blob: cd4654a6899fc36057a6f89ed8750565321f2cd8 [file] [log] [blame]
//
// Copyright 2010 The Android Open Source Project
//
// The input reader.
//
#define LOG_TAG "InputReader"
//#define LOG_NDEBUG 0
// Log debug messages for each raw event received from the EventHub.
#define DEBUG_RAW_EVENTS 0
// Log debug messages about touch screen filtering hacks.
#define DEBUG_HACKS 0
// Log debug messages about virtual key processing.
#define DEBUG_VIRTUAL_KEYS 0
// Log debug messages about pointers.
#define DEBUG_POINTERS 0
// Log debug messages about pointer assignment calculations.
#define DEBUG_POINTER_ASSIGNMENT 0
#include <cutils/log.h>
#include <ui/InputReader.h>
#include <stddef.h>
#include <unistd.h>
#include <errno.h>
#include <limits.h>
#include <math.h>
/** Amount that trackball needs to move in order to generate a key event. */
#define TRACKBALL_MOVEMENT_THRESHOLD 6
namespace android {
// --- Static Functions ---
template<typename T>
inline static T abs(const T& value) {
return value < 0 ? - value : value;
}
template<typename T>
inline static T min(const T& a, const T& b) {
return a < b ? a : b;
}
template<typename T>
inline static void swap(T& a, T& b) {
T temp = a;
a = b;
b = temp;
}
int32_t updateMetaState(int32_t keyCode, bool down, int32_t oldMetaState) {
int32_t mask;
switch (keyCode) {
case AKEYCODE_ALT_LEFT:
mask = AMETA_ALT_LEFT_ON;
break;
case AKEYCODE_ALT_RIGHT:
mask = AMETA_ALT_RIGHT_ON;
break;
case AKEYCODE_SHIFT_LEFT:
mask = AMETA_SHIFT_LEFT_ON;
break;
case AKEYCODE_SHIFT_RIGHT:
mask = AMETA_SHIFT_RIGHT_ON;
break;
case AKEYCODE_SYM:
mask = AMETA_SYM_ON;
break;
default:
return oldMetaState;
}
int32_t newMetaState = down ? oldMetaState | mask : oldMetaState & ~ mask
& ~ (AMETA_ALT_ON | AMETA_SHIFT_ON);
if (newMetaState & (AMETA_ALT_LEFT_ON | AMETA_ALT_RIGHT_ON)) {
newMetaState |= AMETA_ALT_ON;
}
if (newMetaState & (AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_RIGHT_ON)) {
newMetaState |= AMETA_SHIFT_ON;
}
return newMetaState;
}
static const int32_t keyCodeRotationMap[][4] = {
// key codes enumerated counter-clockwise with the original (unrotated) key first
// no rotation, 90 degree rotation, 180 degree rotation, 270 degree rotation
{ AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT },
{ AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN },
{ AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT },
{ AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP },
};
static const int keyCodeRotationMapSize =
sizeof(keyCodeRotationMap) / sizeof(keyCodeRotationMap[0]);
int32_t rotateKeyCode(int32_t keyCode, int32_t orientation) {
if (orientation != InputReaderPolicyInterface::ROTATION_0) {
for (int i = 0; i < keyCodeRotationMapSize; i++) {
if (keyCode == keyCodeRotationMap[i][0]) {
return keyCodeRotationMap[i][orientation];
}
}
}
return keyCode;
}
// --- InputReader ---
InputReader::InputReader(const sp<EventHubInterface>& eventHub,
const sp<InputReaderPolicyInterface>& policy,
const sp<InputDispatcherInterface>& dispatcher) :
mEventHub(eventHub), mPolicy(policy), mDispatcher(dispatcher) {
configureExcludedDevices();
resetGlobalMetaState();
resetDisplayProperties();
updateExportedVirtualKeyState();
}
InputReader::~InputReader() {
for (size_t i = 0; i < mDevices.size(); i++) {
delete mDevices.valueAt(i);
}
}
void InputReader::loopOnce() {
RawEvent rawEvent;
mEventHub->getEvent(& rawEvent.deviceId, & rawEvent.type, & rawEvent.scanCode,
& rawEvent.keyCode, & rawEvent.flags, & rawEvent.value, & rawEvent.when);
// Replace the event timestamp so it is in same timebase as java.lang.System.nanoTime()
// and android.os.SystemClock.uptimeMillis() as expected by the rest of the system.
rawEvent.when = systemTime(SYSTEM_TIME_MONOTONIC);
#if DEBUG_RAW_EVENTS
LOGD("Input event: device=0x%x type=0x%x scancode=%d keycode=%d value=%d",
rawEvent.deviceId, rawEvent.type, rawEvent.scanCode, rawEvent.keyCode,
rawEvent.value);
#endif
process(& rawEvent);
}
void InputReader::process(const RawEvent* rawEvent) {
switch (rawEvent->type) {
case EventHubInterface::DEVICE_ADDED:
handleDeviceAdded(rawEvent);
break;
case EventHubInterface::DEVICE_REMOVED:
handleDeviceRemoved(rawEvent);
break;
case EV_SYN:
handleSync(rawEvent);
break;
case EV_KEY:
handleKey(rawEvent);
break;
case EV_REL:
handleRelativeMotion(rawEvent);
break;
case EV_ABS:
handleAbsoluteMotion(rawEvent);
break;
case EV_SW:
handleSwitch(rawEvent);
break;
}
}
void InputReader::handleDeviceAdded(const RawEvent* rawEvent) {
InputDevice* device = getDevice(rawEvent->deviceId);
if (device) {
LOGW("Ignoring spurious device added event for deviceId %d.", rawEvent->deviceId);
return;
}
addDevice(rawEvent->when, rawEvent->deviceId);
}
void InputReader::handleDeviceRemoved(const RawEvent* rawEvent) {
InputDevice* device = getDevice(rawEvent->deviceId);
if (! device) {
LOGW("Ignoring spurious device removed event for deviceId %d.", rawEvent->deviceId);
return;
}
removeDevice(rawEvent->when, device);
}
void InputReader::handleSync(const RawEvent* rawEvent) {
InputDevice* device = getNonIgnoredDevice(rawEvent->deviceId);
if (! device) return;
if (rawEvent->scanCode == SYN_MT_REPORT) {
// MultiTouch Sync: The driver has returned all data for *one* of the pointers.
