blob: 8e7b0d978ff3c72d480966aa951bce4cfbbd0ea9 [file] [log] [blame]
#!/usr/bin/python3
#
# Copyright (C) 2018 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Generate intrinsics code."""
from collections import OrderedDict
import asm_defs
import json
import os
import sys
# C-level intrinsic calling convention:
# 1. All arguments are passed using the natural data types:
# - int8_t passed as one byte argument (on the stack in IA32 mode, in GP register in x86-64 mode)
# - int32_t passed as 4 bytes argument (on the stack in IA32 mode, in GP register in x86-64 mode)
# - int64_t is passed as 8 byte argument (on the stack in IA32 mode, in GP register in x86-64 mode)
# - float is passed as float (on the stack in IA32 mode, in XMM register in x86-64 mode)
# - double is passed as double (on the stack in IA32 mode, in XMM register in x86-64 mode)
# - vector formats are passed as pointers to 128bit data structure
# 2. Return values.
# - Values are returned as std::tuple. This means that on IA32 it's always returned on stack.
INDENT = ' '
AUTOGEN = """\
// This file automatically generated by gen_intrinsics.py
// DO NOT EDIT!
"""
class VecFormat(object):
def __init__(self, num_elements, element_size, is_unsigned, is_float, index,
c_type):
self.num_elements = num_elements
self.element_size = element_size
self.is_unsigned = is_unsigned
self.is_float = is_float
self.index = index
self.c_type = c_type
# Vector format defined as:
# vector_size, element_size, is_unsigned, is_float, index, ir_format, c_type
# TODO(olonho): make flat numbering after removing legacy macro compat.
_VECTOR_FORMATS = {
'U8x8': VecFormat(8, 1, True, False, 1, 'uint8_t'),
'U16x4': VecFormat(4, 2, True, False, 2, 'uint16_t'),
'U32x2': VecFormat(2, 4, True, False, 3, 'uint32_t'),
'U64x1': VecFormat(1, 8, True, False, 4, 'uint64_t'),
'U8x16': VecFormat(16, 1, True, False, 5, 'uint8_t'),
'U16x8': VecFormat(8, 2, True, False, 6, 'uint16_t'),
'U32x4': VecFormat(4, 4, True, False, 7, 'uint32_t'),
'U64x2': VecFormat(2, 8, True, False, 8, 'uint64_t'),
'I8x8': VecFormat(8, 1, False, False, 9, 'int8_t'),
'I16x4': VecFormat(4, 2, False, False, 10, 'int16_t'),
'I32x2': VecFormat(2, 4, False, False, 11, 'int32_t'),
'I64x1': VecFormat(1, 8, False, False, 12, 'int64_t'),
'I8x16': VecFormat(16, 1, False, False, 13, 'int8_t'),
'I16x8': VecFormat(8, 2, False, False, 14, 'int16_t'),
'I32x4': VecFormat(4, 4, False, False, 15, 'int32_t'),
'I64x2': VecFormat(2, 8, False, False, 16, 'int64_t'),
'U8x1': VecFormat(1, 1, True, False, 17, 'uint8_t'),
'I8x1': VecFormat(1, 1, False, False, 18, 'int8_t'),
'U16x1': VecFormat(1, 2, True, False, 19, 'uint16_t'),
'I16x1': VecFormat(1, 2, False, False, 20, 'int16_t'),
'U32x1': VecFormat(1, 4, True, False, 21, 'uint32_t'),
'I32x1': VecFormat(1, 4, False, False, 22, 'int32_t'),
# These vector formats can never intersect with above, so can reuse index.
'F32x1': VecFormat(1, 4, False, True, 1, 'Float32'),
'F32x2': VecFormat(2, 4, False, True, 2, 'Float32'),
'F32x4': VecFormat(4, 4, False, True, 3, 'Float32'),
'F64x1': VecFormat(1, 8, False, True, 4, 'Float64'),
'F64x2': VecFormat(2, 8, False, True, 5, 'Float64'),
# Those vector formats can never intersect with above, so can reuse index.
'U8x4': VecFormat(4, 1, True, False, 1, 'uint8_t'),
'U16x2': VecFormat(2, 2, True, False, 2, 'uint16_t'),
'I8x4': VecFormat(4, 1, False, False, 3, 'int8_t'),
'I16x2': VecFormat(2, 2, False, False, 4, 'int16_t'),
