|  | /* | 
|  | * Copyright (C) 2014 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #define ATRACE_TAG ATRACE_TAG_VIEW | 
|  | #define LOG_TAG "OpenGLRenderer" | 
|  |  | 
|  | #include "RenderNode.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <string> | 
|  |  | 
|  | #include <SkCanvas.h> | 
|  | #include <algorithm> | 
|  |  | 
|  | #include <utils/Trace.h> | 
|  |  | 
|  | #include "DamageAccumulator.h" | 
|  | #include "Debug.h" | 
|  | #include "DisplayListOp.h" | 
|  | #include "DisplayListLogBuffer.h" | 
|  | #include "LayerRenderer.h" | 
|  | #include "OpenGLRenderer.h" | 
|  | #include "utils/MathUtils.h" | 
|  | #include "renderthread/CanvasContext.h" | 
|  |  | 
|  | namespace android { | 
|  | namespace uirenderer { | 
|  |  | 
|  | void RenderNode::outputLogBuffer(int fd) { | 
|  | DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance(); | 
|  | if (logBuffer.isEmpty()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | FILE *file = fdopen(fd, "a"); | 
|  |  | 
|  | fprintf(file, "\nRecent DisplayList operations\n"); | 
|  | logBuffer.outputCommands(file); | 
|  |  | 
|  | String8 cachesLog; | 
|  | Caches::getInstance().dumpMemoryUsage(cachesLog); | 
|  | fprintf(file, "\nCaches:\n%s", cachesLog.string()); | 
|  | fprintf(file, "\n"); | 
|  |  | 
|  | fflush(file); | 
|  | } | 
|  |  | 
|  | void RenderNode::debugDumpLayers(const char* prefix) { | 
|  | if (mLayer) { | 
|  | ALOGD("%sNode %p (%s) has layer %p (fbo = %u, wasBuildLayered = %s)", | 
|  | prefix, this, getName(), mLayer, mLayer->getFbo(), | 
|  | mLayer->wasBuildLayered ? "true" : "false"); | 
|  | } | 
|  | if (mDisplayListData) { | 
|  | for (size_t i = 0; i < mDisplayListData->children().size(); i++) { | 
|  | mDisplayListData->children()[i]->mRenderNode->debugDumpLayers(prefix); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | RenderNode::RenderNode() | 
|  | : mDirtyPropertyFields(0) | 
|  | , mNeedsDisplayListDataSync(false) | 
|  | , mDisplayListData(0) | 
|  | , mStagingDisplayListData(0) | 
|  | , mAnimatorManager(*this) | 
|  | , mLayer(0) | 
|  | , mParentCount(0) { | 
|  | } | 
|  |  | 
|  | RenderNode::~RenderNode() { | 
|  | deleteDisplayListData(); | 
|  | delete mStagingDisplayListData; | 
|  | LayerRenderer::destroyLayerDeferred(mLayer); | 
|  | } | 
|  |  | 
|  | void RenderNode::setStagingDisplayList(DisplayListData* data) { | 
|  | mNeedsDisplayListDataSync = true; | 
|  | delete mStagingDisplayListData; | 
|  | mStagingDisplayListData = data; | 
|  | if (mStagingDisplayListData) { | 
|  | Caches::getInstance().registerFunctors(mStagingDisplayListData->functors.size()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * This function is a simplified version of replay(), where we simply retrieve and log the | 
|  | * display list. This function should remain in sync with the replay() function. | 
|  | */ | 
|  | void RenderNode::output(uint32_t level) { | 
|  | ALOGD("%*sStart display list (%p, %s, render=%d)", (level - 1) * 2, "", this, | 
|  | getName(), isRenderable()); | 
|  | ALOGD("%*s%s %d", level * 2, "", "Save", | 
|  | SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag); | 
|  |  | 
|  | properties().debugOutputProperties(level); | 
|  | int flags = DisplayListOp::kOpLogFlag_Recurse; | 
|  | if (mDisplayListData) { | 
|  | // TODO: consider printing the chunk boundaries here | 
|  | for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) { | 
|  | mDisplayListData->displayListOps[i]->output(level, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | ALOGD("%*sDone (%p, %s)", (level - 1) * 2, "", this, getName()); | 
|  | } | 
|  |  | 
|  | int RenderNode::getDebugSize() { | 
|  | int size = sizeof(RenderNode); | 
|  | if (mStagingDisplayListData) { | 
|  | size += mStagingDisplayListData->getUsedSize(); | 
|  | } | 
|  | if (mDisplayListData && mDisplayListData != mStagingDisplayListData) { | 
|  | size += mDisplayListData->getUsedSize(); | 
|  | } | 
|  | return size; | 
|  | } | 
|  |  | 
|  | void RenderNode::prepareTree(TreeInfo& info) { | 
|  | ATRACE_CALL(); | 
|  | LOG_ALWAYS_FATAL_IF(!info.damageAccumulator, "DamageAccumulator missing"); | 
|  |  | 
|  | prepareTreeImpl(info); | 
|  | } | 
|  |  | 
|  | void RenderNode::addAnimator(const sp<BaseRenderNodeAnimator>& animator) { | 
|  | mAnimatorManager.addAnimator(animator); | 
|  | } | 
|  |  | 
|  | void RenderNode::damageSelf(TreeInfo& info) { | 
|  | if (isRenderable()) { | 
|  | if (properties().getClipDamageToBounds()) { | 
|  | info.damageAccumulator->dirty(0, 0, properties().getWidth(), properties().getHeight()); | 
|  | } else { | 
|  | // Hope this is big enough? | 
|  | // TODO: Get this from the display list ops or something | 
|  | info.damageAccumulator->dirty(INT_MIN, INT_MIN, INT_MAX, INT_MAX); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void RenderNode::prepareLayer(TreeInfo& info, uint32_t dirtyMask) { | 
