blob: 4b4b9b9d4adbafecebd7cd45ed68f9bc7fbb8865 [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <errno.h>
#include <dirent.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <arpa/inet.h>
#include <openssl/aes.h>
#include <openssl/evp.h>
#include <openssl/md5.h>
#define LOG_TAG "keystore"
#include <cutils/log.h>
#include <cutils/sockets.h>
#include <private/android_filesystem_config.h>
#include "keystore.h"
/* KeyStore is a secured storage for key-value pairs. In this implementation,
* each file stores one key-value pair. Keys are encoded in file names, and
* values are encrypted with checksums. The encryption key is protected by a
* user-defined password. To keep things simple, buffers are always larger than
* the maximum space we needed, so boundary checks on buffers are omitted. */
#define KEY_SIZE ((NAME_MAX - 15) / 2)
#define VALUE_SIZE 32768
#define PASSWORD_SIZE VALUE_SIZE
struct Value {
int length;
uint8_t value[VALUE_SIZE];
};
/* Here is the encoding of keys. This is necessary in order to allow arbitrary
* characters in keys. Characters in [0-~] are not encoded. Others are encoded
* into two bytes. The first byte is one of [+-.] which represents the first
* two bits of the character. The second byte encodes the rest of the bits into
* [0-o]. Therefore in the worst case the length of a key gets doubled. Note
* that Base64 cannot be used here due to the need of prefix match on keys. */
static int encode_key(char* out, uid_t uid, const Value* key) {
int n = snprintf(out, NAME_MAX, "%u_", uid);
out += n;
const uint8_t* in = key->value;
int length = key->length;
for (int i = length; i > 0; --i, ++in, ++out) {
if (*in >= '0' && *in <= '~') {
*out = *in;
} else {
*out = '+' + (*in >> 6);
*++out = '0' + (*in & 0x3F);
++length;
}
}
*out = '\0';
return n + length;
}
static int decode_key(uint8_t* out, char* in, int length) {
for (int i = 0; i < length; ++i, ++in, ++out) {
if (*in >= '0' && *in <= '~') {
*out = *in;
} else {
*out = (*in - '+') << 6;
*out |= (*++in - '0') & 0x3F;
--length;
}
}
*out = '\0';
return length;
}
static size_t readFully(int fd, uint8_t* data, size_t size) {
size_t remaining = size;
while (remaining > 0) {
ssize_t n = TEMP_FAILURE_RETRY(read(fd, data, size));
if (n == -1 || n == 0) {
return size-remaining;
}
data += n;
remaining -= n;
}
return size;
}
static size_t writeFully(int fd, uint8_t* data, size_t size) {
size_t remaining = size;
while (remaining > 0) {
ssize_t n = TEMP_FAILURE_RETRY(write(fd, data, size));
if (n == -1 || n == 0) {
return size-remaining;
}
data += n;
remaining -= n;
}
return size;
}
class Entropy {
public:
Entropy() : mRandom(-1) {}
~Entropy() {
if (mRandom != -1) {
close(mRandom);
}
}
bool open() {
const char* randomDevice = "/dev/urandom";
mRandom = ::open(randomDevice, O_RDONLY);
if (mRandom == -1) {
LOGE("open: %s: %s", randomDevice, strerror(errno));
return false;
}
return true;
}
bool generate_random_data(uint8_t* data, size_t size) {
return (readFully(mRandom, data, size) == size);
}
private:
int mRandom;
};
/* Here is the file format. There are two parts in blob.value, the secret and
