|  | /* | 
|  | * Copyright (C) 2014 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #define ATRACE_TAG ATRACE_TAG_VIEW | 
|  |  | 
|  | #include "RenderNode.h" | 
|  |  | 
|  | #include <algorithm> | 
|  |  | 
|  | #include <SkCanvas.h> | 
|  | #include <algorithm> | 
|  |  | 
|  | #include <utils/Trace.h> | 
|  |  | 
|  | #include "Debug.h" | 
|  | #include "DisplayListOp.h" | 
|  | #include "DisplayListLogBuffer.h" | 
|  | #include "utils/MathUtils.h" | 
|  |  | 
|  | namespace android { | 
|  | namespace uirenderer { | 
|  |  | 
|  | void RenderNode::outputLogBuffer(int fd) { | 
|  | DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance(); | 
|  | if (logBuffer.isEmpty()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | FILE *file = fdopen(fd, "a"); | 
|  |  | 
|  | fprintf(file, "\nRecent DisplayList operations\n"); | 
|  | logBuffer.outputCommands(file); | 
|  |  | 
|  | String8 cachesLog; | 
|  | Caches::getInstance().dumpMemoryUsage(cachesLog); | 
|  | fprintf(file, "\nCaches:\n%s", cachesLog.string()); | 
|  | fprintf(file, "\n"); | 
|  |  | 
|  | fflush(file); | 
|  | } | 
|  |  | 
|  | RenderNode::RenderNode() | 
|  | : mDirtyPropertyFields(0) | 
|  | , mNeedsDisplayListDataSync(false) | 
|  | , mDisplayListData(0) | 
|  | , mStagingDisplayListData(0) | 
|  | , mNeedsAnimatorsSync(false) { | 
|  | } | 
|  |  | 
|  | RenderNode::~RenderNode() { | 
|  | delete mDisplayListData; | 
|  | delete mStagingDisplayListData; | 
|  | } | 
|  |  | 
|  | void RenderNode::setStagingDisplayList(DisplayListData* data) { | 
|  | mNeedsDisplayListDataSync = true; | 
|  | delete mStagingDisplayListData; | 
|  | mStagingDisplayListData = data; | 
|  | if (mStagingDisplayListData) { | 
|  | Caches::getInstance().registerFunctors(mStagingDisplayListData->functorCount); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * This function is a simplified version of replay(), where we simply retrieve and log the | 
|  | * display list. This function should remain in sync with the replay() function. | 
|  | */ | 
|  | void RenderNode::output(uint32_t level) { | 
|  | ALOGD("%*sStart display list (%p, %s, render=%d)", (level - 1) * 2, "", this, | 
|  | getName(), isRenderable()); | 
|  | ALOGD("%*s%s %d", level * 2, "", "Save", | 
|  | SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag); | 
|  |  | 
|  | properties().debugOutputProperties(level); | 
|  | int flags = DisplayListOp::kOpLogFlag_Recurse; | 
|  | for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) { | 
|  | mDisplayListData->displayListOps[i]->output(level, flags); | 
|  | } | 
|  |  | 
|  | ALOGD("%*sDone (%p, %s)", (level - 1) * 2, "", this, getName()); | 
|  | } | 
|  |  | 
|  | int RenderNode::getDebugSize() { | 
|  | int size = sizeof(RenderNode); | 
|  | if (mStagingDisplayListData) { | 
|  | size += mStagingDisplayListData->allocator.usedSize(); | 
|  | } | 
|  | if (mDisplayListData && mDisplayListData != mStagingDisplayListData) { | 
|  | size += mDisplayListData->allocator.usedSize(); | 
|  | } | 
|  | return size; | 
|  | } | 
|  |  | 
|  | void RenderNode::prepareTree(TreeInfo& info) { | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | prepareTreeImpl(info); | 
|  | } | 
|  |  | 
|  | void RenderNode::prepareTreeImpl(TreeInfo& info) { | 
|  | if (info.performStagingPush) { | 
|  | pushStagingChanges(info); | 
|  | } | 
|  | if (info.evaluateAnimations) { | 
|  | evaluateAnimations(info); | 
|  | } | 
|  | prepareSubTree(info, mDisplayListData); | 
|  | } | 
|  |  | 
|  | class PushAnimatorsFunctor { | 
|  | public: | 
|  | PushAnimatorsFunctor(RenderNode* target, TreeInfo& info) | 
|  | : mTarget(target), mInfo(info) {} | 
|  |  | 
|  | bool operator() (const sp<BaseRenderNodeAnimator>& animator) { | 
|  | animator->setupStartValueIfNecessary(mTarget, mInfo); | 
|  | return animator->isFinished(); | 
|  | } | 
|  | private: | 
