blob: 6a24de25a08ce93e1a38afe73636715fb859aaa2 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.util.apk;
import android.util.ArrayMap;
import android.util.Pair;
import java.io.ByteArrayInputStream;
import java.io.FileDescriptor;
import java.io.IOException;
import java.io.RandomAccessFile;
import java.nio.BufferUnderflowException;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.security.DigestException;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.security.PublicKey;
import java.security.Signature;
import java.security.SignatureException;
import java.security.cert.CertificateException;
import java.security.cert.CertificateFactory;
import java.security.cert.X509Certificate;
import java.security.spec.AlgorithmParameterSpec;
import java.security.spec.MGF1ParameterSpec;
import java.security.spec.PSSParameterSpec;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
/**
* Utility class for an APK Signature Scheme using the APK Signing Block.
*
* @hide for internal use only.
*/
public final class ApkSigningBlockUtils {
private ApkSigningBlockUtils() {
}
/**
* Returns the APK Signature Scheme block contained in the provided APK file and the
* additional information relevant for verifying the block against the file.
*
* @param blockId the ID value in the APK Signing Block's sequence of ID-value pairs
* identifying the appropriate block to find, e.g. the APK Signature Scheme v2
* block ID.
* @throws SignatureNotFoundException if the APK is not signed using this scheme.
* @throws IOException if an I/O error occurs while reading the APK file.
*/
static SignatureInfo findSignature(RandomAccessFile apk, int blockId)
throws IOException, SignatureNotFoundException {
// Find the ZIP End of Central Directory (EoCD) record.
Pair<ByteBuffer, Long> eocdAndOffsetInFile = getEocd(apk);
ByteBuffer eocd = eocdAndOffsetInFile.first;
long eocdOffset = eocdAndOffsetInFile.second;
if (ZipUtils.isZip64EndOfCentralDirectoryLocatorPresent(apk, eocdOffset)) {
throw new SignatureNotFoundException("ZIP64 APK not supported");
}
// Find the APK Signing Block. The block immediately precedes the Central Directory.
long centralDirOffset = getCentralDirOffset(eocd, eocdOffset);
Pair<ByteBuffer, Long> apkSigningBlockAndOffsetInFile =
findApkSigningBlock(apk, centralDirOffset);
ByteBuffer apkSigningBlock = apkSigningBlockAndOffsetInFile.first;
long apkSigningBlockOffset = apkSigningBlockAndOffsetInFile.second;
// Find the APK Signature Scheme Block inside the APK Signing Block.
ByteBuffer apkSignatureSchemeBlock = findApkSignatureSchemeBlock(apkSigningBlock,
blockId);
return new SignatureInfo(
apkSignatureSchemeBlock,
apkSigningBlockOffset,
centralDirOffset,
eocdOffset,
eocd);
}
static void verifyIntegrity(
Map<Integer, byte[]> expectedDigests,
RandomAccessFile apk,
SignatureInfo signatureInfo) throws SecurityException {
if (expectedDigests.isEmpty()) {
throw new SecurityException("No digests provided");
}
boolean neverVerified = true;
Map<Integer, byte[]> expected1MbChunkDigests = new ArrayMap<>();
if (expectedDigests.containsKey(CONTENT_DIGEST_CHUNKED_SHA256)) {
expected1MbChunkDigests.put(CONTENT_DIGEST_CHUNKED_SHA256,
expectedDigests.get(CONTENT_DIGEST_CHUNKED_SHA256));
}
if (expectedDigests.containsKey(CONTENT_DIGEST_CHUNKED_SHA512)) {
expected1MbChunkDigests.put(CONTENT_DIGEST_CHUNKED_SHA512,
expectedDigests.get(CONTENT_DIGEST_CHUNKED_SHA512));
}
if (!expected1MbChunkDigests.isEmpty()) {
try {
verifyIntegrityFor1MbChunkBasedAlgorithm(expected1MbChunkDigests, apk.getFD(),
signatureInfo);
neverVerified = false;
} catch (IOException e) {
throw new SecurityException("Cannot get FD", e);
}
}
if (expectedDigests.containsKey(CONTENT_DIGEST_VERITY_CHUNKED_SHA256)) {
verifyIntegrityForVerityBasedAlgorithm(
expectedDigests.get(CONTENT_DIGEST_VERITY_CHUNKED_SHA256), apk, signatureInfo);
neverVerified = false;
}
if (neverVerified) {
throw new SecurityException("No known digest exists for integrity check");