* the description. The secret is stored in ciphertext, and its original size
* can be found in blob.length. The description is stored after the secret in
* plaintext, and its size is specified in blob.info. The total size of the two
* parts must be no more than VALUE_SIZE bytes. The first three bytes of the
* file are reserved for future use and are always set to zero. Fields other
* than blob.info, blob.length, and blob.value are modified by encryptBlob()
* and decryptBlob(). Thus they should not be accessed from outside. */
struct __attribute__((packed)) blob {
uint8_t reserved[3];
uint8_t info;
uint8_t vector[AES_BLOCK_SIZE];
uint8_t encrypted[0];
uint8_t digest[MD5_DIGEST_LENGTH];
uint8_t digested[0];
int32_t length; // in network byte order when encrypted
uint8_t value[VALUE_SIZE + AES_BLOCK_SIZE];
};
class Blob {
public:
Blob(uint8_t* value, int32_t valueLength, uint8_t* info, uint8_t infoLength) {
mBlob.length = valueLength;
memcpy(mBlob.value, value, valueLength);
mBlob.info = infoLength;
memcpy(mBlob.value + valueLength, info, infoLength);
}
Blob(blob b) {
mBlob = b;
}
Blob() {}
uint8_t* getValue() {
return mBlob.value;
}
int32_t getLength() {
return mBlob.length;
}
uint8_t getInfo() {
return mBlob.info;
}
ResponseCode encryptBlob(const char* filename, AES_KEY *aes_key, Entropy* entropy) {
if (!entropy->generate_random_data(mBlob.vector, AES_BLOCK_SIZE)) {
return SYSTEM_ERROR;
}
// data includes the value and the value's length
size_t dataLength = mBlob.length + sizeof(mBlob.length);
// pad data to the AES_BLOCK_SIZE
size_t digestedLength = ((dataLength + AES_BLOCK_SIZE - 1)
/ AES_BLOCK_SIZE * AES_BLOCK_SIZE);
// encrypted data includes the digest value
size_t encryptedLength = digestedLength + MD5_DIGEST_LENGTH;
// move info after space for padding
memmove(&mBlob.encrypted[encryptedLength], &mBlob.value[mBlob.length], mBlob.info);
// zero padding area
memset(mBlob.value + mBlob.length, 0, digestedLength - dataLength);
mBlob.length = htonl(mBlob.length);
MD5(mBlob.digested, digestedLength, mBlob.digest);
uint8_t vector[AES_BLOCK_SIZE];
memcpy(vector, mBlob.vector, AES_BLOCK_SIZE);
AES_cbc_encrypt(mBlob.encrypted, mBlob.encrypted, encryptedLength,
aes_key, vector, AES_ENCRYPT);
memset(mBlob.reserved, 0, sizeof(mBlob.reserved));
size_t headerLength = (mBlob.encrypted - (uint8_t*) &mBlob);
size_t fileLength = encryptedLength + headerLength + mBlob.info;
const char* tmpFileName = ".tmp";
int out = open(tmpFileName, O_WRONLY | O_TRUNC | O_CREAT, S_IRUSR | S_IWUSR);
if (out == -1) {
return SYSTEM_ERROR;
}
size_t writtenBytes = writeFully(out, (uint8_t*) &mBlob, fileLength);
if (close(out) != 0) {
return SYSTEM_ERROR;
}
if (writtenBytes != fileLength) {
unlink(tmpFileName);
return SYSTEM_ERROR;
}
return (rename(tmpFileName, filename) == 0) ? NO_ERROR : SYSTEM_ERROR;
}
ResponseCode decryptBlob(const char* filename, AES_KEY *aes_key) {
int in = open(filename, O_RDONLY);
if (in == -1) {
return (errno == ENOENT) ? KEY_NOT_FOUND : SYSTEM_ERROR;
}
// fileLength may be less than sizeof(mBlob) since the in
// memory version has extra padding to tolerate rounding up to
// the AES_BLOCK_SIZE