|  | RenderNode* mTarget; | 
|  | TreeInfo& mInfo; | 
|  | }; | 
|  |  | 
|  | void RenderNode::pushStagingChanges(TreeInfo& info) { | 
|  | // Push the animators first so that setupStartValueIfNecessary() is called | 
|  | // before properties() is trampled by stagingProperties(), as they are | 
|  | // required by some animators. | 
|  | if (mNeedsAnimatorsSync) { | 
|  | mAnimators.resize(mStagingAnimators.size()); | 
|  | std::vector< sp<BaseRenderNodeAnimator> >::iterator it; | 
|  | PushAnimatorsFunctor functor(this, info); | 
|  | // hint: this means copy_if_not() | 
|  | it = std::remove_copy_if(mStagingAnimators.begin(), mStagingAnimators.end(), | 
|  | mAnimators.begin(), functor); | 
|  | mAnimators.resize(std::distance(mAnimators.begin(), it)); | 
|  | } | 
|  | if (mDirtyPropertyFields) { | 
|  | mDirtyPropertyFields = 0; | 
|  | mProperties = mStagingProperties; | 
|  | } | 
|  | if (mNeedsDisplayListDataSync) { | 
|  | mNeedsDisplayListDataSync = false; | 
|  | // Do a push pass on the old tree to handle freeing DisplayListData | 
|  | // that are no longer used | 
|  | TreeInfo oldTreeInfo; | 
|  | prepareSubTree(oldTreeInfo, mDisplayListData); | 
|  | // TODO: The damage for the old tree should be accounted for | 
|  | delete mDisplayListData; | 
|  | mDisplayListData = mStagingDisplayListData; | 
|  | mStagingDisplayListData = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | class AnimateFunctor { | 
|  | public: | 
|  | AnimateFunctor(RenderNode* target, TreeInfo& info) | 
|  | : mTarget(target), mInfo(info) {} | 
|  |  | 
|  | bool operator() (const sp<BaseRenderNodeAnimator>& animator) { | 
|  | return animator->animate(mTarget, mInfo); | 
|  | } | 
|  | private: | 
|  | RenderNode* mTarget; | 
|  | TreeInfo& mInfo; | 
|  | }; | 
|  |  | 
|  | void RenderNode::evaluateAnimations(TreeInfo& info) { | 
|  | if (!mAnimators.size()) return; | 
|  |  | 
|  | AnimateFunctor functor(this, info); | 
|  | std::vector< sp<BaseRenderNodeAnimator> >::iterator newEnd; | 
|  | newEnd = std::remove_if(mAnimators.begin(), mAnimators.end(), functor); | 
|  | mAnimators.erase(newEnd, mAnimators.end()); | 
|  | mProperties.updateMatrix(); | 
|  | info.out.hasAnimations |= mAnimators.size(); | 
|  | } | 
|  |  | 
|  | void RenderNode::prepareSubTree(TreeInfo& info, DisplayListData* subtree) { | 
|  | if (subtree) { | 
|  | TextureCache& cache = Caches::getInstance().textureCache; | 
|  | info.out.hasFunctors |= subtree->functorCount; | 
|  | // TODO: Fix ownedBitmapResources to not require disabling prepareTextures | 
|  | // and thus falling out of async drawing path. | 
|  | if (subtree->ownedBitmapResources.size()) { | 
|  | info.prepareTextures = false; | 
|  | } | 
|  | for (size_t i = 0; info.prepareTextures && i < subtree->bitmapResources.size(); i++) { | 
|  | info.prepareTextures = cache.prefetchAndMarkInUse(subtree->bitmapResources[i]); | 
|  | } | 
|  | for (size_t i = 0; i < subtree->children().size(); i++) { | 
|  | RenderNode* childNode = subtree->children()[i]->mDisplayList; | 
|  | childNode->prepareTreeImpl(info); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For property operations, we pass a savecount of 0, since the operations aren't part of the | 
|  | * displaylist, and thus don't have to compensate for the record-time/playback-time discrepancy in | 
|  | * base saveCount (i.e., how RestoreToCount uses saveCount + properties().getCount()) | 
|  | */ | 
|  | #define PROPERTY_SAVECOUNT 0 | 
|  |  | 
|  | template <class T> | 
|  | void RenderNode::setViewProperties(OpenGLRenderer& renderer, T& handler) { | 
|  | #if DEBUG_DISPLAY_LIST | 
|  | properties().debugOutputProperties(handler.level() + 1); | 
|  | #endif | 
|  | if (properties().getLeft() != 0 || properties().getTop() != 0) { | 
|  | renderer.translate(properties().getLeft(), properties().getTop()); | 
|  | } | 
