blob: dfed3efb6a01bf42fd951857d3b21b57b22d7148 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.net.module.util.netlink;
import static android.system.OsConstants.IPPROTO_TCP;
import static android.system.OsConstants.IPPROTO_UDP;
import static com.android.net.module.util.netlink.StructNlAttr.findNextAttrOfType;
import static com.android.net.module.util.netlink.StructNlAttr.makeNestedType;
import static com.android.net.module.util.netlink.StructNlMsgHdr.NLM_F_ACK;
import static com.android.net.module.util.netlink.StructNlMsgHdr.NLM_F_REPLACE;
import static com.android.net.module.util.netlink.StructNlMsgHdr.NLM_F_REQUEST;
import static java.nio.ByteOrder.BIG_ENDIAN;
import android.system.OsConstants;
import androidx.annotation.NonNull;
import androidx.annotation.Nullable;
import androidx.annotation.VisibleForTesting;
import java.net.Inet4Address;
import java.net.InetAddress;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.util.Objects;
/**
* A NetlinkMessage subclass for netlink conntrack messages.
*
* see also: <linux_src>/include/uapi/linux/netfilter/nfnetlink_conntrack.h
*
* @hide
*/
public class ConntrackMessage extends NetlinkMessage {
public static final int STRUCT_SIZE = StructNlMsgHdr.STRUCT_SIZE + StructNfGenMsg.STRUCT_SIZE;
// enum ctattr_type
public static final short CTA_TUPLE_ORIG = 1;
public static final short CTA_TUPLE_REPLY = 2;
public static final short CTA_STATUS = 3;
public static final short CTA_TIMEOUT = 7;
// enum ctattr_tuple
public static final short CTA_TUPLE_IP = 1;
public static final short CTA_TUPLE_PROTO = 2;
// enum ctattr_ip
public static final short CTA_IP_V4_SRC = 1;
public static final short CTA_IP_V4_DST = 2;
// enum ctattr_l4proto
public static final short CTA_PROTO_NUM = 1;
public static final short CTA_PROTO_SRC_PORT = 2;
public static final short CTA_PROTO_DST_PORT = 3;
// enum ip_conntrack_status
public static final int IPS_EXPECTED = 0x00000001;
public static final int IPS_SEEN_REPLY = 0x00000002;
public static final int IPS_ASSURED = 0x00000004;
public static final int IPS_CONFIRMED = 0x00000008;
public static final int IPS_SRC_NAT = 0x00000010;
public static final int IPS_DST_NAT = 0x00000020;
public static final int IPS_SEQ_ADJUST = 0x00000040;
public static final int IPS_SRC_NAT_DONE = 0x00000080;
public static final int IPS_DST_NAT_DONE = 0x00000100;
public static final int IPS_DYING = 0x00000200;
public static final int IPS_FIXED_TIMEOUT = 0x00000400;
public static final int IPS_TEMPLATE = 0x00000800;
public static final int IPS_UNTRACKED = 0x00001000;
public static final int IPS_HELPER = 0x00002000;
public static final int IPS_OFFLOAD = 0x00004000;
public static final int IPS_HW_OFFLOAD = 0x00008000;
// ip_conntrack_status mask
// Interesting on the NAT conntrack session which has already seen two direction traffic.
// TODO: Probably IPS_{SRC, DST}_NAT_DONE are also interesting.
public static final int ESTABLISHED_MASK = IPS_CONFIRMED | IPS_ASSURED | IPS_SEEN_REPLY
| IPS_SRC_NAT;
// Interesting on the established NAT conntrack session which is dying.
public static final int DYING_MASK = ESTABLISHED_MASK | IPS_DYING;
/**
* A tuple for the conntrack connection information.
*
* see also CTA_TUPLE_ORIG and CTA_TUPLE_REPLY.