size_t fileLength = readFully(in, (uint8_t*) &mBlob, sizeof(mBlob));
if (close(in) != 0) {
return SYSTEM_ERROR;
}
size_t headerLength = (mBlob.encrypted - (uint8_t*) &mBlob);
if (fileLength < headerLength) {
return VALUE_CORRUPTED;
}
ssize_t encryptedLength = fileLength - (headerLength + mBlob.info);
if (encryptedLength < 0 || encryptedLength % AES_BLOCK_SIZE != 0) {
return VALUE_CORRUPTED;
}
AES_cbc_encrypt(mBlob.encrypted, mBlob.encrypted, encryptedLength, aes_key,
mBlob.vector, AES_DECRYPT);
size_t digestedLength = encryptedLength - MD5_DIGEST_LENGTH;
uint8_t computedDigest[MD5_DIGEST_LENGTH];
MD5(mBlob.digested, digestedLength, computedDigest);
if (memcmp(mBlob.digest, computedDigest, MD5_DIGEST_LENGTH) != 0) {
return VALUE_CORRUPTED;
}
ssize_t maxValueLength = digestedLength - sizeof(mBlob.length);
mBlob.length = ntohl(mBlob.length);
if (mBlob.length < 0 || mBlob.length > maxValueLength) {
return VALUE_CORRUPTED;
}
if (mBlob.info != 0) {
// move info from after padding to after data
memmove(&mBlob.value[mBlob.length], &mBlob.value[maxValueLength], mBlob.info);
}
return NO_ERROR;
}
private:
struct blob mBlob;
};
class KeyStore {
public:
KeyStore(Entropy* entropy) : mEntropy(entropy), mRetry(MAX_RETRY) {
if (access(MASTER_KEY_FILE, R_OK) == 0) {
setState(STATE_LOCKED);
} else {
setState(STATE_UNINITIALIZED);
}
}
State getState() {
return mState;
}
int8_t getRetry() {
return mRetry;
}
ResponseCode initialize(Value* pw) {
if (!generateMasterKey()) {
return SYSTEM_ERROR;
}
ResponseCode response = writeMasterKey(pw);
if (response != NO_ERROR) {
return response;
}
setupMasterKeys();
return NO_ERROR;
}
ResponseCode writeMasterKey(Value* pw) {
uint8_t passwordKey[MASTER_KEY_SIZE_BYTES];
generateKeyFromPassword(passwordKey, MASTER_KEY_SIZE_BYTES, pw, mSalt);
AES_KEY passwordAesKey;
AES_set_encrypt_key(passwordKey, MASTER_KEY_SIZE_BITS, &passwordAesKey);
Blob masterKeyBlob(mMasterKey, sizeof(mMasterKey), mSalt, sizeof(mSalt));
return masterKeyBlob.encryptBlob(MASTER_KEY_FILE, &passwordAesKey, mEntropy);
}
ResponseCode readMasterKey(Value* pw) {
int in = open(MASTER_KEY_FILE, O_RDONLY);
if (in == -1) {
return SYSTEM_ERROR;
}
// we read the raw blob to just to get the salt to generate
// the AES key, then we create the Blob to use with decryptBlob
blob rawBlob;
size_t length = readFully(in, (uint8_t*) &rawBlob, sizeof(rawBlob));
if (close(in) != 0) {
return SYSTEM_ERROR;
}
// find salt at EOF if present, otherwise we have an old file
uint8_t* salt;
if (length > SALT_SIZE && rawBlob.info == SALT_SIZE) {
salt = (uint8_t*) &rawBlob + length - SALT_SIZE;
} else {
salt = NULL;
}
uint8_t passwordKey[MASTER_KEY_SIZE_BYTES];
generateKeyFromPassword(passwordKey, MASTER_KEY_SIZE_BYTES, pw, salt);
AES_KEY passwordAesKey;
AES_set_decrypt_key(passwordKey, MASTER_KEY_SIZE_BITS, &passwordAesKey);
Blob masterKeyBlob(rawBlob);
ResponseCode response = masterKeyBlob.decryptBlob(MASTER_KEY_FILE, &passwordAesKey);
if (response == SYSTEM_ERROR) {
return SYSTEM_ERROR;
}
if (response == NO_ERROR && masterKeyBlob.getLength() == MASTER_KEY_SIZE_BYTES) {
// if salt was missing, generate one and write a new master key file with the salt.