// We drop pointers with pressure <= 0 since that indicates they are not down.
if (device->isMultiTouchScreen()) {
uint32_t pointerIndex = device->multiTouchScreen.accumulator.pointerCount;
if (device->multiTouchScreen.accumulator.pointers[pointerIndex].fields) {
if (pointerIndex == MAX_POINTERS) {
LOGW("MultiTouch device driver returned more than maximum of %d pointers.",
MAX_POINTERS);
} else {
pointerIndex += 1;
device->multiTouchScreen.accumulator.pointerCount = pointerIndex;
}
}
device->multiTouchScreen.accumulator.pointers[pointerIndex].clear();
}
} else if (rawEvent->scanCode == SYN_REPORT) {
// General Sync: The driver has returned all data for the current event update.
if (device->isMultiTouchScreen()) {
if (device->multiTouchScreen.accumulator.isDirty()) {
onMultiTouchScreenStateChanged(rawEvent->when, device);
device->multiTouchScreen.accumulator.clear();
}
} else if (device->isSingleTouchScreen()) {
if (device->singleTouchScreen.accumulator.isDirty()) {
onSingleTouchScreenStateChanged(rawEvent->when, device);
device->singleTouchScreen.accumulator.clear();
}
}
if (device->trackball.accumulator.isDirty()) {
onTrackballStateChanged(rawEvent->when, device);
device->trackball.accumulator.clear();
}
}
}
void InputReader::handleKey(const RawEvent* rawEvent) {
InputDevice* device = getNonIgnoredDevice(rawEvent->deviceId);
if (! device) return;
bool down = rawEvent->value != 0;
int32_t scanCode = rawEvent->scanCode;
if (device->isSingleTouchScreen()) {
switch (rawEvent->scanCode) {
case BTN_TOUCH:
device->singleTouchScreen.accumulator.fields |=
InputDevice::SingleTouchScreenState::Accumulator::FIELD_BTN_TOUCH;
device->singleTouchScreen.accumulator.btnTouch = down;
return;
}
}
if (device->isTrackball()) {
switch (rawEvent->scanCode) {
case BTN_MOUSE:
device->trackball.accumulator.fields |=
InputDevice::TrackballState::Accumulator::FIELD_BTN_MOUSE;
device->trackball.accumulator.btnMouse = down;
return;
}
}
if (device->isKeyboard()) {
int32_t keyCode = rawEvent->keyCode;
onKey(rawEvent->when, device, down, keyCode, scanCode, rawEvent->flags);
}
}
void InputReader::handleRelativeMotion(const RawEvent* rawEvent) {
InputDevice* device = getNonIgnoredDevice(rawEvent->deviceId);
if (! device) return;
if (device->isTrackball()) {
switch (rawEvent->scanCode) {
case REL_X:
device->trackball.accumulator.fields |=
InputDevice::TrackballState::Accumulator::FIELD_REL_X;
device->trackball.accumulator.relX = rawEvent->value;
break;
case REL_Y:
device->trackball.accumulator.fields |=
InputDevice::TrackballState::Accumulator::FIELD_REL_Y;
device->trackball.accumulator.relY = rawEvent->value;
break;
}
}
}
void InputReader::handleAbsoluteMotion(const RawEvent* rawEvent) {
InputDevice* device = getNonIgnoredDevice(rawEvent->deviceId);
if (! device) return;
if (device->isMultiTouchScreen()) {
uint32_t pointerIndex = device->multiTouchScreen.accumulator.pointerCount;
InputDevice::MultiTouchScreenState::Accumulator::Pointer* pointer =
& device->multiTouchScreen.accumulator.pointers[pointerIndex];
switch (rawEvent->scanCode) {
case ABS_MT_POSITION_X:
pointer->fields |=
InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_POSITION_X;
pointer->absMTPositionX = rawEvent->value;
break;
case ABS_MT_POSITION_Y:
pointer->fields |=
InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_POSITION_Y;
pointer->absMTPositionY = rawEvent->value;
break;
case ABS_MT_TOUCH_MAJOR:
pointer->fields |=
InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_TOUCH_MAJOR;
pointer->absMTTouchMajor = rawEvent->value;
break;
case ABS_MT_TOUCH_MINOR:
pointer->fields |=
InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_TOUCH_MINOR;
pointer->absMTTouchMinor = rawEvent->value;
break;
case ABS_MT_WIDTH_MAJOR:
pointer->fields |=
InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_WIDTH_MAJOR;
pointer->absMTWidthMajor = rawEvent->value;
break;
case ABS_MT_WIDTH_MINOR:
pointer->fields |=
InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_WIDTH_MINOR;
pointer->absMTWidthMinor = rawEvent->value;
break;
case ABS_MT_ORIENTATION:
pointer->fields |=
InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_ORIENTATION;
pointer->absMTOrientation = rawEvent->value;
break;
case ABS_MT_TRACKING_ID:
pointer->fields |=
InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_TRACKING_ID;
pointer->absMTTrackingId = rawEvent->value;
break;
}
} else if (device->isSingleTouchScreen()) {
switch (rawEvent->scanCode) {
case ABS_X:
device->singleTouchScreen.accumulator.fields |=
InputDevice::SingleTouchScreenState::Accumulator::FIELD_ABS_X;
device->singleTouchScreen.accumulator.absX = rawEvent->value;
break;
case ABS_Y:
device->singleTouchScreen.accumulator.fields |=
InputDevice::SingleTouchScreenState::Accumulator::FIELD_ABS_Y;
device->singleTouchScreen.accumulator.absY = rawEvent->value;
break;
case ABS_PRESSURE:
device->singleTouchScreen.accumulator.fields |=
InputDevice::SingleTouchScreenState::Accumulator::FIELD_ABS_PRESSURE;
device->singleTouchScreen.accumulator.absPressure = rawEvent->value;
break;
case ABS_TOOL_WIDTH:
device->singleTouchScreen.accumulator.fields |=
InputDevice::SingleTouchScreenState::Accumulator::FIELD_ABS_TOOL_WIDTH;
device->singleTouchScreen.accumulator.absToolWidth = rawEvent->value;
break;
}
}
}
void InputReader::handleSwitch(const RawEvent* rawEvent) {
InputDevice* device = getNonIgnoredDevice(rawEvent->deviceId);
if (! device) return;
onSwitch(rawEvent->when, device, rawEvent->scanCode, rawEvent->value);
}
void InputReader::onKey(nsecs_t when, InputDevice* device,
bool down, int32_t keyCode, int32_t scanCode, uint32_t policyFlags) {
/* Refresh display properties so we can rotate key codes according to display orientation */
if (! refreshDisplayProperties()) {
return;
}
/* Update device state */
int32_t oldMetaState = device->keyboard.current.metaState;
int32_t newMetaState = updateMetaState(keyCode, down, oldMetaState);
if (oldMetaState != newMetaState) {
device->keyboard.current.metaState = newMetaState;
resetGlobalMetaState();
}
// FIXME if we send a down event about a rotated key press we should ensure that we send
// a corresponding up event about the rotated key press even if the orientation
// has changed in the meantime
keyCode = rotateKeyCode(keyCode, mDisplayOrientation);
if (down) {
device->keyboard.current.downTime = when;
}
/* Apply policy */
int32_t policyActions = mPolicy->interceptKey(when, device->id,
down, keyCode, scanCode, policyFlags);
if (! applyStandardInputDispatchPolicyActions(when, policyActions, & policyFlags)) {
return; // event dropped
}
/* Enqueue key event for dispatch */
int32_t keyEventAction;
if (down) {
device->keyboard.current.downTime = when;
keyEventAction = AKEY_EVENT_ACTION_DOWN;
} else {
keyEventAction = AKEY_EVENT_ACTION_UP;
}
int32_t keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM;