}
}
static boolean isSupportedSignatureAlgorithm(int sigAlgorithm) {
switch (sigAlgorithm) {
case SIGNATURE_RSA_PSS_WITH_SHA256:
case SIGNATURE_RSA_PSS_WITH_SHA512:
case SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA256:
case SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA512:
case SIGNATURE_ECDSA_WITH_SHA256:
case SIGNATURE_ECDSA_WITH_SHA512:
case SIGNATURE_DSA_WITH_SHA256:
case SIGNATURE_VERITY_RSA_PKCS1_V1_5_WITH_SHA256:
case SIGNATURE_VERITY_ECDSA_WITH_SHA256:
case SIGNATURE_VERITY_DSA_WITH_SHA256:
return true;
default:
return false;
}
}
private static void verifyIntegrityFor1MbChunkBasedAlgorithm(
Map<Integer, byte[]> expectedDigests,
FileDescriptor apkFileDescriptor,
SignatureInfo signatureInfo) throws SecurityException {
int[] digestAlgorithms = new int[expectedDigests.size()];
int digestAlgorithmCount = 0;
for (int digestAlgorithm : expectedDigests.keySet()) {
digestAlgorithms[digestAlgorithmCount] = digestAlgorithm;
digestAlgorithmCount++;
}
byte[][] actualDigests;
try {
actualDigests = computeContentDigestsPer1MbChunk(digestAlgorithms, apkFileDescriptor,
signatureInfo);
} catch (DigestException e) {
throw new SecurityException("Failed to compute digest(s) of contents", e);
}
for (int i = 0; i < digestAlgorithms.length; i++) {
int digestAlgorithm = digestAlgorithms[i];
byte[] expectedDigest = expectedDigests.get(digestAlgorithm);
byte[] actualDigest = actualDigests[i];
if (!MessageDigest.isEqual(expectedDigest, actualDigest)) {
throw new SecurityException(
getContentDigestAlgorithmJcaDigestAlgorithm(digestAlgorithm)
+ " digest of contents did not verify");
}
}
}
/**
* Calculate digests using digestAlgorithms for apkFileDescriptor.
* This will skip signature block described by signatureInfo.
*/
public static byte[][] computeContentDigestsPer1MbChunk(int[] digestAlgorithms,
FileDescriptor apkFileDescriptor, SignatureInfo signatureInfo) throws DigestException {
// We need to verify the integrity of the following three sections of the file:
// 1. Everything up to the start of the APK Signing Block.
// 2. ZIP Central Directory.
// 3. ZIP End of Central Directory (EoCD).
// Each of these sections is represented as a separate DataSource instance below.
// To handle large APKs, these sections are read in 1 MB chunks using memory-mapped I/O to
// avoid wasting physical memory. In most APK verification scenarios, the contents of the
// APK are already there in the OS's page cache and thus mmap does not use additional
// physical memory.
DataSource beforeApkSigningBlock =
DataSource.create(apkFileDescriptor, 0, signatureInfo.apkSigningBlockOffset);
DataSource centralDir =
DataSource.create(
apkFileDescriptor, signatureInfo.centralDirOffset,
signatureInfo.eocdOffset - signatureInfo.centralDirOffset);
// For the purposes of integrity verification, ZIP End of Central Directory's field Start of
// Central Directory must be considered to point to the offset of the APK Signing Block.
ByteBuffer eocdBuf = signatureInfo.eocd.duplicate();
eocdBuf.order(ByteOrder.LITTLE_ENDIAN);
ZipUtils.setZipEocdCentralDirectoryOffset(eocdBuf, signatureInfo.apkSigningBlockOffset);
DataSource eocd = new ByteBufferDataSource(eocdBuf);
return computeContentDigestsPer1MbChunk(digestAlgorithms,
new DataSource[]{beforeApkSigningBlock, centralDir, eocd});
}
private static byte[][] computeContentDigestsPer1MbChunk(
int[] digestAlgorithms,
DataSource[] contents) throws DigestException {
// For each digest algorithm the result is computed as follows:
// 1. Each segment of contents is split into consecutive chunks of 1 MB in size.
// The final chunk will be shorter iff the length of segment is not a multiple of 1 MB.
// No chunks are produced for empty (zero length) segments.
// 2. The digest of each chunk is computed over the concatenation of byte 0xa5, the chunk's
// length in bytes (uint32 little-endian) and the chunk's contents.
