blob: 5b7a5af9a1cc1fd1d681baea1950e42158a3b758 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.view;
import android.content.ComponentCallbacks2;
import android.graphics.Paint;
import android.graphics.Rect;
import android.graphics.SurfaceTexture;
import android.opengl.EGL14;
import android.opengl.GLUtils;
import android.opengl.ManagedEGLContext;
import android.os.Handler;
import android.os.Looper;
import android.os.SystemClock;
import android.os.SystemProperties;
import android.os.Trace;
import android.util.Log;
import com.google.android.gles_jni.EGLImpl;
import javax.microedition.khronos.egl.EGL10;
import javax.microedition.khronos.egl.EGL11;
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.egl.EGLContext;
import javax.microedition.khronos.egl.EGLDisplay;
import javax.microedition.khronos.egl.EGLSurface;
import javax.microedition.khronos.opengles.GL;
import java.io.File;
import java.io.PrintWriter;
import java.util.concurrent.locks.ReentrantLock;
import static javax.microedition.khronos.egl.EGL10.*;
/**
* Interface for rendering a ViewAncestor using hardware acceleration.
*
* @hide
*/
public abstract class HardwareRenderer {
static final String LOG_TAG = "HardwareRenderer";
/**
* Name of the file that holds the shaders cache.
*/
private static final String CACHE_PATH_SHADERS = "com.android.opengl.shaders_cache";
/**
* Turn on to only refresh the parts of the screen that need updating.
* When turned on the property defined by {@link #RENDER_DIRTY_REGIONS_PROPERTY}
* must also have the value "true".
*/
public static final boolean RENDER_DIRTY_REGIONS = true;
/**
* System property used to enable or disable dirty regions invalidation.
* This property is only queried if {@link #RENDER_DIRTY_REGIONS} is true.
* The default value of this property is assumed to be true.
*
* Possible values:
* "true", to enable partial invalidates
* "false", to disable partial invalidates
*/
static final String RENDER_DIRTY_REGIONS_PROPERTY = "debug.hwui.render_dirty_regions";
/**
* System property used to enable or disable vsync.
* The default value of this property is assumed to be false.
*
* Possible values:
* "true", to disable vsync
* "false", to enable vsync
*/
static final String DISABLE_VSYNC_PROPERTY = "debug.hwui.disable_vsync";
/**
* System property used to enable or disable hardware rendering profiling.
* The default value of this property is assumed to be false.
*
* When profiling is enabled, the adb shell dumpsys gfxinfo command will
* output extra information about the time taken to execute by the last
* frames.
*
* Possible values:
* "true", to enable profiling
* "false", to disable profiling
*
* @hide
*/
public static final String PROFILE_PROPERTY = "debug.hwui.profile";
/**
* System property used to specify the number of frames to be used
* when doing hardware rendering profiling.
* The default value of this property is #PROFILE_MAX_FRAMES.
*
* When profiling is enabled, the adb shell dumpsys gfxinfo command will
* output extra information about the time taken to execute by the last
* frames.
*
* Possible values:
* "60", to set the limit of frames to 60
*/
static final String PROFILE_MAXFRAMES_PROPERTY = "debug.hwui.profile.maxframes";
/**
* System property used to debug EGL configuration choice.
*
* Possible values:
* "choice", print the chosen configuration only
* "all", print all possible configurations
*/
static final String PRINT_CONFIG_PROPERTY = "debug.hwui.print_config";
/**
* Turn on to draw dirty regions every other frame.
*
* Possible values:
* "true", to enable dirty regions debugging
* "false", to disable dirty regions debugging
*
* @hide
*/
public static final String DEBUG_DIRTY_REGIONS_PROPERTY = "debug.hwui.show_dirty_regions";
/**
* Turn on to flash hardware layers when they update.
*
* Possible values:
* "true", to enable hardware layers updates debugging
* "false", to disable hardware layers updates debugging
*
* @hide
*/
public static final String DEBUG_SHOW_LAYERS_UPDATES_PROPERTY =
"debug.hwui.show_layers_updates";
/**
* Turn on to show overdraw level.
*
* Possible values:
* "true", to enable overdraw debugging
* "false", to disable overdraw debugging
*
* @hide
*/
public static final String DEBUG_SHOW_OVERDRAW_PROPERTY = "debug.hwui.show_overdraw";
/**
* A process can set this flag to false to prevent the use of hardware
* rendering.
*
* @hide
*/
public static boolean sRendererDisabled = false;
/**
* Further hardware renderer disabling for the system process.
*
* @hide
*/
public static boolean sSystemRendererDisabled = false;
/**
* Number of frames to profile.
*/
private static final int PROFILE_MAX_FRAMES = 128;
/**
* Number of floats per profiled frame.
*/
private static final int PROFILE_FRAME_DATA_COUNT = 3;
private boolean mEnabled;
private boolean mRequested = true;
/**
* Invoke this method to disable hardware rendering in the current process.
*
* @hide
*/
public static void disable(boolean system) {
sRendererDisabled = true;
if (system) {
sSystemRendererDisabled = true;
}
}
/**
* Indicates whether hardware acceleration is available under any form for
* the view hierarchy.
*
* @return True if the view hierarchy can potentially be hardware accelerated,
* false otherwise
*/
public static boolean isAvailable() {
return GLES20Canvas.isAvailable();
}
/**
* Destroys the hardware rendering context.
*
* @param full If true, destroys all associated resources.
*/
abstract void destroy(boolean full);
/**
* Initializes the hardware renderer for the specified surface.
*
* @param surface The surface to hardware accelerate
*
* @return True if the initialization was successful, false otherwise.
*/
abstract boolean initialize(Surface surface) throws Surface.OutOfResourcesException;
/**
* Updates the hardware renderer for the specified surface.
*
* @param surface The surface to hardware accelerate
*/
abstract void updateSurface(Surface surface) throws Surface.OutOfResourcesException;
/**
* Destroys the layers used by the specified view hierarchy.