|  | LayerType layerType = properties().layerProperties().type(); | 
|  | if (CC_UNLIKELY(layerType == kLayerTypeRenderLayer)) { | 
|  | // Damage applied so far needs to affect our parent, but does not require | 
|  | // the layer to be updated. So we pop/push here to clear out the current | 
|  | // damage and get a clean state for display list or children updates to | 
|  | // affect, which will require the layer to be updated | 
|  | info.damageAccumulator->popTransform(); | 
|  | info.damageAccumulator->pushTransform(this); | 
|  | if (dirtyMask & DISPLAY_LIST) { | 
|  | damageSelf(info); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void RenderNode::pushLayerUpdate(TreeInfo& info) { | 
|  | LayerType layerType = properties().layerProperties().type(); | 
|  | // If we are not a layer OR we cannot be rendered (eg, view was detached) | 
|  | // we need to destroy any Layers we may have had previously | 
|  | if (CC_LIKELY(layerType != kLayerTypeRenderLayer) || CC_UNLIKELY(!isRenderable())) { | 
|  | if (CC_UNLIKELY(mLayer)) { | 
|  | LayerRenderer::destroyLayer(mLayer); | 
|  | mLayer = NULL; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | bool transformUpdateNeeded = false; | 
|  | if (!mLayer) { | 
|  | mLayer = LayerRenderer::createRenderLayer(info.renderState, getWidth(), getHeight()); | 
|  | applyLayerPropertiesToLayer(info); | 
|  | damageSelf(info); | 
|  | transformUpdateNeeded = true; | 
|  | } else if (mLayer->layer.getWidth() != getWidth() || mLayer->layer.getHeight() != getHeight()) { | 
|  | if (!LayerRenderer::resizeLayer(mLayer, getWidth(), getHeight())) { | 
|  | LayerRenderer::destroyLayer(mLayer); | 
|  | mLayer = 0; | 
|  | } | 
|  | damageSelf(info); | 
|  | transformUpdateNeeded = true; | 
|  | } | 
|  |  | 
|  | SkRect dirty; | 
|  | info.damageAccumulator->peekAtDirty(&dirty); | 
|  |  | 
|  | if (!mLayer) { | 
|  | if (info.errorHandler) { | 
|  | std::string msg = "Unable to create layer for "; | 
|  | msg += getName(); | 
|  | info.errorHandler->onError(msg); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (transformUpdateNeeded) { | 
|  | // update the transform in window of the layer to reset its origin wrt light source position | 
|  | Matrix4 windowTransform; | 
|  | info.damageAccumulator->computeCurrentTransform(&windowTransform); | 
|  | mLayer->setWindowTransform(windowTransform); | 
|  | } | 
|  |  | 
|  | if (dirty.intersect(0, 0, getWidth(), getHeight())) { | 
|  | dirty.roundOut(); | 
|  | mLayer->updateDeferred(this, dirty.fLeft, dirty.fTop, dirty.fRight, dirty.fBottom); | 
|  | } | 
|  | // This is not inside the above if because we may have called | 
|  | // updateDeferred on a previous prepare pass that didn't have a renderer | 
|  | if (info.renderer && mLayer->deferredUpdateScheduled) { | 
|  | info.renderer->pushLayerUpdate(mLayer); | 
|  | } | 
|  |  | 
|  | if (CC_UNLIKELY(info.canvasContext)) { | 
|  | // If canvasContext is not null that means there are prefetched layers | 
|  | // that need to be accounted for. That might be us, so tell CanvasContext | 
|  | // that this layer is in the tree and should not be destroyed. | 
|  | info.canvasContext->markLayerInUse(this); | 
|  | } | 
|  | } | 
|  |  | 
|  | void RenderNode::prepareTreeImpl(TreeInfo& info) { | 
|  | info.damageAccumulator->pushTransform(this); | 
|  |  | 
|  | if (info.mode == TreeInfo::MODE_FULL) { | 
|  | pushStagingPropertiesChanges(info); | 
|  | } | 
|  | uint32_t animatorDirtyMask = 0; | 
|  | if (CC_LIKELY(info.runAnimations)) { | 
|  | animatorDirtyMask = mAnimatorManager.animate(info); | 
|  | } | 
|  | prepareLayer(info, animatorDirtyMask); | 
|  | if (info.mode == TreeInfo::MODE_FULL) { | 
|  | pushStagingDisplayListChanges(info); | 
|  | } | 
|  | prepareSubTree(info, mDisplayListData); | 
|  | pushLayerUpdate(info); | 
|  |  | 
|  | info.damageAccumulator->popTransform(); | 
|  | } | 
|  |  | 
|  | void RenderNode::pushStagingPropertiesChanges(TreeInfo& info) { | 
|  | // Push the animators first so that setupStartValueIfNecessary() is called | 
|  | // before properties() is trampled by stagingProperties(), as they are | 
|  | // required by some animators. | 
|  | if (CC_LIKELY(info.runAnimations)) { | 
|  | mAnimatorManager.pushStaging(); | 
|  | } | 
|  | if (mDirtyPropertyFields) { | 
|  | mDirtyPropertyFields = 0; | 
|  | damageSelf(info); | 
|  | info.damageAccumulator->popTransform(); | 
|  | mProperties = mStagingProperties; | 
|  | applyLayerPropertiesToLayer(info); | 
|  | // We could try to be clever and only re-damage if the matrix changed. | 
|  | // However, we don't need to worry about that. The cost of over-damaging | 
|  | // here is only going to be a single additional map rect of this node | 
|  | // plus a rect join(). The parent's transform (and up) will only be | 
|  | // performed once. | 
|  | info.damageAccumulator->pushTransform(this); | 
|  | damageSelf(info); | 
|  | } | 
