blob: 52538bbbd61fb9a4a26ea0294a5dc3aee861485f [file] [log] [blame]
/*
* Copyright 2015, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "slang_rs_export_reduce.h"
#include <algorithm>
#include <sstream>
#include <string>
#include "clang/AST/Attr.h"
#include "clang/AST/ASTContext.h"
#include "slang_assert.h"
#include "slang_rs_context.h"
#include "slang_rs_export_type.h"
#include "slang_rs_object_ref_count.h"
#include "slang_rs_special_kernel_param.h"
#include "slang_version.h"
#include "bcinfo/MetadataExtractor.h"
namespace {
bool haveReduceInTargetAPI(unsigned int TargetAPI) {
return TargetAPI == RS_DEVELOPMENT_API;
}
} // end anonymous namespace
namespace slang {
// Validate the parameters to a reduce kernel, and set up the
// exportable object if the kernel is valid.
//
// This checks that the passed function declaration of a reduce kernel is
// a function which satisfies all the requirements for a reduce
// kernel. Namely, we check for:
// - correct target API
// - correct parameter count
// - non void return type
// - return type and parameter types match
// - no pointer types in signature.
//
// We try to report useful errors to the user.
//
// On success, this function returns true and sets the fields mIns and
// mType to point to the arguments and to the kernel type.
//
// If an error was detected, this function returns false.
bool RSExportReduce::validateAndConstructParams(
RSContext *Context, const clang::FunctionDecl *FD) {
slangAssert(Context && FD);
bool Valid = true;
clang::ASTContext &ASTCtx = FD->getASTContext();
// Validate API version.
if (!haveReduceInTargetAPI(Context->getTargetAPI())) {
Context->ReportError(FD->getLocation(),
"Reduce-style kernel %0() unsupported in SDK level %1")
<< FD->getName() << Context->getTargetAPI();
Valid = false;
}
// Validate parameter count.
if (FD->getNumParams() != 2) {
Context->ReportError(FD->getLocation(),
"Reduce-style kernel %0() must take 2 parameters "
"(found %1).")
<< FD->getName() << FD->getNumParams();
Valid = false;
}
// Validate return type.
const clang::QualType ReturnTy = FD->getReturnType().getCanonicalType();
if (ReturnTy->isVoidType()) {
Context->ReportError(FD->getLocation(),
"Reduce-style kernel %0() cannot return void")
<< FD->getName();
Valid = false;
} else if (ReturnTy->isPointerType()) {
Context->ReportError(FD->getLocation(),
"Reduce-style kernel %0() cannot return a pointer "
"type: %1")
<< FD->getName() << ReturnTy.getAsString();
Valid = false;
}
// Validate parameter types.
if (FD->getNumParams() == 0) {
return false;
}
const clang::ParmVarDecl &FirstParam = *FD->getParamDecl(0);
const clang::QualType FirstParamTy = FirstParam.getType().getCanonicalType();
for (auto PVD = FD->param_begin(), PE = FD->param_end(); PVD != PE; ++PVD) {
const clang::ParmVarDecl &Param = **PVD;
const clang::QualType ParamTy = Param.getType().getCanonicalType();
// Check that the parameter is not a pointer.
if (ParamTy->isPointerType()) {
Context->ReportError(Param.getLocation(),
"Reduce-style kernel %0() cannot have "
"parameter '%1' of pointer type: '%2'")
<< FD->getName() << Param.getName() << ParamTy.getAsString();
Valid = false;
}
// Check for type mismatch between this parameter and the return type.
if (!ASTCtx.hasSameUnqualifiedType(ReturnTy, ParamTy)) {
Context->ReportError(FD->getLocation(),
"Reduce-style kernel %0() return type '%1' is not "
"the same type as parameter '%2' (type '%3')")
<< FD->getName() << ReturnTy.getAsString() << Param.getName()
<< ParamTy.getAsString();
Valid = false;
}
// Check for type mismatch between parameters. It is sufficient to check
// for a mismatch with the type of the first argument.
if (ParamTy != FirstParamTy) {
Context->ReportError(FirstParam.getLocation(),
"In reduce-style kernel %0(): parameter '%1' "
"(type '%2') does not have the same type as "
"parameter '%3' (type '%4')")
<< FD->getName() << FirstParam.getName() << FirstParamTy.getAsString()
<< Param.getName() << ParamTy.getAsString();
Valid = false;
}
}
if (Valid) {
// If the validation was successful, then populate the fields of
// the exportable.
if (!(mType = RSExportType::Create(Context, ReturnTy.getTypePtr(),
NotLegacyKernelArgument))) {
// There was an error exporting the type for the reduce kernel.
return false;
}
slangAssert(mIns.size() == 2 && FD->param_end() - FD->param_begin() == 2);
std::copy(FD->param_begin(), FD->param_end(), mIns.begin());
}
return Valid;
}
RSExportReduce *RSExportReduce::Create(RSContext *Context,
const clang::FunctionDecl *FD) {
slangAssert(Context && FD);
llvm::StringRef Name = FD->getName();
slangAssert(!Name.empty() && "Function must have a name");
RSExportReduce *RE = new RSExportReduce(Context, Name);
if (!RE->validateAndConstructParams(Context, FD)) {
// Don't delete RE here - owned by Context.