*
* @param view The root of the view hierarchy
*/
abstract void destroyLayers(View view);
/**
* Destroys all hardware rendering resources associated with the specified
* view hierarchy.
*
* @param view The root of the view hierarchy
*/
abstract void destroyHardwareResources(View view);
/**
* This method should be invoked whenever the current hardware renderer
* context should be reset.
*
* @param surface The surface to hardware accelerate
*/
abstract void invalidate(Surface surface);
/**
* This method should be invoked to ensure the hardware renderer is in
* valid state (for instance, to ensure the correct EGL context is bound
* to the current thread.)
*
* @return true if the renderer is now valid, false otherwise
*/
abstract boolean validate();
/**
* This method ensures the hardware renderer is in a valid state
* before executing the specified action.
*
* This method will attempt to set a valid state even if the window
* the renderer is attached to was destroyed.
*
* @return true if the action was run
*/
abstract boolean safelyRun(Runnable action);
/**
* Setup the hardware renderer for drawing. This is called whenever the
* size of the target surface changes or when the surface is first created.
*
* @param width Width of the drawing surface.
* @param height Height of the drawing surface.
*/
abstract void setup(int width, int height);
/**
* Gets the current width of the surface. This is the width that the surface
* was last set to in a call to {@link #setup(int, int)}.
*
* @return the current width of the surface
*/
abstract int getWidth();
/**
* Gets the current height of the surface. This is the height that the surface
* was last set to in a call to {@link #setup(int, int)}.
*
* @return the current width of the surface
*/
abstract int getHeight();
/**
* Gets the current canvas associated with this HardwareRenderer.
*
* @return the current HardwareCanvas
*/
abstract HardwareCanvas getCanvas();
/**
* Outputs extra debugging information in the specified file descriptor.
* @param pw
*/
abstract void dumpGfxInfo(PrintWriter pw);
/**
* Outputs the total number of frames rendered (used for fps calculations)
*
* @return the number of frames rendered
*/
abstract long getFrameCount();
/**
* Sets the directory to use as a persistent storage for hardware rendering
* resources.
*
* @param cacheDir A directory the current process can write to
*/
public static void setupDiskCache(File cacheDir) {
nSetupShadersDiskCache(new File(cacheDir, CACHE_PATH_SHADERS).getAbsolutePath());
}
private static native void nSetupShadersDiskCache(String cacheFile);
/**
* Notifies EGL that the frame is about to be rendered.
* @param size
*/
private static void beginFrame(int[] size) {
nBeginFrame(size);
}
private static native void nBeginFrame(int[] size);
/**
* Preserves the back buffer of the current surface after a buffer swap.
* Calling this method sets the EGL_SWAP_BEHAVIOR attribute of the current
* surface to EGL_BUFFER_PRESERVED. Calling this method requires an EGL
* config that supports EGL_SWAP_BEHAVIOR_PRESERVED_BIT.
*
* @return True if the swap behavior was successfully changed,
* false otherwise.
*/
static boolean preserveBackBuffer() {
return nPreserveBackBuffer();
}
private static native boolean nPreserveBackBuffer();
/**
* Indicates whether the current surface preserves its back buffer
* after a buffer swap.
*
* @return True, if the surface's EGL_SWAP_BEHAVIOR is EGL_BUFFER_PRESERVED,
* false otherwise
*/
static boolean isBackBufferPreserved() {
return nIsBackBufferPreserved();
}
private static native boolean nIsBackBufferPreserved();
/**
* Disables v-sync. For performance testing only.
*/
static void disableVsync() {
nDisableVsync();
}
private static native void nDisableVsync();
/**
* Indicates that the specified hardware layer needs to be updated
* as soon as possible.
*
* @param layer The hardware layer that needs an update
*/
abstract void pushLayerUpdate(HardwareLayer layer);
/**
* Interface used to receive callbacks whenever a view is drawn by
* a hardware renderer instance.
*/
interface HardwareDrawCallbacks {
/**
* Invoked before a view is drawn by a hardware renderer.
*
* @param canvas The Canvas used to render the view.
*/
void onHardwarePreDraw(HardwareCanvas canvas);
/**
* Invoked after a view is drawn by a hardware renderer.
*
* @param canvas The Canvas used to render the view.
*/
void onHardwarePostDraw(HardwareCanvas canvas);
}
/**
* Draws the specified view.
*
* @param view The view to draw.
* @param attachInfo AttachInfo tied to the specified view.
* @param callbacks Callbacks invoked when drawing happens.
* @param dirty The dirty rectangle to update, can be null.
*
* @return true if the dirty rect was ignored, false otherwise
*/
abstract boolean draw(View view, View.AttachInfo attachInfo, HardwareDrawCallbacks callbacks,
Rect dirty);
/**
* Creates a new display list that can be used to record batches of
* drawing operations.
*
* @param name The name of the display list, used for debugging purpose.
* May be null
*
* @return A new display list.
*/
public abstract DisplayList createDisplayList(String name);
/**
* Creates a new hardware layer. A hardware layer built by calling this
* method will be treated as a texture layer, instead of as a render target.
*
* @param isOpaque Whether the layer should be opaque or not
*
* @return A hardware layer
*/
abstract HardwareLayer createHardwareLayer(boolean isOpaque);
/**
* Creates a new hardware layer.
*
* @param width The minimum width of the layer
* @param height The minimum height of the layer
* @param isOpaque Whether the layer should be opaque or not
*
* @return A hardware layer
*/
abstract HardwareLayer createHardwareLayer(int width, int height, boolean isOpaque);
/**
* Creates a new {@link SurfaceTexture} that can be used to render into the
* specified hardware layer.
*
*
* @param layer The layer to render into using a {@link android.graphics.SurfaceTexture}
*
* @return A {@link SurfaceTexture}
*/
abstract SurfaceTexture createSurfaceTexture(HardwareLayer layer);
/**
* Sets the {@link android.graphics.SurfaceTexture} that will be used to
* render into the specified hardware layer.