|  | } | 
|  |  | 
|  | void RenderNode::applyLayerPropertiesToLayer(TreeInfo& info) { | 
|  | if (CC_LIKELY(!mLayer)) return; | 
|  |  | 
|  | const LayerProperties& props = properties().layerProperties(); | 
|  | mLayer->setAlpha(props.alpha(), props.xferMode()); | 
|  | mLayer->setColorFilter(props.colorFilter()); | 
|  | mLayer->setBlend(props.needsBlending()); | 
|  | } | 
|  |  | 
|  | void RenderNode::pushStagingDisplayListChanges(TreeInfo& info) { | 
|  | if (mNeedsDisplayListDataSync) { | 
|  | mNeedsDisplayListDataSync = false; | 
|  | // Make sure we inc first so that we don't fluctuate between 0 and 1, | 
|  | // which would thrash the layer cache | 
|  | if (mStagingDisplayListData) { | 
|  | for (size_t i = 0; i < mStagingDisplayListData->children().size(); i++) { | 
|  | mStagingDisplayListData->children()[i]->mRenderNode->incParentRefCount(); | 
|  | } | 
|  | } | 
|  | deleteDisplayListData(); | 
|  | mDisplayListData = mStagingDisplayListData; | 
|  | mStagingDisplayListData = NULL; | 
|  | if (mDisplayListData) { | 
|  | for (size_t i = 0; i < mDisplayListData->functors.size(); i++) { | 
|  | (*mDisplayListData->functors[i])(DrawGlInfo::kModeSync, NULL); | 
|  | } | 
|  | } | 
|  | damageSelf(info); | 
|  | } | 
|  | } | 
|  |  | 
|  | void RenderNode::deleteDisplayListData() { | 
|  | if (mDisplayListData) { | 
|  | for (size_t i = 0; i < mDisplayListData->children().size(); i++) { | 
|  | mDisplayListData->children()[i]->mRenderNode->decParentRefCount(); | 
|  | } | 
|  | } | 
|  | delete mDisplayListData; | 
|  | mDisplayListData = NULL; | 
|  | } | 
|  |  | 
|  | void RenderNode::prepareSubTree(TreeInfo& info, DisplayListData* subtree) { | 
|  | if (subtree) { | 
|  | TextureCache& cache = Caches::getInstance().textureCache; | 
|  | info.out.hasFunctors |= subtree->functors.size(); | 
|  | // TODO: Fix ownedBitmapResources to not require disabling prepareTextures | 
|  | // and thus falling out of async drawing path. | 
|  | if (subtree->ownedBitmapResources.size()) { | 
|  | info.prepareTextures = false; | 
|  | } | 
|  | for (size_t i = 0; info.prepareTextures && i < subtree->bitmapResources.size(); i++) { | 
|  | info.prepareTextures = cache.prefetchAndMarkInUse(subtree->bitmapResources[i]); | 
|  | } | 
|  | for (size_t i = 0; i < subtree->children().size(); i++) { | 
|  | DrawRenderNodeOp* op = subtree->children()[i]; | 
|  | RenderNode* childNode = op->mRenderNode; | 
|  | info.damageAccumulator->pushTransform(&op->mTransformFromParent); | 
|  | childNode->prepareTreeImpl(info); | 
|  | info.damageAccumulator->popTransform(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void RenderNode::destroyHardwareResources() { | 
|  | if (mLayer) { | 
|  | LayerRenderer::destroyLayer(mLayer); | 
|  | mLayer = NULL; | 
|  | } | 
|  | if (mDisplayListData) { | 
|  | for (size_t i = 0; i < mDisplayListData->children().size(); i++) { | 
|  | mDisplayListData->children()[i]->mRenderNode->destroyHardwareResources(); | 
|  | } | 
|  | if (mNeedsDisplayListDataSync) { | 
|  | // Next prepare tree we are going to push a new display list, so we can | 
|  | // drop our current one now | 
|  | deleteDisplayListData(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void RenderNode::decParentRefCount() { | 
|  | LOG_ALWAYS_FATAL_IF(!mParentCount, "already 0!"); | 
|  | mParentCount--; | 
|  | if (!mParentCount) { | 
|  | // If a child of ours is being attached to our parent then this will incorrectly | 
|  | // destroy its hardware resources. However, this situation is highly unlikely | 
|  | // and the failure is "just" that the layer is re-created, so this should | 
|  | // be safe enough | 
|  | destroyHardwareResources(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For property operations, we pass a savecount of 0, since the operations aren't part of the | 
|  | * displaylist, and thus don't have to compensate for the record-time/playback-time discrepancy in | 
|  | * base saveCount (i.e., how RestoreToCount uses saveCount + properties().getCount()) | 
|  | */ | 
|  | #define PROPERTY_SAVECOUNT 0 | 
|  |  | 
|  | template <class T> | 
|  | void RenderNode::setViewProperties(OpenGLRenderer& renderer, T& handler) { | 
|  | #if DEBUG_DISPLAY_LIST | 
|  | properties().debugOutputProperties(handler.level() + 1); | 
|  | #endif | 
|  | if (properties().getLeft() != 0 || properties().getTop() != 0) { | 
|  | renderer.translate(properties().getLeft(), properties().getTop()); | 
|  | } | 
|  | if (properties().getStaticMatrix()) { | 
|  | renderer.concatMatrix(*properties().getStaticMatrix()); | 
|  | } else if (properties().getAnimationMatrix()) { | 
|  | renderer.concatMatrix(*properties().getAnimationMatrix()); | 
|  | } | 
|  | if (properties().hasTransformMatrix()) { | 
|  | if (properties().isTransformTranslateOnly()) { | 
|  | renderer.translate(properties().getTranslationX(), properties().getTranslationY()); | 