if (policyActions & InputReaderPolicyInterface::ACTION_WOKE_HERE) {
keyEventFlags = keyEventFlags | AKEY_EVENT_FLAG_WOKE_HERE;
}
mDispatcher->notifyKey(when, device->id, AINPUT_SOURCE_KEYBOARD, policyFlags,
keyEventAction, keyEventFlags, keyCode, scanCode,
device->keyboard.current.metaState,
device->keyboard.current.downTime);
}
void InputReader::onSwitch(nsecs_t when, InputDevice* device, int32_t switchCode,
int32_t switchValue) {
int32_t policyActions = mPolicy->interceptSwitch(when, switchCode, switchValue);
uint32_t policyFlags = 0;
applyStandardInputDispatchPolicyActions(when, policyActions, & policyFlags);
}
void InputReader::onMultiTouchScreenStateChanged(nsecs_t when,
InputDevice* device) {
static const uint32_t REQUIRED_FIELDS =
InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_POSITION_X
| InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_POSITION_Y
| InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_TOUCH_MAJOR
| InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_WIDTH_MAJOR;
/* Refresh display properties so we can map touch screen coords into display coords */
if (! refreshDisplayProperties()) {
return;
}
/* Update device state */
InputDevice::MultiTouchScreenState* in = & device->multiTouchScreen;
InputDevice::TouchData* out = & device->touchScreen.currentTouch;
uint32_t inCount = in->accumulator.pointerCount;
uint32_t outCount = 0;
bool havePointerIds = true;
out->clear();
for (uint32_t inIndex = 0; inIndex < inCount; inIndex++) {
uint32_t fields = in->accumulator.pointers[inIndex].fields;
if ((fields & REQUIRED_FIELDS) != REQUIRED_FIELDS) {
#if DEBUG_POINTERS
LOGD("Pointers: Missing required multitouch pointer fields: index=%d, fields=%d",
inIndex, fields);
continue;
#endif
}
if (in->accumulator.pointers[inIndex].absMTTouchMajor <= 0) {
// Pointer is not down. Drop it.
continue;
}
out->pointers[outCount].x = in->accumulator.pointers[inIndex].absMTPositionX;
out->pointers[outCount].y = in->accumulator.pointers[inIndex].absMTPositionY;
out->pointers[outCount].touchMajor = in->accumulator.pointers[inIndex].absMTTouchMajor;
out->pointers[outCount].touchMinor = (fields
& InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_TOUCH_MINOR) != 0
? in->accumulator.pointers[inIndex].absMTTouchMinor
: in->accumulator.pointers[inIndex].absMTTouchMajor;
out->pointers[outCount].toolMajor = in->accumulator.pointers[inIndex].absMTWidthMajor;
out->pointers[outCount].toolMinor = (fields
& InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_WIDTH_MINOR) != 0
? in->accumulator.pointers[inIndex].absMTWidthMinor
: in->accumulator.pointers[inIndex].absMTWidthMajor;
out->pointers[outCount].orientation = (fields
& InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_ORIENTATION) != 0
? in->accumulator.pointers[inIndex].absMTOrientation : 0;
// Derive an approximation of pressure and size.
// FIXME assignment of pressure may be incorrect, probably better to let
// pressure = touch / width. Later on we pass width to MotionEvent as a size, which
// isn't quite right either. Should be using touch for that.
out->pointers[outCount].pressure = in->accumulator.pointers[inIndex].absMTTouchMajor;
out->pointers[outCount].size = in->accumulator.pointers[inIndex].absMTWidthMajor;
if (havePointerIds) {
if (fields & InputDevice::MultiTouchScreenState::Accumulator::
FIELD_ABS_MT_TRACKING_ID) {
uint32_t id = uint32_t(in->accumulator.pointers[inIndex].absMTTrackingId);
if (id > MAX_POINTER_ID) {
#if DEBUG_POINTERS
LOGD("Pointers: Ignoring driver provided pointer id %d because "
"it is larger than max supported id %d for optimizations",
id, MAX_POINTER_ID);
#endif
havePointerIds = false;
}
else {
out->pointers[outCount].id = id;
out->idToIndex[id] = outCount;
out->idBits.markBit(id);
}
} else {
havePointerIds = false;
}
}
outCount += 1;
}
out->pointerCount = outCount;
onTouchScreenChanged(when, device, havePointerIds);
}
void InputReader::onSingleTouchScreenStateChanged(nsecs_t when,
InputDevice* device) {
/* Refresh display properties so we can map touch screen coords into display coords */
if (! refreshDisplayProperties()) {
return;
}
/* Update device state */
InputDevice::SingleTouchScreenState* in = & device->singleTouchScreen;
InputDevice::TouchData* out = & device->touchScreen.currentTouch;
uint32_t fields = in->accumulator.fields;
if (fields & InputDevice::SingleTouchScreenState::Accumulator::FIELD_BTN_TOUCH) {
in->current.down = in->accumulator.btnTouch;
}
if (fields & InputDevice::SingleTouchScreenState::Accumulator::FIELD_ABS_X) {
in->current.x = in->accumulator.absX;
}
if (fields & InputDevice::SingleTouchScreenState::Accumulator::FIELD_ABS_Y) {
in->current.y = in->accumulator.absY;
}
if (fields & InputDevice::SingleTouchScreenState::Accumulator::FIELD_ABS_PRESSURE) {
in->current.pressure = in->accumulator.absPressure;
}
if (fields & InputDevice::SingleTouchScreenState::Accumulator::FIELD_ABS_TOOL_WIDTH) {
in->current.size = in->accumulator.absToolWidth;
}
out->clear();
if (in->current.down) {
out->pointerCount = 1;
out->pointers[0].id = 0;
out->pointers[0].x = in->current.x;
out->pointers[0].y = in->current.y;
out->pointers[0].pressure = in->current.pressure;
out->pointers[0].size = in->current.size;
out->pointers[0].touchMajor = in->current.pressure;
out->pointers[0].touchMinor = in->current.pressure;
out->pointers[0].toolMajor = in->current.size;
out->pointers[0].toolMinor = in->current.size;
out->pointers[0].orientation = 0;
out->idToIndex[0] = 0;
out->idBits.markBit(0);
}
onTouchScreenChanged(when, device, true);
}
void InputReader::onTouchScreenChanged(nsecs_t when,
InputDevice* device, bool havePointerIds) {
/* Apply policy */
int32_t policyActions = mPolicy->interceptTouch(when);
uint32_t policyFlags = 0;
if (! applyStandardInputDispatchPolicyActions(when, policyActions, & policyFlags)) {
device->touchScreen.lastTouch.clear();
return; // event dropped
}
/* Preprocess pointer data */
if (device->touchScreen.parameters.useBadTouchFilter) {
if (device->touchScreen.applyBadTouchFilter()) {
havePointerIds = false;
}
}
if (device->touchScreen.parameters.useJumpyTouchFilter) {
if (device->touchScreen.applyJumpyTouchFilter()) {
havePointerIds = false;
}
}
if (! havePointerIds) {
device->touchScreen.calculatePointerIds();
}
InputDevice::TouchData temp;
InputDevice::TouchData* savedTouch;
if (device->touchScreen.parameters.useAveragingTouchFilter) {
temp.copyFrom(device->touchScreen.currentTouch);
savedTouch = & temp;
device->touchScreen.applyAveragingTouchFilter();
} else {
savedTouch = & device->touchScreen.currentTouch;
}
/* Process virtual keys or touches */
if (! consumeVirtualKeyTouches(when, device, policyFlags)) {
dispatchTouches(when, device, policyFlags);
}
// Copy current touch to last touch in preparation for the next cycle.