*
* @param layer The layer to render into using a {@link android.graphics.SurfaceTexture}
* @param surfaceTexture The {@link android.graphics.SurfaceTexture} to use for the layer
*/
abstract void setSurfaceTexture(HardwareLayer layer, SurfaceTexture surfaceTexture);
/**
* Detaches the specified functor from the current functor execution queue.
*
* @param functor The native functor to remove from the execution queue.
*
* @see HardwareCanvas#callDrawGLFunction(int)
* @see #attachFunctor(android.view.View.AttachInfo, int)
*/
abstract void detachFunctor(int functor);
/**
* Schedules the specified functor in the functors execution queue.
*
* @param attachInfo AttachInfo tied to this renderer.
* @param functor The native functor to insert in the execution queue.
*
* @see HardwareCanvas#callDrawGLFunction(int)
* @see #detachFunctor(int)
*
* @return true if the functor was attached successfully
*/
abstract boolean attachFunctor(View.AttachInfo attachInfo, int functor);
/**
* Initializes the hardware renderer for the specified surface and setup the
* renderer for drawing, if needed. This is invoked when the ViewAncestor has
* potentially lost the hardware renderer. The hardware renderer should be
* reinitialized and setup when the render {@link #isRequested()} and
* {@link #isEnabled()}.
*
* @param width The width of the drawing surface.
* @param height The height of the drawing surface.
* @param surface The surface to hardware accelerate
*
* @return true if the surface was initialized, false otherwise. Returning
* false might mean that the surface was already initialized.
*/
boolean initializeIfNeeded(int width, int height, Surface surface)
throws Surface.OutOfResourcesException {
if (isRequested()) {
// We lost the gl context, so recreate it.
if (!isEnabled()) {
if (initialize(surface)) {
setup(width, height);
return true;
}
}
}
return false;
}
/**
* Creates a hardware renderer using OpenGL.
*
* @param glVersion The version of OpenGL to use (1 for OpenGL 1, 11 for OpenGL 1.1, etc.)
* @param translucent True if the surface is translucent, false otherwise
*
* @return A hardware renderer backed by OpenGL.
*/
static HardwareRenderer createGlRenderer(int glVersion, boolean translucent) {
switch (glVersion) {
case 2:
return Gl20Renderer.create(translucent);
}
throw new IllegalArgumentException("Unknown GL version: " + glVersion);
}
/**
* Invoke this method when the system is running out of memory. This
* method will attempt to recover as much memory as possible, based on
* the specified hint.
*
* @param level Hint about the amount of memory that should be trimmed,
* see {@link android.content.ComponentCallbacks}
*/
static void trimMemory(int level) {
startTrimMemory(level);
endTrimMemory();
}
/**
* Starts the process of trimming memory. Usually this call will setup
* hardware rendering context and reclaim memory.Extra cleanup might
* be required by calling {@link #endTrimMemory()}.
*
* @param level Hint about the amount of memory that should be trimmed,
* see {@link android.content.ComponentCallbacks}
*/
static void startTrimMemory(int level) {
Gl20Renderer.startTrimMemory(level);
}
/**
* Finishes the process of trimming memory. This method will usually
* cleanup special resources used by the memory trimming process.
*/
static void endTrimMemory() {
Gl20Renderer.endTrimMemory();
}
/**
* Indicates whether hardware acceleration is currently enabled.
*
* @return True if hardware acceleration is in use, false otherwise.
*/
boolean isEnabled() {
return mEnabled;
}
/**
* Indicates whether hardware acceleration is currently enabled.
*
* @param enabled True if the hardware renderer is in use, false otherwise.
*/
void setEnabled(boolean enabled) {
mEnabled = enabled;
}
/**
* Indicates whether hardware acceleration is currently request but not
* necessarily enabled yet.
*
* @return True if requested, false otherwise.
*/
boolean isRequested() {
return mRequested;
}
/**
* Indicates whether hardware acceleration is currently requested but not
* necessarily enabled yet.
*
* @return True to request hardware acceleration, false otherwise.
*/
void setRequested(boolean requested) {
mRequested = requested;
}
@SuppressWarnings({"deprecation"})
static abstract class GlRenderer extends HardwareRenderer {
static final int SURFACE_STATE_ERROR = 0;
static final int SURFACE_STATE_SUCCESS = 1;
static final int SURFACE_STATE_UPDATED = 2;
static final int FUNCTOR_PROCESS_DELAY = 4;
static EGL10 sEgl;
static EGLDisplay sEglDisplay;
static EGLConfig sEglConfig;
static final Object[] sEglLock = new Object[0];
int mWidth = -1, mHeight = -1;
static final ThreadLocal<ManagedEGLContext> sEglContextStorage
= new ThreadLocal<ManagedEGLContext>();