return nullptr;
}
return RE;
}
bool RSExportReduce::isRSReduceFunc(unsigned int /* targetAPI */,
const clang::FunctionDecl *FD) {
slangAssert(FD);
clang::KernelAttr *KernelAttrOrNull = FD->getAttr<clang::KernelAttr>();
return KernelAttrOrNull && KernelAttrOrNull->getKernelKind().equals("reduce");
}
///////////////////////////////////////////////////////////////////////////////////////
const char RSExportReduceNew::KeyReduce[] = "reduce";
const char RSExportReduceNew::KeyInitializer[] = "initializer";
const char RSExportReduceNew::KeyAccumulator[] = "accumulator";
const char RSExportReduceNew::KeyCombiner[] = "combiner";
const char RSExportReduceNew::KeyOutConverter[] = "outconverter";
const char RSExportReduceNew::KeyHalter[] = "halter";
bool RSExportReduceNew::matchName(const llvm::StringRef &Candidate) const {
return
Candidate.equals(mNameInitializer) ||
Candidate.equals(mNameAccumulator) ||
Candidate.equals(mNameCombiner) ||
Candidate.equals(mNameOutConverter) ||
Candidate.equals(mNameHalter);
}
RSExportReduceNew *RSExportReduceNew::Create(RSContext *Context,
const clang::SourceLocation Location,
const llvm::StringRef &NameReduce,
const llvm::StringRef &NameInitializer,
const llvm::StringRef &NameAccumulator,
const llvm::StringRef &NameCombiner,
const llvm::StringRef &NameOutConverter,
const llvm::StringRef &NameHalter) {
slangAssert(Context);
RSExportReduceNew *RNE = new RSExportReduceNew(Context,
Location,
NameReduce,
NameInitializer,
NameAccumulator,
NameCombiner,
NameOutConverter,
NameHalter);
return RNE;
}
const char *RSExportReduceNew::getKey(FnIdent Kind) {
switch (Kind) {
default:
slangAssert(!"Unknown FnIdent");
// and fall through
case FN_IDENT_INITIALIZER:
return KeyInitializer;
case FN_IDENT_ACCUMULATOR:
return KeyAccumulator;
case FN_IDENT_COMBINER:
return KeyCombiner;
case FN_IDENT_OUT_CONVERTER:
return KeyOutConverter;
case FN_IDENT_HALTER:
return KeyHalter;
}
}
// This data is needed during analyzeTranslationUnit() but not afterwards.
// Breaking it out into a struct makes it easy for analyzeTranslationUnit()
// to call a number of helper functions that all need access to this data.
struct RSExportReduceNew::StateOfAnalyzeTranslationUnit {
typedef std::function<std::string (const char *Key, const std::string &Name)> DiagnosticDescriptionType;
StateOfAnalyzeTranslationUnit(
RSContext &anRSContext,
clang::Preprocessor &aPP,
clang::ASTContext &anASTContext,
const DiagnosticDescriptionType &aDiagnosticDescription) :
RSC(anRSContext),
PP(aPP),
ASTC(anASTContext),
DiagnosticDescription(aDiagnosticDescription),
Ok(true),
FnInitializer(nullptr),
FnAccumulator(nullptr),
FnCombiner(nullptr),
FnOutConverter(nullptr),
FnHalter(nullptr),
FnInitializerParam(nullptr),
FnInitializerParamTy(),
FnAccumulatorOk(true),
FnAccumulatorParamFirst(nullptr),
FnAccumulatorParamFirstTy(),
FnAccumulatorIndexOfFirstSpecialParameter(0),
FnOutConverterOk(true),
FnOutConverterParamFirst(nullptr),
FnOutConverterParamFirstTy()
{ }
/*-- Convenience ------------------------------------------*/
RSContext &RSC;
clang::Preprocessor &PP;
clang::ASTContext &ASTC;
const DiagnosticDescriptionType DiagnosticDescription;
/*-- Actual state -----------------------------------------*/
bool Ok;
clang::FunctionDecl *FnInitializer;
clang::FunctionDecl *FnAccumulator;
clang::FunctionDecl *FnCombiner;
clang::FunctionDecl *FnOutConverter;
clang::FunctionDecl *FnHalter;
clang::ParmVarDecl *FnInitializerParam;
clang::QualType FnInitializerParamTy;
bool FnAccumulatorOk;
clang::ParmVarDecl *FnAccumulatorParamFirst;
clang::QualType FnAccumulatorParamFirstTy;
size_t FnAccumulatorIndexOfFirstSpecialParameter;
bool FnOutConverterOk; // also true if no outconverter
clang::ParmVarDecl *FnOutConverterParamFirst;
clang::QualType FnOutConverterParamFirstTy;
};
// does update S.Ok
clang::FunctionDecl *RSExportReduceNew::lookupFunction(StateOfAnalyzeTranslationUnit &S,
const char *Kind, const llvm::StringRef &Name) {
if (Name.empty())
return nullptr;
clang::TranslationUnitDecl *TUDecl = getRSContext()->getASTContext().getTranslationUnitDecl();
slangAssert(TUDecl);
clang::FunctionDecl *Ret = nullptr;
const clang::IdentifierInfo *II = S.PP.getIdentifierInfo(Name);
if (II) {
for (auto Decl : TUDecl->lookup(II)) {
clang::FunctionDecl *FDecl = Decl->getAsFunction();
if (!FDecl || !FDecl->isThisDeclarationADefinition())
continue;
if (Ret) {
S.RSC.ReportError(mLocation,
"duplicate function definition for '%0(%1)' for '#pragma rs %2(%3)' (%4, %5)")
<< Kind << Name << KeyReduce << mNameReduce
<< Ret->getLocation().printToString(S.PP.getSourceManager())
<< FDecl->getLocation().printToString(S.PP.getSourceManager());
S.Ok = false;
return nullptr;
}
Ret = FDecl;
}
}
if (!Ret) {
// Either the identifier lookup failed, or we never found the function definition.