|  | if (properties().getStaticMatrix()) { | 
|  | renderer.concatMatrix(properties().getStaticMatrix()); | 
|  | } else if (properties().getAnimationMatrix()) { | 
|  | renderer.concatMatrix(properties().getAnimationMatrix()); | 
|  | } | 
|  | if (properties().hasTransformMatrix()) { | 
|  | if (properties().isTransformTranslateOnly()) { | 
|  | renderer.translate(properties().getTranslationX(), properties().getTranslationY()); | 
|  | } else { | 
|  | renderer.concatMatrix(*properties().getTransformMatrix()); | 
|  | } | 
|  | } | 
|  | bool clipToBoundsNeeded = properties().getCaching() ? false : properties().getClipToBounds(); | 
|  | if (properties().getAlpha() < 1) { | 
|  | if (properties().getCaching()) { | 
|  | renderer.setOverrideLayerAlpha(properties().getAlpha()); | 
|  | } else if (!properties().getHasOverlappingRendering()) { | 
|  | renderer.scaleAlpha(properties().getAlpha()); | 
|  | } else { | 
|  | // TODO: should be able to store the size of a DL at record time and not | 
|  | // have to pass it into this call. In fact, this information might be in the | 
|  | // location/size info that we store with the new native transform data. | 
|  | int saveFlags = SkCanvas::kHasAlphaLayer_SaveFlag; | 
|  | if (clipToBoundsNeeded) { | 
|  | saveFlags |= SkCanvas::kClipToLayer_SaveFlag; | 
|  | clipToBoundsNeeded = false; // clipping done by saveLayer | 
|  | } | 
|  |  | 
|  | SaveLayerOp* op = new (handler.allocator()) SaveLayerOp( | 
|  | 0, 0, properties().getWidth(), properties().getHeight(), | 
|  | properties().getAlpha() * 255, saveFlags); | 
|  | handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds()); | 
|  | } | 
|  | } | 
|  | if (clipToBoundsNeeded) { | 
|  | ClipRectOp* op = new (handler.allocator()) ClipRectOp( | 
|  | 0, 0, properties().getWidth(), properties().getHeight(), SkRegion::kIntersect_Op); | 
|  | handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds()); | 
|  | } | 
|  |  | 
|  | if (CC_UNLIKELY(properties().hasClippingPath())) { | 
|  | ClipPathOp* op = new (handler.allocator()) ClipPathOp( | 
|  | properties().getClippingPath(), properties().getClippingPathOp()); | 
|  | handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Apply property-based transformations to input matrix | 
|  | * | 
|  | * If true3dTransform is set to true, the transform applied to the input matrix will use true 4x4 | 
|  | * matrix computation instead of the Skia 3x3 matrix + camera hackery. | 
|  | */ | 
|  | void RenderNode::applyViewPropertyTransforms(mat4& matrix, bool true3dTransform) { | 
|  | if (properties().getLeft() != 0 || properties().getTop() != 0) { | 
|  | matrix.translate(properties().getLeft(), properties().getTop()); | 
|  | } | 
|  | if (properties().getStaticMatrix()) { | 
|  | mat4 stat(*properties().getStaticMatrix()); | 
|  | matrix.multiply(stat); | 
|  | } else if (properties().getAnimationMatrix()) { | 
|  | mat4 anim(*properties().getAnimationMatrix()); | 
|  | matrix.multiply(anim); | 
|  | } | 
|  |  | 
|  | bool applyTranslationZ = true3dTransform && !MathUtils::isZero(properties().getZ()); | 
|  | if (properties().hasTransformMatrix() || applyTranslationZ) { | 
|  | if (properties().isTransformTranslateOnly()) { | 
|  | matrix.translate(properties().getTranslationX(), properties().getTranslationY(), | 
|  | true3dTransform ? properties().getZ() : 0.0f); | 
|  | } else { | 
|  | if (!true3dTransform) { | 
|  | matrix.multiply(*properties().getTransformMatrix()); | 
|  | } else { | 
|  | mat4 true3dMat; | 
|  | true3dMat.loadTranslate( | 
|  | properties().getPivotX() + properties().getTranslationX(), | 
|  | properties().getPivotY() + properties().getTranslationY(), | 
|  | properties().getZ()); | 
|  | true3dMat.rotate(properties().getRotationX(), 1, 0, 0); | 
|  | true3dMat.rotate(properties().getRotationY(), 0, 1, 0); | 
|  | true3dMat.rotate(properties().getRotation(), 0, 0, 1); | 