EGLContext mEglContext;
Thread mEglThread;
EGLSurface mEglSurface;
GL mGl;
HardwareCanvas mCanvas;
long mFrameCount;
Paint mDebugPaint;
static boolean sDirtyRegions;
static final boolean sDirtyRegionsRequested;
static {
String dirtyProperty = SystemProperties.get(RENDER_DIRTY_REGIONS_PROPERTY, "true");
//noinspection PointlessBooleanExpression,ConstantConditions
sDirtyRegions = RENDER_DIRTY_REGIONS && "true".equalsIgnoreCase(dirtyProperty);
sDirtyRegionsRequested = sDirtyRegions;
}
boolean mDirtyRegionsEnabled;
boolean mUpdateDirtyRegions;
final boolean mVsyncDisabled;
final boolean mProfileEnabled;
final float[] mProfileData;
final ReentrantLock mProfileLock;
int mProfileCurrentFrame = -PROFILE_FRAME_DATA_COUNT;
final boolean mDebugDirtyRegions;
final boolean mShowOverdraw;
final int mGlVersion;
final boolean mTranslucent;
private boolean mDestroyed;
private final Rect mRedrawClip = new Rect();
private final int[] mSurfaceSize = new int[2];
private final FunctorsRunnable mFunctorsRunnable = new FunctorsRunnable();
GlRenderer(int glVersion, boolean translucent) {
mGlVersion = glVersion;
mTranslucent = translucent;
String property;
property = SystemProperties.get(DISABLE_VSYNC_PROPERTY, "false");
mVsyncDisabled = "true".equalsIgnoreCase(property);
if (mVsyncDisabled) {
Log.d(LOG_TAG, "Disabling v-sync");
}
property = SystemProperties.get(PROFILE_PROPERTY, "false");
mProfileEnabled = "true".equalsIgnoreCase(property);
if (mProfileEnabled) {
Log.d(LOG_TAG, "Profiling hardware renderer");
}
if (mProfileEnabled) {
property = SystemProperties.get(PROFILE_MAXFRAMES_PROPERTY,
Integer.toString(PROFILE_MAX_FRAMES));
int maxProfileFrames = Integer.valueOf(property);
mProfileData = new float[maxProfileFrames * PROFILE_FRAME_DATA_COUNT];
for (int i = 0; i < mProfileData.length; i += PROFILE_FRAME_DATA_COUNT) {
mProfileData[i] = mProfileData[i + 1] = mProfileData[i + 2] = -1;
}
mProfileLock = new ReentrantLock();
} else {
mProfileData = null;
mProfileLock = null;
}
property = SystemProperties.get(DEBUG_DIRTY_REGIONS_PROPERTY, "false");
mDebugDirtyRegions = "true".equalsIgnoreCase(property);
if (mDebugDirtyRegions) {
Log.d(LOG_TAG, "Debugging dirty regions");
}
mShowOverdraw = SystemProperties.getBoolean(
HardwareRenderer.DEBUG_SHOW_OVERDRAW_PROPERTY, false);
}
@Override
void dumpGfxInfo(PrintWriter pw) {
if (mProfileEnabled) {
pw.printf("\n\tDraw\tProcess\tExecute\n");
mProfileLock.lock();
try {
for (int i = 0; i < mProfileData.length; i += PROFILE_FRAME_DATA_COUNT) {
if (mProfileData[i] < 0) {
break;
}
pw.printf("\t%3.2f\t%3.2f\t%3.2f\n", mProfileData[i], mProfileData[i + 1],
mProfileData[i + 2]);
mProfileData[i] = mProfileData[i + 1] = mProfileData[i + 2] = -1;
}
mProfileCurrentFrame = mProfileData.length;
} finally {
mProfileLock.unlock();
}
}
}
@Override
long getFrameCount() {
return mFrameCount;
}
/**
* Indicates whether this renderer instance can track and update dirty regions.
*/
boolean hasDirtyRegions() {
return mDirtyRegionsEnabled;
}
/**
* Checks for OpenGL errors. If an error has occured, {@link #destroy(boolean)}
* is invoked and the requested flag is turned off. The error code is
* also logged as a warning.
*/
void checkEglErrors() {
if (isEnabled()) {
checkEglErrorsForced();
}
}
private void checkEglErrorsForced() {
int error = sEgl.eglGetError();
if (error != EGL_SUCCESS) {
// something bad has happened revert to
// normal rendering.
Log.w(LOG_TAG, "EGL error: " + GLUtils.getEGLErrorString(error));
fallback(error != EGL11.EGL_CONTEXT_LOST);
}
}
private void fallback(boolean fallback) {
destroy(true);
if (fallback) {
// we'll try again if it was context lost
setRequested(false);
Log.w(LOG_TAG, "Mountain View, we've had a problem here. "
+ "Switching back to software rendering.");
}
}
@Override
boolean initialize(Surface surface) throws Surface.OutOfResourcesException {
if (isRequested() && !isEnabled()) {
initializeEgl();
mGl = createEglSurface(surface);
mDestroyed = false;
if (mGl != null) {
int err = sEgl.eglGetError();
if (err != EGL_SUCCESS) {
destroy(true);
setRequested(false);
} else {
if (mCanvas == null) {
mCanvas = createCanvas();
}
if (mCanvas != null) {
setEnabled(true);
} else {
Log.w(LOG_TAG, "Hardware accelerated Canvas could not be created");
}
}
return mCanvas != null;
}
}
return false;
}
@Override
void updateSurface(Surface surface) throws Surface.OutOfResourcesException {
if (isRequested() && isEnabled()) {
createEglSurface(surface);
}
}
abstract HardwareCanvas createCanvas();
abstract int[] getConfig(boolean dirtyRegions);
void initializeEgl() {
synchronized (sEglLock) {
if (sEgl == null && sEglConfig == null) {
sEgl = (EGL10) EGLContext.getEGL();
// Get to the default display.