}
class VecSize(object):
def __init__(self, num_elements, index):
self.num_elements = num_elements
self.index = index
_VECTOR_SIZES = {'X8': VecSize(8, 1), 'X16': VecSize(16, 2)}
def _is_imm_type(arg_type):
return 'imm' in arg_type
def _get_imm_c_type(arg_type):
return {
'imm8' : 'int8_t',
'uimm8' : 'uint8_t',
'uimm32' : 'uint32_t',
}[arg_type]
def _get_c_type(arg_type):
if arg_type in ('Float32', 'Float64', 'int8_t', 'uint8_t', 'int16_t',
'uint16_t', 'int32_t', 'uint32_t', 'int64_t', 'uint64_t',
'volatile uint8_t*', 'volatile uint32_t*'):
return arg_type
if arg_type in ('fp_flags', 'fp_control', 'int', 'flag', 'flags', 'vec32'):
return 'uint32_t'
if _is_imm_type(arg_type):
return _get_imm_c_type(arg_type)
if arg_type == 'vec':
return 'SIMD128Register'
raise Exception('Type %s not supported' % (arg_type))
def _get_semantic_player_type(arg_type):
if arg_type in ('Float32', 'Float64', 'vec'):
return 'SimdRegister'
if _is_imm_type(arg_type):
return _get_imm_c_type(arg_type)
return 'Register'
def _gen_scalar_intr_decl(f, name, intr):
ins = intr.get('in')
outs = intr.get('out')
params = [_get_c_type(op) for op in ins]
if len(outs) > 0:
retval = 'std::tuple<' + ', '.join(_get_c_type(out) for out in outs) + '>'
else:
retval = 'void'
comment = intr.get('comment')
if comment:
print('// %s.' % (comment), file=f)
if intr.get('precise_nans', False):
print('template <bool precise_nan_operations_handling, '
'enum PreferCppImplementation = kUseAssemblerImplementationIfPossible>',
file=f)
print('%s %s(%s);' % (retval, name, ', '.join(params)), file=f)
def _is_vector_class(intr):
return intr.get('class') in ('vector_4', 'vector_8', 'vector_16',
'vector_8/16', 'vector_8/16/single',
'vector_8/single', 'vector_16/single')
def _is_simd128_conversion_required(t):
return (_get_semantic_player_type(t) == 'SimdRegister' and
_get_c_type(t) != 'SIMD128Register')
def _get_semantics_player_hook_result(intr):
outs = intr['out']
if len(outs) == 0:
return 'void'
elif len(outs) == 1:
# No tuple for single result.
return _get_semantic_player_type(outs[0])
return 'std::tuple<' + ', '.join(
_get_semantic_player_type(out) for out in outs) + '>'
def _get_semantics_player_hook_proto_components(name, intr):
ins = intr['in']
args = []
if _is_vector_class(intr):
if 'raw' in intr['variants']:
assert len(intr['variants']) == 1, "Unexpected length of variants"
args = ["uint8_t size"]
else:
args = ["uint8_t elem_size", "uint8_t elem_num"]
if (_is_signed(intr) and _is_unsigned(intr)):
args += ['bool is_signed']
args += [
'%s arg%d' % (_get_semantic_player_type(op), num)
for num, op in enumerate(ins)
]
result = _get_semantics_player_hook_result(intr)
return result, name, ', '.join(args)
def _get_semantics_player_hook_proto(name, intr):
result, name, args = _get_semantics_player_hook_proto_components(name, intr)
return '%s %s(%s)' % (result, name, args)
def _get_interpreter_hook_call_expr(name, intr, desc=None):
ins = intr['in']
outs = intr['out']
call_params = []
for num, op in enumerate(ins):
arg = 'arg%d' % (num)
if _get_semantic_player_type(op) == 'SimdRegister':
call_params.append(_get_cast_from_simd128(arg, op, ptr_bits=64))
elif '*' in _get_c_type(op):
call_params.append('bit_cast<%s>(%s)' % (_get_c_type(op), arg))
else:
call_params.append(arg)
call_expr = 'intrinsics::%s%s(%s)' % (
name, _get_desc_specializations(intr, desc).replace(
'Float', 'intrinsics::Float'), ', '.join(call_params))
if (len(outs) == 1):