|  | true3dMat.scale(properties().getScaleX(), properties().getScaleY(), 1); | 
|  | true3dMat.translate(-properties().getPivotX(), -properties().getPivotY()); | 
|  |  | 
|  | matrix.multiply(true3dMat); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Organizes the DisplayList hierarchy to prepare for background projection reordering. | 
|  | * | 
|  | * This should be called before a call to defer() or drawDisplayList() | 
|  | * | 
|  | * Each DisplayList that serves as a 3d root builds its list of composited children, | 
|  | * which are flagged to not draw in the standard draw loop. | 
|  | */ | 
|  | void RenderNode::computeOrdering() { | 
|  | ATRACE_CALL(); | 
|  | mProjectedNodes.clear(); | 
|  |  | 
|  | // TODO: create temporary DDLOp and call computeOrderingImpl on top DisplayList so that | 
|  | // transform properties are applied correctly to top level children | 
|  | if (mDisplayListData == NULL) return; | 
|  | for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) { | 
|  | DrawDisplayListOp* childOp = mDisplayListData->children()[i]; | 
|  | childOp->mDisplayList->computeOrderingImpl(childOp, | 
|  | properties().getOutline().getPath(), &mProjectedNodes, &mat4::identity()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void RenderNode::computeOrderingImpl( | 
|  | DrawDisplayListOp* opState, | 
|  | const SkPath* outlineOfProjectionSurface, | 
|  | Vector<DrawDisplayListOp*>* compositedChildrenOfProjectionSurface, | 
|  | const mat4* transformFromProjectionSurface) { | 
|  | mProjectedNodes.clear(); | 
|  | if (mDisplayListData == NULL || mDisplayListData->isEmpty()) return; | 
|  |  | 
|  | // TODO: should avoid this calculation in most cases | 
|  | // TODO: just calculate single matrix, down to all leaf composited elements | 
|  | Matrix4 localTransformFromProjectionSurface(*transformFromProjectionSurface); | 
|  | localTransformFromProjectionSurface.multiply(opState->mTransformFromParent); | 
|  |  | 
|  | if (properties().getProjectBackwards()) { | 
|  | // composited projectee, flag for out of order draw, save matrix, and store in proj surface | 
|  | opState->mSkipInOrderDraw = true; | 
|  | opState->mTransformFromCompositingAncestor.load(localTransformFromProjectionSurface); | 
|  | compositedChildrenOfProjectionSurface->add(opState); | 
|  | } else { | 
|  | // standard in order draw | 
|  | opState->mSkipInOrderDraw = false; | 
|  | } | 
|  |  | 
|  | if (mDisplayListData->children().size() > 0) { | 
|  | const bool isProjectionReceiver = mDisplayListData->projectionReceiveIndex >= 0; | 
|  | bool haveAppliedPropertiesToProjection = false; | 
|  | for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) { | 
|  | DrawDisplayListOp* childOp = mDisplayListData->children()[i]; | 
|  | RenderNode* child = childOp->mDisplayList; | 
|  |  | 
|  | const SkPath* projectionOutline = NULL; | 
|  | Vector<DrawDisplayListOp*>* projectionChildren = NULL; | 
|  | const mat4* projectionTransform = NULL; | 
|  | if (isProjectionReceiver && !child->properties().getProjectBackwards()) { | 
|  | // if receiving projections, collect projecting descendent | 
|  |  | 
|  | // Note that if a direct descendent is projecting backwards, we pass it's | 
|  | // grandparent projection collection, since it shouldn't project onto it's | 
|  | // parent, where it will already be drawing. | 
|  | projectionOutline = properties().getOutline().getPath(); | 
|  | projectionChildren = &mProjectedNodes; | 
|  | projectionTransform = &mat4::identity(); | 
|  | } else { | 
|  | if (!haveAppliedPropertiesToProjection) { | 
|  | applyViewPropertyTransforms(localTransformFromProjectionSurface); | 
|  | haveAppliedPropertiesToProjection = true; | 
|  | } | 
|  | projectionOutline = outlineOfProjectionSurface; | 
|  | projectionChildren = compositedChildrenOfProjectionSurface; | 