sEglDisplay = sEgl.eglGetDisplay(EGL_DEFAULT_DISPLAY);
if (sEglDisplay == EGL_NO_DISPLAY) {
throw new RuntimeException("eglGetDisplay failed "
+ GLUtils.getEGLErrorString(sEgl.eglGetError()));
}
// We can now initialize EGL for that display
int[] version = new int[2];
if (!sEgl.eglInitialize(sEglDisplay, version)) {
throw new RuntimeException("eglInitialize failed " +
GLUtils.getEGLErrorString(sEgl.eglGetError()));
}
checkEglErrorsForced();
sEglConfig = chooseEglConfig();
if (sEglConfig == null) {
// We tried to use EGL_SWAP_BEHAVIOR_PRESERVED_BIT, try again without
if (sDirtyRegions) {
sDirtyRegions = false;
sEglConfig = chooseEglConfig();
if (sEglConfig == null) {
throw new RuntimeException("eglConfig not initialized");
}
} else {
throw new RuntimeException("eglConfig not initialized");
}
}
}
}
ManagedEGLContext managedContext = sEglContextStorage.get();
mEglContext = managedContext != null ? managedContext.getContext() : null;
mEglThread = Thread.currentThread();
if (mEglContext == null) {
mEglContext = createContext(sEgl, sEglDisplay, sEglConfig);
sEglContextStorage.set(createManagedContext(mEglContext));
}
}
abstract ManagedEGLContext createManagedContext(EGLContext eglContext);
private EGLConfig chooseEglConfig() {
EGLConfig[] configs = new EGLConfig[1];
int[] configsCount = new int[1];
int[] configSpec = getConfig(sDirtyRegions);
// Debug
final String debug = SystemProperties.get(PRINT_CONFIG_PROPERTY, "");
if ("all".equalsIgnoreCase(debug)) {
sEgl.eglChooseConfig(sEglDisplay, configSpec, null, 0, configsCount);
EGLConfig[] debugConfigs = new EGLConfig[configsCount[0]];
sEgl.eglChooseConfig(sEglDisplay, configSpec, debugConfigs,
configsCount[0], configsCount);
for (EGLConfig config : debugConfigs) {
printConfig(config);
}
}
if (!sEgl.eglChooseConfig(sEglDisplay, configSpec, configs, 1, configsCount)) {
throw new IllegalArgumentException("eglChooseConfig failed " +
GLUtils.getEGLErrorString(sEgl.eglGetError()));
} else if (configsCount[0] > 0) {
if ("choice".equalsIgnoreCase(debug)) {
printConfig(configs[0]);
}
return configs[0];
}
return null;
}
private static void printConfig(EGLConfig config) {
int[] value = new int[1];
Log.d(LOG_TAG, "EGL configuration " + config + ":");
sEgl.eglGetConfigAttrib(sEglDisplay, config, EGL_RED_SIZE, value);
Log.d(LOG_TAG, " RED_SIZE = " + value[0]);
sEgl.eglGetConfigAttrib(sEglDisplay, config, EGL_GREEN_SIZE, value);
Log.d(LOG_TAG, " GREEN_SIZE = " + value[0]);
sEgl.eglGetConfigAttrib(sEglDisplay, config, EGL_BLUE_SIZE, value);
Log.d(LOG_TAG, " BLUE_SIZE = " + value[0]);
sEgl.eglGetConfigAttrib(sEglDisplay, config, EGL_ALPHA_SIZE, value);
Log.d(LOG_TAG, " ALPHA_SIZE = " + value[0]);
sEgl.eglGetConfigAttrib(sEglDisplay, config, EGL_DEPTH_SIZE, value);
Log.d(LOG_TAG, " DEPTH_SIZE = " + value[0]);
sEgl.eglGetConfigAttrib(sEglDisplay, config, EGL_STENCIL_SIZE, value);
Log.d(LOG_TAG, " STENCIL_SIZE = " + value[0]);
sEgl.eglGetConfigAttrib(sEglDisplay, config, EGL_SAMPLE_BUFFERS, value);
Log.d(LOG_TAG, " SAMPLE_BUFFERS = " + value[0]);
sEgl.eglGetConfigAttrib(sEglDisplay, config, EGL_SAMPLES, value);
Log.d(LOG_TAG, " SAMPLES = " + value[0]);
sEgl.eglGetConfigAttrib(sEglDisplay, config, EGL_SURFACE_TYPE, value);
Log.d(LOG_TAG, " SURFACE_TYPE = 0x" + Integer.toHexString(value[0]));
sEgl.eglGetConfigAttrib(sEglDisplay, config, EGL_CONFIG_CAVEAT, value);
Log.d(LOG_TAG, " CONFIG_CAVEAT = 0x" + Integer.toHexString(value[0]));
}
GL createEglSurface(Surface surface) throws Surface.OutOfResourcesException {
// Check preconditions.
if (sEgl == null) {
throw new RuntimeException("egl not initialized");
}
if (sEglDisplay == null) {
throw new RuntimeException("eglDisplay not initialized");
}
if (sEglConfig == null) {
throw new RuntimeException("eglConfig not initialized");
}
if (Thread.currentThread() != mEglThread) {
throw new IllegalStateException("HardwareRenderer cannot be used "
+ "from multiple threads");
}
// In case we need to destroy an existing surface
destroySurface();
// Create an EGL surface we can render into.
if (!createSurface(surface)) {
return null;
}
initCaches();
return mEglContext.getGL();
}
private void enableDirtyRegions() {
// If mDirtyRegions is set, this means we have an EGL configuration
// with EGL_SWAP_BEHAVIOR_PRESERVED_BIT set
if (sDirtyRegions) {
if (!(mDirtyRegionsEnabled = preserveBackBuffer())) {
Log.w(LOG_TAG, "Backbuffer cannot be preserved");
}
} else if (sDirtyRegionsRequested) {
// If mDirtyRegions is not set, our EGL configuration does not
// have EGL_SWAP_BEHAVIOR_PRESERVED_BIT; however, the default
// swap behavior might be EGL_BUFFER_PRESERVED, which means we
// want to set mDirtyRegions. We try to do this only if dirty