S.RSC.ReportError(mLocation,
"could not find function definition for '%0(%1)' for '#pragma rs %2(%3)'")
<< Kind << Name << KeyReduce << mNameReduce;
S.Ok = false;
return nullptr;
}
if (Ret) {
// Must have internal linkage
if (Ret->getFormalLinkage() != clang::InternalLinkage) {
S.RSC.ReportError(Ret->getLocation(), "%0 must be static")
<< S.DiagnosticDescription(Kind, Name);
S.Ok = false;
}
}
if (Ret == nullptr)
S.Ok = false;
return Ret;
}
// updates S.Ok; and, depending on Kind, possibly S.FnAccumulatorOk or S.FnOutConverterOk
void RSExportReduceNew::notOk(StateOfAnalyzeTranslationUnit &S, FnIdent Kind) {
S.Ok = false;
if (Kind == FN_IDENT_ACCUMULATOR) {
S.FnAccumulatorOk = false;
} else if (Kind == FN_IDENT_OUT_CONVERTER) {
S.FnOutConverterOk = false;
}
}
// updates S.Ok; and, depending on Kind, possibly S.FnAccumulatorOk or S.FnOutConverterOk
void RSExportReduceNew::checkVoidReturn(StateOfAnalyzeTranslationUnit &S,
FnIdent Kind, clang::FunctionDecl *Fn) {
slangAssert(Fn);
const clang::QualType ReturnTy = Fn->getReturnType().getCanonicalType();
if (!ReturnTy->isVoidType()) {
S.RSC.ReportError(Fn->getLocation(),
"%0 must return void not '%1'")
<< S.DiagnosticDescription(getKey(Kind), Fn->getName()) << ReturnTy.getAsString();
notOk(S, Kind);
}
}
// updates S.Ok; and, depending on Kind, possibly S.FnAccumulatorOk or S.FnOutConverterOk
void RSExportReduceNew::checkPointeeConstQualified(StateOfAnalyzeTranslationUnit &S,
FnIdent Kind, const llvm::StringRef &Name,
const clang::ParmVarDecl *Param, bool ExpectedQualification) {
const clang::QualType ParamQType = Param->getType();
slangAssert(ParamQType->isPointerType());
const clang::QualType PointeeQType = ParamQType->getPointeeType();
if (PointeeQType.isConstQualified() != ExpectedQualification) {
S.RSC.ReportError(Param->getLocation(),
"%0 parameter '%1' (type '%2') must%3 point to const-qualified type")
<< S.DiagnosticDescription(getKey(Kind), Name)
<< Param->getName() << ParamQType.getAsString()
<< (ExpectedQualification ? "" : " not");
notOk(S, Kind);
}
}
// Process "void mNameInitializer(compType *accum)"
void RSExportReduceNew::analyzeInitializer(StateOfAnalyzeTranslationUnit &S) {
if (!S.FnInitializer) // initializer is always optional
return;
// Must return void
checkVoidReturn(S, FN_IDENT_INITIALIZER, S.FnInitializer);
// Must have exactly one parameter
if (S.FnInitializer->getNumParams() != 1) {
S.RSC.ReportError(S.FnInitializer->getLocation(),
"%0 must take exactly 1 parameter (found %1)")
<< S.DiagnosticDescription(KeyInitializer, mNameInitializer)
<< S.FnInitializer->getNumParams();
S.Ok = false;
return;
}
// Parameter must not be a special parameter
S.FnInitializerParam = S.FnInitializer->getParamDecl(0);
if (isSpecialKernelParameter(S.FnInitializerParam->getName())) {
S.RSC.ReportError(S.FnInitializer->getLocation(),
"%0 cannot take special parameter '%1'")
<< S.DiagnosticDescription(KeyInitializer, mNameInitializer)
<< S.FnInitializerParam->getName();
S.Ok = false;
return;
}
// Parameter must be of pointer type
S.FnInitializerParamTy = S.FnInitializerParam->getType().getCanonicalType();
if (!S.FnInitializerParamTy->isPointerType()) {
S.RSC.ReportError(S.FnInitializer->getLocation(),
"%0 parameter '%1' must be of pointer type not '%2'")
<< S.DiagnosticDescription(KeyInitializer, mNameInitializer)
<< S.FnInitializerParam->getName() << S.FnInitializerParamTy.getAsString();
S.Ok = false;
return;
}
// Parameter must not point to const-qualified
checkPointeeConstQualified(S, FN_IDENT_INITIALIZER, mNameInitializer, S.FnInitializerParam, false);
}
// Process "void mNameAccumulator(compType *accum, in1Type in1, …, inNType inN[, specialarguments])"
void RSExportReduceNew::analyzeAccumulator(StateOfAnalyzeTranslationUnit &S) {
slangAssert(S.FnAccumulator);
