blob: e9f9db1628955755254a761d404961de9734365b [file] [log] [blame]
//===- X86PLT.cpp -----------------------------------------------------------===//
//
// The MCLinker Project
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "X86GOT.h"
#include "X86PLT.h"
#include <llvm/Support/raw_ostream.h>
#include <llvm/Support/ErrorHandling.h>
#include <llvm/Support/ELF.h>
#include <mcld/MC/MCLDOutput.h>
#include <new>
namespace {
const uint8_t x86_dyn_plt0[] = {
0xff, 0xb3, 0x04, 0, 0, 0, // pushl 0x4(%ebx)
0xff, 0xa3, 0x08, 0, 0, 0, // jmp *0x8(%ebx)
0xf, 0x1f, 0x4, 0 // nopl 0(%eax)
};
const uint8_t x86_dyn_plt1[] = {
0xff, 0xa3, 0, 0, 0, 0, // jmp *sym@GOT(%ebx)
0x68, 0, 0, 0, 0, // pushl $offset
0xe9, 0, 0, 0, 0 // jmp plt0
};
const uint8_t x86_exec_plt0[] = {
0xff, 0x35, 0, 0, 0, 0, // pushl .got + 4
0xff, 0x25, 0, 0, 0, 0, // jmp *(.got + 8)
0xf, 0x1f, 0x4, 0 // nopl 0(%eax)
};
const uint8_t x86_exec_plt1[] = {
0xff, 0x25, 0, 0, 0, 0, // jmp *(sym in .got)
0x68, 0, 0, 0, 0, // pushl $offset
0xe9, 0, 0, 0, 0 // jmp plt0
};
}
namespace mcld {
X86PLT0::X86PLT0(llvm::MCSectionData* pParent, unsigned int pSize)
: PLTEntry(pSize, pParent) { }
X86PLT1::X86PLT1(llvm::MCSectionData* pParent, unsigned int pSize)
: PLTEntry(pSize, pParent) { }
//===----------------------------------------------------------------------===//
// X86PLT
X86PLT::X86PLT(LDSection& pSection,
llvm::MCSectionData& pSectionData,
X86GOT &pGOTPLT,
const Output& pOutput)
: PLT(pSection, pSectionData), m_GOT(pGOTPLT), m_PLTEntryIterator()
{
assert (Output::DynObj == pOutput.type() || Output::Exec == pOutput.type());
if (Output::DynObj == pOutput.type()) {
m_PLT0 = x86_dyn_plt0;
m_PLT1 = x86_dyn_plt1;
m_PLT0Size = sizeof (x86_dyn_plt0);
m_PLT1Size = sizeof (x86_dyn_plt1);
}
else {
m_PLT0 = x86_exec_plt0;
m_PLT1 = x86_exec_plt1;
m_PLT0Size = sizeof (x86_exec_plt0);
m_PLT1Size = sizeof (x86_exec_plt1);
}
X86PLT0* plt0_entry = new X86PLT0(&m_SectionData, m_PLT0Size);
m_Section.setSize(m_Section.size() + plt0_entry->getEntrySize());
m_PLTEntryIterator = pSectionData.begin();
}
X86PLT::~X86PLT()
{
}
void X86PLT::reserveEntry(size_t pNum)
{
X86PLT1* plt1_entry = 0;
GOTEntry* got_entry = 0;
for (size_t i = 0; i < pNum; ++i) {
plt1_entry = new (std::nothrow) X86PLT1(&m_SectionData, m_PLT1Size);
if (!plt1_entry)
llvm::report_fatal_error("Allocating new memory for X86PLT1 failed!");
m_Section.setSize(m_Section.size() + plt1_entry->getEntrySize());
got_entry= new (std::nothrow) GOTEntry(0, m_GOT.getEntrySize(),
&(m_GOT.m_SectionData));
if (!got_entry)
llvm::report_fatal_error("Allocating new memory for GOT failed!");
m_GOT.m_Section.setSize(m_GOT.m_Section.size() + m_GOT.f_EntrySize);
++(m_GOT.m_GOTPLTNum);
++(m_GOT.m_GeneralGOTIterator);
}
}
PLTEntry* X86PLT::getPLTEntry(const ResolveInfo& pSymbol, bool& pExist)
{
X86PLT1 *&PLTEntry = m_PLTEntryMap[&pSymbol];
pExist = 1;
if (!PLTEntry) {
GOTEntry *&GOTPLTEntry = m_GOT.m_GOTPLTMap[&pSymbol];
assert(!GOTPLTEntry && "PLT entry and got.plt entry doesn't match!");
pExist = 0;
// This will skip PLT0.