# Unwrap tuple for single result.
call_expr = 'std::get<0>(%s)' % call_expr
# Currently this kind of mismatch can only happen for single result, so we
# can keep simple code here for now.
if (_is_simd128_conversion_required(outs[0])):
out_type = _get_c_type(outs[0])
if out_type in ('Float32', 'Float64'):
call_expr = 'SimdRegister(%s)' % call_expr
else:
raise Exception('Type %s is not supported' % (out_type))
else:
if (any(_is_simd128_conversion_required(out) for out in outs)):
raise Exception(
'Unsupported SIMD128Register conversion with multiple results')
return call_expr
def _get_interpreter_hook_return_stmt(name, intr, desc=None):
return 'return ' + _get_interpreter_hook_call_expr(name, intr, desc) + ';'
def _get_semantics_player_hook_raw_vector_body(name, intr, get_return_stmt):
outs = intr['out']
if (len(outs) == 0):
raise Exception('No result raw vector intrinsic is not supported')
reg_class = intr.get('class')
yield 'switch (size) {'
for fmt, desc in _VECTOR_SIZES.items():
if _check_reg_class_size(reg_class, desc.num_elements):
yield INDENT + 'case %s:' % desc.num_elements
yield 2 * INDENT + get_return_stmt(name, intr, desc)
yield INDENT + 'default:'
yield 2 * INDENT + 'LOG_ALWAYS_FATAL("Unsupported size");'
yield 2 * INDENT + 'return {};'
yield '}'
def _is_signed(intr):
return any(v.startswith("signed") for v in intr['variants'])
def _is_unsigned(intr):
return any(v.startswith("unsigned") for v in intr['variants'])
def _get_vector_format_init_expr(intr):
variants = intr.get('variants')
if ('Float32' in variants or 'Float64' in variants):
return 'intrinsics::GetVectorFormatFP(elem_size, elem_num)'
assert _is_signed(intr) or _is_unsigned(intr), "Unexpected intrinsic class"
if _is_signed(intr) and _is_unsigned(intr):
signed_arg = ', is_signed'
else:
signed_arg = ', true' if _is_signed(intr) else ', false'
return 'intrinsics::GetVectorFormatInt(elem_size, elem_num%s)' % signed_arg
def _get_semantics_player_hook_vector_body(name, intr, get_return_stmt):
outs = intr['out']
if (len(outs) == 0):
raise Exception('No result vector intrinsic is not supported')
reg_class = intr.get('class')
yield 'auto format = %s;' % _get_vector_format_init_expr(intr)
yield 'switch (format) {'
for variant in intr.get('variants'):
for fmt, desc in _VECTOR_FORMATS.items():
if (_check_reg_class_size(reg_class,
desc.element_size * desc.num_elements) and
_check_typed_variant(variant, desc)):
yield INDENT + 'case intrinsics::kVector%s:' % fmt
yield 2 * INDENT + get_return_stmt(name, intr, desc)
elif (reg_class in ('vector_8/single', 'vector_8/16/single', 'vector_16/single') and
desc.num_elements == 1 and
_check_typed_variant(variant, desc)):
assert desc.element_size <= 8, "Unexpected element size"
yield INDENT + 'case intrinsics::kVector%s:' % fmt
yield 2 * INDENT + get_return_stmt(name, intr, desc)
yield INDENT + 'default:'
yield 2 * INDENT + 'LOG_ALWAYS_FATAL("Unsupported format");'
yield 2 * INDENT + 'return {};'
yield '}'