// 3. The output digest is computed over the concatenation of the byte 0x5a, the number of
// chunks (uint32 little-endian) and the concatenation of digests of chunks of all
// segments in-order.
long totalChunkCountLong = 0;
for (DataSource input : contents) {
totalChunkCountLong += getChunkCount(input.size());
}
if (totalChunkCountLong >= Integer.MAX_VALUE / 1024) {
throw new DigestException("Too many chunks: " + totalChunkCountLong);
}
int totalChunkCount = (int) totalChunkCountLong;
byte[][] digestsOfChunks = new byte[digestAlgorithms.length][];
for (int i = 0; i < digestAlgorithms.length; i++) {
int digestAlgorithm = digestAlgorithms[i];
int digestOutputSizeBytes = getContentDigestAlgorithmOutputSizeBytes(digestAlgorithm);
byte[] concatenationOfChunkCountAndChunkDigests =
new byte[5 + totalChunkCount * digestOutputSizeBytes];
concatenationOfChunkCountAndChunkDigests[0] = 0x5a;
setUnsignedInt32LittleEndian(
totalChunkCount,
concatenationOfChunkCountAndChunkDigests,
1);
digestsOfChunks[i] = concatenationOfChunkCountAndChunkDigests;
}
byte[] chunkContentPrefix = new byte[5];
chunkContentPrefix[0] = (byte) 0xa5;
int chunkIndex = 0;
MessageDigest[] mds = new MessageDigest[digestAlgorithms.length];
for (int i = 0; i < digestAlgorithms.length; i++) {
String jcaAlgorithmName =
getContentDigestAlgorithmJcaDigestAlgorithm(digestAlgorithms[i]);
try {
mds[i] = MessageDigest.getInstance(jcaAlgorithmName);
} catch (NoSuchAlgorithmException e) {
throw new RuntimeException(jcaAlgorithmName + " digest not supported", e);
}
}
// TODO: Compute digests of chunks in parallel when beneficial. This requires some research
// into how to parallelize (if at all) based on the capabilities of the hardware on which
// this code is running and based on the size of input.
DataDigester digester = new MultipleDigestDataDigester(mds);
int dataSourceIndex = 0;
for (DataSource input : contents) {
long inputOffset = 0;
long inputRemaining = input.size();
while (inputRemaining > 0) {
int chunkSize = (int) Math.min(inputRemaining, CHUNK_SIZE_BYTES);
setUnsignedInt32LittleEndian(chunkSize, chunkContentPrefix, 1);
for (int i = 0; i < mds.length; i++) {
mds[i].update(chunkContentPrefix);
}
try {
input.feedIntoDataDigester(digester, inputOffset, chunkSize);
} catch (IOException e) {
throw new DigestException(
"Failed to digest chunk #" + chunkIndex + " of section #"
+ dataSourceIndex,
e);
}
for (int i = 0; i < digestAlgorithms.length; i++) {
int digestAlgorithm = digestAlgorithms[i];
byte[] concatenationOfChunkCountAndChunkDigests = digestsOfChunks[i];
int expectedDigestSizeBytes =
getContentDigestAlgorithmOutputSizeBytes(digestAlgorithm);
MessageDigest md = mds[i];
int actualDigestSizeBytes =
md.digest(
concatenationOfChunkCountAndChunkDigests,
5 + chunkIndex * expectedDigestSizeBytes,
expectedDigestSizeBytes);
if (actualDigestSizeBytes != expectedDigestSizeBytes) {
throw new RuntimeException(
"Unexpected output size of " + md.getAlgorithm() + " digest: "
+ actualDigestSizeBytes);
}
}
inputOffset += chunkSize;
inputRemaining -= chunkSize;
chunkIndex++;
}
dataSourceIndex++;
}
byte[][] result = new byte[digestAlgorithms.length][];
for (int i = 0; i < digestAlgorithms.length; i++) {
int digestAlgorithm = digestAlgorithms[i];
byte[] input = digestsOfChunks[i];
String jcaAlgorithmName = getContentDigestAlgorithmJcaDigestAlgorithm(digestAlgorithm);
MessageDigest md;
try {
md = MessageDigest.getInstance(jcaAlgorithmName);
} catch (NoSuchAlgorithmException e) {
throw new RuntimeException(jcaAlgorithmName + " digest not supported", e);
}
byte[] output = md.digest(input);
result[i] = output;
}
return result;
}
/**
* Return the verity digest only if the length of digest content looks correct.
* When verity digest is generated, the last incomplete 4k chunk is padded with 0s before
* hashing. This means two almost identical APKs with different number of 0 at the end will have
* the same verity digest. To avoid this problem, the length of the source content (excluding
* Signing Block) is appended to the verity digest, and the digest is returned only if the
* length is consistent to the current APK.
