blob: 30ce58d2b7860ae2779b36195c04a2de5240d42a [file] [log] [blame]
/* libs/android_runtime/android/graphics/Path.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
// This file was generated from the C++ include file: SkPath.h
// Any changes made to this file will be discarded by the build.
// To change this file, either edit the include, or device/tools/gluemaker/main.cpp,
// or one of the auxilary file specifications in device/tools/gluemaker.
#include "jni.h"
#include "GraphicsJNI.h"
#include <android_runtime/AndroidRuntime.h>
#include "SkPath.h"
#include "SkPathOps.h"
#include <ResourceCache.h>
#include <vector>
#include <map>
namespace android {
class SkPathGlue {
public:
static void finalizer(JNIEnv* env, jobject clazz, jlong objHandle) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
#ifdef USE_OPENGL_RENDERER
if (android::uirenderer::ResourceCache::hasInstance()) {
android::uirenderer::ResourceCache::getInstance().destructor(obj);
return;
}
#endif
delete obj;
}
static jlong init1(JNIEnv* env, jobject clazz) {
return reinterpret_cast<jlong>(new SkPath());
}
static jlong init2(JNIEnv* env, jobject clazz, jlong valHandle) {
SkPath* val = reinterpret_cast<SkPath*>(valHandle);
return reinterpret_cast<jlong>(new SkPath(*val));
}
static void reset(JNIEnv* env, jobject clazz, jlong objHandle) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
obj->reset();
}
static void rewind(JNIEnv* env, jobject clazz, jlong objHandle) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
obj->rewind();
}
static void assign(JNIEnv* env, jobject clazz, jlong dstHandle, jlong srcHandle) {
SkPath* dst = reinterpret_cast<SkPath*>(dstHandle);
const SkPath* src = reinterpret_cast<SkPath*>(srcHandle);
*dst = *src;
}
static jboolean isConvex(JNIEnv* env, jobject clazz, jlong objHandle) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
return obj->isConvex();
}
static jint getFillType(JNIEnv* env, jobject clazz, jlong objHandle) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
return obj->getFillType();
}
static void setFillType(JNIEnv* env, jobject clazz, jlong pathHandle, jint ftHandle) {
SkPath* path = reinterpret_cast<SkPath*>(pathHandle);
SkPath::FillType ft = static_cast<SkPath::FillType>(ftHandle);
path->setFillType(ft);
}
static jboolean isEmpty(JNIEnv* env, jobject clazz, jlong objHandle) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
return obj->isEmpty();
}
static jboolean isRect(JNIEnv* env, jobject clazz, jlong objHandle, jobject jrect) {
SkRect rect;
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
jboolean result = obj->isRect(&rect);
GraphicsJNI::rect_to_jrectf(rect, env, jrect);
return result;
}
static void computeBounds(JNIEnv* env, jobject clazz, jlong objHandle, jobject jbounds) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
const SkRect& bounds = obj->getBounds();
GraphicsJNI::rect_to_jrectf(bounds, env, jbounds);
}
static void incReserve(JNIEnv* env, jobject clazz, jlong objHandle, jint extraPtCount) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
obj->incReserve(extraPtCount);
}
static void moveTo__FF(JNIEnv* env, jobject clazz, jlong objHandle, jfloat x, jfloat y) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
obj->moveTo(x, y);
}
static void rMoveTo(JNIEnv* env, jobject clazz, jlong objHandle, jfloat dx, jfloat dy) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
obj->rMoveTo(dx, dy);
}
static void lineTo__FF(JNIEnv* env, jobject clazz, jlong objHandle, jfloat x, jfloat y) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
obj->lineTo(x, y);
}