# Syntax sugar heavily used in tests.
def _get_interpreter_hook_vector_body(name, intr):
return _get_semantics_player_hook_vector_body(
name, intr, _get_interpreter_hook_return_stmt)
def _gen_interpreter_hook(f, name, intr):
print('%s {' % (_get_semantics_player_hook_proto(name, intr)), file=f)
if _is_vector_class(intr):
if 'raw' in intr['variants']:
assert len(intr['variants']) == 1, "Unexpected length of variants"
lines = _get_semantics_player_hook_raw_vector_body(
name,
intr,
_get_interpreter_hook_return_stmt)
else:
lines = _get_interpreter_hook_vector_body(name, intr)
lines = [INDENT + l for l in lines]
print('\n'.join(lines), file=f)
else:
print(INDENT + _get_interpreter_hook_return_stmt(name, intr), file=f)
print('}\n', file=f)
def _get_translator_hook_call_expr(name, intr, desc = None):
desc_spec = _get_desc_specializations(intr, desc).replace(
'Float', 'intrinsics::Float')
args = [('arg%d' % n) for n, _ in enumerate(intr['in'])]
template_params = ['&intrinsics::' + name + desc_spec]
template_params += [_get_semantics_player_hook_result(intr)]
return 'CallIntrinsic<%s>(%s)' % (', '.join(template_params), ', '.join(args))
def _get_translator_hook_return_stmt(name, intr, desc=None):
return 'return ' + _get_translator_hook_call_expr(name, intr, desc) + ';'
def _gen_translator_hook(f, name, intr):
print('%s {' % (_get_semantics_player_hook_proto(name, intr)), file=f)
if _is_vector_class(intr):
if 'raw' in intr['variants']:
assert len(intr['variants']) == 1, "Unexpected length of variants"
lines = _get_semantics_player_hook_raw_vector_body(
name,
intr,
_get_translator_hook_return_stmt)
else:
lines = _get_semantics_player_hook_vector_body(
name,
intr,
_get_translator_hook_return_stmt)
lines = [INDENT + l for l in lines]
print('\n'.join(lines), file=f)
else:
print(INDENT + _get_translator_hook_return_stmt(name, intr), file=f)
print('}\n', file=f)
def _gen_mock_semantics_listener_hook(f, name, intr):
result, name, args = _get_semantics_player_hook_proto_components(name, intr)
print('MOCK_METHOD((%s), %s, (%s));' % (result, name, args), file=f)
def _check_signed_variant(variant, desc):
if variant == 'signed':
return True
if variant == 'signed_32':
return desc.element_size == 4
if variant == 'signed_64':
return desc.element_size == 8
if variant == 'signed_16/32':
return desc.element_size in (2, 4)
if variant == 'signed_8/16/32':
return desc.element_size in (1, 2, 4)
if variant == 'signed_16/32/64':
return desc.element_size in (2, 4, 8)
if variant == 'signed_8/16/32/64':
return desc.element_size in (1, 2, 4, 8)
if variant == 'signed_32/64':
return desc.element_size in (4, 8)
return False
def _check_unsigned_variant(variant, desc):
if variant == 'unsigned':
return True
if variant == 'unsigned_8':
return desc.element_size == 1
if variant == 'unsigned_16':
return desc.element_size == 2
if variant == 'unsigned_32':
return desc.element_size == 4
if variant == 'unsigned_64':
return desc.element_size == 8
if variant == 'unsigned_8/16':
return desc.element_size in (1, 2)
if variant == 'unsigned_8/16/32':
return desc.element_size in (1, 2, 4)
if variant == 'unsigned_16/32/64':
return desc.element_size in (2, 4, 8)
if variant == 'unsigned_8/16/32/64':
return desc.element_size in (1, 2, 4, 8)
if variant == 'unsigned_32/64':
return desc.element_size in (4, 8)
return False
def _check_reg_class_size(reg_class, size):