device->touchScreen.lastTouch.copyFrom(*savedTouch);
}
bool InputReader::consumeVirtualKeyTouches(nsecs_t when,
InputDevice* device, uint32_t policyFlags) {
switch (device->touchScreen.currentVirtualKey.status) {
case InputDevice::TouchScreenState::CurrentVirtualKeyState::STATUS_CANCELED:
if (device->touchScreen.currentTouch.pointerCount == 0) {
// Pointer went up after virtual key canceled.
device->touchScreen.currentVirtualKey.status =
InputDevice::TouchScreenState::CurrentVirtualKeyState::STATUS_UP;
}
return true; // consumed
case InputDevice::TouchScreenState::CurrentVirtualKeyState::STATUS_DOWN:
if (device->touchScreen.currentTouch.pointerCount == 0) {
// Pointer went up while virtual key was down.
device->touchScreen.currentVirtualKey.status =
InputDevice::TouchScreenState::CurrentVirtualKeyState::STATUS_UP;
#if DEBUG_VIRTUAL_KEYS
LOGD("VirtualKeys: Generating key up: keyCode=%d, scanCode=%d",
device->touchScreen.currentVirtualKey.keyCode,
device->touchScreen.currentVirtualKey.scanCode);
#endif
dispatchVirtualKey(when, device, policyFlags, AKEY_EVENT_ACTION_UP,
AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY);
return true; // consumed
}
if (device->touchScreen.currentTouch.pointerCount == 1) {
const InputDevice::VirtualKey* virtualKey = device->touchScreen.findVirtualKeyHit();
if (virtualKey
&& virtualKey->keyCode == device->touchScreen.currentVirtualKey.keyCode) {
// Pointer is still within the space of the virtual key.
return true; // consumed
}
}
// Pointer left virtual key area or another pointer also went down.
// Send key cancellation.
device->touchScreen.currentVirtualKey.status =
InputDevice::TouchScreenState::CurrentVirtualKeyState::STATUS_CANCELED;
#if DEBUG_VIRTUAL_KEYS
LOGD("VirtualKeys: Canceling key: keyCode=%d, scanCode=%d",
device->touchScreen.currentVirtualKey.keyCode,
device->touchScreen.currentVirtualKey.scanCode);
#endif
dispatchVirtualKey(when, device, policyFlags, AKEY_EVENT_ACTION_UP,
AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY
| AKEY_EVENT_FLAG_CANCELED);
return true; // consumed
default:
if (device->touchScreen.currentTouch.pointerCount == 1
&& device->touchScreen.lastTouch.pointerCount == 0) {
// Pointer just went down. Check for virtual key hit.
const InputDevice::VirtualKey* virtualKey = device->touchScreen.findVirtualKeyHit();
if (virtualKey) {
device->touchScreen.currentVirtualKey.status =
InputDevice::TouchScreenState::CurrentVirtualKeyState::STATUS_DOWN;
device->touchScreen.currentVirtualKey.downTime = when;
device->touchScreen.currentVirtualKey.keyCode = virtualKey->keyCode;
device->touchScreen.currentVirtualKey.scanCode = virtualKey->scanCode;
#if DEBUG_VIRTUAL_KEYS
LOGD("VirtualKeys: Generating key down: keyCode=%d, scanCode=%d",
device->touchScreen.currentVirtualKey.keyCode,
device->touchScreen.currentVirtualKey.scanCode);
#endif
dispatchVirtualKey(when, device, policyFlags, AKEY_EVENT_ACTION_DOWN,
AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY);
return true; // consumed
}
}
return false; // not consumed
}
}
void InputReader::dispatchVirtualKey(nsecs_t when,
InputDevice* device, uint32_t policyFlags,
int32_t keyEventAction, int32_t keyEventFlags) {
updateExportedVirtualKeyState();
int32_t keyCode = device->touchScreen.currentVirtualKey.keyCode;
int32_t scanCode = device->touchScreen.currentVirtualKey.scanCode;
nsecs_t downTime = device->touchScreen.currentVirtualKey.downTime;
int32_t metaState = globalMetaState();
if (keyEventAction == AKEY_EVENT_ACTION_DOWN) {
mPolicy->virtualKeyDownFeedback();
}
int32_t policyActions = mPolicy->interceptKey(when, device->id,
keyEventAction == AKEY_EVENT_ACTION_DOWN, keyCode, scanCode, policyFlags);
if (applyStandardInputDispatchPolicyActions(when, policyActions, & policyFlags)) {
mDispatcher->notifyKey(when, device->id, AINPUT_SOURCE_KEYBOARD, policyFlags,
keyEventAction, keyEventFlags, keyCode, scanCode, metaState, downTime);
}
}
void InputReader::dispatchTouches(nsecs_t when,
InputDevice* device, uint32_t policyFlags) {
uint32_t currentPointerCount = device->touchScreen.currentTouch.pointerCount;
uint32_t lastPointerCount = device->touchScreen.lastTouch.pointerCount;
if (currentPointerCount == 0 && lastPointerCount == 0) {
return; // nothing to do!
}
BitSet32 currentIdBits = device->touchScreen.currentTouch.idBits;
BitSet32 lastIdBits = device->touchScreen.lastTouch.idBits;
if (currentIdBits == lastIdBits) {
// No pointer id changes so this is a move event.