static void rLineTo(JNIEnv* env, jobject clazz, jlong objHandle, jfloat dx, jfloat dy) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
obj->rLineTo(dx, dy);
}
static void quadTo__FFFF(JNIEnv* env, jobject clazz, jlong objHandle, jfloat x1, jfloat y1, jfloat x2, jfloat y2) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
obj->quadTo(x1, y1, x2, y2);
}
static void rQuadTo(JNIEnv* env, jobject clazz, jlong objHandle, jfloat dx1, jfloat dy1, jfloat dx2, jfloat dy2) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
obj->rQuadTo(dx1, dy1, dx2, dy2);
}
static void cubicTo__FFFFFF(JNIEnv* env, jobject clazz, jlong objHandle, jfloat x1, jfloat y1, jfloat x2, jfloat y2, jfloat x3, jfloat y3) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
obj->cubicTo(x1, y1, x2, y2, x3, y3);
}
static void rCubicTo(JNIEnv* env, jobject clazz, jlong objHandle, jfloat x1, jfloat y1, jfloat x2, jfloat y2, jfloat x3, jfloat y3) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
obj->rCubicTo(x1, y1, x2, y2, x3, y3);
}
static void arcTo(JNIEnv* env, jobject clazz, jlong objHandle, jfloat left, jfloat top,
jfloat right, jfloat bottom, jfloat startAngle, jfloat sweepAngle,
jboolean forceMoveTo) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
SkRect oval = SkRect::MakeLTRB(left, top, right, bottom);
obj->arcTo(oval, startAngle, sweepAngle, forceMoveTo);
}
static void close(JNIEnv* env, jobject clazz, jlong objHandle) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
obj->close();
}
static void addRect(JNIEnv* env, jobject clazz, jlong objHandle,
jfloat left, jfloat top, jfloat right, jfloat bottom, jint dirHandle) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
SkPath::Direction dir = static_cast<SkPath::Direction>(dirHandle);
obj->addRect(left, top, right, bottom, dir);
}
static void addOval(JNIEnv* env, jobject clazz, jlong objHandle,
jfloat left, jfloat top, jfloat right, jfloat bottom, jint dirHandle) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
SkPath::Direction dir = static_cast<SkPath::Direction>(dirHandle);
SkRect oval = SkRect::MakeLTRB(left, top, right, bottom);
obj->addOval(oval, dir);
}
static void addCircle(JNIEnv* env, jobject clazz, jlong objHandle, jfloat x, jfloat y, jfloat radius, jint dirHandle) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
SkPath::Direction dir = static_cast<SkPath::Direction>(dirHandle);
obj->addCircle(x, y, radius, dir);
}
static void addArc(JNIEnv* env, jobject clazz, jlong objHandle, jfloat left, jfloat top,
jfloat right, jfloat bottom, jfloat startAngle, jfloat sweepAngle) {
SkRect oval = SkRect::MakeLTRB(left, top, right, bottom);
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
obj->addArc(oval, startAngle, sweepAngle);
}
static void addRoundRectXY(JNIEnv* env, jobject clazz, jlong objHandle, jfloat left, jfloat top,
jfloat right, jfloat bottom, jfloat rx, jfloat ry, jint dirHandle) {
SkRect rect = SkRect::MakeLTRB(left, top, right, bottom);
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
SkPath::Direction dir = static_cast<SkPath::Direction>(dirHandle);
obj->addRoundRect(rect, rx, ry, dir);
}
static void addRoundRect8(JNIEnv* env, jobject, jlong objHandle, jfloat left, jfloat top,
jfloat right, jfloat bottom, jfloatArray array, jint dirHandle) {
SkRect rect = SkRect::MakeLTRB(left, top, right, bottom);
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
SkPath::Direction dir = static_cast<SkPath::Direction>(dirHandle);
AutoJavaFloatArray afa(env, array, 8);
#ifdef SK_SCALAR_IS_FLOAT
const float* src = afa.ptr();
#else
#error Need to convert float array to SkScalar array before calling the following function.