*/
public static class Tuple {
public final Inet4Address srcIp;
public final Inet4Address dstIp;
// Both port and protocol number are unsigned numbers stored in signed integers, and that
// callers that want to compare them to integers should either cast those integers, or
// convert them to unsigned using Byte.toUnsignedInt() and Short.toUnsignedInt().
public final short srcPort;
public final short dstPort;
public final byte protoNum;
public Tuple(TupleIpv4 ip, TupleProto proto) {
this.srcIp = ip.src;
this.dstIp = ip.dst;
this.srcPort = proto.srcPort;
this.dstPort = proto.dstPort;
this.protoNum = proto.protoNum;
}
@Override
@VisibleForTesting
public boolean equals(Object o) {
if (!(o instanceof Tuple)) return false;
Tuple that = (Tuple) o;
return Objects.equals(this.srcIp, that.srcIp)
&& Objects.equals(this.dstIp, that.dstIp)
&& this.srcPort == that.srcPort
&& this.dstPort == that.dstPort
&& this.protoNum == that.protoNum;
}
@Override
public int hashCode() {
return Objects.hash(srcIp, dstIp, srcPort, dstPort, protoNum);
}
@Override
public String toString() {
final String srcIpStr = (srcIp == null) ? "null" : srcIp.getHostAddress();
final String dstIpStr = (dstIp == null) ? "null" : dstIp.getHostAddress();
final String protoStr = NetlinkConstants.stringForProtocol(protoNum);
return "Tuple{"
+ protoStr + ": "
+ srcIpStr + ":" + Short.toUnsignedInt(srcPort) + " -> "
+ dstIpStr + ":" + Short.toUnsignedInt(dstPort)
+ "}";
}
}
/**
* A tuple for the conntrack connection address.
*
* see also CTA_TUPLE_IP.
*/
public static class TupleIpv4 {
public final Inet4Address src;
public final Inet4Address dst;
public TupleIpv4(Inet4Address src, Inet4Address dst) {
this.src = src;
this.dst = dst;
}
}
/**
* A tuple for the conntrack connection protocol.
*
* see also CTA_TUPLE_PROTO.
*/
public static class TupleProto {
public final byte protoNum;
public final short srcPort;
public final short dstPort;
public TupleProto(byte protoNum, short srcPort, short dstPort) {
this.protoNum = protoNum;
this.srcPort = srcPort;
this.dstPort = dstPort;
}
}
/**
* Create a netlink message to refresh IPv4 conntrack entry timeout.
*/
public static byte[] newIPv4TimeoutUpdateRequest(
int proto, Inet4Address src, int sport, Inet4Address dst, int dport, int timeoutSec) {
// *** STYLE WARNING ***
//
// Code below this point uses extra block indentation to highlight the
// packing of nested tuple netlink attribute types.
final StructNlAttr ctaTupleOrig = new StructNlAttr(CTA_TUPLE_ORIG,
new StructNlAttr(CTA_TUPLE_IP,
new StructNlAttr(CTA_IP_V4_SRC, src),
new StructNlAttr(CTA_IP_V4_DST, dst)),
new StructNlAttr(CTA_TUPLE_PROTO,
new StructNlAttr(CTA_PROTO_NUM, (byte) proto),
new StructNlAttr(CTA_PROTO_SRC_PORT, (short) sport, BIG_ENDIAN),
new StructNlAttr(CTA_PROTO_DST_PORT, (short) dport, BIG_ENDIAN)));
final StructNlAttr ctaTimeout = new StructNlAttr(CTA_TIMEOUT, timeoutSec, BIG_ENDIAN);
final int payloadLength = ctaTupleOrig.getAlignedLength() + ctaTimeout.getAlignedLength();
final byte[] bytes = new byte[STRUCT_SIZE + payloadLength];
final ByteBuffer byteBuffer = ByteBuffer.wrap(bytes);
byteBuffer.order(ByteOrder.nativeOrder());
final ConntrackMessage ctmsg = new ConntrackMessage();
ctmsg.mHeader.nlmsg_len = bytes.length;
ctmsg.mHeader.nlmsg_type = (NetlinkConstants.NFNL_SUBSYS_CTNETLINK << 8)
| NetlinkConstants.IPCTNL_MSG_CT_NEW;
ctmsg.mHeader.nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | NLM_F_REPLACE;
ctmsg.mHeader.nlmsg_seq = 1;
ctmsg.pack(byteBuffer);
ctaTupleOrig.pack(byteBuffer);
ctaTimeout.pack(byteBuffer);
return bytes;
}
/**
* Parses a netfilter conntrack message from a {@link ByteBuffer}.
*
* @param header the netlink message header.
* @param byteBuffer The buffer from which to parse the netfilter conntrack message.
* @return the parsed netfilter conntrack message, or {@code null} if the netfilter conntrack
* message could not be parsed successfully (for example, if it was truncated).