# Small vectors are separate namespace.
if size == 4 and reg_class == 'vector_4':
return True
if size == 8 and reg_class in ('vector_8', 'vector_8/16', 'vector_8/16/single',
'vector_8/single'):
return True
if size == 16 and reg_class in ('vector_16', 'vector_8/16', 'vector_8/16/single',
'vector_16/single'):
return True
return False
def _check_typed_variant(variant, desc):
if desc.is_unsigned and not desc.is_float:
return _check_unsigned_variant(variant, desc)
if not desc.is_unsigned and not desc.is_float:
return _check_signed_variant(variant, desc)
if desc.is_float:
if desc.element_size == 4:
return variant == 'Float32'
if desc.element_size == 8:
return variant == 'Float64'
return False
def _get_formats_with_descriptions(intr):
reg_class = intr.get('class')
for variant in intr.get('variants'):
found_fmt = False
for fmt, desc in _VECTOR_FORMATS.items():
if (_check_reg_class_size(reg_class,
desc.element_size * desc.num_elements) and
_check_typed_variant(variant, desc) and
(reg_class != 'vector_4' or desc.element_size < 4)):
found_fmt = True
yield fmt, desc
if variant == 'raw':
for fmt, desc in _VECTOR_SIZES.items():
if _check_reg_class_size(reg_class, desc.num_elements):
found_fmt = True
yield fmt, desc
assert found_fmt, 'Couldn\'t expand %s' % reg_class
def _get_result_type(outs):
result_type = 'void'
return_stmt = ''
if len(outs) >= 1:
result_type = ('std::tuple<' +
', '.join(_get_c_type(out) for out in outs) + '>')
return_stmt = 'return '
return result_type, return_stmt
def _get_in_params(params):
for param_index, param in enumerate(params):
yield _get_c_type(param), 'in%d' % (param_index)
def _get_out_params(params):
for param_index, param in enumerate(params):
yield _get_c_type(param), 'out%d' % (param_index)
def _get_cast_from_simd128(var, target_type, ptr_bits):
if ('*' in target_type):
return 'bit_cast<%s>(%s.Get<uint%d_t>(0))' % (_get_c_type(target_type), var,
ptr_bits)
cast_map = {
'Float32': '.Get<intrinsics::Float32>(0)',
'Float64': '.Get<intrinsics::Float64>(0)',
'int8_t': '.Get<int8_t>(0)',
'uint8_t': '.Get<uint8_t>(0)',
'int16_t': '.Get<int16_t>(0)',
'uint16_t': '.Get<uint16_t>(0)',
'int32_t': '.Get<int32_t>(0)',
'uint32_t': '.Get<uint32_t>(0)',
'int64_t': '.Get<int64_t>(0)',
'uint64_t': '.Get<uint64_t>(0)',
'SIMD128Register': ''
}
return '%s%s' % (var, cast_map[_get_c_type(target_type)])
def _get_desc_specializations(intr, desc=None):
if hasattr(desc, 'c_type'):
spec = [desc.c_type, str(desc.num_elements)]
elif hasattr(desc, 'num_elements'):
spec = [str(desc.num_elements)]
else:
spec = []
if intr.get('precise_nans', False):
spec = ['Config::kPreciseNaNOperationsHandling'] + spec
if not len(spec):
return ''
return '<%s>' % ', '.join(spec)
def _intr_has_side_effects(intr, fmt=None):
# If we have 'has_side_effects' mark in JSON file then we use it "as is".
if 'has_side_effects' in intr:
return intr.get('has_side_effects')