// The dispatcher takes care of batching moves so we don't have to deal with that here.
int32_t motionEventAction = AMOTION_EVENT_ACTION_MOVE;
dispatchTouch(when, device, policyFlags, & device->touchScreen.currentTouch,
currentIdBits, motionEventAction);
} else {
// There may be pointers going up and pointers going down at the same time when pointer
// ids are reported by the device driver.
BitSet32 upIdBits(lastIdBits.value & ~ currentIdBits.value);
BitSet32 downIdBits(currentIdBits.value & ~ lastIdBits.value);
BitSet32 activeIdBits(lastIdBits.value);
while (! upIdBits.isEmpty()) {
uint32_t upId = upIdBits.firstMarkedBit();
upIdBits.clearBit(upId);
BitSet32 oldActiveIdBits = activeIdBits;
activeIdBits.clearBit(upId);
int32_t motionEventAction;
if (activeIdBits.isEmpty()) {
motionEventAction = AMOTION_EVENT_ACTION_UP;
} else {
motionEventAction = AMOTION_EVENT_ACTION_POINTER_UP
| (upId << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
}
dispatchTouch(when, device, policyFlags, & device->touchScreen.lastTouch,
oldActiveIdBits, motionEventAction);
}
while (! downIdBits.isEmpty()) {
uint32_t downId = downIdBits.firstMarkedBit();
downIdBits.clearBit(downId);
BitSet32 oldActiveIdBits = activeIdBits;
activeIdBits.markBit(downId);
int32_t motionEventAction;
if (oldActiveIdBits.isEmpty()) {
motionEventAction = AMOTION_EVENT_ACTION_DOWN;
device->touchScreen.downTime = when;
} else {
motionEventAction = AMOTION_EVENT_ACTION_POINTER_DOWN
| (downId << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
}
dispatchTouch(when, device, policyFlags, & device->touchScreen.currentTouch,
activeIdBits, motionEventAction);
}
}
}
void InputReader::dispatchTouch(nsecs_t when, InputDevice* device, uint32_t policyFlags,
InputDevice::TouchData* touch, BitSet32 idBits,
int32_t motionEventAction) {
int32_t orientedWidth, orientedHeight;
switch (mDisplayOrientation) {
case InputReaderPolicyInterface::ROTATION_90:
case InputReaderPolicyInterface::ROTATION_270:
orientedWidth = mDisplayHeight;
orientedHeight = mDisplayWidth;
break;
default:
orientedWidth = mDisplayWidth;
orientedHeight = mDisplayHeight;
break;
}
uint32_t pointerCount = 0;
int32_t pointerIds[MAX_POINTERS];
PointerCoords pointerCoords[MAX_POINTERS];
const InputDevice::TouchScreenState::Precalculated& precalculated =
device->touchScreen.precalculated;
// Walk through the the active pointers and map touch screen coordinates (TouchData) into
// display coordinates (PointerCoords) and adjust for display orientation.
while (! idBits.isEmpty()) {
uint32_t id = idBits.firstMarkedBit();
idBits.clearBit(id);
uint32_t index = touch->idToIndex[id];
float x = float(touch->pointers[index].x
- precalculated.xOrigin) * precalculated.xScale;
float y = float(touch->pointers[index].y
- precalculated.yOrigin) * precalculated.yScale;
float pressure = float(touch->pointers[index].pressure
- precalculated.pressureOrigin) * precalculated.pressureScale;
float size = float(touch->pointers[index].size
- precalculated.sizeOrigin) * precalculated.sizeScale;
float orientation = float(touch->pointers[index].orientation)
* precalculated.orientationScale;
bool vertical = abs(orientation) <= M_PI / 8;
switch (mDisplayOrientation) {
case InputReaderPolicyInterface::ROTATION_90: {
float xTemp = x;
x = y;
y = mDisplayWidth - xTemp;
vertical = ! vertical;
break;
}
case InputReaderPolicyInterface::ROTATION_180: {
x = mDisplayWidth - x;
y = mDisplayHeight - y;
break;
}
case InputReaderPolicyInterface::ROTATION_270: {
float xTemp = x;
x = mDisplayHeight - y;
y = xTemp;
vertical = ! vertical;
break;
}
}
float touchMajor, touchMinor, toolMajor, toolMinor;
if (vertical) {
touchMajor = float(touch->pointers[index].touchMajor) * precalculated.yScale;
touchMinor = float(touch->pointers[index].touchMinor) * precalculated.xScale;
toolMajor = float(touch->pointers[index].toolMajor) * precalculated.yScale;
toolMinor = float(touch->pointers[index].toolMinor) * precalculated.xScale;
} else {
touchMajor = float(touch->pointers[index].touchMajor) * precalculated.xScale;
touchMinor = float(touch->pointers[index].touchMinor) * precalculated.yScale;
toolMajor = float(touch->pointers[index].toolMajor) * precalculated.xScale;
toolMinor = float(touch->pointers[index].toolMinor) * precalculated.yScale;
}
pointerIds[pointerCount] = int32_t(id);
pointerCoords[pointerCount].x = x;
pointerCoords[pointerCount].y = y;
pointerCoords[pointerCount].pressure = pressure;
pointerCoords[pointerCount].size = size;
pointerCoords[pointerCount].touchMajor = touchMajor;
pointerCoords[pointerCount].touchMinor = touchMinor;
pointerCoords[pointerCount].toolMajor = toolMajor;
pointerCoords[pointerCount].toolMinor = toolMinor;
pointerCoords[pointerCount].orientation = orientation;
pointerCount += 1;
}
// Check edge flags by looking only at the first pointer since the flags are
// global to the event.