// Must return void
checkVoidReturn(S, FN_IDENT_ACCUMULATOR, S.FnAccumulator);
// Must have initial parameter of same type as initializer parameter
// (if there is an initializer), followed by at least 1 input
if (S.FnAccumulator->getNumParams() < 2) {
S.RSC.ReportError(S.FnAccumulator->getLocation(),
"%0 must take at least 2 parameters")
<< S.DiagnosticDescription(KeyAccumulator, mNameAccumulator);
S.Ok = S.FnAccumulatorOk = false;
return;
}
S.FnAccumulatorParamFirst = S.FnAccumulator->getParamDecl(0);
S.FnAccumulatorParamFirstTy = S.FnAccumulatorParamFirst->getType().getCanonicalType();
// First parameter must be of pointer type
if (!S.FnAccumulatorParamFirstTy->isPointerType()) {
S.RSC.ReportError(S.FnAccumulator->getLocation(),
"%0 parameter '%1' must be of pointer type not '%2'")
<< S.DiagnosticDescription(KeyAccumulator, mNameAccumulator)
<< S.FnAccumulatorParamFirst->getName() << S.FnAccumulatorParamFirstTy.getAsString();
S.Ok = S.FnAccumulatorOk = false;
return;
}
// If there is an initializer with a pointer-typed parameter (as
// opposed to an initializer with a bad parameter list), then
// accumulator first parameter must be of same type as initializer
// parameter
if (S.FnInitializer &&
!S.FnInitializerParamTy.isNull() &&
S.FnInitializerParamTy->isPointerType() &&
!S.FnAccumulator->getASTContext().hasSameUnqualifiedType(
S.FnInitializerParamTy->getPointeeType().getCanonicalType(),
S.FnAccumulatorParamFirstTy->getPointeeType().getCanonicalType())) {
// <accumulator> parameter '<baz>' (type '<tbaz>') and initializer <goo>() parameter '<gaz>' (type '<tgaz>')
// must be pointers to the same type
S.RSC.ReportError(S.FnAccumulator->getLocation(),
"%0 parameter '%1' (type '%2') and %3 %4() parameter '%5' (type '%6')"
" must be pointers to the same type")
<< S.DiagnosticDescription(KeyAccumulator, mNameAccumulator)
<< S.FnAccumulatorParamFirst->getName() << S.FnAccumulatorParamFirstTy.getAsString()
<< KeyInitializer << mNameInitializer
<< S.FnInitializerParam->getName() << S.FnInitializerParamTy.getAsString();
S.Ok = S.FnAccumulatorOk = false;
}
if (S.FnAccumulatorOk && S.FnAccumulatorParamFirstTy->getPointeeType()->isFunctionType()) {
S.RSC.ReportError(S.FnAccumulator->getLocation(),
"%0 parameter '%1' (type '%2') must not be pointer to function type")
<< S.DiagnosticDescription(KeyAccumulator, mNameAccumulator)
<< S.FnAccumulatorParamFirst->getName() << S.FnAccumulatorParamFirstTy.getAsString();
S.Ok = S.FnAccumulatorOk = false;
}
if (S.FnAccumulatorOk && S.FnAccumulatorParamFirstTy->getPointeeType()->isIncompleteType()) {
S.RSC.ReportError(S.FnAccumulator->getLocation(),
"%0 parameter '%1' (type '%2') must not be pointer to incomplete type")
<< S.DiagnosticDescription(KeyAccumulator, mNameAccumulator)
<< S.FnAccumulatorParamFirst->getName() << S.FnAccumulatorParamFirstTy.getAsString();
S.Ok = S.FnAccumulatorOk = false;
}
if (S.FnAccumulatorOk &&
HasRSObjectType(S.FnAccumulatorParamFirstTy->getPointeeType().getCanonicalType().getTypePtr())) {
S.RSC.ReportError(S.FnAccumulator->getLocation(),
"%0 parameter '%1' (type '%2') must not be pointer to data containing an object type")
<< S.DiagnosticDescription(KeyAccumulator, mNameAccumulator)
<< S.FnAccumulatorParamFirst->getName() << S.FnAccumulatorParamFirstTy.getAsString();
S.Ok = S.FnAccumulatorOk = false;
}
// Parameter must not point to const-qualified
checkPointeeConstQualified(S, FN_IDENT_ACCUMULATOR, mNameAccumulator, S.FnAccumulatorParamFirst, false);
// Analyze special parameters
S.Ok &= (S.FnAccumulatorOk &= processSpecialKernelParameters(
&S.RSC,
std::bind(S.DiagnosticDescription, KeyAccumulator, mNameAccumulator),
S.FnAccumulator,
&S.FnAccumulatorIndexOfFirstSpecialParameter,
&mAccumulatorSignatureMetadata));
// Must have at least an accumulator and an input.