|  | } else { | 
|  | renderer.concatMatrix(*properties().getTransformMatrix()); | 
|  | } | 
|  | } | 
|  | const bool isLayer = properties().layerProperties().type() != kLayerTypeNone; | 
|  | int clipFlags = properties().getClippingFlags(); | 
|  | if (properties().getAlpha() < 1) { | 
|  | if (isLayer) { | 
|  | clipFlags &= ~CLIP_TO_BOUNDS; // bounds clipping done by layer | 
|  |  | 
|  | renderer.setOverrideLayerAlpha(properties().getAlpha()); | 
|  | } else if (!properties().getHasOverlappingRendering()) { | 
|  | renderer.scaleAlpha(properties().getAlpha()); | 
|  | } else { | 
|  | Rect layerBounds(0, 0, getWidth(), getHeight()); | 
|  | int saveFlags = SkCanvas::kHasAlphaLayer_SaveFlag; | 
|  | if (clipFlags) { | 
|  | saveFlags |= SkCanvas::kClipToLayer_SaveFlag; | 
|  | properties().getClippingRectForFlags(clipFlags, &layerBounds); | 
|  | clipFlags = 0; // all clipping done by saveLayer | 
|  | } | 
|  |  | 
|  | SaveLayerOp* op = new (handler.allocator()) SaveLayerOp( | 
|  | layerBounds.left, layerBounds.top, layerBounds.right, layerBounds.bottom, | 
|  | properties().getAlpha() * 255, saveFlags); | 
|  | handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds()); | 
|  | } | 
|  | } | 
|  | if (clipFlags) { | 
|  | Rect clipRect; | 
|  | properties().getClippingRectForFlags(clipFlags, &clipRect); | 
|  | ClipRectOp* op = new (handler.allocator()) ClipRectOp( | 
|  | clipRect.left, clipRect.top, clipRect.right, clipRect.bottom, | 
|  | SkRegion::kIntersect_Op); | 
|  | handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds()); | 
|  | } | 
|  |  | 
|  | // TODO: support nesting round rect clips | 
|  | if (mProperties.getRevealClip().willClip()) { | 
|  | Rect bounds; | 
|  | mProperties.getRevealClip().getBounds(&bounds); | 
|  | renderer.setClippingRoundRect(handler.allocator(), bounds, mProperties.getRevealClip().getRadius()); | 
|  | } else if (mProperties.getOutline().willClip()) { | 
|  | renderer.setClippingOutline(handler.allocator(), &(mProperties.getOutline())); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Apply property-based transformations to input matrix | 
|  | * | 
|  | * If true3dTransform is set to true, the transform applied to the input matrix will use true 4x4 | 
|  | * matrix computation instead of the Skia 3x3 matrix + camera hackery. | 
|  | */ | 
|  | void RenderNode::applyViewPropertyTransforms(mat4& matrix, bool true3dTransform) const { | 
|  | if (properties().getLeft() != 0 || properties().getTop() != 0) { | 
|  | matrix.translate(properties().getLeft(), properties().getTop()); | 
|  | } | 
|  | if (properties().getStaticMatrix()) { | 
|  | mat4 stat(*properties().getStaticMatrix()); | 
|  | matrix.multiply(stat); | 
|  | } else if (properties().getAnimationMatrix()) { | 
|  | mat4 anim(*properties().getAnimationMatrix()); | 
|  | matrix.multiply(anim); | 
|  | } | 
|  |  | 
|  | bool applyTranslationZ = true3dTransform && !MathUtils::isZero(properties().getZ()); | 
|  | if (properties().hasTransformMatrix() || applyTranslationZ) { | 
|  | if (properties().isTransformTranslateOnly()) { | 
|  | matrix.translate(properties().getTranslationX(), properties().getTranslationY(), | 
|  | true3dTransform ? properties().getZ() : 0.0f); | 
|  | } else { | 
|  | if (!true3dTransform) { | 
|  | matrix.multiply(*properties().getTransformMatrix()); | 
|  | } else { | 
|  | mat4 true3dMat; | 
|  | true3dMat.loadTranslate( | 
|  | properties().getPivotX() + properties().getTranslationX(), | 
|  | properties().getPivotY() + properties().getTranslationY(), | 
|  | properties().getZ()); | 
|  | true3dMat.rotate(properties().getRotationX(), 1, 0, 0); | 
|  | true3dMat.rotate(properties().getRotationY(), 0, 1, 0); | 
|  | true3dMat.rotate(properties().getRotation(), 0, 0, 1); | 
|  | true3dMat.scale(properties().getScaleX(), properties().getScaleY(), 1); | 
|  | true3dMat.translate(-properties().getPivotX(), -properties().getPivotY()); | 
|  |  | 
|  | matrix.multiply(true3dMat); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Organizes the DisplayList hierarchy to prepare for background projection reordering. | 
|  | * | 
|  | * This should be called before a call to defer() or drawDisplayList() | 
|  | * | 
|  | * Each DisplayList that serves as a 3d root builds its list of composited children, | 
|  | * which are flagged to not draw in the standard draw loop. | 
|  | */ | 
|  | void RenderNode::computeOrdering() { | 
|  | ATRACE_CALL(); | 
|  | mProjectedNodes.clear(); | 
|  |  | 
|  | // TODO: create temporary DDLOp and call computeOrderingImpl on top DisplayList so that | 
|  | // transform properties are applied correctly to top level children | 
|  | if (mDisplayListData == NULL) return; | 
|  | for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) { | 
|  | DrawRenderNodeOp* childOp = mDisplayListData->children()[i]; | 
|  | childOp->mRenderNode->computeOrderingImpl(childOp, | 