if (salt == NULL) {
if (!generateSalt()) {
return SYSTEM_ERROR;
}
response = writeMasterKey(pw);
}
if (response == NO_ERROR) {
memcpy(mMasterKey, masterKeyBlob.getValue(), MASTER_KEY_SIZE_BYTES);
setupMasterKeys();
}
return response;
}
if (mRetry <= 0) {
reset();
return UNINITIALIZED;
}
--mRetry;
switch (mRetry) {
case 0: return WRONG_PASSWORD_0;
case 1: return WRONG_PASSWORD_1;
case 2: return WRONG_PASSWORD_2;
case 3: return WRONG_PASSWORD_3;
default: return WRONG_PASSWORD_3;
}
}
bool reset() {
clearMasterKeys();
setState(STATE_UNINITIALIZED);
DIR* dir = opendir(".");
struct dirent* file;
if (!dir) {
return false;
}
while ((file = readdir(dir)) != NULL) {
unlink(file->d_name);
}
closedir(dir);
return true;
}
bool isEmpty() {
DIR* dir = opendir(".");
struct dirent* file;
if (!dir) {
return true;
}
bool result = true;
while ((file = readdir(dir)) != NULL) {
if (isKeyFile(file->d_name)) {
result = false;
break;
}
}
closedir(dir);
return result;
}
void lock() {
clearMasterKeys();
setState(STATE_LOCKED);
}
ResponseCode get(const char* filename, Blob* keyBlob) {
return keyBlob->decryptBlob(filename, &mMasterKeyDecryption);
}
ResponseCode put(const char* filename, Blob* keyBlob) {
return keyBlob->encryptBlob(filename, &mMasterKeyEncryption, mEntropy);
}
private:
static const char* MASTER_KEY_FILE;
static const int MASTER_KEY_SIZE_BYTES = 16;
static const int MASTER_KEY_SIZE_BITS = MASTER_KEY_SIZE_BYTES * 8;
static const int MAX_RETRY = 4;
static const size_t SALT_SIZE = 16;
Entropy* mEntropy;
State mState;
int8_t mRetry;
uint8_t mMasterKey[MASTER_KEY_SIZE_BYTES];
uint8_t mSalt[SALT_SIZE];
AES_KEY mMasterKeyEncryption;
AES_KEY mMasterKeyDecryption;
void setState(State state) {
mState = state;
if (mState == STATE_NO_ERROR || mState == STATE_UNINITIALIZED) {
mRetry = MAX_RETRY;
}
}
bool generateSalt() {
return mEntropy->generate_random_data(mSalt, sizeof(mSalt));
}
bool generateMasterKey() {
if (!mEntropy->generate_random_data(mMasterKey, sizeof(mMasterKey))) {
return false;
}
if (!generateSalt()) {
return false;
}
return true;
}
void setupMasterKeys() {
AES_set_encrypt_key(mMasterKey, MASTER_KEY_SIZE_BITS, &mMasterKeyEncryption);
AES_set_decrypt_key(mMasterKey, MASTER_KEY_SIZE_BITS, &mMasterKeyDecryption);
setState(STATE_NO_ERROR);
}
void clearMasterKeys() {
memset(mMasterKey, 0, sizeof(mMasterKey));
memset(mSalt, 0, sizeof(mSalt));
memset(&mMasterKeyEncryption, 0, sizeof(mMasterKeyEncryption));
memset(&mMasterKeyDecryption, 0, sizeof(mMasterKeyDecryption));
}
static void generateKeyFromPassword(uint8_t* key, ssize_t keySize, Value* pw, uint8_t* salt) {
size_t saltSize;
if (salt != NULL) {
saltSize = SALT_SIZE;
} else {
// pre-gingerbread used this hardwired salt, readMasterKey will rewrite these when found
salt = (uint8_t*) "keystore";
// sizeof = 9, not strlen = 8
saltSize = sizeof("keystore");
}
PKCS5_PBKDF2_HMAC_SHA1((char*) pw->value, pw->length, salt, saltSize, 8192, keySize, key);
}
static bool isKeyFile(const char* filename) {
return ((strcmp(filename, MASTER_KEY_FILE) != 0)
&& (strcmp(filename, ".") != 0)
&& (strcmp(filename, "..") != 0));
}
};
const char* KeyStore::MASTER_KEY_FILE = ".masterkey";
/* Here is the protocol used in both requests and responses:
* code [length_1 message_1 ... length_n message_n] end-of-file
* where code is one byte long and lengths are unsigned 16-bit integers in
* network order. Thus the maximum length of a message is 65535 bytes. */
static int recv_code(int sock, int8_t* code) {
return recv(sock, code, 1, 0) == 1;
}
static int recv_message(int sock, uint8_t* message, int length) {
uint8_t bytes[2];
if (recv(sock, &bytes[0], 1, 0) != 1 ||
recv(sock, &bytes[1], 1, 0) != 1) {
return -1;
} else {
int offset = bytes[0] << 8 | bytes[1];
if (length < offset) {
return -1;
}
length = offset;
offset = 0;
while (offset < length) {