// If we get here we know there are at least 2 arguments; so the only problem case is
// where we have an accumulator followed immediately by a special parameter.
if (S.FnAccumulatorIndexOfFirstSpecialParameter < 2) {
slangAssert(S.FnAccumulatorIndexOfFirstSpecialParameter < S.FnAccumulator->getNumParams());
S.RSC.ReportError(S.FnAccumulator->getLocation(),
"%0 must have at least 1 input ('%1' is a special parameter)")
<< S.DiagnosticDescription(KeyAccumulator, mNameAccumulator)
<< S.FnAccumulator->getParamDecl(S.FnAccumulatorIndexOfFirstSpecialParameter)->getName();
S.Ok = S.FnAccumulatorOk = false;
return;
}
if (S.FnAccumulatorOk) {
mAccumulatorSignatureMetadata |= bcinfo::MD_SIG_In;
mAccumulatorTypeSize = S.ASTC.getTypeSizeInChars(S.FnAccumulatorParamFirstTy->getPointeeType()).getQuantity();
for (size_t ParamIdx = 1; ParamIdx < S.FnAccumulatorIndexOfFirstSpecialParameter; ++ParamIdx) {
const clang::ParmVarDecl *const Param = S.FnAccumulator->getParamDecl(ParamIdx);
mAccumulatorIns.push_back(Param);
const clang::QualType ParamQType = Param->getType().getCanonicalType();
const clang::Type *ParamType = ParamQType.getTypePtr();
RSExportType *ParamEType = nullptr;
if (ParamQType->isPointerType()) {
S.RSC.ReportError(Param->getLocation(),
"%0 parameter '%1' (type '%2') must not be a pointer")
<< S.DiagnosticDescription(KeyAccumulator, mNameAccumulator)
<< Param->getName() << ParamQType.getAsString();
S.Ok = false;
} else if (HasRSObjectType(ParamType)) {
S.RSC.ReportError(Param->getLocation(),
"%0 parameter '%1' (type '%2') must not contain an object type")
<< S.DiagnosticDescription(KeyAccumulator, mNameAccumulator)
<< Param->getName() << ParamQType.getAsString();
S.Ok = false;
} else if (RSExportType::ValidateType(&S.RSC, S.ASTC, ParamQType, Param, Param->getLocStart(),
S.RSC.getTargetAPI(),
false /* IsFilterscript */,
true /* IsExtern */)) {
// TODO: Better diagnostics on validation or creation failure?
ParamEType = RSExportType::Create(&S.RSC, ParamType, NotLegacyKernelArgument);
S.Ok &= (ParamEType != nullptr);
} else {
S.Ok = false;
}
mAccumulatorInTypes.push_back(ParamEType); // possibly nullptr
}
}
}
// Process "void combinename(compType *accum, const compType *val)"
void RSExportReduceNew::analyzeCombiner(StateOfAnalyzeTranslationUnit &S) {
if (S.FnCombiner) {
// Must return void
checkVoidReturn(S, FN_IDENT_COMBINER, S.FnCombiner);
// Must have exactly two parameters, of same type as first accumulator parameter
if (S.FnCombiner->getNumParams() != 2) {
S.RSC.ReportError(S.FnCombiner->getLocation(),
"%0 must take exactly 2 parameters (found %1)")
<< S.DiagnosticDescription(KeyCombiner, mNameCombiner)
<< S.FnCombiner->getNumParams();
S.Ok = false;
return;
}
if (S.FnAccumulatorParamFirstTy.isNull() || !S.FnAccumulatorParamFirstTy->isPointerType()) {
// We're already in an error situation. We could compare
// against the initializer parameter type instead of the first
// accumulator parameter type (we'd have to check for the
// availability of a parameter type there, too), but it does not
// seem worth the effort.