*/
static byte[] parseVerityDigestAndVerifySourceLength(
byte[] data, long fileSize, SignatureInfo signatureInfo) throws SecurityException {
// FORMAT:
// OFFSET DATA TYPE DESCRIPTION
// * @+0 bytes uint8[32] Merkle tree root hash of SHA-256
// * @+32 bytes int64 Length of source data
int kRootHashSize = 32;
int kSourceLengthSize = 8;
if (data.length != kRootHashSize + kSourceLengthSize) {
throw new SecurityException("Verity digest size is wrong: " + data.length);
}
ByteBuffer buffer = ByteBuffer.wrap(data).order(ByteOrder.LITTLE_ENDIAN);
buffer.position(kRootHashSize);
long expectedSourceLength = buffer.getLong();
long signingBlockSize = signatureInfo.centralDirOffset
- signatureInfo.apkSigningBlockOffset;
if (expectedSourceLength != fileSize - signingBlockSize) {
throw new SecurityException("APK content size did not verify");
}
return Arrays.copyOfRange(data, 0, kRootHashSize);
}
private static void verifyIntegrityForVerityBasedAlgorithm(
byte[] expectedDigest,
RandomAccessFile apk,
SignatureInfo signatureInfo) throws SecurityException {
try {
byte[] expectedRootHash = parseVerityDigestAndVerifySourceLength(expectedDigest,
apk.getChannel().size(), signatureInfo);
VerityBuilder.VerityResult verity = VerityBuilder.generateApkVerityTree(apk,
signatureInfo, new ByteBufferFactory() {
@Override
public ByteBuffer create(int capacity) {
return ByteBuffer.allocate(capacity);
}
});
if (!Arrays.equals(expectedRootHash, verity.rootHash)) {
throw new SecurityException("APK verity digest of contents did not verify");
}
} catch (DigestException | IOException | NoSuchAlgorithmException e) {
throw new SecurityException("Error during verification", e);
}
}
/**
* Returns the ZIP End of Central Directory (EoCD) and its offset in the file.
*
* @throws IOException if an I/O error occurs while reading the file.
* @throws SignatureNotFoundException if the EoCD could not be found.
*/
static Pair<ByteBuffer, Long> getEocd(RandomAccessFile apk)
throws IOException, SignatureNotFoundException {
Pair<ByteBuffer, Long> eocdAndOffsetInFile =
ZipUtils.findZipEndOfCentralDirectoryRecord(apk);
if (eocdAndOffsetInFile == null) {
throw new SignatureNotFoundException(
"Not an APK file: ZIP End of Central Directory record not found");
}
return eocdAndOffsetInFile;
}
static long getCentralDirOffset(ByteBuffer eocd, long eocdOffset)
throws SignatureNotFoundException {
// Look up the offset of ZIP Central Directory.
long centralDirOffset = ZipUtils.getZipEocdCentralDirectoryOffset(eocd);
if (centralDirOffset > eocdOffset) {
throw new SignatureNotFoundException(
"ZIP Central Directory offset out of range: " + centralDirOffset
+ ". ZIP End of Central Directory offset: " + eocdOffset);
}
long centralDirSize = ZipUtils.getZipEocdCentralDirectorySizeBytes(eocd);
if (centralDirOffset + centralDirSize != eocdOffset) {
throw new SignatureNotFoundException(
"ZIP Central Directory is not immediately followed by End of Central"
+ " Directory");
}
return centralDirOffset;
}
private static long getChunkCount(long inputSizeBytes) {
return (inputSizeBytes + CHUNK_SIZE_BYTES - 1) / CHUNK_SIZE_BYTES;
}
private static final int CHUNK_SIZE_BYTES = 1024 * 1024;
static final int SIGNATURE_RSA_PSS_WITH_SHA256 = 0x0101;
static final int SIGNATURE_RSA_PSS_WITH_SHA512 = 0x0102;
static final int SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA256 = 0x0103;
static final int SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA512 = 0x0104;
static final int SIGNATURE_ECDSA_WITH_SHA256 = 0x0201;
static final int SIGNATURE_ECDSA_WITH_SHA512 = 0x0202;
static final int SIGNATURE_DSA_WITH_SHA256 = 0x0301;
static final int SIGNATURE_VERITY_RSA_PKCS1_V1_5_WITH_SHA256 = 0x0421;
static final int SIGNATURE_VERITY_ECDSA_WITH_SHA256 = 0x0423;
