (kElFirst >> (index & kElMask))) != 0;
}
// One more than the maximum value in the set, or zero if empty
uint32_t length() const { return mData != nullptr ? mData->mMaxVal : 0; }
bool empty() const { return mData == nullptr || mData->mMaxVal == 0; }
// The next set bit starting at fromIndex, inclusive, or kNotFound
// if none exists.
uint32_t nextSetBit(uint32_t fromIndex) const;
static const uint32_t kNotFound = ~0u;
private:
void initFromRanges(const uint32_t* ranges, size_t nRanges);
void initFromBuffer(BufferReader* reader);
static const uint32_t kMaximumCapacity = 0xFFFFFF;
static const int kLogValuesPerPage = 8;
static const int kPageMask = (1 << kLogValuesPerPage) - 1;
static const int kLogBytesPerEl = 2;
static const int kLogBitsPerEl = kLogBytesPerEl + 3;
static const int kElMask = (1 << kLogBitsPerEl) - 1;
// invariant: sizeof(element) == (1 << kLogBytesPerEl)
typedef uint32_t element;
static const element kElAllOnes = ~((element)0);
static const element kElFirst = ((element)1) << kElMask;
static const uint16_t noZeroPage = 0xFFFF;
static uint32_t calcNumPages(const uint32_t* ranges, size_t nRanges);
static int CountLeadingZeros(element x);
// MappableData represents memory block holding SparseBitSet's fields.
// 'packed' is used so that the object layout won't change between
// 32-bit and 64-bit processes.
// 'aligned(4)' is only for optimization.
struct __attribute__((packed, aligned(4))) MappableData {
uint32_t mMaxVal;
uint32_t mIndicesCount;
uint32_t mBitmapsCount;
uint16_t mZeroPageIndex;
// Whether the memory is mapped (BufferReader::map()) or allocated
// (malloc()).
uint16_t mIsMapped;
// mArray packs two arrays:
// element mBitmaps[mBitmapsCount];
// uint16_t mIndices[mIndicesCount];
__attribute__((aligned(4))) uint32_t mArray[];
const element* bitmaps() const { return mArray; }
element* bitmaps() { return mArray; }
const uint16_t* indices() const {
return reinterpret_cast<const uint16_t*>(mArray + mBitmapsCount);
}
uint16_t* indices() { return reinterpret_cast<uint16_t*>(mArray + mBitmapsCount); }
size_t size() const { return calcSize(mIndicesCount, mBitmapsCount); }
static size_t calcSize(uint32_t indicesCount, uint32_t bitmapsCount) {
static_assert(std::is_same<element, uint32_t>::value);
static_assert(sizeof(uint32_t) == 4);
static_assert(sizeof(uint16_t) == 2);
// Round-up indicesCount / 2
size_t arrayCount = bitmapsCount + (indicesCount + 1) / 2;
return offsetof(MappableData, mArray) + sizeof(uint32_t) * arrayCount;
}
static MappableData* allocate(uint32_t indicesCount, uint32_t bitmapsCount);
};
// MappableDataDeleter does NOT call free() if the data is on a memory map.
class MappableDataDeleter {
public:
void operator()(const MappableData* data) const {
if (data != nullptr && !data->mIsMapped) free((void*)data);
}
};
std::unique_ptr<const MappableData, MappableDataDeleter> mData;
// Forbid copy and assign.
SparseBitSet(const SparseBitSet&) = delete;
SparseBitSet& operator=(const SparseBitSet&) = delete;
};
} // namespace minikin
#endif // MINIKIN_SPARSE_BIT_SET_H