*/
@Nullable
public static ConntrackMessage parse(@NonNull StructNlMsgHdr header,
@NonNull ByteBuffer byteBuffer) {
// Just build the netlink header and netfilter header for now and pretend the whole message
// was consumed.
// TODO: Parse the conntrack attributes.
final StructNfGenMsg nfGenMsg = StructNfGenMsg.parse(byteBuffer);
if (nfGenMsg == null) {
return null;
}
final int baseOffset = byteBuffer.position();
StructNlAttr nlAttr = findNextAttrOfType(CTA_STATUS, byteBuffer);
int status = 0;
if (nlAttr != null) {
status = nlAttr.getValueAsBe32(0);
}
byteBuffer.position(baseOffset);
nlAttr = findNextAttrOfType(CTA_TIMEOUT, byteBuffer);
int timeoutSec = 0;
if (nlAttr != null) {
timeoutSec = nlAttr.getValueAsBe32(0);
}
byteBuffer.position(baseOffset);
nlAttr = findNextAttrOfType(makeNestedType(CTA_TUPLE_ORIG), byteBuffer);
Tuple tupleOrig = null;
if (nlAttr != null) {
tupleOrig = parseTuple(nlAttr.getValueAsByteBuffer());
}
byteBuffer.position(baseOffset);
nlAttr = findNextAttrOfType(makeNestedType(CTA_TUPLE_REPLY), byteBuffer);
Tuple tupleReply = null;
if (nlAttr != null) {
tupleReply = parseTuple(nlAttr.getValueAsByteBuffer());
}
// Advance to the end of the message.
byteBuffer.position(baseOffset);
final int kMinConsumed = StructNlMsgHdr.STRUCT_SIZE + StructNfGenMsg.STRUCT_SIZE;
final int kAdditionalSpace = NetlinkConstants.alignedLengthOf(
header.nlmsg_len - kMinConsumed);
if (byteBuffer.remaining() < kAdditionalSpace) {
return null;
}
byteBuffer.position(baseOffset + kAdditionalSpace);
return new ConntrackMessage(header, nfGenMsg, tupleOrig, tupleReply, status, timeoutSec);
}
/**
* Parses a conntrack tuple from a {@link ByteBuffer}.
*
* The attribute parsing is interesting on:
* - CTA_TUPLE_IP
* CTA_IP_V4_SRC
* CTA_IP_V4_DST
* - CTA_TUPLE_PROTO
* CTA_PROTO_NUM
* CTA_PROTO_SRC_PORT
* CTA_PROTO_DST_PORT
*
* Assume that the minimum size is the sum of CTA_TUPLE_IP (size: 20) and CTA_TUPLE_PROTO
* (size: 28). Here is an example for an expected CTA_TUPLE_ORIG message in raw data:
* +--------------------------------------------------------------------------------------+
* | CTA_TUPLE_ORIG |
* +--------------------------+-----------------------------------------------------------+
* | 1400 | nla_len = 20 |
* | 0180 | nla_type = nested CTA_TUPLE_IP |
* | 0800 0100 C0A8500C | nla_type=CTA_IP_V4_SRC, ip=192.168.80.12 |
* | 0800 0200 8C700874 | nla_type=CTA_IP_V4_DST, ip=140.112.8.116 |
* | 1C00 | nla_len = 28 |
* | 0280 | nla_type = nested CTA_TUPLE_PROTO |
* | 0500 0100 06 000000 | nla_type=CTA_PROTO_NUM, proto=IPPROTO_TCP (6) |
* | 0600 0200 F3F1 0000 | nla_type=CTA_PROTO_SRC_PORT, port=62449 (big endian) |
* | 0600 0300 01BB 0000 | nla_type=CTA_PROTO_DST_PORT, port=433 (big endian) |
* +--------------------------+-----------------------------------------------------------+
*
* The position of the byte buffer doesn't set to the end when the function returns. It is okay
* because the caller ConntrackMessage#parse has passed a copy which is used for this parser
* only. Moreover, the parser behavior is the same as other existing netlink struct class
* parser. Ex: StructInetDiagMsg#parse.