static final int SIGNATURE_VERITY_DSA_WITH_SHA256 = 0x0425;
public static final int CONTENT_DIGEST_CHUNKED_SHA256 = 1;
public static final int CONTENT_DIGEST_CHUNKED_SHA512 = 2;
public static final int CONTENT_DIGEST_VERITY_CHUNKED_SHA256 = 3;
public static final int CONTENT_DIGEST_SHA256 = 4;
static int compareSignatureAlgorithm(int sigAlgorithm1, int sigAlgorithm2) {
int digestAlgorithm1 = getSignatureAlgorithmContentDigestAlgorithm(sigAlgorithm1);
int digestAlgorithm2 = getSignatureAlgorithmContentDigestAlgorithm(sigAlgorithm2);
return compareContentDigestAlgorithm(digestAlgorithm1, digestAlgorithm2);
}
private static int compareContentDigestAlgorithm(int digestAlgorithm1, int digestAlgorithm2) {
switch (digestAlgorithm1) {
case CONTENT_DIGEST_CHUNKED_SHA256:
switch (digestAlgorithm2) {
case CONTENT_DIGEST_CHUNKED_SHA256:
return 0;
case CONTENT_DIGEST_CHUNKED_SHA512:
case CONTENT_DIGEST_VERITY_CHUNKED_SHA256:
return -1;
default:
throw new IllegalArgumentException(
"Unknown digestAlgorithm2: " + digestAlgorithm2);
}
case CONTENT_DIGEST_CHUNKED_SHA512:
switch (digestAlgorithm2) {
case CONTENT_DIGEST_CHUNKED_SHA256:
case CONTENT_DIGEST_VERITY_CHUNKED_SHA256:
return 1;
case CONTENT_DIGEST_CHUNKED_SHA512:
return 0;
default:
throw new IllegalArgumentException(
"Unknown digestAlgorithm2: " + digestAlgorithm2);
}
case CONTENT_DIGEST_VERITY_CHUNKED_SHA256:
switch (digestAlgorithm2) {
case CONTENT_DIGEST_CHUNKED_SHA512:
return -1;
case CONTENT_DIGEST_VERITY_CHUNKED_SHA256:
return 0;
case CONTENT_DIGEST_CHUNKED_SHA256:
return 1;
default:
throw new IllegalArgumentException(
"Unknown digestAlgorithm2: " + digestAlgorithm2);
}
default:
throw new IllegalArgumentException("Unknown digestAlgorithm1: " + digestAlgorithm1);
}
}
static int getSignatureAlgorithmContentDigestAlgorithm(int sigAlgorithm) {
switch (sigAlgorithm) {
case SIGNATURE_RSA_PSS_WITH_SHA256:
case SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA256:
case SIGNATURE_ECDSA_WITH_SHA256:
case SIGNATURE_DSA_WITH_SHA256:
return CONTENT_DIGEST_CHUNKED_SHA256;
case SIGNATURE_RSA_PSS_WITH_SHA512:
case SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA512:
case SIGNATURE_ECDSA_WITH_SHA512:
return CONTENT_DIGEST_CHUNKED_SHA512;
case SIGNATURE_VERITY_RSA_PKCS1_V1_5_WITH_SHA256:
case SIGNATURE_VERITY_ECDSA_WITH_SHA256:
case SIGNATURE_VERITY_DSA_WITH_SHA256:
return CONTENT_DIGEST_VERITY_CHUNKED_SHA256;
default:
throw new IllegalArgumentException(
"Unknown signature algorithm: 0x"
+ Long.toHexString(sigAlgorithm & 0xffffffff));
}
}
static String getContentDigestAlgorithmJcaDigestAlgorithm(int digestAlgorithm) {
switch (digestAlgorithm) {
case CONTENT_DIGEST_CHUNKED_SHA256:
case CONTENT_DIGEST_VERITY_CHUNKED_SHA256:
return "SHA-256";
case CONTENT_DIGEST_CHUNKED_SHA512:
return "SHA-512";
default:
throw new IllegalArgumentException(
"Unknown content digest algorthm: " + digestAlgorithm);
}
}
private static int getContentDigestAlgorithmOutputSizeBytes(int digestAlgorithm) {
switch (digestAlgorithm) {
case CONTENT_DIGEST_CHUNKED_SHA256:
case CONTENT_DIGEST_VERITY_CHUNKED_SHA256:
return 256 / 8;
case CONTENT_DIGEST_CHUNKED_SHA512:
return 512 / 8;
default:
throw new IllegalArgumentException(
"Unknown content digest algorthm: " + digestAlgorithm);
}
}
static String getSignatureAlgorithmJcaKeyAlgorithm(int sigAlgorithm) {
switch (sigAlgorithm) {
case SIGNATURE_RSA_PSS_WITH_SHA256:
case SIGNATURE_RSA_PSS_WITH_SHA512:
case SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA256:
case SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA512:
case SIGNATURE_VERITY_RSA_PKCS1_V1_5_WITH_SHA256:
return "RSA";
case SIGNATURE_ECDSA_WITH_SHA256:
case SIGNATURE_ECDSA_WITH_SHA512:
case SIGNATURE_VERITY_ECDSA_WITH_SHA256:
return "EC";
case SIGNATURE_DSA_WITH_SHA256:
case SIGNATURE_VERITY_DSA_WITH_SHA256:
return "DSA";
default:
throw new IllegalArgumentException(
"Unknown signature algorithm: 0x"
+ Long.toHexString(sigAlgorithm & 0xffffffff));
}
}
static Pair<String, ? extends AlgorithmParameterSpec>
getSignatureAlgorithmJcaSignatureAlgorithm(int sigAlgorithm) {
switch (sigAlgorithm) {
case SIGNATURE_RSA_PSS_WITH_SHA256:
return Pair.create(
"SHA256withRSA/PSS",
new PSSParameterSpec(
"SHA-256", "MGF1", MGF1ParameterSpec.SHA256, 256 / 8, 1));
case SIGNATURE_RSA_PSS_WITH_SHA512:
return Pair.create(
"SHA512withRSA/PSS",
new PSSParameterSpec(
"SHA-512", "MGF1", MGF1ParameterSpec.SHA512, 512 / 8, 1));
case SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA256:
case SIGNATURE_VERITY_RSA_PKCS1_V1_5_WITH_SHA256:
return Pair.create("SHA256withRSA", null);
case SIGNATURE_RSA_PKCS1_V1_5_WITH_SHA512:
return Pair.create("SHA512withRSA", null);
case SIGNATURE_ECDSA_WITH_SHA256:
case SIGNATURE_VERITY_ECDSA_WITH_SHA256:
return Pair.create("SHA256withECDSA", null);
case SIGNATURE_ECDSA_WITH_SHA512:
return Pair.create("SHA512withECDSA", null);
case SIGNATURE_DSA_WITH_SHA256:
case SIGNATURE_VERITY_DSA_WITH_SHA256:
return Pair.create("SHA256withDSA", null);
default:
throw new IllegalArgumentException(
"Unknown signature algorithm: 0x"
+ Long.toHexString(sigAlgorithm & 0xffffffff));
}
}
/**
* Returns new byte buffer whose content is a shared subsequence of this buffer's content
* between the specified start (inclusive) and end (exclusive) positions. As opposed to
* {@link ByteBuffer#slice()}, the returned buffer's byte order is the same as the source
* buffer's byte order.
*/
static ByteBuffer sliceFromTo(ByteBuffer source, int start, int end) {
if (start < 0) {
throw new IllegalArgumentException("start: " + start);
}
if (end < start) {
throw new IllegalArgumentException("end < start: " + end + " < " + start);
}
int capacity = source.capacity();
if (end > source.capacity()) {
throw new IllegalArgumentException("end > capacity: " + end + " > " + capacity);
}
int originalLimit = source.limit();
int originalPosition = source.position();
try {
source.position(0);
source.limit(end);
source.position(start);
ByteBuffer result = source.slice();
result.order(source.order());
return result;
} finally {
source.position(0);
source.limit(originalLimit);
source.position(originalPosition);
}
}
/**
* Relative <em>get</em> method for reading {@code size} number of bytes from the current
* position of this buffer.
*
* <p>This method reads the next {@code size} bytes at this buffer's current position,
* returning them as a {@code ByteBuffer} with start set to 0, limit and capacity set to
* {@code size}, byte order set to this buffer's byte order; and then increments the position by
* {@code size}.
*/
static ByteBuffer getByteBuffer(ByteBuffer source, int size)
throws BufferUnderflowException {
if (size < 0) {
throw new IllegalArgumentException("size: " + size);
}
int originalLimit = source.limit();
int position = source.position();
int limit = position + size;
if ((limit < position) || (limit > originalLimit)) {
throw new BufferUnderflowException();
}
source.limit(limit);
try {
ByteBuffer result = source.slice();
result.order(source.order());
source.position(limit);
return result;
} finally {
source.limit(originalLimit);
}
}
static ByteBuffer getLengthPrefixedSlice(ByteBuffer source) throws IOException {
if (source.remaining() < 4) {
throw new IOException(
"Remaining buffer too short to contain length of length-prefixed field."
+ " Remaining: " + source.remaining());
}
int len = source.getInt();
if (len < 0) {
throw new IllegalArgumentException("Negative length");
} else if (len > source.remaining()) {
throw new IOException("Length-prefixed field longer than remaining buffer."