# Otherwise we mark all floating-point related intrinsics as "volatile".
# TODO(b/68857496): move that information in HIR/LIR and stop doing that.
if 'Float32' in intr.get('in') or 'Float64' in intr.get('in'):
return True
if 'Float32' in intr.get('out') or 'Float64' in intr.get('out'):
return True
if fmt is not None and fmt.startswith('F'):
return True
return False
def _gen_intrinsics_inl_h(f, intrs):
print(AUTOGEN, file=f)
for name, intr in intrs:
if intr.get('class') == 'scalar':
_gen_scalar_intr_decl(f, name, intr)
def _gen_interpreter_intrinsics_hooks_impl_inl_h(f, intrs):
print(AUTOGEN, file=f)
for name, intr in intrs:
_gen_interpreter_hook(f, name, intr)
def _gen_translator_intrinsics_hooks_impl_inl_h(f, intrs):
print(AUTOGEN, file=f)
for name, intr in intrs:
_gen_translator_hook(f, name, intr)
def _gen_mock_semantics_listener_intrinsics_hooks_impl_inl_h(f, intrs):
print(AUTOGEN, file=f)
for name, intr in intrs:
_gen_mock_semantics_listener_hook(f, name, intr)
def _get_reg_operand_info(arg, info_prefix=None):
need_tmp = arg['class'] in ('EAX', 'EDX', 'CL', 'ECX')
if info_prefix is None:
class_info = 'void'
else:
class_info = '%s::%s' % (info_prefix, arg['class'])
if arg['class'] == 'Imm8':
return 'ImmArg<%d, int8_t, %s>' % (arg['ir_arg'], class_info)
if info_prefix is None:
using_info = 'void'
else:
using_info = '%s::%s' % (info_prefix, {
'def': 'Def',
'def_early_clobber': 'DefEarlyClobber',
'use': 'Use',
'use_def': 'UseDef'
}[arg['usage']])
if arg['usage'] == 'use':
if need_tmp:
return 'InTmpArg<%d, %s, %s>' % (arg['ir_arg'], class_info, using_info)
return 'InArg<%d, %s, %s>' % (arg['ir_arg'], class_info, using_info)
if arg['usage'] in ('def', 'def_early_clobber'):
assert 'ir_arg' not in arg
if 'ir_res' in arg:
if need_tmp:
return 'OutTmpArg<%d, %s, %s>' % (arg['ir_res'], class_info, using_info)
return 'OutArg<%d, %s, %s>' % (arg['ir_res'], class_info, using_info)
return 'TmpArg<%s, %s>' % (class_info, using_info)
if arg['usage'] == 'use_def':
if 'ir_res' in arg:
if need_tmp:
return 'InOutTmpArg<%s, %s, %s, %s>' % (arg['ir_arg'], arg['ir_res'],
class_info, using_info)
return 'InOutArg<%s, %s, %s, %s>' % (arg['ir_arg'], arg['ir_res'],
class_info, using_info)
return 'InTmpArg<%s, %s, %s>' % (arg['ir_arg'], class_info, using_info)
assert False, 'unknown operand usage %s' % (arg['usage'])
def _gen_make_intrinsics(f, intrs):
print("""%s
void MakeIntrinsics(FILE* out) {
using MacroAssembler = MacroAssembler<TextAssembler>;
namespace OperandClass = x86::OperandClass;
std::unique_ptr<GenerateAsmCallBase> asm_call_generators[] = {""" % AUTOGEN, file=f)
for line in _gen_c_intrinsics_generator(intrs):
print(line, file=f)
print(""" };
GenerateAsmCalls(out, std::forward<decltype(asm_call_generators)>(asm_call_generators));
}""", file=f)
def _gen_c_intrinsics_generator(intrs):
for name, intr in intrs:
ins = intr.get('in')
outs = intr.get('out')
params = _get_in_params(ins)
formal_args = ', '.join('%s %s' % (type, param) for type, param in params)
result_type, _ = _get_result_type(outs)
if 'asm' not in intr:
continue
if 'variants' in intr:
variants = _get_formats_with_descriptions(intr)
# Sort by index, to keep order close to what _gen_intrs_enum produces.
variants = sorted(variants, key=lambda variant: variant[1].index)