int n = recv(sock, &message[offset], length - offset, 0);
if (n <= 0) {
return -1;
}
offset += n;
}
}
return length;
}
static int recv_end_of_file(int sock) {
uint8_t byte;
return recv(sock, &byte, 1, 0) == 0;
}
static void send_code(int sock, int8_t code) {
send(sock, &code, 1, 0);
}
static void send_message(int sock, uint8_t* message, int length) {
uint16_t bytes = htons(length);
send(sock, &bytes, 2, 0);
send(sock, message, length, 0);
}
/* Here are the actions. Each of them is a function without arguments. All
* information is defined in global variables, which are set properly before
* performing an action. The number of parameters required by each action is
* fixed and defined in a table. If the return value of an action is positive,
* it will be treated as a response code and transmitted to the client. Note
* that the lengths of parameters are checked when they are received, so
* boundary checks on parameters are omitted. */
static const ResponseCode NO_ERROR_RESPONSE_CODE_SENT = (ResponseCode) 0;
static ResponseCode test(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) {
return (ResponseCode) keyStore->getState();
}
static ResponseCode get(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value*) {
char filename[NAME_MAX];
encode_key(filename, uid, keyName);
Blob keyBlob;
ResponseCode responseCode = keyStore->get(filename, &keyBlob);
if (responseCode != NO_ERROR) {
return responseCode;
}
send_code(sock, NO_ERROR);
send_message(sock, keyBlob.getValue(), keyBlob.getLength());
return NO_ERROR_RESPONSE_CODE_SENT;
}
static ResponseCode insert(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value* val) {
char filename[NAME_MAX];
encode_key(filename, uid, keyName);
Blob keyBlob(val->value, val->length, 0, NULL);
return keyStore->put(filename, &keyBlob);
}
static ResponseCode del(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value*) {
char filename[NAME_MAX];
encode_key(filename, uid, keyName);
return (unlink(filename) && errno != ENOENT) ? SYSTEM_ERROR : NO_ERROR;
}
static ResponseCode exist(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value*) {
char filename[NAME_MAX];
encode_key(filename, uid, keyName);
if (access(filename, R_OK) == -1) {
return (errno != ENOENT) ? SYSTEM_ERROR : KEY_NOT_FOUND;
}
return NO_ERROR;
}
static ResponseCode saw(KeyStore* keyStore, int sock, uid_t uid, Value* keyPrefix, Value*) {
DIR* dir = opendir(".");
if (!dir) {
return SYSTEM_ERROR;
}
char filename[NAME_MAX];
int n = encode_key(filename, uid, keyPrefix);
send_code(sock, NO_ERROR);
struct dirent* file;
while ((file = readdir(dir)) != NULL) {
if (!strncmp(filename, file->d_name, n)) {
char* p = &file->d_name[n];
keyPrefix->length = decode_key(keyPrefix->value, p, strlen(p));
send_message(sock, keyPrefix->value, keyPrefix->length);
}
}
closedir(dir);
return NO_ERROR_RESPONSE_CODE_SENT;
}
static ResponseCode reset(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) {
return keyStore->reset() ? NO_ERROR : SYSTEM_ERROR;
}
/* Here is the history. To improve the security, the parameters to generate the
* master key has been changed. To make a seamless transition, we update the
* file using the same password when the user unlock it for the first time. If
* any thing goes wrong during the transition, the new file will not overwrite
* the old one. This avoids permanent damages of the existing data. */
static ResponseCode password(KeyStore* keyStore, int sock, uid_t uid, Value* pw, Value*) {
switch (keyStore->getState()) {
case STATE_UNINITIALIZED: {
// generate master key, encrypt with password, write to file, initialize mMasterKey*.
return keyStore->initialize(pw);
}
case STATE_NO_ERROR: {
// rewrite master key with new password.
return keyStore->writeMasterKey(pw);
}
case STATE_LOCKED: {
// read master key, decrypt with password, initialize mMasterKey*.