// XXX Maybe we should revise the edge flags API to work on a per-pointer basis.
int32_t motionEventEdgeFlags = 0;
if (motionEventAction == AMOTION_EVENT_ACTION_DOWN) {
if (pointerCoords[0].x <= 0) {
motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_LEFT;
} else if (pointerCoords[0].x >= orientedWidth) {
motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_RIGHT;
}
if (pointerCoords[0].y <= 0) {
motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_TOP;
} else if (pointerCoords[0].y >= orientedHeight) {
motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_BOTTOM;
}
}
nsecs_t downTime = device->touchScreen.downTime;
mDispatcher->notifyMotion(when, device->id, AINPUT_SOURCE_TOUCHSCREEN, policyFlags,
motionEventAction, globalMetaState(), motionEventEdgeFlags,
pointerCount, pointerIds, pointerCoords,
0, 0, downTime);
}
void InputReader::onTrackballStateChanged(nsecs_t when,
InputDevice* device) {
static const uint32_t DELTA_FIELDS =
InputDevice::TrackballState::Accumulator::FIELD_REL_X
| InputDevice::TrackballState::Accumulator::FIELD_REL_Y;
/* Refresh display properties so we can trackball moves according to display orientation */
if (! refreshDisplayProperties()) {
return;
}
/* Update device state */
uint32_t fields = device->trackball.accumulator.fields;
bool downChanged = fields & InputDevice::TrackballState::Accumulator::FIELD_BTN_MOUSE;
bool deltaChanged = fields & DELTA_FIELDS;
bool down;
if (downChanged) {
if (device->trackball.accumulator.btnMouse) {
device->trackball.current.down = true;
device->trackball.current.downTime = when;
down = true;
} else {
device->trackball.current.down = false;
down = false;
}
} else {
down = device->trackball.current.down;
}
/* Apply policy */
int32_t policyActions = mPolicy->interceptTrackball(when, downChanged, down, deltaChanged);
uint32_t policyFlags = 0;
if (! applyStandardInputDispatchPolicyActions(when, policyActions, & policyFlags)) {
return; // event dropped
}
/* Enqueue motion event for dispatch */
int32_t motionEventAction;
if (downChanged) {
motionEventAction = down ? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP;
} else {
motionEventAction = AMOTION_EVENT_ACTION_MOVE;
}
int32_t pointerId = 0;
PointerCoords pointerCoords;
pointerCoords.x = fields & InputDevice::TrackballState::Accumulator::FIELD_REL_X
? device->trackball.accumulator.relX * device->trackball.precalculated.xScale : 0;
pointerCoords.y = fields & InputDevice::TrackballState::Accumulator::FIELD_REL_Y
? device->trackball.accumulator.relY * device->trackball.precalculated.yScale : 0;
pointerCoords.pressure = 1.0f; // XXX Consider making this 1.0f if down, 0 otherwise.
pointerCoords.size = 0;
pointerCoords.touchMajor = 0;
pointerCoords.touchMinor = 0;
pointerCoords.toolMajor = 0;
pointerCoords.toolMinor = 0;
pointerCoords.orientation = 0;
float temp;
switch (mDisplayOrientation) {
case InputReaderPolicyInterface::ROTATION_90:
temp = pointerCoords.x;
pointerCoords.x = pointerCoords.y;
pointerCoords.y = - temp;
break;
case InputReaderPolicyInterface::ROTATION_180:
pointerCoords.x = - pointerCoords.x;
pointerCoords.y = - pointerCoords.y;
break;
case InputReaderPolicyInterface::ROTATION_270:
temp = pointerCoords.x;
pointerCoords.x = - pointerCoords.y;
pointerCoords.y = temp;
break;
}
mDispatcher->notifyMotion(when, device->id, AINPUT_SOURCE_TRACKBALL, policyFlags,
motionEventAction, globalMetaState(), AMOTION_EVENT_EDGE_FLAG_NONE,
1, & pointerId, & pointerCoords,
device->trackball.precalculated.xPrecision,
device->trackball.precalculated.yPrecision,
device->trackball.current.downTime);
}
void InputReader::onConfigurationChanged(nsecs_t when) {
// Reset global meta state because it depends on the list of all configured devices.
resetGlobalMetaState();
// Reset virtual keys, just in case.
updateExportedVirtualKeyState();
// Update input configuration.
updateExportedInputConfiguration();
// Enqueue configuration changed.
mDispatcher->notifyConfigurationChanged(when);
}
bool InputReader::applyStandardInputDispatchPolicyActions(nsecs_t when,
int32_t policyActions, uint32_t* policyFlags) {
if (policyActions & InputReaderPolicyInterface::ACTION_APP_SWITCH_COMING) {
mDispatcher->notifyAppSwitchComing(when);
}
if (policyActions & InputReaderPolicyInterface::ACTION_WOKE_HERE) {
*policyFlags |= POLICY_FLAG_WOKE_HERE;
}
if (policyActions & InputReaderPolicyInterface::ACTION_BRIGHT_HERE) {
*policyFlags |= POLICY_FLAG_BRIGHT_HERE;
}
return policyActions & InputReaderPolicyInterface::ACTION_DISPATCH;
}
void InputReader::resetDisplayProperties() {
mDisplayWidth = mDisplayHeight = -1;
mDisplayOrientation = -1;
}
bool InputReader::refreshDisplayProperties() {
int32_t newWidth, newHeight, newOrientation;
if (mPolicy->getDisplayInfo(0, & newWidth, & newHeight, & newOrientation)) {
if (newWidth != mDisplayWidth || newHeight != mDisplayHeight) {
LOGD("Display size changed from %dx%d to %dx%d, updating device configuration",
mDisplayWidth, mDisplayHeight, newWidth, newHeight);
mDisplayWidth = newWidth;
mDisplayHeight = newHeight;
for (size_t i = 0; i < mDevices.size(); i++) {
configureDeviceForCurrentDisplaySize(mDevices.valueAt(i));
}
}
if (newOrientation != mDisplayOrientation) {
LOGD("Display orientation changed to %d", mDisplayOrientation);
mDisplayOrientation = newOrientation;
}
return true;
} else {
resetDisplayProperties();
return false;
}
}
InputDevice* InputReader::getDevice(int32_t deviceId) {
ssize_t index = mDevices.indexOfKey(deviceId);
return index >= 0 ? mDevices.valueAt((size_t) index) : NULL;
}
InputDevice* InputReader::getNonIgnoredDevice(int32_t deviceId) {
InputDevice* device = getDevice(deviceId);
return device && ! device->ignored ? device : NULL;
}
void InputReader::addDevice(nsecs_t when, int32_t deviceId) {
uint32_t classes = mEventHub->getDeviceClasses(deviceId);
String8 name = mEventHub->getDeviceName(deviceId);
InputDevice* device = new InputDevice(deviceId, classes, name);
if (classes != 0) {
LOGI("Device added: id=0x%x, name=%s, classes=%02x", device->id,