//
// Likewise, we could compare the two combiner parameter types
// against each other.
slangAssert(!S.Ok);
return;
}
for (int ParamIdx = 0; ParamIdx < 2; ++ParamIdx) {
const clang::ParmVarDecl *const FnCombinerParam = S.FnCombiner->getParamDecl(ParamIdx);
const clang::QualType FnCombinerParamTy = FnCombinerParam->getType().getCanonicalType();
if (!FnCombinerParamTy->isPointerType() ||
!S.FnCombiner->getASTContext().hasSameUnqualifiedType(
S.FnAccumulatorParamFirstTy->getPointeeType().getCanonicalType(),
FnCombinerParamTy->getPointeeType().getCanonicalType())) {
// <combiner> parameter '<baz>' (type '<tbaz>')
// and accumulator <goo>() parameter '<gaz>' (type '<tgaz>') must be pointers to the same type
S.RSC.ReportError(S.FnCombiner->getLocation(),
"%0 parameter '%1' (type '%2') and %3 %4() parameter '%5' (type '%6')"
" must be pointers to the same type")
<< S.DiagnosticDescription(KeyCombiner, mNameCombiner)
<< FnCombinerParam->getName() << FnCombinerParamTy.getAsString()
<< KeyAccumulator << mNameAccumulator
<< S.FnAccumulatorParamFirst->getName() << S.FnAccumulatorParamFirstTy.getAsString();
S.Ok = false;
} else {
// Check const-qualification
checkPointeeConstQualified(S, FN_IDENT_COMBINER, mNameCombiner, FnCombinerParam, ParamIdx==1);
}
}
return;
}
// Ensure accumulator properties permit omission of combiner.
if (!S.FnAccumulatorOk) {
// Couldn't fully analyze accumulator, so cannot see whether it permits omission of combiner.
return;
}
if (mAccumulatorIns.size() != 1 ||
S.FnAccumulatorIndexOfFirstSpecialParameter != S.FnAccumulator->getNumParams())
{
S.RSC.ReportError(S.FnAccumulator->getLocation(),
"%0 must have exactly 1 input"
" and no special parameters in order for the %1 to be omitted")
<< S.DiagnosticDescription(KeyAccumulator, mNameAccumulator)
<< KeyCombiner;
S.Ok = false;
return;
}
const clang::ParmVarDecl *const FnAccumulatorParamInput = S.FnAccumulator->getParamDecl(1);
const clang::QualType FnAccumulatorParamInputTy = FnAccumulatorParamInput->getType().getCanonicalType();
if (!S.FnAccumulator->getASTContext().hasSameUnqualifiedType(
S.FnAccumulatorParamFirstTy->getPointeeType().getCanonicalType(),
FnAccumulatorParamInputTy.getCanonicalType())) {
S.RSC.ReportError(S.FnAccumulator->getLocation(),
"%0 parameter '%1' (type '%2')"
" must be pointer to the type of parameter '%3' (type '%4')"
" in order for the %5 to be omitted")
<< S.DiagnosticDescription(KeyAccumulator, mNameAccumulator)
<< S.FnAccumulatorParamFirst->getName() << S.FnAccumulatorParamFirstTy.getAsString()
<< FnAccumulatorParamInput->getName() << FnAccumulatorParamInputTy.getAsString()
<< KeyCombiner;
S.Ok = false;
}
}
// Process "void outconvertname(resultType *result, const compType *accum)"
void RSExportReduceNew::analyzeOutConverter(StateOfAnalyzeTranslationUnit &S) {
if (!S.FnOutConverter) // outconverter is always optional
return;
// Must return void
checkVoidReturn(S, FN_IDENT_OUT_CONVERTER, S.FnOutConverter);
// Must have exactly two parameters
if (S.FnOutConverter->getNumParams() != 2) {
S.RSC.ReportError(S.FnOutConverter->getLocation(),
"%0 must take exactly 2 parameters (found %1)")
<< S.DiagnosticDescription(KeyOutConverter, mNameOutConverter)
<< S.FnOutConverter->getNumParams();
S.Ok = S.FnOutConverterOk = false;
return;
}
// Parameters must not be special and must be of pointer type;
// and second parameter must match first accumulator parameter
for (int ParamIdx = 0; ParamIdx < 2; ++ParamIdx) {
clang::ParmVarDecl *const FnOutConverterParam = S.FnOutConverter->getParamDecl(ParamIdx);
if (isSpecialKernelParameter(FnOutConverterParam->getName())) {
S.RSC.ReportError(S.FnOutConverter->getLocation(),
"%0 cannot take special parameter '%1'")
<< S.DiagnosticDescription(KeyOutConverter, mNameOutConverter)
<< FnOutConverterParam->getName();
S.Ok = S.FnOutConverterOk = false;
continue;
}
const clang::QualType FnOutConverterParamTy = FnOutConverterParam->getType().getCanonicalType();
if (!FnOutConverterParamTy->isPointerType()) {
S.RSC.ReportError(S.FnOutConverter->getLocation(),
"%0 parameter '%1' must be of pointer type not '%2'")
<< S.DiagnosticDescription(KeyOutConverter, mNameOutConverter)
<< FnOutConverterParam->getName() << FnOutConverterParamTy.getAsString();
S.Ok = S.FnOutConverterOk = false;
continue;
}
// Check const-qualification
checkPointeeConstQualified(S, FN_IDENT_OUT_CONVERTER, mNameOutConverter, FnOutConverterParam, ParamIdx==1);
if (ParamIdx == 0) {
S.FnOutConverterParamFirst = FnOutConverterParam;
S.FnOutConverterParamFirstTy = FnOutConverterParamTy;
continue;
}
if (S.FnAccumulatorParamFirstTy.isNull() || !S.FnAccumulatorParamFirstTy->isPointerType()) {
// We're already in an error situation. We could compare
// against the initializer parameter type instead of the first
// accumulator parameter type (we'd have to check for the
// availability of a parameter type there, too), but it does not
// seem worth the effort.