// regions were initially requested as part of the device
// configuration (see RENDER_DIRTY_REGIONS)
mDirtyRegionsEnabled = isBackBufferPreserved();
}
}
abstract void initCaches();
EGLContext createContext(EGL10 egl, EGLDisplay eglDisplay, EGLConfig eglConfig) {
int[] attribs = { EGL14.EGL_CONTEXT_CLIENT_VERSION, mGlVersion, EGL_NONE };
EGLContext context = egl.eglCreateContext(eglDisplay, eglConfig, EGL_NO_CONTEXT,
mGlVersion != 0 ? attribs : null);
if (context == null || context == EGL_NO_CONTEXT) {
//noinspection ConstantConditions
throw new IllegalStateException(
"Could not create an EGL context. eglCreateContext failed with error: " +
GLUtils.getEGLErrorString(sEgl.eglGetError()));
}
return context;
}
@Override
void destroy(boolean full) {
if (full && mCanvas != null) {
mCanvas = null;
}
if (!isEnabled() || mDestroyed) {
setEnabled(false);
return;
}
destroySurface();
setEnabled(false);
mDestroyed = true;
mGl = null;
}
void destroySurface() {
if (mEglSurface != null && mEglSurface != EGL_NO_SURFACE) {
sEgl.eglMakeCurrent(sEglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
sEgl.eglDestroySurface(sEglDisplay, mEglSurface);
mEglSurface = null;
}
}
@Override
void invalidate(Surface surface) {
// Cancels any existing buffer to ensure we'll get a buffer
// of the right size before we call eglSwapBuffers
sEgl.eglMakeCurrent(sEglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
if (mEglSurface != null && mEglSurface != EGL_NO_SURFACE) {
sEgl.eglDestroySurface(sEglDisplay, mEglSurface);
mEglSurface = null;
setEnabled(false);
}
if (surface.isValid()) {
if (!createSurface(surface)) {
return;
}
mUpdateDirtyRegions = true;
if (mCanvas != null) {
setEnabled(true);
}
}
}
private boolean createSurface(Surface surface) {
mEglSurface = sEgl.eglCreateWindowSurface(sEglDisplay, sEglConfig, surface, null);
if (mEglSurface == null || mEglSurface == EGL_NO_SURFACE) {
int error = sEgl.eglGetError();
if (error == EGL_BAD_NATIVE_WINDOW) {
Log.e(LOG_TAG, "createWindowSurface returned EGL_BAD_NATIVE_WINDOW.");
return false;
}
throw new RuntimeException("createWindowSurface failed "
+ GLUtils.getEGLErrorString(error));
}
if (!sEgl.eglMakeCurrent(sEglDisplay, mEglSurface, mEglSurface, mEglContext)) {
throw new IllegalStateException("eglMakeCurrent failed " +
GLUtils.getEGLErrorString(sEgl.eglGetError()));
}
enableDirtyRegions();
return true;
}
@Override
boolean validate() {
return checkCurrent() != SURFACE_STATE_ERROR;
}
@Override
void setup(int width, int height) {
if (validate()) {
mCanvas.setViewport(width, height);
mWidth = width;
mHeight = height;
}
}
@Override
int getWidth() {
return mWidth;
}
@Override
int getHeight() {
return mHeight;
}
@Override
HardwareCanvas getCanvas() {
return mCanvas;
}
boolean canDraw() {
return mGl != null && mCanvas != null;
}
int onPreDraw(Rect dirty) {
return DisplayList.STATUS_DONE;
}
void onPostDraw() {
}
class FunctorsRunnable implements Runnable {
View.AttachInfo attachInfo;
@Override
public void run() {
final HardwareRenderer renderer = attachInfo.mHardwareRenderer;
if (renderer == null || !renderer.isEnabled() || renderer != GlRenderer.this) {
return;
}
final int surfaceState = checkCurrent();
if (surfaceState != SURFACE_STATE_ERROR) {
int status = mCanvas.invokeFunctors(mRedrawClip);
handleFunctorStatus(attachInfo, status);
}
}
}
@Override
boolean draw(View view, View.AttachInfo attachInfo, HardwareDrawCallbacks callbacks,
Rect dirty) {
if (canDraw()) {
if (!hasDirtyRegions()) {
dirty = null;
}
attachInfo.mIgnoreDirtyState = true;
attachInfo.mDrawingTime = SystemClock.uptimeMillis();
view.mPrivateFlags |= View.PFLAG_DRAWN;
final int surfaceState = checkCurrent();
if (surfaceState != SURFACE_STATE_ERROR) {
HardwareCanvas canvas = mCanvas;
attachInfo.mHardwareCanvas = canvas;
if (mProfileEnabled) {
mProfileLock.lock();
}
// We had to change the current surface and/or context, redraw everything
if (surfaceState == SURFACE_STATE_UPDATED) {
dirty = null;
beginFrame(null);
} else {
int[] size = mSurfaceSize;
beginFrame(size);
if (size[1] != mHeight || size[0] != mWidth) {
mWidth = size[0];
mHeight = size[1];
canvas.setViewport(mWidth, mHeight);
dirty = null;
}
}
int saveCount = 0;
int status = DisplayList.STATUS_DONE;
try {
view.mRecreateDisplayList = (view.mPrivateFlags & View.PFLAG_INVALIDATED)
== View.PFLAG_INVALIDATED;
view.mPrivateFlags &= ~View.PFLAG_INVALIDATED;
long getDisplayListStartTime = 0;
if (mProfileEnabled) {
mProfileCurrentFrame += PROFILE_FRAME_DATA_COUNT;
if (mProfileCurrentFrame >= mProfileData.length) {
mProfileCurrentFrame = 0;
}
getDisplayListStartTime = System.nanoTime();
}
canvas.clearLayerUpdates();
DisplayList displayList;
Trace.traceBegin(Trace.TRACE_TAG_VIEW, "getDisplayList");