|  | properties().getOutline().getPath(), &mProjectedNodes, &mat4::identity()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void RenderNode::computeOrderingImpl( | 
|  | DrawRenderNodeOp* opState, | 
|  | const SkPath* outlineOfProjectionSurface, | 
|  | Vector<DrawRenderNodeOp*>* compositedChildrenOfProjectionSurface, | 
|  | const mat4* transformFromProjectionSurface) { | 
|  | mProjectedNodes.clear(); | 
|  | if (mDisplayListData == NULL || mDisplayListData->isEmpty()) return; | 
|  |  | 
|  | // TODO: should avoid this calculation in most cases | 
|  | // TODO: just calculate single matrix, down to all leaf composited elements | 
|  | Matrix4 localTransformFromProjectionSurface(*transformFromProjectionSurface); | 
|  | localTransformFromProjectionSurface.multiply(opState->mTransformFromParent); | 
|  |  | 
|  | if (properties().getProjectBackwards()) { | 
|  | // composited projectee, flag for out of order draw, save matrix, and store in proj surface | 
|  | opState->mSkipInOrderDraw = true; | 
|  | opState->mTransformFromCompositingAncestor.load(localTransformFromProjectionSurface); | 
|  | compositedChildrenOfProjectionSurface->add(opState); | 
|  | } else { | 
|  | // standard in order draw | 
|  | opState->mSkipInOrderDraw = false; | 
|  | } | 
|  |  | 
|  | if (mDisplayListData->children().size() > 0) { | 
|  | const bool isProjectionReceiver = mDisplayListData->projectionReceiveIndex >= 0; | 
|  | bool haveAppliedPropertiesToProjection = false; | 
|  | for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) { | 
|  | DrawRenderNodeOp* childOp = mDisplayListData->children()[i]; | 
|  | RenderNode* child = childOp->mRenderNode; | 
|  |  | 
|  | const SkPath* projectionOutline = NULL; | 
|  | Vector<DrawRenderNodeOp*>* projectionChildren = NULL; | 
|  | const mat4* projectionTransform = NULL; | 
|  | if (isProjectionReceiver && !child->properties().getProjectBackwards()) { | 
|  | // if receiving projections, collect projecting descendent | 
|  |  | 
|  | // Note that if a direct descendent is projecting backwards, we pass it's | 
|  | // grandparent projection collection, since it shouldn't project onto it's | 
|  | // parent, where it will already be drawing. | 
|  | projectionOutline = properties().getOutline().getPath(); | 
|  | projectionChildren = &mProjectedNodes; | 
|  | projectionTransform = &mat4::identity(); | 
|  | } else { | 
|  | if (!haveAppliedPropertiesToProjection) { | 
|  | applyViewPropertyTransforms(localTransformFromProjectionSurface); | 
|  | haveAppliedPropertiesToProjection = true; | 
|  | } | 
|  | projectionOutline = outlineOfProjectionSurface; | 
|  | projectionChildren = compositedChildrenOfProjectionSurface; | 
|  | projectionTransform = &localTransformFromProjectionSurface; | 
|  | } | 
|  | child->computeOrderingImpl(childOp, | 
|  | projectionOutline, projectionChildren, projectionTransform); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | class DeferOperationHandler { | 
|  | public: | 
|  | DeferOperationHandler(DeferStateStruct& deferStruct, int level) | 
|  | : mDeferStruct(deferStruct), mLevel(level) {} | 
|  | inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) { | 
|  | operation->defer(mDeferStruct, saveCount, mLevel, clipToBounds); | 
|  | } | 
|  | inline LinearAllocator& allocator() { return *(mDeferStruct.mAllocator); } | 
|  | inline void startMark(const char* name) {} // do nothing | 
|  | inline void endMark() {} | 
|  | inline int level() { return mLevel; } | 
|  | inline int replayFlags() { return mDeferStruct.mReplayFlags; } | 
|  | inline SkPath* allocPathForFrame() { return mDeferStruct.allocPathForFrame(); } | 
|  |  | 
|  | private: | 
|  | DeferStateStruct& mDeferStruct; | 
|  | const int mLevel; | 
|  | }; | 
|  |  | 
|  | void RenderNode::defer(DeferStateStruct& deferStruct, const int level) { | 
|  | DeferOperationHandler handler(deferStruct, level); | 
|  | issueOperations<DeferOperationHandler>(deferStruct.mRenderer, handler); | 
|  | } | 
|  |  | 
|  | class ReplayOperationHandler { | 
|  | public: | 
|  | ReplayOperationHandler(ReplayStateStruct& replayStruct, int level) | 
|  | : mReplayStruct(replayStruct), mLevel(level) {} | 
|  | inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) { | 
|  | #if DEBUG_DISPLAY_LIST_OPS_AS_EVENTS | 
|  | mReplayStruct.mRenderer.eventMark(operation->name()); | 
|  | #endif | 
|  | operation->replay(mReplayStruct, saveCount, mLevel, clipToBounds); | 
|  | } | 
|  | inline LinearAllocator& allocator() { return *(mReplayStruct.mAllocator); } | 
|  | inline void startMark(const char* name) { | 
|  | mReplayStruct.mRenderer.startMark(name); | 
|  | } | 
|  | inline void endMark() { | 
|  | mReplayStruct.mRenderer.endMark(); | 
|  | } | 
|  | inline int level() { return mLevel; } | 
|  | inline int replayFlags() { return mReplayStruct.mReplayFlags; } | 
|  | inline SkPath* allocPathForFrame() { return mReplayStruct.allocPathForFrame(); } | 