return keyStore->readMasterKey(pw);
}
}
return SYSTEM_ERROR;
}
static ResponseCode lock(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) {
keyStore->lock();
return NO_ERROR;
}
static ResponseCode unlock(KeyStore* keyStore, int sock, uid_t uid, Value* pw, Value* unused) {
return password(keyStore, sock, uid, pw, unused);
}
static ResponseCode zero(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) {
return keyStore->isEmpty() ? KEY_NOT_FOUND : NO_ERROR;
}
/* Here are the permissions, actions, users, and the main function. */
enum perm {
TEST = 1,
GET = 2,
INSERT = 4,
DELETE = 8,
EXIST = 16,
SAW = 32,
RESET = 64,
PASSWORD = 128,
LOCK = 256,
UNLOCK = 512,
ZERO = 1024,
};
static const int MAX_PARAM = 2;
static const State STATE_ANY = (State) 0;
static struct action {
ResponseCode (*run)(KeyStore* keyStore, int sock, uid_t uid, Value* param1, Value* param2);
int8_t code;
State state;
uint32_t perm;
int lengths[MAX_PARAM];
} actions[] = {
{test, 't', STATE_ANY, TEST, {0, 0}},
{get, 'g', STATE_NO_ERROR, GET, {KEY_SIZE, 0}},
{insert, 'i', STATE_NO_ERROR, INSERT, {KEY_SIZE, VALUE_SIZE}},
{del, 'd', STATE_ANY, DELETE, {KEY_SIZE, 0}},
{exist, 'e', STATE_ANY, EXIST, {KEY_SIZE, 0}},
{saw, 's', STATE_ANY, SAW, {KEY_SIZE, 0}},
{reset, 'r', STATE_ANY, RESET, {0, 0}},
{password, 'p', STATE_ANY, PASSWORD, {PASSWORD_SIZE, 0}},
{lock, 'l', STATE_NO_ERROR, LOCK, {0, 0}},
{unlock, 'u', STATE_LOCKED, UNLOCK, {PASSWORD_SIZE, 0}},
{zero, 'z', STATE_ANY, ZERO, {0, 0}},
{NULL, 0 , STATE_ANY, 0, {0, 0}},
};
static struct user {
uid_t uid;
uid_t euid;
uint32_t perms;
} users[] = {
{AID_SYSTEM, ~0, ~0},
{AID_VPN, AID_SYSTEM, GET},
{AID_WIFI, AID_SYSTEM, GET},
{AID_ROOT, AID_SYSTEM, GET},
{~0, ~0, TEST | GET | INSERT | DELETE | EXIST | SAW},
};
static ResponseCode process(KeyStore* keyStore, int sock, uid_t uid, int8_t code) {
struct user* user = users;
struct action* action = actions;
int i;
while (~user->uid && user->uid != uid) {
++user;
}
while (action->code && action->code != code) {
++action;
}
if (!action->code) {
return UNDEFINED_ACTION;
}
if (!(action->perm & user->perms)) {
return PERMISSION_DENIED;
}
if (action->state != STATE_ANY && action->state != keyStore->getState()) {
return (ResponseCode) keyStore->getState();
}
if (~user->euid) {
uid = user->euid;
}
Value params[MAX_PARAM];
for (i = 0; i < MAX_PARAM && action->lengths[i] != 0; ++i) {
params[i].length = recv_message(sock, params[i].value, action->lengths[i]);
if (params[i].length < 0) {
return PROTOCOL_ERROR;
}
}
if (!recv_end_of_file(sock)) {
return PROTOCOL_ERROR;
}
return action->run(keyStore, sock, uid, &params[0], &params[1]);
}
int main(int argc, char* argv[]) {
int controlSocket = android_get_control_socket("keystore");
if (argc < 2) {
LOGE("A directory must be specified!");
return 1;
}
if (chdir(argv[1]) == -1) {
LOGE("chdir: %s: %s", argv[1], strerror(errno));
return 1;
}
Entropy entropy;
if (!entropy.open()) {
return 1;
}
if (listen(controlSocket, 3) == -1) {
LOGE("listen: %s", strerror(errno));
return 1;
}
signal(SIGPIPE, SIG_IGN);
KeyStore keyStore(&entropy);
int sock;
while ((sock = accept(controlSocket, NULL, 0)) != -1) {
struct timeval tv;
tv.tv_sec = 3;
setsockopt(sock, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv));
setsockopt(sock, SOL_SOCKET, SO_SNDTIMEO, &tv, sizeof(tv));
struct ucred cred;
socklen_t size = sizeof(cred);
int credResult = getsockopt(sock, SOL_SOCKET, SO_PEERCRED, &cred, &size);
if (credResult != 0) {
LOGW("getsockopt: %s", strerror(errno));
} else {
int8_t request;
if (recv_code(sock, &request)) {
State old_state = keyStore.getState();
ResponseCode response = process(&keyStore, sock, cred.uid, request);
if (response == NO_ERROR_RESPONSE_CODE_SENT) {
response = NO_ERROR;
} else {
send_code(sock, response);
}
LOGI("uid: %d action: %c -> %d state: %d -> %d retry: %d",
cred.uid,
request, response,
old_state, keyStore.getState(),
keyStore.getRetry());
}
}
close(sock);
}
LOGE("accept: %s", strerror(errno));
return 1;
}