*/
@Nullable
private static Tuple parseTuple(@Nullable ByteBuffer byteBuffer) {
if (byteBuffer == null) return null;
TupleIpv4 tupleIpv4 = null;
TupleProto tupleProto = null;
final int baseOffset = byteBuffer.position();
StructNlAttr nlAttr = findNextAttrOfType(makeNestedType(CTA_TUPLE_IP), byteBuffer);
if (nlAttr != null) {
tupleIpv4 = parseTupleIpv4(nlAttr.getValueAsByteBuffer());
}
if (tupleIpv4 == null) return null;
byteBuffer.position(baseOffset);
nlAttr = findNextAttrOfType(makeNestedType(CTA_TUPLE_PROTO), byteBuffer);
if (nlAttr != null) {
tupleProto = parseTupleProto(nlAttr.getValueAsByteBuffer());
}
if (tupleProto == null) return null;
return new Tuple(tupleIpv4, tupleProto);
}
@Nullable
private static Inet4Address castToInet4Address(@Nullable InetAddress address) {
if (address == null || !(address instanceof Inet4Address)) return null;
return (Inet4Address) address;
}
@Nullable
private static TupleIpv4 parseTupleIpv4(@Nullable ByteBuffer byteBuffer) {
if (byteBuffer == null) return null;
Inet4Address src = null;
Inet4Address dst = null;
final int baseOffset = byteBuffer.position();
StructNlAttr nlAttr = findNextAttrOfType(CTA_IP_V4_SRC, byteBuffer);
if (nlAttr != null) {
src = castToInet4Address(nlAttr.getValueAsInetAddress());
}
if (src == null) return null;
byteBuffer.position(baseOffset);
nlAttr = findNextAttrOfType(CTA_IP_V4_DST, byteBuffer);
if (nlAttr != null) {
dst = castToInet4Address(nlAttr.getValueAsInetAddress());
}
if (dst == null) return null;
return new TupleIpv4(src, dst);
}
@Nullable
private static TupleProto parseTupleProto(@Nullable ByteBuffer byteBuffer) {
if (byteBuffer == null) return null;
byte protoNum = 0;
short srcPort = 0;
short dstPort = 0;
final int baseOffset = byteBuffer.position();
StructNlAttr nlAttr = findNextAttrOfType(CTA_PROTO_NUM, byteBuffer);
if (nlAttr != null) {
protoNum = nlAttr.getValueAsByte((byte) 0);
}
if (!(protoNum == IPPROTO_TCP || protoNum == IPPROTO_UDP)) return null;
byteBuffer.position(baseOffset);
nlAttr = StructNlAttr.findNextAttrOfType(CTA_PROTO_SRC_PORT, byteBuffer);
if (nlAttr != null) {
srcPort = nlAttr.getValueAsBe16((short) 0);
}
if (srcPort == 0) return null;
byteBuffer.position(baseOffset);
nlAttr = StructNlAttr.findNextAttrOfType(CTA_PROTO_DST_PORT, byteBuffer);
if (nlAttr != null) {
dstPort = nlAttr.getValueAsBe16((short) 0);
}
if (dstPort == 0) return null;
return new TupleProto(protoNum, srcPort, dstPort);
}
/**
* Netfilter header.
*/
public final StructNfGenMsg nfGenMsg;
/**
* Original direction conntrack tuple.
*
* The tuple is determined by the parsed attribute value CTA_TUPLE_ORIG, or null if the
* tuple could not be parsed successfully (for example, if it was truncated or absent).
*/
@Nullable
public final Tuple tupleOrig;
/**
* Reply direction conntrack tuple.
*
* The tuple is determined by the parsed attribute value CTA_TUPLE_REPLY, or null if the
* tuple could not be parsed successfully (for example, if it was truncated or absent).
*/
@Nullable
public final Tuple tupleReply;
/**
* Connection status. A bitmask of ip_conntrack_status enum flags.
*
* The status is determined by the parsed attribute value CTA_STATUS, or 0 if the status could
* not be parsed successfully (for example, if it was truncated or absent). For the message
* from kernel, the valid status is non-zero. For the message from user space, the status may
* be 0 (absent).
*/
public final int status;
/**
* Conntrack timeout.
*
* The timeout is determined by the parsed attribute value CTA_TIMEOUT, or 0 if the timeout
* could not be parsed successfully (for example, if it was truncated or absent). For
* IPCTNL_MSG_CT_NEW event, the valid timeout is non-zero. For IPCTNL_MSG_CT_DELETE event, the
* timeout is 0 (absent).