|  |  | 
|  | private: | 
|  | ReplayStateStruct& mReplayStruct; | 
|  | const int mLevel; | 
|  | }; | 
|  |  | 
|  | void RenderNode::replay(ReplayStateStruct& replayStruct, const int level) { | 
|  | ReplayOperationHandler handler(replayStruct, level); | 
|  | issueOperations<ReplayOperationHandler>(replayStruct.mRenderer, handler); | 
|  | } | 
|  |  | 
|  | void RenderNode::buildZSortedChildList(const DisplayListData::Chunk& chunk, | 
|  | Vector<ZDrawRenderNodeOpPair>& zTranslatedNodes) { | 
|  | if (chunk.beginChildIndex == chunk.endChildIndex) return; | 
|  |  | 
|  | for (unsigned int i = chunk.beginChildIndex; i < chunk.endChildIndex; i++) { | 
|  | DrawRenderNodeOp* childOp = mDisplayListData->children()[i]; | 
|  | RenderNode* child = childOp->mRenderNode; | 
|  | float childZ = child->properties().getZ(); | 
|  |  | 
|  | if (!MathUtils::isZero(childZ) && chunk.reorderChildren) { | 
|  | zTranslatedNodes.add(ZDrawRenderNodeOpPair(childZ, childOp)); | 
|  | childOp->mSkipInOrderDraw = true; | 
|  | } else if (!child->properties().getProjectBackwards()) { | 
|  | // regular, in order drawing DisplayList | 
|  | childOp->mSkipInOrderDraw = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Z sort any 3d children (stable-ness makes z compare fall back to standard drawing order) | 
|  | std::stable_sort(zTranslatedNodes.begin(), zTranslatedNodes.end()); | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | void RenderNode::issueDrawShadowOperation(const Matrix4& transformFromParent, T& handler) { | 
|  | if (properties().getAlpha() <= 0.0f | 
|  | || properties().getOutline().getAlpha() <= 0.0f | 
|  | || !properties().getOutline().getPath()) { | 
|  | // no shadow to draw | 
|  | return; | 
|  | } | 
|  |  | 
|  | mat4 shadowMatrixXY(transformFromParent); | 
|  | applyViewPropertyTransforms(shadowMatrixXY); | 
|  |  | 
|  | // Z matrix needs actual 3d transformation, so mapped z values will be correct | 
|  | mat4 shadowMatrixZ(transformFromParent); | 
|  | applyViewPropertyTransforms(shadowMatrixZ, true); | 
|  |  | 
|  | const SkPath* casterOutlinePath = properties().getOutline().getPath(); | 
|  | const SkPath* revealClipPath = properties().getRevealClip().getPath(); | 
|  | if (revealClipPath && revealClipPath->isEmpty()) return; | 
|  |  | 
|  | float casterAlpha = properties().getAlpha() * properties().getOutline().getAlpha(); | 
|  |  | 
|  | const SkPath* outlinePath = casterOutlinePath; | 
|  | if (revealClipPath) { | 
|  | // if we can't simply use the caster's path directly, create a temporary one | 
|  | SkPath* frameAllocatedPath = handler.allocPathForFrame(); | 
|  |  | 
|  | // intersect the outline with the convex reveal clip | 
|  | Op(*casterOutlinePath, *revealClipPath, kIntersect_PathOp, frameAllocatedPath); | 
|  | outlinePath = frameAllocatedPath; | 
|  | } | 
|  |  | 
|  | DisplayListOp* shadowOp  = new (handler.allocator()) DrawShadowOp( | 
|  | shadowMatrixXY, shadowMatrixZ, casterAlpha, outlinePath); | 
|  | handler(shadowOp, PROPERTY_SAVECOUNT, properties().getClipToBounds()); | 
|  | } | 
|  |  | 
|  | #define SHADOW_DELTA 0.1f | 
|  |  | 
|  | template <class T> | 
|  | void RenderNode::issueOperationsOf3dChildren(ChildrenSelectMode mode, | 
|  | const Matrix4& initialTransform, const Vector<ZDrawRenderNodeOpPair>& zTranslatedNodes, | 
|  | OpenGLRenderer& renderer, T& handler) { | 
|  | const int size = zTranslatedNodes.size(); | 
|  | if (size == 0 | 
|  | || (mode == kNegativeZChildren && zTranslatedNodes[0].key > 0.0f) | 
|  | || (mode == kPositiveZChildren && zTranslatedNodes[size - 1].key < 0.0f)) { | 
|  | // no 3d children to draw | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Apply the base transform of the parent of the 3d children. This isolates | 
|  | // 3d children of the current chunk from transformations made in previous chunks. | 
|  | int rootRestoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag); | 
|  | renderer.setMatrix(initialTransform); | 
|  |  | 
|  | /** | 
|  | * Draw shadows and (potential) casters mostly in order, but allow the shadows of casters | 
|  | * with very similar Z heights to draw together. | 
|  | * | 
|  | * This way, if Views A & B have the same Z height and are both casting shadows, the shadows are | 
|  | * underneath both, and neither's shadow is drawn on top of the other. | 
|  | */ | 
|  | const size_t nonNegativeIndex = findNonNegativeIndex(zTranslatedNodes); | 
|  | size_t drawIndex, shadowIndex, endIndex; | 
|  | if (mode == kNegativeZChildren) { | 
|  | drawIndex = 0; | 
|  | endIndex = nonNegativeIndex; | 
|  | shadowIndex = endIndex; // draw no shadows | 
|  | } else { | 
|  | drawIndex = nonNegativeIndex; | 
|  | endIndex = size; | 
|  | shadowIndex = drawIndex; // potentially draw shadow for each pos Z child | 
|  | } | 
|  |  | 
|  | DISPLAY_LIST_LOGD("%*s%d %s 3d children:", (handler.level() + 1) * 2, "", | 