device->name.string(), device->classes);
configureDevice(device);
} else {
LOGI("Device added: id=0x%x, name=%s (ignored non-input device)", device->id,
device->name.string());
device->ignored = true;
}
device->reset();
mDevices.add(deviceId, device);
if (! device->ignored) {
onConfigurationChanged(when);
}
}
void InputReader::removeDevice(nsecs_t when, InputDevice* device) {
mDevices.removeItem(device->id);
if (! device->ignored) {
LOGI("Device removed: id=0x%x, name=%s, classes=%02x", device->id,
device->name.string(), device->classes);
onConfigurationChanged(when);
} else {
LOGI("Device removed: id=0x%x, name=%s (ignored non-input device)", device->id,
device->name.string());
}
delete device;
}
void InputReader::configureDevice(InputDevice* device) {
if (device->isMultiTouchScreen()) {
configureAbsoluteAxisInfo(device, ABS_MT_POSITION_X, "X",
& device->touchScreen.parameters.xAxis);
configureAbsoluteAxisInfo(device, ABS_MT_POSITION_Y, "Y",
& device->touchScreen.parameters.yAxis);
configureAbsoluteAxisInfo(device, ABS_MT_TOUCH_MAJOR, "Pressure",
& device->touchScreen.parameters.pressureAxis);
configureAbsoluteAxisInfo(device, ABS_MT_WIDTH_MAJOR, "Size",
& device->touchScreen.parameters.sizeAxis);
configureAbsoluteAxisInfo(device, ABS_MT_ORIENTATION, "Orientation",
& device->touchScreen.parameters.orientationAxis);
} else if (device->isSingleTouchScreen()) {
configureAbsoluteAxisInfo(device, ABS_X, "X",
& device->touchScreen.parameters.xAxis);
configureAbsoluteAxisInfo(device, ABS_Y, "Y",
& device->touchScreen.parameters.yAxis);
configureAbsoluteAxisInfo(device, ABS_PRESSURE, "Pressure",
& device->touchScreen.parameters.pressureAxis);
configureAbsoluteAxisInfo(device, ABS_TOOL_WIDTH, "Size",
& device->touchScreen.parameters.sizeAxis);
device->touchScreen.parameters.orientationAxis.valid = false;
}
if (device->isTouchScreen()) {
device->touchScreen.parameters.useBadTouchFilter =
mPolicy->filterTouchEvents();
device->touchScreen.parameters.useAveragingTouchFilter =
mPolicy->filterTouchEvents();
device->touchScreen.parameters.useJumpyTouchFilter =
mPolicy->filterJumpyTouchEvents();
if (device->touchScreen.parameters.pressureAxis.valid) {
device->touchScreen.precalculated.pressureOrigin =
device->touchScreen.parameters.pressureAxis.minValue;
device->touchScreen.precalculated.pressureScale =
1.0f / device->touchScreen.parameters.pressureAxis.range;
} else {
device->touchScreen.precalculated.pressureOrigin = 0;
device->touchScreen.precalculated.pressureScale = 1.0f;
}
if (device->touchScreen.parameters.sizeAxis.valid) {
device->touchScreen.precalculated.sizeOrigin =
device->touchScreen.parameters.sizeAxis.minValue;
device->touchScreen.precalculated.sizeScale =
1.0f / device->touchScreen.parameters.sizeAxis.range;
} else {
device->touchScreen.precalculated.sizeOrigin = 0;
device->touchScreen.precalculated.sizeScale = 1.0f;
}
if (device->touchScreen.parameters.orientationAxis.valid
&& device->touchScreen.parameters.orientationAxis.maxValue > 0) {
device->touchScreen.precalculated.orientationScale =
M_PI_4 / device->touchScreen.parameters.orientationAxis.maxValue;
} else {
device->touchScreen.precalculated.orientationScale = 0.0f;
}
}
if (device->isTrackball()) {
device->trackball.precalculated.xPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
device->trackball.precalculated.yPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
device->trackball.precalculated.xScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;
device->trackball.precalculated.yScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;
}
configureDeviceForCurrentDisplaySize(device);
}
void InputReader::configureDeviceForCurrentDisplaySize(InputDevice* device) {
if (device->isTouchScreen()) {
if (device->touchScreen.parameters.xAxis.valid
&& device->touchScreen.parameters.yAxis.valid) {
device->touchScreen.precalculated.xOrigin =
device->touchScreen.parameters.xAxis.minValue;
device->touchScreen.precalculated.yOrigin =
device->touchScreen.parameters.yAxis.minValue;
if (mDisplayWidth < 0) {
LOGD("Skipping part of touch screen configuration since display size is unknown.");
device->touchScreen.precalculated.xScale = 1.0f;
device->touchScreen.precalculated.yScale = 1.0f;
} else {
LOGI("Device configured: id=0x%x, name=%s (display size was changed)", device->id,
device->name.string());
device->touchScreen.precalculated.xScale =
float(mDisplayWidth) / device->touchScreen.parameters.xAxis.range;
device->touchScreen.precalculated.yScale =
float(mDisplayHeight) / device->touchScreen.parameters.yAxis.range;
configureVirtualKeys(device);
}
} else {
device->touchScreen.precalculated.xOrigin = 0;
device->touchScreen.precalculated.xScale = 1.0f;
device->touchScreen.precalculated.yOrigin = 0;
device->touchScreen.precalculated.yScale = 1.0f;
}
}
}
void InputReader::configureVirtualKeys(InputDevice* device) {
assert(device->touchScreen.parameters.xAxis.valid
&& device->touchScreen.parameters.yAxis.valid);
device->touchScreen.virtualKeys.clear();
Vector<InputReaderPolicyInterface::VirtualKeyDefinition> virtualKeyDefinitions;
mPolicy->getVirtualKeyDefinitions(device->name, virtualKeyDefinitions);
if (virtualKeyDefinitions.size() == 0) {
return;
}
device->touchScreen.virtualKeys.setCapacity(virtualKeyDefinitions.size());
int32_t touchScreenLeft = device->touchScreen.parameters.xAxis.minValue;
int32_t touchScreenTop = device->touchScreen.parameters.yAxis.minValue;
int32_t touchScreenWidth = device->touchScreen.parameters.xAxis.range;
int32_t touchScreenHeight = device->touchScreen.parameters.yAxis.range;
for (size_t i = 0; i < virtualKeyDefinitions.size(); i++) {
const InputReaderPolicyInterface::VirtualKeyDefinition& virtualKeyDefinition =
virtualKeyDefinitions[i];
device->touchScreen.virtualKeys.add();
InputDevice::VirtualKey& virtualKey =
device->touchScreen.virtualKeys.editTop();
virtualKey.scanCode = virtualKeyDefinition.scanCode;
int32_t keyCode;
uint32_t flags;
if (mEventHub->scancodeToKeycode(device->id, virtualKey.scanCode,