# Collect intr_asms for all versions of intrinsic.
# Note: not all variants are guaranteed to have asm version!
# If that happens list of intr_asms for that variant would be empty.
variants = [(desc, [
intr_asm for intr_asm in intr['asm'] if fmt in intr_asm['variants']
]) for fmt, desc in variants]
# Print intrinsic generator
for desc, intr_asms in variants:
if len(intr_asms) > 0:
if 'raw' in intr['variants']:
spec = '%d' % (desc.num_elements)
else:
spec = '%s, %d' % (desc.c_type, desc.num_elements)
for intr_asm in intr_asms:
for line in _gen_c_intrinsic('%s<%s>' % (name, spec), intr, intr_asm):
yield line
else:
for intr_asm in intr['asm']:
for line in _gen_c_intrinsic(name, intr, intr_asm):
yield line
MAX_GENERATED_LINE_LENGTH = 100
def _gen_c_intrinsic(name, intr, asm):
if not _is_interpreter_compatible_assembler(asm):
return
sse_restriction = 'GenerateAsmCallBase::kNoSSERestriction'
if 'feature' in asm:
if asm['feature'] == 'AuthenticAMD':
sse_restriction = 'GenerateAsmCallBase::kIsAuthenticAMD'
else:
sse_restriction = 'GenerateAsmCallBase::kHas%s' % asm['feature']
nan_restriction = 'GenerateAsmCallBase::kNoNansOperation'
if 'nan' in asm:
nan_restriction = 'GenerateAsmCallBase::k%sNanOperationsHandling' % asm['nan']
restriction = [sse_restriction, nan_restriction]
yield ' std::unique_ptr<GenerateAsmCallBase>('
def get_c_type_tuple(arguments):
return 'std::tuple<%s>' % ', '.join(
_get_c_type(argument) for argument in arguments).replace(
'Float', 'intrinsics::Float')
yield ' new GenerateAsmCall<%s>(' % (
',\n '.join(
['true' if _intr_has_side_effects(intr) else 'false'] +
[get_c_type_tuple(intr['in'])] + [get_c_type_tuple(intr['out'])] +
[_get_reg_operand_info(arg, 'OperandClass')
for arg in asm['args']]))
one_line = ' out, &MacroAssembler::%s, %s)),' % (
asm['asm'], ', '.join(['"%s"' % name] + restriction))
if len(one_line) <= MAX_GENERATED_LINE_LENGTH:
yield one_line
return
yield ' out,'
yield ' &MacroAssembler::%s,' % asm['asm']
values = ['"%s"' % name] + restriction
for index, value in enumerate(values):
if index + 1 == len(values):
yield ' %s)),' % value
else:
yield ' %s,' % value
def _load_intrs_def_files(intrs_def_files):
result = {}
for intrs_def in intrs_def_files:
with open(intrs_def) as intrs:
result.update(json.load(intrs))
return result
def _load_intrs_arch_def(intrs_defs):
json_data = []
for intrs_def in intrs_defs:
with open(intrs_def) as intrs:
json_data.extend(json.load(intrs))
return json_data
def _load_macro_def(intrs, arch_intrs, insns_def):
_, insns = asm_defs.load_asm_defs(insns_def)
insns_map = dict((insn['name'], insn) for insn in insns)
unprocessed_intrs = []
for arch_intr in arch_intrs:
if arch_intr['insn'] in insns_map:
insn = insns_map[arch_intr['insn']]
_add_asm_insn(intrs, arch_intr, insn)
else:
unprocessed_intrs.append(arch_intr)
return unprocessed_intrs
def _is_interpreter_compatible_assembler(intr_asm):
if intr_asm.get('usage', '') == 'translate-only':
return False
return True
def _add_asm_insn(intrs, arch_intr, insn):
name = arch_intr['name']