|  | endIndex - drawIndex, mode == kNegativeZChildren ? "negative" : "positive"); | 
|  |  | 
|  | float lastCasterZ = 0.0f; | 
|  | while (shadowIndex < endIndex || drawIndex < endIndex) { | 
|  | if (shadowIndex < endIndex) { | 
|  | DrawRenderNodeOp* casterOp = zTranslatedNodes[shadowIndex].value; | 
|  | RenderNode* caster = casterOp->mRenderNode; | 
|  | const float casterZ = zTranslatedNodes[shadowIndex].key; | 
|  | // attempt to render the shadow if the caster about to be drawn is its caster, | 
|  | // OR if its caster's Z value is similar to the previous potential caster | 
|  | if (shadowIndex == drawIndex || casterZ - lastCasterZ < SHADOW_DELTA) { | 
|  | caster->issueDrawShadowOperation(casterOp->mTransformFromParent, handler); | 
|  |  | 
|  | lastCasterZ = casterZ; // must do this even if current caster not casting a shadow | 
|  | shadowIndex++; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // only the actual child DL draw needs to be in save/restore, | 
|  | // since it modifies the renderer's matrix | 
|  | int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag); | 
|  |  | 
|  | DrawRenderNodeOp* childOp = zTranslatedNodes[drawIndex].value; | 
|  | RenderNode* child = childOp->mRenderNode; | 
|  |  | 
|  | renderer.concatMatrix(childOp->mTransformFromParent); | 
|  | childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone | 
|  | handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds()); | 
|  | childOp->mSkipInOrderDraw = true; | 
|  |  | 
|  | renderer.restoreToCount(restoreTo); | 
|  | drawIndex++; | 
|  | } | 
|  | renderer.restoreToCount(rootRestoreTo); | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | void RenderNode::issueOperationsOfProjectedChildren(OpenGLRenderer& renderer, T& handler) { | 
|  | DISPLAY_LIST_LOGD("%*s%d projected children:", (handler.level() + 1) * 2, "", mProjectedNodes.size()); | 
|  | const SkPath* projectionReceiverOutline = properties().getOutline().getPath(); | 
|  | int restoreTo = renderer.getSaveCount(); | 
|  |  | 
|  | LinearAllocator& alloc = handler.allocator(); | 
|  | handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag), | 
|  | PROPERTY_SAVECOUNT, properties().getClipToBounds()); | 
|  |  | 
|  | // Transform renderer to match background we're projecting onto | 
|  | // (by offsetting canvas by translationX/Y of background rendernode, since only those are set) | 
|  | const DisplayListOp* op = | 
|  | (mDisplayListData->displayListOps[mDisplayListData->projectionReceiveIndex]); | 
|  | const DrawRenderNodeOp* backgroundOp = reinterpret_cast<const DrawRenderNodeOp*>(op); | 
|  | const RenderProperties& backgroundProps = backgroundOp->mRenderNode->properties(); | 
|  | renderer.translate(backgroundProps.getTranslationX(), backgroundProps.getTranslationY()); | 
|  |  | 
|  | // If the projection reciever has an outline, we mask each of the projected rendernodes to it | 
|  | // Either with clipRect, or special saveLayer masking | 
|  | if (projectionReceiverOutline != NULL) { | 
|  | const SkRect& outlineBounds = projectionReceiverOutline->getBounds(); | 
|  | if (projectionReceiverOutline->isRect(NULL)) { | 
|  | // mask to the rect outline simply with clipRect | 
|  | ClipRectOp* clipOp = new (alloc) ClipRectOp( | 
|  | outlineBounds.left(), outlineBounds.top(), | 
|  | outlineBounds.right(), outlineBounds.bottom(), SkRegion::kIntersect_Op); | 
|  | handler(clipOp, PROPERTY_SAVECOUNT, properties().getClipToBounds()); | 
|  | } else { | 
|  | // wrap the projected RenderNodes with a SaveLayer that will mask to the outline | 
|  | SaveLayerOp* op = new (alloc) SaveLayerOp( | 
|  | outlineBounds.left(), outlineBounds.top(), | 
|  | outlineBounds.right(), outlineBounds.bottom(), | 
|  | 255, SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag | SkCanvas::kARGB_ClipLayer_SaveFlag); | 
|  | op->setMask(projectionReceiverOutline); | 
|  | handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds()); | 
|  |  | 
|  | /* TODO: add optimizations here to take advantage of placement/size of projected | 
|  | * children (which may shrink saveLayer area significantly). This is dependent on | 
|  | * passing actual drawing/dirtying bounds of projected content down to native. | 
|  | */ | 
|  | } | 
|  | } | 
|  |  | 
|  | // draw projected nodes | 
|  | for (size_t i = 0; i < mProjectedNodes.size(); i++) { | 
|  | DrawRenderNodeOp* childOp = mProjectedNodes[i]; | 
|  |  | 
|  | // matrix save, concat, and restore can be done safely without allocating operations | 
|  | int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag); | 
|  | renderer.concatMatrix(childOp->mTransformFromCompositingAncestor); | 
|  | childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone | 
|  | handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds()); | 
|  | childOp->mSkipInOrderDraw = true; | 
|  | renderer.restoreToCount(restoreTo); | 
|  | } | 
|  |  | 