|  | projectionTransform = &localTransformFromProjectionSurface; | 
|  | } | 
|  | child->computeOrderingImpl(childOp, | 
|  | projectionOutline, projectionChildren, projectionTransform); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | class DeferOperationHandler { | 
|  | public: | 
|  | DeferOperationHandler(DeferStateStruct& deferStruct, int level) | 
|  | : mDeferStruct(deferStruct), mLevel(level) {} | 
|  | inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) { | 
|  | operation->defer(mDeferStruct, saveCount, mLevel, clipToBounds); | 
|  | } | 
|  | inline LinearAllocator& allocator() { return *(mDeferStruct.mAllocator); } | 
|  | inline void startMark(const char* name) {} // do nothing | 
|  | inline void endMark() {} | 
|  | inline int level() { return mLevel; } | 
|  | inline int replayFlags() { return mDeferStruct.mReplayFlags; } | 
|  |  | 
|  | private: | 
|  | DeferStateStruct& mDeferStruct; | 
|  | const int mLevel; | 
|  | }; | 
|  |  | 
|  | void RenderNode::deferNodeTree(DeferStateStruct& deferStruct) { | 
|  | DeferOperationHandler handler(deferStruct, 0); | 
|  | if (MathUtils::isPositive(properties().getZ())) { | 
|  | issueDrawShadowOperation(Matrix4::identity(), handler); | 
|  | } | 
|  | issueOperations<DeferOperationHandler>(deferStruct.mRenderer, handler); | 
|  | } | 
|  |  | 
|  | void RenderNode::deferNodeInParent(DeferStateStruct& deferStruct, const int level) { | 
|  | DeferOperationHandler handler(deferStruct, level); | 
|  | issueOperations<DeferOperationHandler>(deferStruct.mRenderer, handler); | 
|  | } | 
|  |  | 
|  | class ReplayOperationHandler { | 
|  | public: | 
|  | ReplayOperationHandler(ReplayStateStruct& replayStruct, int level) | 
|  | : mReplayStruct(replayStruct), mLevel(level) {} | 
|  | inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) { | 
|  | #if DEBUG_DISPLAY_LIST_OPS_AS_EVENTS | 
|  | mReplayStruct.mRenderer.eventMark(operation->name()); | 
|  | #endif | 
|  | operation->replay(mReplayStruct, saveCount, mLevel, clipToBounds); | 
|  | } | 
|  | inline LinearAllocator& allocator() { return *(mReplayStruct.mAllocator); } | 
|  | inline void startMark(const char* name) { | 
|  | mReplayStruct.mRenderer.startMark(name); | 
|  | } | 
|  | inline void endMark() { | 
|  | mReplayStruct.mRenderer.endMark(); | 
|  | } | 
|  | inline int level() { return mLevel; } | 
|  | inline int replayFlags() { return mReplayStruct.mReplayFlags; } | 
|  |  | 
|  | private: | 
|  | ReplayStateStruct& mReplayStruct; | 
|  | const int mLevel; | 
|  | }; | 
|  |  | 
|  | void RenderNode::replayNodeTree(ReplayStateStruct& replayStruct) { | 
|  | ReplayOperationHandler handler(replayStruct, 0); | 
|  | if (MathUtils::isPositive(properties().getZ())) { | 
|  | issueDrawShadowOperation(Matrix4::identity(), handler); | 
|  | } | 
|  | issueOperations<ReplayOperationHandler>(replayStruct.mRenderer, handler); | 
|  | } | 
|  |  | 
|  | void RenderNode::replayNodeInParent(ReplayStateStruct& replayStruct, const int level) { | 
|  | ReplayOperationHandler handler(replayStruct, level); | 
|  | issueOperations<ReplayOperationHandler>(replayStruct.mRenderer, handler); | 
|  | } | 
|  |  | 
|  | void RenderNode::buildZSortedChildList(Vector<ZDrawDisplayListOpPair>& zTranslatedNodes) { | 
|  | if (mDisplayListData == NULL || mDisplayListData->children().size() == 0) return; | 
|  |  | 
|  | for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) { | 
|  | DrawDisplayListOp* childOp = mDisplayListData->children()[i]; | 
|  | RenderNode* child = childOp->mDisplayList; | 
|  | float childZ = child->properties().getZ(); | 
|  |  | 
|  | if (!MathUtils::isZero(childZ)) { | 
|  | zTranslatedNodes.add(ZDrawDisplayListOpPair(childZ, childOp)); | 
|  | childOp->mSkipInOrderDraw = true; | 
|  | } else if (!child->properties().getProjectBackwards()) { | 
|  | // regular, in order drawing DisplayList | 