# Sanity checks: MacroInstruction could implement few different intrinsics but
# number of arguments in arch intrinsic and arch-independent intrinsic
# should match.
#
# Note: we allow combining intrinsics with variants and intrinsics without
# variants (e.g. AbsF32 is combined with VectorAbsoluteFP for F32x2 and F32x4),
# but don't allow macroinstructions which would handle different set of
# variants for different intrinsics.
assert 'variants' not in insn or insn['variants'] == arch_intr['variants']
assert 'feature' not in insn or insn['feature'] == arch_intr['feature']
assert 'nan' not in insn or insn['nan'] == arch_intr['nan']
assert 'usage' not in insn or insn['usage'] == arch_intr['usage']
assert len(intrs[name]['in']) == len(arch_intr['in'])
assert len(intrs[name]['out']) == len(arch_intr['out'])
if 'variants' in arch_intr:
insn['variants'] = arch_intr['variants']
if 'feature' in arch_intr:
insn['feature'] = arch_intr['feature']
if 'nan' in arch_intr:
insn['nan'] = arch_intr['nan']
if 'usage' in arch_intr:
insn['usage'] = arch_intr['usage']
for count, in_arg in enumerate(arch_intr['in']):
# Sanity check: each in argument should only be used once - but if two
# different intrinsics use them same macroinstruction it could be already
# defined... yet it must be defined identically.
assert ('ir_arg' not in insn['args'][in_arg] or
insn['args'][in_arg]['ir_arg'] == count)
insn['args'][in_arg]['ir_arg'] = count
for count, out_arg in enumerate(arch_intr['out']):
# Sanity check: each out argument should only be used once, too.
assert ('ir_res' not in insn['args'][out_arg] or
insn['args'][out_arg]['ir_res'] == count)
insn['args'][out_arg]['ir_res'] = count
# Note: one intrinsic could have more than one implementation (e.g.
# SSE2 vs SSE4.2).
if 'asm' not in intrs[name]:
intrs[name]['asm'] = []
intrs[name]['asm'].append(insn)
def _open_asm_def_files(def_files, arch_def_files, asm_def_files):
intrs = _load_intrs_def_files(def_files)
arch_intrs = _load_intrs_arch_def(arch_def_files)
for macro_def in asm_def_files:
arch_intrs = _load_macro_def(intrs, arch_intrs, macro_def)
# Make sure that all intrinsics were found during processing of arch_intrs.
assert arch_intrs == []
return sorted(intrs.items())
def main(argv):
# Usage:
# gen_intrinsics.py --public_headers <intrinsics-inl.h>
# <interpreter_intrinsics_hooks-inl.h>
# <translator_intrinsics_hooks-inl.h>
# <mock_semantics_listener_intrinsics_hooks-inl.h>
# <riscv64_to_x86_64/intrinsic_def.json",
# ...
# gen_intrinsics.py --make_intrinsics_cc <make_intrinsics.cc>
# <riscv64_to_x86_64/intrinsic_def.json",
# ...
# <riscv64_to_x86_64/machine_ir_intrinsic_binding.json>,
# ...
# <riscv64_to_x86_64/macro_def.json>,
# ...
def open_out_file(name):
try:
os.makedirs(os.path.dirname(name))
except:
pass
return open(name, 'w')
mode = argv[1]
if mode == '--public_headers':
intrs = sorted(_load_intrs_def_files(argv[6:]).items())
_gen_intrinsics_inl_h(open_out_file(argv[2]), intrs)
_gen_interpreter_intrinsics_hooks_impl_inl_h(open_out_file(argv[3]), intrs)
_gen_translator_intrinsics_hooks_impl_inl_h(
open_out_file(argv[4]), intrs)
_gen_mock_semantics_listener_intrinsics_hooks_impl_inl_h(
open_out_file(argv[5]), intrs)
elif mode == '--make_intrinsics_cc':
def_files_end = 3
while argv[def_files_end].endswith('intrinsic_def.json'):
def_files_end += 1
arch_def_files_end = def_files_end
while argv[arch_def_files_end].endswith('machine_ir_intrinsic_binding.json'):
arch_def_files_end += 1
intrs = _open_asm_def_files(
argv[3:def_files_end],
argv[def_files_end:arch_def_files_end],
argv[arch_def_files_end:])
_gen_make_intrinsics(open_out_file(argv[2]), intrs)
else:
assert False, 'unknown option %s' % (mode)
return 0
if __name__ == '__main__':
sys.exit(main(sys.argv))