|  | if (projectionReceiverOutline != NULL) { | 
|  | handler(new (alloc) RestoreToCountOp(restoreTo), | 
|  | PROPERTY_SAVECOUNT, properties().getClipToBounds()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * This function serves both defer and replay modes, and will organize the displayList's component | 
|  | * operations for a single frame: | 
|  | * | 
|  | * Every 'simple' state operation that affects just the matrix and alpha (or other factors of | 
|  | * DeferredDisplayState) may be issued directly to the renderer, but complex operations (with custom | 
|  | * defer logic) and operations in displayListOps are issued through the 'handler' which handles the | 
|  | * defer vs replay logic, per operation | 
|  | */ | 
|  | template <class T> | 
|  | void RenderNode::issueOperations(OpenGLRenderer& renderer, T& handler) { | 
|  | const int level = handler.level(); | 
|  | if (mDisplayListData->isEmpty()) { | 
|  | DISPLAY_LIST_LOGD("%*sEmpty display list (%p, %s)", level * 2, "", this, getName()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const bool drawLayer = (mLayer && (&renderer != mLayer->renderer)); | 
|  | // If we are updating the contents of mLayer, we don't want to apply any of | 
|  | // the RenderNode's properties to this issueOperations pass. Those will all | 
|  | // be applied when the layer is drawn, aka when this is true. | 
|  | const bool useViewProperties = (!mLayer || drawLayer); | 
|  | if (useViewProperties) { | 
|  | const Outline& outline = properties().getOutline(); | 
|  | if (properties().getAlpha() <= 0 || (outline.getShouldClip() && outline.isEmpty())) { | 
|  | DISPLAY_LIST_LOGD("%*sRejected display list (%p, %s)", level * 2, "", this, getName()); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | handler.startMark(getName()); | 
|  |  | 
|  | #if DEBUG_DISPLAY_LIST | 
|  | const Rect& clipRect = renderer.getLocalClipBounds(); | 
|  | DISPLAY_LIST_LOGD("%*sStart display list (%p, %s), localClipBounds: %.0f, %.0f, %.0f, %.0f", | 
|  | level * 2, "", this, getName(), | 
|  | clipRect.left, clipRect.top, clipRect.right, clipRect.bottom); | 
|  | #endif | 
|  |  | 
|  | LinearAllocator& alloc = handler.allocator(); | 
|  | int restoreTo = renderer.getSaveCount(); | 
|  | handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag), | 
|  | PROPERTY_SAVECOUNT, properties().getClipToBounds()); | 
|  |  | 
|  | DISPLAY_LIST_LOGD("%*sSave %d %d", (level + 1) * 2, "", | 
|  | SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag, restoreTo); | 
|  |  | 
|  | if (useViewProperties) { | 
|  | setViewProperties<T>(renderer, handler); | 
|  | } | 
|  |  | 
|  | bool quickRejected = properties().getClipToBounds() | 
|  | && renderer.quickRejectConservative(0, 0, properties().getWidth(), properties().getHeight()); | 
|  | if (!quickRejected) { | 
|  | Matrix4 initialTransform(*(renderer.currentTransform())); | 
|  |  | 
|  | if (drawLayer) { | 
|  | handler(new (alloc) DrawLayerOp(mLayer, 0, 0), | 
|  | renderer.getSaveCount() - 1, properties().getClipToBounds()); | 
|  | } else { | 
|  | const int saveCountOffset = renderer.getSaveCount() - 1; | 
|  | const int projectionReceiveIndex = mDisplayListData->projectionReceiveIndex; | 
|  | DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance(); | 
|  | for (size_t chunkIndex = 0; chunkIndex < mDisplayListData->getChunks().size(); chunkIndex++) { | 
|  | const DisplayListData::Chunk& chunk = mDisplayListData->getChunks()[chunkIndex]; | 
|  |  | 
|  | Vector<ZDrawRenderNodeOpPair> zTranslatedNodes; | 
|  | buildZSortedChildList(chunk, zTranslatedNodes); | 
|  |  | 
|  | issueOperationsOf3dChildren(kNegativeZChildren, | 
|  | initialTransform, zTranslatedNodes, renderer, handler); | 
|  |  | 
|  |  | 
|  | for (int opIndex = chunk.beginOpIndex; opIndex < chunk.endOpIndex; opIndex++) { | 
|  | DisplayListOp *op = mDisplayListData->displayListOps[opIndex]; | 
|  | #if DEBUG_DISPLAY_LIST | 
|  | op->output(level + 1); | 
|  | #endif | 
|  | logBuffer.writeCommand(level, op->name()); | 
|  | handler(op, saveCountOffset, properties().getClipToBounds()); | 
|  |  | 
|  | if (CC_UNLIKELY(!mProjectedNodes.isEmpty() && opIndex == projectionReceiveIndex)) { | 
|  | issueOperationsOfProjectedChildren(renderer, handler); | 
|  | } | 
|  | } | 
|  |  | 
|  | issueOperationsOf3dChildren(kPositiveZChildren, | 
|  | initialTransform, zTranslatedNodes, renderer, handler); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | DISPLAY_LIST_LOGD("%*sRestoreToCount %d", (level + 1) * 2, "", restoreTo); | 
|  | handler(new (alloc) RestoreToCountOp(restoreTo), | 
|  | PROPERTY_SAVECOUNT, properties().getClipToBounds()); | 
|  | renderer.setOverrideLayerAlpha(1.0f); | 
|  |  | 
|  | DISPLAY_LIST_LOGD("%*sDone (%p, %s)", level * 2, "", this, getName()); | 
|  | handler.endMark(); | 
|  | } | 
|  |  | 
|  | } /* namespace uirenderer */ | 
|  | } /* namespace android */ |