slangAssert(!S.Ok);
continue;
}
if (!S.FnOutConverter->getASTContext().hasSameUnqualifiedType(
S.FnAccumulatorParamFirstTy->getPointeeType().getCanonicalType(),
FnOutConverterParamTy->getPointeeType().getCanonicalType())) {
// <outconverter> parameter '<baz>' (type '<tbaz>')
// and accumulator <goo>() parameter '<gaz>' (type '<tgaz>') must be pointers to the same type
S.RSC.ReportError(S.FnOutConverter->getLocation(),
"%0 parameter '%1' (type '%2') and %3 %4() parameter '%5' (type '%6')"
" must be pointers to the same type")
<< S.DiagnosticDescription(KeyOutConverter, mNameOutConverter)
<< FnOutConverterParam->getName() << FnOutConverterParamTy.getAsString()
<< KeyAccumulator << mNameAccumulator
<< S.FnAccumulatorParamFirst->getName() << S.FnAccumulatorParamFirstTy.getAsString();
S.Ok = S.FnOutConverterOk = false;
}
}
}
// Process "bool haltername(const compType *accum)"
void RSExportReduceNew::analyzeHalter(StateOfAnalyzeTranslationUnit &S) {
if (!S.FnHalter) // halter is always optional
return;
// Must return bool
const clang::QualType ReturnTy = S.FnHalter->getReturnType().getCanonicalType();
if (!ReturnTy->isBooleanType()) {
S.RSC.ReportError(S.FnHalter->getLocation(),
"%0 must return bool not '%1'")
<< S.DiagnosticDescription(KeyHalter, mNameHalter) << ReturnTy.getAsString();
S.Ok = false;
}
// Must have exactly one parameter
if (S.FnHalter->getNumParams() != 1) {
S.RSC.ReportError(S.FnHalter->getLocation(),
"%0 must take exactly 1 parameter (found %1)")
<< S.DiagnosticDescription(KeyHalter, mNameHalter)
<< S.FnHalter->getNumParams();
S.Ok = false;
return;
}
// Parameter must not be a special parameter
const clang::ParmVarDecl *const FnHalterParam = S.FnHalter->getParamDecl(0);
if (isSpecialKernelParameter(FnHalterParam->getName())) {
S.RSC.ReportError(S.FnHalter->getLocation(),
"%0 cannot take special parameter '%1'")
<< S.DiagnosticDescription(KeyHalter, mNameHalter)
<< FnHalterParam->getName();
S.Ok = false;
return;
}
// Parameter must be same type as first accumulator parameter
if (S.FnAccumulatorParamFirstTy.isNull() || !S.FnAccumulatorParamFirstTy->isPointerType()) {
// We're already in an error situation. We could compare against
// the initializer parameter type or the first combiner parameter
// type instead of the first accumulator parameter type (we'd have
// to check for the availability of a parameter type there, too),
// but it does not seem worth the effort.