|  | childOp->mSkipInOrderDraw = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Z sort 3d children (stable-ness makes z compare fall back to standard drawing order) | 
|  | std::stable_sort(zTranslatedNodes.begin(), zTranslatedNodes.end()); | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | void RenderNode::issueDrawShadowOperation(const Matrix4& transformFromParent, T& handler) { | 
|  | if (properties().getAlpha() <= 0.0f || properties().getOutline().isEmpty()) return; | 
|  |  | 
|  | mat4 shadowMatrixXY(transformFromParent); | 
|  | applyViewPropertyTransforms(shadowMatrixXY); | 
|  |  | 
|  | // Z matrix needs actual 3d transformation, so mapped z values will be correct | 
|  | mat4 shadowMatrixZ(transformFromParent); | 
|  | applyViewPropertyTransforms(shadowMatrixZ, true); | 
|  |  | 
|  | const SkPath* outlinePath = properties().getOutline().getPath(); | 
|  | const RevealClip& revealClip = properties().getRevealClip(); | 
|  | const SkPath* revealClipPath = revealClip.hasConvexClip() | 
|  | ?  revealClip.getPath() : NULL; // only pass the reveal clip's path if it's convex | 
|  |  | 
|  | if (revealClipPath && revealClipPath->isEmpty()) return; | 
|  |  | 
|  | /** | 
|  | * The drawing area of the caster is always the same as the its perimeter (which | 
|  | * the shadow system uses) *except* in the inverse clip case. Inform the shadow | 
|  | * system that the caster's drawing area (as opposed to its perimeter) has been | 
|  | * clipped, so that it knows the caster can't be opaque. | 
|  | */ | 
|  | bool casterUnclipped = !revealClip.willClip() || revealClip.hasConvexClip(); | 
|  |  | 
|  | DisplayListOp* shadowOp  = new (handler.allocator()) DrawShadowOp( | 
|  | shadowMatrixXY, shadowMatrixZ, | 
|  | properties().getAlpha(), casterUnclipped, | 
|  | outlinePath, revealClipPath); | 
|  | handler(shadowOp, PROPERTY_SAVECOUNT, properties().getClipToBounds()); | 
|  | } | 
|  |  | 
|  | #define SHADOW_DELTA 0.1f | 
|  |  | 
|  | template <class T> | 
|  | void RenderNode::issueOperationsOf3dChildren(const Vector<ZDrawDisplayListOpPair>& zTranslatedNodes, | 
|  | ChildrenSelectMode mode, OpenGLRenderer& renderer, T& handler) { | 
|  | const int size = zTranslatedNodes.size(); | 
|  | if (size == 0 | 
|  | || (mode == kNegativeZChildren && zTranslatedNodes[0].key > 0.0f) | 
|  | || (mode == kPositiveZChildren && zTranslatedNodes[size - 1].key < 0.0f)) { | 
|  | // no 3d children to draw | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Draw shadows and (potential) casters mostly in order, but allow the shadows of casters | 
|  | * with very similar Z heights to draw together. | 
|  | * | 
|  | * This way, if Views A & B have the same Z height and are both casting shadows, the shadows are | 
|  | * underneath both, and neither's shadow is drawn on top of the other. | 
|  | */ | 
|  | const size_t nonNegativeIndex = findNonNegativeIndex(zTranslatedNodes); | 
|  | size_t drawIndex, shadowIndex, endIndex; | 
|  | if (mode == kNegativeZChildren) { | 
|  | drawIndex = 0; | 
|  | endIndex = nonNegativeIndex; | 
|  | shadowIndex = endIndex; // draw no shadows | 
|  | } else { | 
|  | drawIndex = nonNegativeIndex; | 
|  | endIndex = size; | 
|  | shadowIndex = drawIndex; // potentially draw shadow for each pos Z child | 
|  | } | 
|  |  | 
|  | DISPLAY_LIST_LOGD("%*s%d %s 3d children:", (handler.level() + 1) * 2, "", | 
|  | endIndex - drawIndex, mode == kNegativeZChildren ? "negative" : "positive"); | 
|  |  | 
|  | float lastCasterZ = 0.0f; | 
|  | while (shadowIndex < endIndex || drawIndex < endIndex) { | 
|  | if (shadowIndex < endIndex) { | 
|  | DrawDisplayListOp* casterOp = zTranslatedNodes[shadowIndex].value; | 
|  | RenderNode* caster = casterOp->mDisplayList; | 
|  | const float casterZ = zTranslatedNodes[shadowIndex].key; | 
|  | // attempt to render the shadow if the caster about to be drawn is its caster, | 