+ " Field length: " + len + ", remaining: " + source.remaining());
}
return getByteBuffer(source, len);
}
static byte[] readLengthPrefixedByteArray(ByteBuffer buf) throws IOException {
int len = buf.getInt();
if (len < 0) {
throw new IOException("Negative length");
} else if (len > buf.remaining()) {
throw new IOException("Underflow while reading length-prefixed value. Length: " + len
+ ", available: " + buf.remaining());
}
byte[] result = new byte[len];
buf.get(result);
return result;
}
static void setUnsignedInt32LittleEndian(int value, byte[] result, int offset) {
result[offset] = (byte) (value & 0xff);
result[offset + 1] = (byte) ((value >>> 8) & 0xff);
result[offset + 2] = (byte) ((value >>> 16) & 0xff);
result[offset + 3] = (byte) ((value >>> 24) & 0xff);
}
private static final long APK_SIG_BLOCK_MAGIC_HI = 0x3234206b636f6c42L;
private static final long APK_SIG_BLOCK_MAGIC_LO = 0x20676953204b5041L;
private static final int APK_SIG_BLOCK_MIN_SIZE = 32;
static Pair<ByteBuffer, Long> findApkSigningBlock(
RandomAccessFile apk, long centralDirOffset)
throws IOException, SignatureNotFoundException {
// FORMAT:
// OFFSET DATA TYPE DESCRIPTION
// * @+0 bytes uint64: size in bytes (excluding this field)
// * @+8 bytes payload
// * @-24 bytes uint64: size in bytes (same as the one above)
// * @-16 bytes uint128: magic
if (centralDirOffset < APK_SIG_BLOCK_MIN_SIZE) {
throw new SignatureNotFoundException(
"APK too small for APK Signing Block. ZIP Central Directory offset: "
+ centralDirOffset);
}
// Read the magic and offset in file from the footer section of the block:
// * uint64: size of block
// * 16 bytes: magic
ByteBuffer footer = ByteBuffer.allocate(24);
footer.order(ByteOrder.LITTLE_ENDIAN);
apk.seek(centralDirOffset - footer.capacity());
apk.readFully(footer.array(), footer.arrayOffset(), footer.capacity());
if ((footer.getLong(8) != APK_SIG_BLOCK_MAGIC_LO)
|| (footer.getLong(16) != APK_SIG_BLOCK_MAGIC_HI)) {
throw new SignatureNotFoundException(
"No APK Signing Block before ZIP Central Directory");
}
// Read and compare size fields
long apkSigBlockSizeInFooter = footer.getLong(0);
if ((apkSigBlockSizeInFooter < footer.capacity())
|| (apkSigBlockSizeInFooter > Integer.MAX_VALUE - 8)) {
throw new SignatureNotFoundException(
"APK Signing Block size out of range: " + apkSigBlockSizeInFooter);
}
int totalSize = (int) (apkSigBlockSizeInFooter + 8);
long apkSigBlockOffset = centralDirOffset - totalSize;
if (apkSigBlockOffset < 0) {
throw new SignatureNotFoundException(
"APK Signing Block offset out of range: " + apkSigBlockOffset);
}
ByteBuffer apkSigBlock = ByteBuffer.allocate(totalSize);
apkSigBlock.order(ByteOrder.LITTLE_ENDIAN);
apk.seek(apkSigBlockOffset);
apk.readFully(apkSigBlock.array(), apkSigBlock.arrayOffset(), apkSigBlock.capacity());
long apkSigBlockSizeInHeader = apkSigBlock.getLong(0);
if (apkSigBlockSizeInHeader != apkSigBlockSizeInFooter) {
throw new SignatureNotFoundException(
"APK Signing Block sizes in header and footer do not match: "
+ apkSigBlockSizeInHeader + " vs " + apkSigBlockSizeInFooter);
}
return Pair.create(apkSigBlock, apkSigBlockOffset);
}
static ByteBuffer findApkSignatureSchemeBlock(ByteBuffer apkSigningBlock, int blockId)
throws SignatureNotFoundException {
checkByteOrderLittleEndian(apkSigningBlock);
// FORMAT:
// OFFSET DATA TYPE DESCRIPTION
// * @+0 bytes uint64: size in bytes (excluding this field)
// * @+8 bytes pairs
// * @-24 bytes uint64: size in bytes (same as the one above)
// * @-16 bytes uint128: magic
ByteBuffer pairs = sliceFromTo(apkSigningBlock, 8, apkSigningBlock.capacity() - 24);
int entryCount = 0;
while (pairs.hasRemaining()) {
entryCount++;
if (pairs.remaining() < 8) {
throw new SignatureNotFoundException(
"Insufficient data to read size of APK Signing Block entry #" + entryCount);
}
long lenLong = pairs.getLong();
if ((lenLong < 4) || (lenLong > Integer.MAX_VALUE)) {
throw new SignatureNotFoundException(
"APK Signing Block entry #" + entryCount
+ " size out of range: " + lenLong);
}
int len = (int) lenLong;
int nextEntryPos = pairs.position() + len;
if (len > pairs.remaining()) {
throw new SignatureNotFoundException(
"APK Signing Block entry #" + entryCount + " size out of range: " + len
+ ", available: " + pairs.remaining());
}
int id = pairs.getInt();
if (id == blockId) {
return getByteBuffer(pairs, len - 4);
}
pairs.position(nextEntryPos);
}
throw new SignatureNotFoundException(
"No block with ID " + blockId + " in APK Signing Block.");
}
private static void checkByteOrderLittleEndian(ByteBuffer buffer) {
if (buffer.order() != ByteOrder.LITTLE_ENDIAN) {
throw new IllegalArgumentException("ByteBuffer byte order must be little endian");
}
}
/**
* {@link DataDigester} that updates multiple {@link MessageDigest}s whenever data is fed.