try {
displayList = view.getDisplayList();
} finally {
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
Trace.traceBegin(Trace.TRACE_TAG_VIEW, "prepareFrame");
try {
status = onPreDraw(dirty);
} finally {
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
saveCount = canvas.save();
callbacks.onHardwarePreDraw(canvas);
if (mProfileEnabled) {
long now = System.nanoTime();
float total = (now - getDisplayListStartTime) * 0.000001f;
//noinspection PointlessArithmeticExpression
mProfileData[mProfileCurrentFrame] = total;
}
if (displayList != null) {
long drawDisplayListStartTime = 0;
if (mProfileEnabled) {
drawDisplayListStartTime = System.nanoTime();
}
Trace.traceBegin(Trace.TRACE_TAG_VIEW, "drawDisplayList");
try {
status |= canvas.drawDisplayList(displayList, mRedrawClip,
DisplayList.FLAG_CLIP_CHILDREN);
} finally {
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
if (mProfileEnabled) {
long now = System.nanoTime();
float total = (now - drawDisplayListStartTime) * 0.000001f;
mProfileData[mProfileCurrentFrame + 1] = total;
}
handleFunctorStatus(attachInfo, status);
} else {
// Shouldn't reach here
view.draw(canvas);
}
} finally {
callbacks.onHardwarePostDraw(canvas);
canvas.restoreToCount(saveCount);
view.mRecreateDisplayList = false;
mFrameCount++;
if (mDebugDirtyRegions) {
if (mDebugPaint == null) {
mDebugPaint = new Paint();
mDebugPaint.setColor(0x7fff0000);
}
if (dirty != null && (mFrameCount & 1) == 0) {
canvas.drawRect(dirty, mDebugPaint);
}
}
}
onPostDraw();
attachInfo.mIgnoreDirtyState = false;
if ((status & DisplayList.STATUS_DREW) == DisplayList.STATUS_DREW) {
long eglSwapBuffersStartTime = 0;
if (mProfileEnabled) {
eglSwapBuffersStartTime = System.nanoTime();
}
sEgl.eglSwapBuffers(sEglDisplay, mEglSurface);
if (mProfileEnabled) {
long now = System.nanoTime();
float total = (now - eglSwapBuffersStartTime) * 0.000001f;
mProfileData[mProfileCurrentFrame + 2] = total;
}
checkEglErrors();
}
if (mProfileEnabled) {
mProfileLock.unlock();
}
return dirty == null;
}
}
return false;
}
private void handleFunctorStatus(View.AttachInfo attachInfo, int status) {
// If the draw flag is set, functors will be invoked while executing
// the tree of display lists
if ((status & DisplayList.STATUS_DRAW) != 0) {
if (mRedrawClip.isEmpty()) {
attachInfo.mViewRootImpl.invalidate();
} else {
attachInfo.mViewRootImpl.invalidateChildInParent(null, mRedrawClip);
mRedrawClip.setEmpty();
}
}
if ((status & DisplayList.STATUS_INVOKE) != 0 ||
attachInfo.mHandler.hasCallbacks(mFunctorsRunnable)) {
attachInfo.mHandler.removeCallbacks(mFunctorsRunnable);
mFunctorsRunnable.attachInfo = attachInfo;
attachInfo.mHandler.postDelayed(mFunctorsRunnable, FUNCTOR_PROCESS_DELAY);
}
}
@Override
void detachFunctor(int functor) {
if (mCanvas != null) {
mCanvas.detachFunctor(functor);
}
}
@Override
boolean attachFunctor(View.AttachInfo attachInfo, int functor) {
if (mCanvas != null) {
mCanvas.attachFunctor(functor);
mFunctorsRunnable.attachInfo = attachInfo;
attachInfo.mHandler.removeCallbacks(mFunctorsRunnable);
attachInfo.mHandler.postDelayed(mFunctorsRunnable, 0);
return true;
}
return false;
}
/**
* Ensures the current EGL context is the one we expect.
*
* @return {@link #SURFACE_STATE_ERROR} if the correct EGL context cannot be made current,
* {@link #SURFACE_STATE_UPDATED} if the EGL context was changed or
* {@link #SURFACE_STATE_SUCCESS} if the EGL context was the correct one
*/
int checkCurrent() {
if (mEglThread != Thread.currentThread()) {
throw new IllegalStateException("Hardware acceleration can only be used with a " +
"single UI thread.\nOriginal thread: " + mEglThread + "\n" +
"Current thread: " + Thread.currentThread());
}
if (!mEglContext.equals(sEgl.eglGetCurrentContext()) ||
!mEglSurface.equals(sEgl.eglGetCurrentSurface(EGL_DRAW))) {
if (!sEgl.eglMakeCurrent(sEglDisplay, mEglSurface, mEglSurface, mEglContext)) {
Log.e(LOG_TAG, "eglMakeCurrent failed " +
GLUtils.getEGLErrorString(sEgl.eglGetError()));
fallback(true);
return SURFACE_STATE_ERROR;
} else {
if (mUpdateDirtyRegions) {
enableDirtyRegions();
mUpdateDirtyRegions = false;
}
return SURFACE_STATE_UPDATED;
}
}
return SURFACE_STATE_SUCCESS;
}
}
/**
* Hardware renderer using OpenGL ES 2.0.
*/
static class Gl20Renderer extends GlRenderer {
private GLES20Canvas mGlCanvas;
private static EGLSurface sPbuffer;
private static final Object[] sPbufferLock = new Object[0];
static class Gl20RendererEglContext extends ManagedEGLContext {
final Handler mHandler = new Handler();
public Gl20RendererEglContext(EGLContext context) {
super(context);
}
@Override
public void onTerminate(final EGLContext eglContext) {
// Make sure we do this on the correct thread.