|  | // OR if its caster's Z value is similar to the previous potential caster | 
|  | if (shadowIndex == drawIndex || casterZ - lastCasterZ < SHADOW_DELTA) { | 
|  | caster->issueDrawShadowOperation(casterOp->mTransformFromParent, handler); | 
|  |  | 
|  | lastCasterZ = casterZ; // must do this even if current caster not casting a shadow | 
|  | shadowIndex++; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // only the actual child DL draw needs to be in save/restore, | 
|  | // since it modifies the renderer's matrix | 
|  | int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag); | 
|  |  | 
|  | DrawDisplayListOp* childOp = zTranslatedNodes[drawIndex].value; | 
|  | RenderNode* child = childOp->mDisplayList; | 
|  |  | 
|  | renderer.concatMatrix(childOp->mTransformFromParent); | 
|  | childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone | 
|  | handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds()); | 
|  | childOp->mSkipInOrderDraw = true; | 
|  |  | 
|  | renderer.restoreToCount(restoreTo); | 
|  | drawIndex++; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | void RenderNode::issueOperationsOfProjectedChildren(OpenGLRenderer& renderer, T& handler) { | 
|  | DISPLAY_LIST_LOGD("%*s%d projected children:", (handler.level() + 1) * 2, "", mProjectedNodes.size()); | 
|  | const SkPath* projectionReceiverOutline = properties().getOutline().getPath(); | 
|  | bool maskProjecteesWithPath = projectionReceiverOutline != NULL | 
|  | && !projectionReceiverOutline->isRect(NULL); | 
|  | int restoreTo = renderer.getSaveCount(); | 
|  |  | 
|  | // If the projection reciever has an outline, we mask each of the projected rendernodes to it | 
|  | // Either with clipRect, or special saveLayer masking | 
|  | LinearAllocator& alloc = handler.allocator(); | 
|  | if (projectionReceiverOutline != NULL) { | 
|  | const SkRect& outlineBounds = projectionReceiverOutline->getBounds(); | 
|  | if (projectionReceiverOutline->isRect(NULL)) { | 
|  | // mask to the rect outline simply with clipRect | 
|  | handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag), | 
|  | PROPERTY_SAVECOUNT, properties().getClipToBounds()); | 
|  | ClipRectOp* clipOp = new (alloc) ClipRectOp( | 
|  | outlineBounds.left(), outlineBounds.top(), | 
|  | outlineBounds.right(), outlineBounds.bottom(), SkRegion::kIntersect_Op); | 
|  | handler(clipOp, PROPERTY_SAVECOUNT, properties().getClipToBounds()); | 
|  | } else { | 
|  | // wrap the projected RenderNodes with a SaveLayer that will mask to the outline | 
|  | SaveLayerOp* op = new (alloc) SaveLayerOp( | 
|  | outlineBounds.left(), outlineBounds.top(), | 
|  | outlineBounds.right(), outlineBounds.bottom(), | 
|  | 255, SkCanvas::kARGB_ClipLayer_SaveFlag); | 
|  | op->setMask(projectionReceiverOutline); | 
|  | handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds()); | 
|  |  | 
|  | /* TODO: add optimizations here to take advantage of placement/size of projected | 
|  | * children (which may shrink saveLayer area significantly). This is dependent on | 
|  | * passing actual drawing/dirtying bounds of projected content down to native. | 
|  | */ | 
|  | } | 
|  | } | 
|  |  | 
|  | // draw projected nodes | 
|  | for (size_t i = 0; i < mProjectedNodes.size(); i++) { | 
|  | DrawDisplayListOp* childOp = mProjectedNodes[i]; | 
|  |  | 
|  | // matrix save, concat, and restore can be done safely without allocating operations | 
|  | int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag); | 
|  | renderer.concatMatrix(childOp->mTransformFromCompositingAncestor); | 
|  | childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone | 
|  | handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds()); | 
|  | childOp->mSkipInOrderDraw = true; | 
|  | renderer.restoreToCount(restoreTo); | 
|  | } | 
|  |  | 
|  | if (projectionReceiverOutline != NULL) { | 