*/
public final int timeoutSec;
private ConntrackMessage() {
super(new StructNlMsgHdr());
nfGenMsg = new StructNfGenMsg((byte) OsConstants.AF_INET);
// This constructor is only used by #newIPv4TimeoutUpdateRequest which doesn't use these
// data member for packing message. Simply fill them to null or 0.
tupleOrig = null;
tupleReply = null;
status = 0;
timeoutSec = 0;
}
private ConntrackMessage(@NonNull StructNlMsgHdr header, @NonNull StructNfGenMsg nfGenMsg,
@Nullable Tuple tupleOrig, @Nullable Tuple tupleReply, int status, int timeoutSec) {
super(header);
this.nfGenMsg = nfGenMsg;
this.tupleOrig = tupleOrig;
this.tupleReply = tupleReply;
this.status = status;
this.timeoutSec = timeoutSec;
}
/**
* Write a netfilter message to {@link ByteBuffer}.
*/
public void pack(ByteBuffer byteBuffer) {
mHeader.pack(byteBuffer);
nfGenMsg.pack(byteBuffer);
}
public short getMessageType() {
return (short) (getHeader().nlmsg_type & ~(NetlinkConstants.NFNL_SUBSYS_CTNETLINK << 8));
}
/**
* Convert an ip conntrack status to a string.
*/
public static String stringForIpConntrackStatus(int flags) {
final StringBuilder sb = new StringBuilder();
if ((flags & IPS_EXPECTED) != 0) {
sb.append("IPS_EXPECTED");
}
if ((flags & IPS_SEEN_REPLY) != 0) {
if (sb.length() > 0) sb.append("|");
sb.append("IPS_SEEN_REPLY");
}
if ((flags & IPS_ASSURED) != 0) {
if (sb.length() > 0) sb.append("|");
sb.append("IPS_ASSURED");
}
if ((flags & IPS_CONFIRMED) != 0) {
if (sb.length() > 0) sb.append("|");
sb.append("IPS_CONFIRMED");
}
if ((flags & IPS_SRC_NAT) != 0) {
if (sb.length() > 0) sb.append("|");
sb.append("IPS_SRC_NAT");
}
if ((flags & IPS_DST_NAT) != 0) {
if (sb.length() > 0) sb.append("|");
sb.append("IPS_DST_NAT");
}
if ((flags & IPS_SEQ_ADJUST) != 0) {
if (sb.length() > 0) sb.append("|");
sb.append("IPS_SEQ_ADJUST");
}
if ((flags & IPS_SRC_NAT_DONE) != 0) {
if (sb.length() > 0) sb.append("|");
sb.append("IPS_SRC_NAT_DONE");
}
if ((flags & IPS_DST_NAT_DONE) != 0) {
if (sb.length() > 0) sb.append("|");
sb.append("IPS_DST_NAT_DONE");
}
if ((flags & IPS_DYING) != 0) {
if (sb.length() > 0) sb.append("|");
sb.append("IPS_DYING");
}
if ((flags & IPS_FIXED_TIMEOUT) != 0) {
if (sb.length() > 0) sb.append("|");
sb.append("IPS_FIXED_TIMEOUT");
}
if ((flags & IPS_TEMPLATE) != 0) {
if (sb.length() > 0) sb.append("|");
sb.append("IPS_TEMPLATE");
}
if ((flags & IPS_UNTRACKED) != 0) {
if (sb.length() > 0) sb.append("|");
sb.append("IPS_UNTRACKED");
}
if ((flags & IPS_HELPER) != 0) {
if (sb.length() > 0) sb.append("|");
sb.append("IPS_HELPER");
}
if ((flags & IPS_OFFLOAD) != 0) {
if (sb.length() > 0) sb.append("|");
sb.append("IPS_OFFLOAD");
}
if ((flags & IPS_HW_OFFLOAD) != 0) {
if (sb.length() > 0) sb.append("|");
sb.append("IPS_HW_OFFLOAD");
}
return sb.toString();
}
@Override
public String toString() {
return "ConntrackMessage{"
+ "nlmsghdr{"
+ (mHeader == null ? "" : mHeader.toString(OsConstants.NETLINK_NETFILTER))
+ "}, "
+ "nfgenmsg{" + nfGenMsg + "}, "
+ "tuple_orig{" + tupleOrig + "}, "
+ "tuple_reply{" + tupleReply + "}, "
+ "status{" + status + "(" + stringForIpConntrackStatus(status) + ")" + "}, "
+ "timeout_sec{" + Integer.toUnsignedLong(timeoutSec) + "}"
+ "}";
}
}