if (mHandler.getLooper() != Looper.myLooper()) {
mHandler.post(new Runnable() {
@Override
public void run() {
onTerminate(eglContext);
}
});
return;
}
synchronized (sEglLock) {
if (sEgl == null) return;
if (EGLImpl.getInitCount(sEglDisplay) == 1) {
usePbufferSurface(eglContext);
GLES20Canvas.terminateCaches();
sEgl.eglDestroyContext(sEglDisplay, eglContext);
sEglContextStorage.set(null);
sEglContextStorage.remove();
sEgl.eglDestroySurface(sEglDisplay, sPbuffer);
sEgl.eglMakeCurrent(sEglDisplay, EGL_NO_SURFACE,
EGL_NO_SURFACE, EGL_NO_CONTEXT);
sEgl.eglReleaseThread();
sEgl.eglTerminate(sEglDisplay);
sEgl = null;
sEglDisplay = null;
sEglConfig = null;
sPbuffer = null;
}
}
}
}
Gl20Renderer(boolean translucent) {
super(2, translucent);
}
@Override
HardwareCanvas createCanvas() {
return mGlCanvas = new GLES20Canvas(mTranslucent);
}
@Override
ManagedEGLContext createManagedContext(EGLContext eglContext) {
return new Gl20Renderer.Gl20RendererEglContext(mEglContext);
}
@Override
int[] getConfig(boolean dirtyRegions) {
return new int[] {
EGL_RENDERABLE_TYPE, EGL14.EGL_OPENGL_ES2_BIT,
EGL_RED_SIZE, 8,
EGL_GREEN_SIZE, 8,
EGL_BLUE_SIZE, 8,
EGL_ALPHA_SIZE, 8,
EGL_DEPTH_SIZE, 0,
EGL_CONFIG_CAVEAT, EGL_NONE,
// TODO: Find a better way to choose the stencil size
EGL_STENCIL_SIZE, mShowOverdraw ? GLES20Canvas.getStencilSize() : 0,
EGL_SURFACE_TYPE, EGL_WINDOW_BIT |
(dirtyRegions ? EGL14.EGL_SWAP_BEHAVIOR_PRESERVED_BIT : 0),
EGL_NONE
};
}
@Override
void initCaches() {
GLES20Canvas.initCaches();
}
@Override
boolean canDraw() {
return super.canDraw() && mGlCanvas != null;
}
@Override
int onPreDraw(Rect dirty) {
return mGlCanvas.onPreDraw(dirty);
}
@Override
void onPostDraw() {
mGlCanvas.onPostDraw();
}
@Override
void destroy(boolean full) {
try {
super.destroy(full);
} finally {
if (full && mGlCanvas != null) {
mGlCanvas = null;
}
}
}
@Override
void setup(int width, int height) {
super.setup(width, height);
if (mVsyncDisabled) {
disableVsync();
}
}
@Override
void pushLayerUpdate(HardwareLayer layer) {
mGlCanvas.pushLayerUpdate(layer);
}
@Override
public DisplayList createDisplayList(String name) {
return new GLES20DisplayList(name);
}
@Override
HardwareLayer createHardwareLayer(boolean isOpaque) {
return new GLES20TextureLayer(isOpaque);
}
@Override
HardwareLayer createHardwareLayer(int width, int height, boolean isOpaque) {
return new GLES20RenderLayer(width, height, isOpaque);
}
@Override
SurfaceTexture createSurfaceTexture(HardwareLayer layer) {
return ((GLES20TextureLayer) layer).getSurfaceTexture();
}
@Override
void setSurfaceTexture(HardwareLayer layer, SurfaceTexture surfaceTexture) {
((GLES20TextureLayer) layer).setSurfaceTexture(surfaceTexture);
}
@Override
boolean safelyRun(Runnable action) {
boolean needsContext = true;
if (isEnabled() && checkCurrent() != SURFACE_STATE_ERROR) needsContext = false;
if (needsContext) {
Gl20RendererEglContext managedContext =
(Gl20RendererEglContext) sEglContextStorage.get();
if (managedContext == null) return false;
usePbufferSurface(managedContext.getContext());
}
try {
action.run();
} finally {
if (needsContext) {
sEgl.eglMakeCurrent(sEglDisplay, EGL_NO_SURFACE,
EGL_NO_SURFACE, EGL_NO_CONTEXT);
}
}
return true;
}
@Override
void destroyLayers(final View view) {
if (view != null) {
safelyRun(new Runnable() {
@Override
public void run() {
if (mCanvas != null) {
mCanvas.clearLayerUpdates();
}
destroyHardwareLayer(view);
GLES20Canvas.flushCaches(GLES20Canvas.FLUSH_CACHES_LAYERS);
}
});
}
}
private static void destroyHardwareLayer(View view) {
view.destroyLayer(true);
if (view instanceof ViewGroup) {
ViewGroup group = (ViewGroup) view;
int count = group.getChildCount();
for (int i = 0; i < count; i++) {
destroyHardwareLayer(group.getChildAt(i));
}
}
}
@Override
void destroyHardwareResources(final View view) {
if (view != null) {
safelyRun(new Runnable() {
@Override
public void run() {
if (mCanvas != null) {
mCanvas.clearLayerUpdates();
}
destroyResources(view);
GLES20Canvas.flushCaches(GLES20Canvas.FLUSH_CACHES_LAYERS);
}
});
}
}
private static void destroyResources(View view) {
view.destroyHardwareResources();
if (view instanceof ViewGroup) {
ViewGroup group = (ViewGroup) view;
int count = group.getChildCount();
for (int i = 0; i < count; i++) {
destroyResources(group.getChildAt(i));
}
}
}
static HardwareRenderer create(boolean translucent) {
if (GLES20Canvas.isAvailable()) {
return new Gl20Renderer(translucent);
}
return null;
}
static void startTrimMemory(int level) {
if (sEgl == null || sEglConfig == null) return;
Gl20RendererEglContext managedContext =
(Gl20RendererEglContext) sEglContextStorage.get();
// We do not have OpenGL objects
if (managedContext == null) {
return;
} else {
usePbufferSurface(managedContext.getContext());
}
if (level >= ComponentCallbacks2.TRIM_MEMORY_COMPLETE) {
GLES20Canvas.flushCaches(GLES20Canvas.FLUSH_CACHES_FULL);
} else if (level >= ComponentCallbacks2.TRIM_MEMORY_UI_HIDDEN) {
GLES20Canvas.flushCaches(GLES20Canvas.FLUSH_CACHES_MODERATE);
}
}
static void endTrimMemory() {
if (sEgl != null && sEglDisplay != null) {
sEgl.eglMakeCurrent(sEglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
}
}
private static void usePbufferSurface(EGLContext eglContext) {
synchronized (sPbufferLock) {
// Create a temporary 1x1 pbuffer so we have a context
// to clear our OpenGL objects
if (sPbuffer == null) {
sPbuffer = sEgl.eglCreatePbufferSurface(sEglDisplay, sEglConfig, new int[] {
EGL_WIDTH, 1, EGL_HEIGHT, 1, EGL_NONE
});
}
}
sEgl.eglMakeCurrent(sEglDisplay, sPbuffer, sPbuffer, eglContext);
}
}
}