|  | handler(new (alloc) RestoreToCountOp(restoreTo), | 
|  | PROPERTY_SAVECOUNT, properties().getClipToBounds()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * This function serves both defer and replay modes, and will organize the displayList's component | 
|  | * operations for a single frame: | 
|  | * | 
|  | * Every 'simple' state operation that affects just the matrix and alpha (or other factors of | 
|  | * DeferredDisplayState) may be issued directly to the renderer, but complex operations (with custom | 
|  | * defer logic) and operations in displayListOps are issued through the 'handler' which handles the | 
|  | * defer vs replay logic, per operation | 
|  | */ | 
|  | template <class T> | 
|  | void RenderNode::issueOperations(OpenGLRenderer& renderer, T& handler) { | 
|  | const int level = handler.level(); | 
|  | if (mDisplayListData->isEmpty() || properties().getAlpha() <= 0) { | 
|  | DISPLAY_LIST_LOGD("%*sEmpty display list (%p, %s)", level * 2, "", this, getName()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | handler.startMark(getName()); | 
|  |  | 
|  | #if DEBUG_DISPLAY_LIST | 
|  | const Rect& clipRect = renderer.getLocalClipBounds(); | 
|  | DISPLAY_LIST_LOGD("%*sStart display list (%p, %s), localClipBounds: %.0f, %.0f, %.0f, %.0f", | 
|  | level * 2, "", this, getName(), | 
|  | clipRect.left, clipRect.top, clipRect.right, clipRect.bottom); | 
|  | #endif | 
|  |  | 
|  | LinearAllocator& alloc = handler.allocator(); | 
|  | int restoreTo = renderer.getSaveCount(); | 
|  | handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag), | 
|  | PROPERTY_SAVECOUNT, properties().getClipToBounds()); | 
|  |  | 
|  | DISPLAY_LIST_LOGD("%*sSave %d %d", (level + 1) * 2, "", | 
|  | SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag, restoreTo); | 
|  |  | 
|  | setViewProperties<T>(renderer, handler); | 
|  |  | 
|  | bool quickRejected = properties().getClipToBounds() | 
|  | && renderer.quickRejectConservative(0, 0, properties().getWidth(), properties().getHeight()); | 
|  | if (!quickRejected) { | 
|  | if (mProperties.getOutline().willClip()) { | 
|  | renderer.setClippingOutline(alloc, &(mProperties.getOutline())); | 
|  | } | 
|  |  | 
|  | Vector<ZDrawDisplayListOpPair> zTranslatedNodes; | 
|  | buildZSortedChildList(zTranslatedNodes); | 
|  |  | 
|  | // for 3d root, draw children with negative z values | 
|  | issueOperationsOf3dChildren(zTranslatedNodes, kNegativeZChildren, renderer, handler); | 
|  |  | 
|  | DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance(); | 
|  | const int saveCountOffset = renderer.getSaveCount() - 1; | 
|  | const int projectionReceiveIndex = mDisplayListData->projectionReceiveIndex; | 
|  | for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) { | 
|  | DisplayListOp *op = mDisplayListData->displayListOps[i]; | 
|  |  | 
|  | #if DEBUG_DISPLAY_LIST | 
|  | op->output(level + 1); | 
|  | #endif | 
|  | logBuffer.writeCommand(level, op->name()); | 
|  | handler(op, saveCountOffset, properties().getClipToBounds()); | 
|  |  | 
|  | if (CC_UNLIKELY(i == projectionReceiveIndex && mProjectedNodes.size() > 0)) { | 
|  | issueOperationsOfProjectedChildren(renderer, handler); | 
|  | } | 
|  | } | 
|  |  | 
|  | // for 3d root, draw children with positive z values | 
|  | issueOperationsOf3dChildren(zTranslatedNodes, kPositiveZChildren, renderer, handler); | 
|  | } | 
|  |  | 
|  | DISPLAY_LIST_LOGD("%*sRestoreToCount %d", (level + 1) * 2, "", restoreTo); | 
|  | handler(new (alloc) RestoreToCountOp(restoreTo), | 
|  | PROPERTY_SAVECOUNT, properties().getClipToBounds()); | 
|  | renderer.setOverrideLayerAlpha(1.0f); | 
|  |  | 
|  | DISPLAY_LIST_LOGD("%*sDone (%p, %s)", level * 2, "", this, getName()); | 
|  | handler.endMark(); | 
|  | } | 
|  |  | 
|  | } /* namespace uirenderer */ | 
|  | } /* namespace android */ |