slangAssert(!S.Ok);
return;
}
const clang::QualType FnHalterParamTy = FnHalterParam->getType().getCanonicalType();
if (!FnHalterParamTy->isPointerType() ||
!S.FnHalter->getASTContext().hasSameUnqualifiedType(
S.FnAccumulatorParamFirstTy->getPointeeType().getCanonicalType(),
FnHalterParamTy->getPointeeType().getCanonicalType())) {
// <halter> parameter '<baz>' (type '<tbaz>')
// and accumulator <goo>() parameter '<gaz>' (type '<tgaz>') must be pointers to the same type
S.RSC.ReportError(S.FnHalter->getLocation(),
"%0 parameter '%1' (type '%2') and %3 %4() parameter '%5' (type '%6')"
" must be pointers to the same type")
<< S.DiagnosticDescription(KeyHalter, mNameHalter)
<< FnHalterParam->getName() << FnHalterParamTy.getAsString()
<< KeyAccumulator << mNameAccumulator
<< S.FnAccumulatorParamFirst->getName() << S.FnAccumulatorParamFirstTy.getAsString();
S.Ok = false;
return;
}
// Parameter must point to const-qualified
checkPointeeConstQualified(S, FN_IDENT_HALTER, mNameHalter, FnHalterParam, true);
}
void RSExportReduceNew::analyzeResultType(StateOfAnalyzeTranslationUnit &S) {
if (!(S.FnAccumulatorOk && S.FnOutConverterOk)) {
// No idea what the result type is
slangAssert(!S.Ok);
return;
}
struct ResultInfoType {
const clang::QualType QType;
clang::VarDecl *const Decl;
const char *FnKey;
const std::string &FnName;
std::function<std::string ()> UnlessOutConverter;
} ResultInfo =
S.FnOutConverter
? ResultInfoType({ S.FnOutConverterParamFirstTy, S.FnOutConverterParamFirst,
KeyOutConverter, mNameOutConverter,
[]() { return std::string(""); }})
: ResultInfoType({ S.FnAccumulatorParamFirstTy, S.FnAccumulatorParamFirst,
KeyAccumulator, mNameAccumulator,
[]() { return std::string(" unless ") + KeyOutConverter + " is provided"; }});
const clang::QualType PointeeQType = ResultInfo.QType->getPointeeType();
if (PointeeQType->isPointerType()) {
S.RSC.ReportError(ResultInfo.Decl->getLocation(),
"%0 parameter '%1' (type '%2') must not point to a pointer%3")
<< S.DiagnosticDescription(ResultInfo.FnKey, ResultInfo.FnName)
<< ResultInfo.Decl->getName() << ResultInfo.QType.getAsString()
<< ResultInfo.UnlessOutConverter();
} else if (PointeeQType->isIncompleteType()) {
S.RSC.ReportError(ResultInfo.Decl->getLocation(),
"%0 parameter '%1' (type '%2') must not point to an incomplete type%3")
<< S.DiagnosticDescription(ResultInfo.FnKey, ResultInfo.FnName)
<< ResultInfo.Decl->getName() << ResultInfo.QType.getAsString()
<< ResultInfo.UnlessOutConverter();
} else if (HasRSObjectType(PointeeQType.getTypePtr())) {
S.RSC.ReportError(ResultInfo.Decl->getLocation(),
"%0 parameter '%1' (type '%2') must not point to data containing an object type%3")
<< S.DiagnosticDescription(ResultInfo.FnKey, ResultInfo.FnName)
<< ResultInfo.Decl->getName() << ResultInfo.QType.getAsString()
<< ResultInfo.UnlessOutConverter();
} else if (RSExportType::ValidateType(&S.RSC, S.ASTC, PointeeQType,
ResultInfo.Decl, ResultInfo.Decl->getLocStart(),
S.RSC.getTargetAPI(),
false /* IsFilterscript */,
true /* IsExtern */)) {
// TODO: Better diagnostics on validation or creation failure?
if ((mResultType = RSExportType::Create(&S.RSC, PointeeQType.getTypePtr(),
NotLegacyKernelArgument, ResultInfo.Decl)) != nullptr) {
const RSExportType *CheckType = mResultType;
const char *ArrayErrorPhrase = "";
if (mResultType->getClass() == RSExportType::ExportClassConstantArray) {
CheckType = static_cast<const RSExportConstantArrayType *>(mResultType)->getElementType();
ArrayErrorPhrase = "n array of";
}
switch (CheckType->getClass()) {
case RSExportType::ExportClassMatrix:
// Not supported for now -- what does a matrix result type mean?
S.RSC.ReportError(ResultInfo.Decl->getLocation(),
"%0 parameter '%1' (type '%2') must not point to a%3 matrix type%4")
<< S.DiagnosticDescription(ResultInfo.FnKey, ResultInfo.FnName)
<< ResultInfo.Decl->getName() << ResultInfo.QType.getAsString()
<< ArrayErrorPhrase
<< ResultInfo.UnlessOutConverter();
mResultType = nullptr;
break;
default:
// All's well
break;
}
}
}
if (mResultType)
S.RSC.insertExportReduceNewResultType(mResultType);
else
S.Ok = false;
}
bool RSExportReduceNew::analyzeTranslationUnit() {
RSContext &RSC = *getRSContext();
clang::Preprocessor &PP = RSC.getPreprocessor();
StateOfAnalyzeTranslationUnit S(
RSC, PP, RSC.getASTContext(),
[&RSC, &PP, this] (const char *Key, const std::string &Name) {
std::ostringstream Description;
Description
<< Key << " " << Name << "()"
<< " for '#pragma rs " << KeyReduce << "(" << mNameReduce << ")'"
<< " (" << mLocation.printToString(PP.getSourceManager()) << ")";
return Description.str();
});
S.FnInitializer = lookupFunction(S, KeyInitializer, mNameInitializer);
S.FnAccumulator = lookupFunction(S, KeyAccumulator, mNameAccumulator);
S.FnCombiner = lookupFunction(S, KeyCombiner, mNameCombiner);
S.FnOutConverter = lookupFunction(S, KeyOutConverter, mNameOutConverter);
S.FnHalter = lookupFunction(S, KeyHalter, mNameHalter);
if (!S.Ok)
return false;
analyzeInitializer(S);
analyzeAccumulator(S);
analyzeCombiner(S);
analyzeOutConverter(S);
analyzeHalter(S);
analyzeResultType(S);
return S.Ok;
}
} // namespace slang