*/
private static class MultipleDigestDataDigester implements DataDigester {
private final MessageDigest[] mMds;
MultipleDigestDataDigester(MessageDigest[] mds) {
mMds = mds;
}
@Override
public void consume(ByteBuffer buffer) {
buffer = buffer.slice();
for (MessageDigest md : mMds) {
buffer.position(0);
md.update(buffer);
}
}
}
static VerifiedProofOfRotation verifyProofOfRotationStruct(
ByteBuffer porBuf,
CertificateFactory certFactory)
throws SecurityException, IOException {
int levelCount = 0;
int lastSigAlgorithm = -1;
X509Certificate lastCert = null;
List<X509Certificate> certs = new ArrayList<>();
List<Integer> flagsList = new ArrayList<>();
// Proof-of-rotation struct:
// A uint32 version code followed by basically a singly linked list of nodes, called levels
// here, each of which have the following structure:
// * length-prefix for the entire level
// - length-prefixed signed data (if previous level exists)
// * length-prefixed X509 Certificate
// * uint32 signature algorithm ID describing how this signed data was signed
// - uint32 flags describing how to treat the cert contained in this level
// - uint32 signature algorithm ID to use to verify the signature of the next level. The
// algorithm here must match the one in the signed data section of the next level.
// - length-prefixed signature over the signed data in this level. The signature here
// is verified using the certificate from the previous level.
// The linking is provided by the certificate of each level signing the one of the next.
try {
// get the version code, but don't do anything with it: creator knew about all our flags
porBuf.getInt();
HashSet<X509Certificate> certHistorySet = new HashSet<>();
while (porBuf.hasRemaining()) {
levelCount++;
ByteBuffer level = getLengthPrefixedSlice(porBuf);
ByteBuffer signedData = getLengthPrefixedSlice(level);
int flags = level.getInt();
int sigAlgorithm = level.getInt();
byte[] signature = readLengthPrefixedByteArray(level);
if (lastCert != null) {
// Use previous level cert to verify current level
Pair<String, ? extends AlgorithmParameterSpec> sigAlgParams =
getSignatureAlgorithmJcaSignatureAlgorithm(lastSigAlgorithm);
PublicKey publicKey = lastCert.getPublicKey();
Signature sig = Signature.getInstance(sigAlgParams.first);
sig.initVerify(publicKey);
if (sigAlgParams.second != null) {
sig.setParameter(sigAlgParams.second);
}
sig.update(signedData);
if (!sig.verify(signature)) {
throw new SecurityException("Unable to verify signature of certificate #"
+ levelCount + " using " + sigAlgParams.first + " when verifying"
+ " Proof-of-rotation record");
}
}
signedData.rewind();
byte[] encodedCert = readLengthPrefixedByteArray(signedData);
int signedSigAlgorithm = signedData.getInt();
if (lastCert != null && lastSigAlgorithm != signedSigAlgorithm) {
throw new SecurityException("Signing algorithm ID mismatch for certificate #"
+ levelCount + " when verifying Proof-of-rotation record");
}
lastCert = (X509Certificate)
certFactory.generateCertificate(new ByteArrayInputStream(encodedCert));
lastCert = new VerbatimX509Certificate(lastCert, encodedCert);
lastSigAlgorithm = sigAlgorithm;
if (certHistorySet.contains(lastCert)) {
throw new SecurityException("Encountered duplicate entries in "
+ "Proof-of-rotation record at certificate #" + levelCount + ". All "
+ "signing certificates should be unique");
}
certHistorySet.add(lastCert);
certs.add(lastCert);
flagsList.add(flags);
}
} catch (IOException | BufferUnderflowException e) {
throw new IOException("Failed to parse Proof-of-rotation record", e);
} catch (NoSuchAlgorithmException | InvalidKeyException
| InvalidAlgorithmParameterException | SignatureException e) {
throw new SecurityException(
"Failed to verify signature over signed data for certificate #"
+ levelCount + " when verifying Proof-of-rotation record", e);
} catch (CertificateException e) {
throw new SecurityException("Failed to decode certificate #" + levelCount
+ " when verifying Proof-of-rotation record", e);
}
return new VerifiedProofOfRotation(certs, flagsList);
}
/**
* Verified processed proof of rotation.
*
* @hide for internal use only.
*/
public static class VerifiedProofOfRotation {
public final List<X509Certificate> certs;
public final List<Integer> flagsList;
public VerifiedProofOfRotation(List<X509Certificate> certs, List<Integer> flagsList) {
this.certs = certs;
this.flagsList = flagsList;
}
}
}