#endif
obj->addRoundRect(rect, src, dir);
}
static void addPath__PathFF(JNIEnv* env, jobject clazz, jlong objHandle, jlong srcHandle, jfloat dx, jfloat dy) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
SkPath* src = reinterpret_cast<SkPath*>(srcHandle);
obj->addPath(*src, dx, dy);
}
static void addPath__Path(JNIEnv* env, jobject clazz, jlong objHandle, jlong srcHandle) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
SkPath* src = reinterpret_cast<SkPath*>(srcHandle);
obj->addPath(*src);
}
static void addPath__PathMatrix(JNIEnv* env, jobject clazz, jlong objHandle, jlong srcHandle, jlong matrixHandle) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
SkPath* src = reinterpret_cast<SkPath*>(srcHandle);
SkMatrix* matrix = reinterpret_cast<SkMatrix*>(matrixHandle);
obj->addPath(*src, *matrix);
}
static void offset__FFPath(JNIEnv* env, jobject clazz, jlong objHandle, jfloat dx, jfloat dy, jlong dstHandle) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
SkPath* dst = reinterpret_cast<SkPath*>(dstHandle);
obj->offset(dx, dy, dst);
}
static void offset__FF(JNIEnv* env, jobject clazz, jlong objHandle, jfloat dx, jfloat dy) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
obj->offset(dx, dy);
}
static void setLastPoint(JNIEnv* env, jobject clazz, jlong objHandle, jfloat dx, jfloat dy) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
obj->setLastPt(dx, dy);
}
static void transform__MatrixPath(JNIEnv* env, jobject clazz, jlong objHandle, jlong matrixHandle, jlong dstHandle) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
SkMatrix* matrix = reinterpret_cast<SkMatrix*>(matrixHandle);
SkPath* dst = reinterpret_cast<SkPath*>(dstHandle);
obj->transform(*matrix, dst);
}
static void transform__Matrix(JNIEnv* env, jobject clazz, jlong objHandle, jlong matrixHandle) {
SkPath* obj = reinterpret_cast<SkPath*>(objHandle);
SkMatrix* matrix = reinterpret_cast<SkMatrix*>(matrixHandle);
obj->transform(*matrix);
}
static jboolean op(JNIEnv* env, jobject clazz, jlong p1Handle, jlong p2Handle, jint opHandle, jlong rHandle) {
SkPath* p1 = reinterpret_cast<SkPath*>(p1Handle);
SkPath* p2 = reinterpret_cast<SkPath*>(p2Handle);
SkPathOp op = static_cast<SkPathOp>(opHandle);
SkPath* r = reinterpret_cast<SkPath*>(rHandle);
return Op(*p1, *p2, op, r);
}
typedef SkPoint (*bezierCalculation)(float t, const SkPoint* points);
static void addMove(std::vector<SkPoint>& segmentPoints, std::vector<float>& lengths,
const SkPoint& point) {
float length = 0;
if (!lengths.empty()) {
length = lengths.back();
}
segmentPoints.push_back(point);
lengths.push_back(length);
}
static void addLine(std::vector<SkPoint>& segmentPoints, std::vector<float>& lengths,
const SkPoint& toPoint) {
if (segmentPoints.empty()) {
segmentPoints.push_back(SkPoint::Make(0, 0));
lengths.push_back(0);
} else if (segmentPoints.back() == toPoint) {
return; // Empty line
}
float length = lengths.back() + SkPoint::Distance(segmentPoints.back(), toPoint);
segmentPoints.push_back(toPoint);
lengths.push_back(length);
}
static float cubicCoordinateCalculation(float t, float p0, float p1, float p2, float p3) {
float oneMinusT = 1 - t;
float oneMinusTSquared = oneMinusT * oneMinusT;
float oneMinusTCubed = oneMinusTSquared * oneMinusT;
float tSquared = t * t;
float tCubed = tSquared * t;
return (oneMinusTCubed * p0) + (3 * oneMinusTSquared * t * p1)
+ (3 * oneMinusT * tSquared * p2) + (tCubed * p3);
}
static SkPoint cubicBezierCalculation(float t, const SkPoint* points) {
float x = cubicCoordinateCalculation(t, points[0].x(), points[1].x(),
points[2].x(), points[3].x());
float y = cubicCoordinateCalculation(t, points[0].y(), points[1].y(),
points[2].y(), points[3].y());
return SkPoint::Make(x, y);
}
static float quadraticCoordinateCalculation(float t, float p0, float p1, float p2) {
float oneMinusT = 1 - t;
return oneMinusT * ((oneMinusT * p0) + (t * p1)) + t * ((oneMinusT * p1) + (t * p2));
}
static SkPoint quadraticBezierCalculation(float t, const SkPoint* points) {
float x = quadraticCoordinateCalculation(t, points[0].x(), points[1].x(), points[2].x());
float y = quadraticCoordinateCalculation(t, points[0].y(), points[1].y(), points[2].y());
return SkPoint::Make(x, y);
}
// Subdivide a section of the Bezier curve, set the mid-point and the mid-t value.