++m_PLTEntryIterator;
assert(m_PLTEntryIterator != m_SectionData.end() &&
"The number of PLT Entries and ResolveInfo doesn't match");
++(m_GOT.m_GOTPLTIterator);
PLTEntry = llvm::cast<X86PLT1>(&(*m_PLTEntryIterator));
GOTPLTEntry = llvm::cast<GOTEntry>(&(*(m_GOT.m_GOTPLTIterator)));
}
return PLTEntry;
}
GOTEntry* X86PLT::getGOTPLTEntry(const ResolveInfo& pSymbol, bool& pExist)
{
GOTEntry *&GOTPLTEntry = m_GOT.m_GOTPLTMap[&pSymbol];
pExist = 1;
if (!GOTPLTEntry) {
X86PLT1 *&PLTEntry = m_PLTEntryMap[&pSymbol];
assert(!PLTEntry && "PLT entry and got.plt entry doesn't match!");
pExist = 0;
// This will skip PLT0.
++m_PLTEntryIterator;
assert(m_PLTEntryIterator != m_SectionData.end() &&
"The number of PLT Entries and ResolveInfo doesn't match");
++(m_GOT.m_GOTPLTIterator);
PLTEntry = llvm::cast<X86PLT1>(&(*m_PLTEntryIterator));
GOTPLTEntry = llvm::cast<GOTEntry>(&(*(m_GOT.m_GOTPLTIterator)));
}
return GOTPLTEntry;
}
X86PLT0* X86PLT::getPLT0() const {
iterator first = m_SectionData.getFragmentList().begin();
iterator end = m_SectionData.getFragmentList().end();
assert(first!=end && "FragmentList is empty, getPLT0 failed!");
X86PLT0* plt0 = &(llvm::cast<X86PLT0>(*first));
return plt0;
}
// FIXME: It only works on little endian machine.
void X86PLT::applyPLT0() {
iterator first = m_SectionData.getFragmentList().begin();
iterator end = m_SectionData.getFragmentList().end();
assert(first!=end && "FragmentList is empty, applyPLT0 failed!");
X86PLT0* plt0 = &(llvm::cast<X86PLT0>(*first));
unsigned char* data = 0;
data = static_cast<unsigned char*>(malloc(plt0->getEntrySize()));
if (!data)
llvm::report_fatal_error("Allocating new memory for plt0 failed!");
memcpy(data, m_PLT0, plt0->getEntrySize());
if (m_PLT0 == x86_exec_plt0) {
uint64_t got_base = m_GOT.getSection().addr();
assert(got_base && ".got base address is NULL!");
uint32_t *offset = reinterpret_cast<uint32_t*>(data + 2);
*offset = got_base + 4;
offset = reinterpret_cast<uint32_t*>(data + 8);
*offset = got_base + 8;
}
plt0->setContent(data);
}
// FIXME: It only works on little endian machine.
void X86PLT::applyPLT1() {
uint64_t plt_base = m_Section.addr();
assert(plt_base && ".plt base address is NULL!");
uint64_t got_base = m_GOT.getSection().addr();
assert(got_base && ".got base address is NULL!");
X86PLT::iterator it = m_SectionData.begin();
X86PLT::iterator ie = m_SectionData.end();
assert(it!=ie && "FragmentList is empty, applyPLT1 failed!");
uint64_t GOTEntrySize = m_GOT.getEntrySize();
// Skip GOT0
uint64_t GOTEntryOffset = GOTEntrySize * X86GOT0Num;
//skip PLT0
uint64_t PLTEntryOffset = m_PLT0Size;
++it;
X86PLT1* plt1 = 0;
uint64_t PLTRelOffset = 0;
while (it != ie) {
plt1 = &(llvm::cast<X86PLT1>(*it));
unsigned char *data;
data = static_cast<unsigned char*>(malloc(plt1->getEntrySize()));
if (!data)
llvm::report_fatal_error("Allocating new memory for plt1 failed!");
memcpy(data, m_PLT1, plt1->getEntrySize());
uint32_t* offset;
offset = reinterpret_cast<uint32_t*>(data + 2);
*offset = GOTEntryOffset;
GOTEntryOffset += GOTEntrySize;
offset = reinterpret_cast<uint32_t*>(data + 7);
*offset = PLTRelOffset;
PLTRelOffset += sizeof (llvm::ELF::Elf32_Rel);
offset = reinterpret_cast<uint32_t*>(data + 12);
*offset = -(PLTEntryOffset + 12 + 4);
PLTEntryOffset += m_PLT1Size;
plt1->setContent(data);
++it;
}
unsigned int GOTPLTNum = m_GOT.getGOTPLTNum();
if (GOTPLTNum != 0) {
X86GOT::iterator gotplt_it = m_GOT.getLastGOT0();
X86GOT::iterator list_ie = m_GOT.getSectionData().getFragmentList().end();
++gotplt_it;
uint64_t PLTEntryAddress = plt_base + m_PLT0Size;
for (unsigned int i = 0; i < GOTPLTNum; ++i) {
if (gotplt_it == list_ie)
llvm::report_fatal_error(
"The number of got.plt entries is inconsistent!");
llvm::cast<GOTEntry>(*gotplt_it).setContent(PLTEntryAddress + 6);
PLTEntryAddress += m_PLT1Size;
++gotplt_it;
}
}
}
} // end namespace mcld