& keyCode, & flags)) {
LOGW(" VirtualKey %d: could not obtain key code, ignoring", virtualKey.scanCode);
device->touchScreen.virtualKeys.pop(); // drop the key
continue;
}
virtualKey.keyCode = keyCode;
virtualKey.flags = flags;
// convert the key definition's display coordinates into touch coordinates for a hit box
int32_t halfWidth = virtualKeyDefinition.width / 2;
int32_t halfHeight = virtualKeyDefinition.height / 2;
virtualKey.hitLeft = (virtualKeyDefinition.centerX - halfWidth)
* touchScreenWidth / mDisplayWidth + touchScreenLeft;
virtualKey.hitRight= (virtualKeyDefinition.centerX + halfWidth)
* touchScreenWidth / mDisplayWidth + touchScreenLeft;
virtualKey.hitTop = (virtualKeyDefinition.centerY - halfHeight)
* touchScreenHeight / mDisplayHeight + touchScreenTop;
virtualKey.hitBottom = (virtualKeyDefinition.centerY + halfHeight)
* touchScreenHeight / mDisplayHeight + touchScreenTop;
LOGI(" VirtualKey %d: keyCode=%d hitLeft=%d hitRight=%d hitTop=%d hitBottom=%d",
virtualKey.scanCode, virtualKey.keyCode,
virtualKey.hitLeft, virtualKey.hitRight, virtualKey.hitTop, virtualKey.hitBottom);
}
}
void InputReader::configureAbsoluteAxisInfo(InputDevice* device,
int axis, const char* name, InputDevice::AbsoluteAxisInfo* out) {
if (! mEventHub->getAbsoluteInfo(device->id, axis,
& out->minValue, & out->maxValue, & out->flat, &out->fuzz)) {
out->range = out->maxValue - out->minValue;
if (out->range != 0) {
LOGI(" %s: min=%d max=%d flat=%d fuzz=%d",
name, out->minValue, out->maxValue, out->flat, out->fuzz);
out->valid = true;
return;
}
}
out->valid = false;
out->minValue = 0;
out->maxValue = 0;
out->flat = 0;
out->fuzz = 0;
out->range = 0;
LOGI(" %s: unknown axis values, marking as invalid", name);
}
void InputReader::configureExcludedDevices() {
Vector<String8> excludedDeviceNames;
mPolicy->getExcludedDeviceNames(excludedDeviceNames);
for (size_t i = 0; i < excludedDeviceNames.size(); i++) {
mEventHub->addExcludedDevice(excludedDeviceNames[i]);
}
}
void InputReader::resetGlobalMetaState() {
mGlobalMetaState = -1;
}
int32_t InputReader::globalMetaState() {
if (mGlobalMetaState == -1) {
mGlobalMetaState = 0;
for (size_t i = 0; i < mDevices.size(); i++) {
InputDevice* device = mDevices.valueAt(i);
if (device->isKeyboard()) {
mGlobalMetaState |= device->keyboard.current.metaState;
}
}
}
return mGlobalMetaState;
}
void InputReader::updateExportedVirtualKeyState() {
int32_t keyCode = -1, scanCode = -1;
for (size_t i = 0; i < mDevices.size(); i++) {
InputDevice* device = mDevices.valueAt(i);
if (device->isTouchScreen()) {
if (device->touchScreen.currentVirtualKey.status
== InputDevice::TouchScreenState::CurrentVirtualKeyState::STATUS_DOWN) {
keyCode = device->touchScreen.currentVirtualKey.keyCode;
scanCode = device->touchScreen.currentVirtualKey.scanCode;
}
}
}
{ // acquire exported state lock
AutoMutex _l(mExportedStateLock);
mExportedVirtualKeyCode = keyCode;
mExportedVirtualScanCode = scanCode;
} // release exported state lock
}
bool InputReader::getCurrentVirtualKey(int32_t* outKeyCode, int32_t* outScanCode) const {
{ // acquire exported state lock
AutoMutex _l(mExportedStateLock);
*outKeyCode = mExportedVirtualKeyCode;
*outScanCode = mExportedVirtualScanCode;
return mExportedVirtualKeyCode != -1;
} // release exported state lock
}
void InputReader::updateExportedInputConfiguration() {
int32_t touchScreenConfig = InputConfiguration::TOUCHSCREEN_NOTOUCH;
int32_t keyboardConfig = InputConfiguration::KEYBOARD_NOKEYS;
int32_t navigationConfig = InputConfiguration::NAVIGATION_NONAV;
for (size_t i = 0; i < mDevices.size(); i++) {
InputDevice* device = mDevices.valueAt(i);
int32_t deviceClasses = device->classes;
if (deviceClasses & INPUT_DEVICE_CLASS_TOUCHSCREEN) {
touchScreenConfig = InputConfiguration::TOUCHSCREEN_FINGER;
}
if (deviceClasses & INPUT_DEVICE_CLASS_ALPHAKEY) {
keyboardConfig = InputConfiguration::KEYBOARD_QWERTY;
}
if (deviceClasses & INPUT_DEVICE_CLASS_TRACKBALL) {
navigationConfig = InputConfiguration::NAVIGATION_TRACKBALL;
} else if (deviceClasses & INPUT_DEVICE_CLASS_DPAD) {
navigationConfig = InputConfiguration::NAVIGATION_DPAD;
}
}
{ // acquire exported state lock
AutoMutex _l(mExportedStateLock);
mExportedInputConfiguration.touchScreen = touchScreenConfig;
mExportedInputConfiguration.keyboard = keyboardConfig;
mExportedInputConfiguration.navigation = navigationConfig;
} // release exported state lock
}
void InputReader::getCurrentInputConfiguration(InputConfiguration* outConfiguration) const {
{ // acquire exported state lock
AutoMutex _l(mExportedStateLock);
*outConfiguration = mExportedInputConfiguration;
} // release exported state lock
}
int32_t InputReader::getCurrentScanCodeState(int32_t deviceId, int32_t deviceClasses,
int32_t scanCode) const {
{ // acquire exported state lock
AutoMutex _l(mExportedStateLock);
if (mExportedVirtualScanCode == scanCode) {
return AKEY_STATE_VIRTUAL;
}
} // release exported state lock
return mEventHub->getScanCodeState(deviceId, deviceClasses, scanCode);
}
int32_t InputReader::getCurrentKeyCodeState(int32_t deviceId, int32_t deviceClasses,
int32_t keyCode) const {
{ // acquire exported state lock
AutoMutex _l(mExportedStateLock);
if (mExportedVirtualKeyCode == keyCode) {
return AKEY_STATE_VIRTUAL;
}
} // release exported state lock
return mEventHub->getKeyCodeState(deviceId, deviceClasses, keyCode);
}
int32_t InputReader::getCurrentSwitchState(int32_t deviceId, int32_t deviceClasses,
int32_t sw) const {
return mEventHub->getSwitchState(deviceId, deviceClasses, sw);
}
bool InputReader::hasKeys(size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) const {
return mEventHub->hasKeys(numCodes, keyCodes, outFlags);
}
// --- InputReaderThread ---
InputReaderThread::InputReaderThread(const sp<InputReaderInterface>& reader) :
Thread(/*canCallJava*/ true), mReader(reader) {
}
InputReaderThread::~InputReaderThread() {
}
bool InputReaderThread::threadLoop() {
mReader->loopOnce();
return true;
}
} // namespace android