// Returns true if further subdivision is necessary as defined by errorSquared.
static bool subdividePoints(const SkPoint* points, bezierCalculation bezierFunction,
float t0, const SkPoint &p0, float t1, const SkPoint &p1,
float& midT, SkPoint &midPoint, float errorSquared) {
midT = (t1 + t0) / 2;
float midX = (p1.x() + p0.x()) / 2;
float midY = (p1.y() + p0.y()) / 2;
midPoint = (*bezierFunction)(midT, points);
float xError = midPoint.x() - midX;
float yError = midPoint.y() - midY;
float midErrorSquared = (xError * xError) + (yError * yError);
return midErrorSquared > errorSquared;
}
// Divides Bezier curves until linear interpolation is very close to accurate, using
// errorSquared as a metric. Cubic Bezier curves can have an inflection point that improperly
// short-circuit subdivision. If you imagine an S shape, the top and bottom points being the
// starting and end points, linear interpolation would mark the center where the curve places
// the point. It is clearly not the case that we can linearly interpolate at that point.
// doubleCheckDivision forces a second examination between subdivisions to ensure that linear
// interpolation works.
static void addBezier(const SkPoint* points,
bezierCalculation bezierFunction, std::vector<SkPoint>& segmentPoints,
std::vector<float>& lengths, float errorSquared, bool doubleCheckDivision) {
typedef std::map<float, SkPoint> PointMap;
PointMap tToPoint;
tToPoint[0] = (*bezierFunction)(0, points);
tToPoint[1] = (*bezierFunction)(1, points);
PointMap::iterator iter = tToPoint.begin();
PointMap::iterator next = iter;
++next;
while (next != tToPoint.end()) {
bool needsSubdivision = true;
SkPoint midPoint;
do {
float midT;
needsSubdivision = subdividePoints(points, bezierFunction, iter->first,
iter->second, next->first, next->second, midT, midPoint, errorSquared);
if (!needsSubdivision && doubleCheckDivision) {
SkPoint quarterPoint;
float quarterT;
needsSubdivision = subdividePoints(points, bezierFunction, iter->first,
iter->second, midT, midPoint, quarterT, quarterPoint, errorSquared);
if (needsSubdivision) {
// Found an inflection point. No need to double-check.
doubleCheckDivision = false;
}
}
if (needsSubdivision) {
next = tToPoint.insert(iter, PointMap::value_type(midT, midPoint));
}
} while (needsSubdivision);
iter = next;
next++;
}
// Now that each division can use linear interpolation with less than the allowed error
for (iter = tToPoint.begin(); iter != tToPoint.end(); ++iter) {
addLine(segmentPoints, lengths, iter->second);
}
}
static void createVerbSegments(SkPath::Verb verb, const SkPoint* points,
std::vector<SkPoint>& segmentPoints, std::vector<float>& lengths, float errorSquared) {
switch (verb) {
case SkPath::kMove_Verb:
addMove(segmentPoints, lengths, points[0]);
break;
case SkPath::kClose_Verb:
addLine(segmentPoints, lengths, points[0]);
break;
case SkPath::kLine_Verb:
addLine(segmentPoints, lengths, points[1]);
break;
case SkPath::kQuad_Verb:
addBezier(points, quadraticBezierCalculation, segmentPoints, lengths,
errorSquared, false);
break;
case SkPath::kCubic_Verb:
addBezier(points, cubicBezierCalculation, segmentPoints, lengths,
errorSquared, true);
break;
default:
// Leave element as NULL, Conic sections are not supported.
break;
}
}
// Returns a float[] with each point along the path represented by 3 floats
// * fractional length along the path that the point resides
// * x coordinate
// * y coordinate
// Note that more than one point may have the same length along the path in
// the case of a move.
// NULL can be returned if the Path is empty.
static jfloatArray approximate(JNIEnv* env, jclass, jlong pathHandle, float acceptableError)
{
SkPath* path = reinterpret_cast<SkPath*>(pathHandle);
SkASSERT(path);
SkPath::Iter pathIter(*path, false);
SkPath::Verb verb;
SkPoint points[4];
std::vector<SkPoint> segmentPoints;
std::vector<float> lengths;
float errorSquared = acceptableError * acceptableError;
while ((verb = pathIter.next(points, false)) != SkPath::kDone_Verb) {
createVerbSegments(verb, points, segmentPoints, lengths, errorSquared);
}
if (segmentPoints.empty()) {
int numVerbs = path->countVerbs();
if (numVerbs == 1) {
addMove(segmentPoints, lengths, path->getPoint(0));
} else {
// Invalid or empty path. Fall back to point(0,0)
addMove(segmentPoints, lengths, SkPoint());
}
}
float totalLength = lengths.back();
if (totalLength == 0) {
// Lone Move instructions should still be able to animate at the same value.
segmentPoints.push_back(segmentPoints.back());
lengths.push_back(1);
totalLength = 1;
}
size_t numPoints = segmentPoints.size();
size_t approximationArraySize = numPoints * 3;
float* approximation = new float[approximationArraySize];
int approximationIndex = 0;
for (size_t i = 0; i < numPoints; i++) {
const SkPoint& point = segmentPoints[i];
approximation[approximationIndex++] = lengths[i] / totalLength;
approximation[approximationIndex++] = point.x();
approximation[approximationIndex++] = point.y();
}
jfloatArray result = env->NewFloatArray(approximationArraySize);
env->SetFloatArrayRegion(result, 0, approximationArraySize, approximation);
delete[] approximation;
return result;
}
};
static JNINativeMethod methods[] = {
{"finalizer", "(J)V", (void*) SkPathGlue::finalizer},
{"init1","()J", (void*) SkPathGlue::init1},
{"init2","(J)J", (void*) SkPathGlue::init2},
{"native_reset","(J)V", (void*) SkPathGlue::reset},
{"native_rewind","(J)V", (void*) SkPathGlue::rewind},
{"native_set","(JJ)V", (void*) SkPathGlue::assign},
{"native_isConvex","(J)Z", (void*) SkPathGlue::isConvex},
{"native_getFillType","(J)I", (void*) SkPathGlue::getFillType},
{"native_setFillType","(JI)V", (void*) SkPathGlue::setFillType},
{"native_isEmpty","(J)Z", (void*) SkPathGlue::isEmpty},
{"native_isRect","(JLandroid/graphics/RectF;)Z", (void*) SkPathGlue::isRect},
{"native_computeBounds","(JLandroid/graphics/RectF;)V", (void*) SkPathGlue::computeBounds},
{"native_incReserve","(JI)V", (void*) SkPathGlue::incReserve},
{"native_moveTo","(JFF)V", (void*) SkPathGlue::moveTo__FF},
{"native_rMoveTo","(JFF)V", (void*) SkPathGlue::rMoveTo},
{"native_lineTo","(JFF)V", (void*) SkPathGlue::lineTo__FF},
{"native_rLineTo","(JFF)V", (void*) SkPathGlue::rLineTo},
{"native_quadTo","(JFFFF)V", (void*) SkPathGlue::quadTo__FFFF},
{"native_rQuadTo","(JFFFF)V", (void*) SkPathGlue::rQuadTo},
{"native_cubicTo","(JFFFFFF)V", (void*) SkPathGlue::cubicTo__FFFFFF},
{"native_rCubicTo","(JFFFFFF)V", (void*) SkPathGlue::rCubicTo},
{"native_arcTo","(JFFFFFFZ)V", (void*) SkPathGlue::arcTo},
{"native_close","(J)V", (void*) SkPathGlue::close},
{"native_addRect","(JFFFFI)V", (void*) SkPathGlue::addRect},
{"native_addOval","(JFFFFI)V", (void*) SkPathGlue::addOval},
{"native_addCircle","(JFFFI)V", (void*) SkPathGlue::addCircle},
{"native_addArc","(JFFFFFF)V", (void*) SkPathGlue::addArc},
{"native_addRoundRect","(JFFFFFFI)V", (void*) SkPathGlue::addRoundRectXY},
{"native_addRoundRect","(JFFFF[FI)V", (void*) SkPathGlue::addRoundRect8},
{"native_addPath","(JJFF)V", (void*) SkPathGlue::addPath__PathFF},
{"native_addPath","(JJ)V", (void*) SkPathGlue::addPath__Path},
{"native_addPath","(JJJ)V", (void*) SkPathGlue::addPath__PathMatrix},
{"native_offset","(JFFJ)V", (void*) SkPathGlue::offset__FFPath},
{"native_offset","(JFF)V", (void*) SkPathGlue::offset__FF},
{"native_setLastPoint","(JFF)V", (void*) SkPathGlue::setLastPoint},
{"native_transform","(JJJ)V", (void*) SkPathGlue::transform__MatrixPath},
{"native_transform","(JJ)V", (void*) SkPathGlue::transform__Matrix},
{"native_op","(JJIJ)Z", (void*) SkPathGlue::op},
{"native_approximate", "(JF)[F", (void*) SkPathGlue::approximate},
};
int register_android_graphics_Path(JNIEnv* env) {
int result = AndroidRuntime::registerNativeMethods(env, "android/graphics/Path", methods,
sizeof(methods) / sizeof(methods[0]));
return result;
}
}