blob: dd23dbf2051cbcf9a44a9592920b1f7bcc41b35f [file] [log] [blame]
page.title=OpenGL ES 2.0
parent.title=Tutorials
parent.link=../../browser.html?tag=tutorial
@jd:body
<div id="qv-wrapper">
<div id="qv">
<h2>In this document</h2>
<ol>
<li><a href="#creating">Create an Activity with GLSurfaceView</a></li>
<li>
<a href="#drawing">Draw a Shape on GLSurfaceView</a>
<ol>
<li><a href="#define-triangle">Define a Triangle</a></li>
<li><a href="#draw-triangle">Draw the Triangle</a></li>
</ol>
</li>
<li><a href="#projection-and-views">Apply Projection and Camera Views</a></li>
<li><a href="#motion">Add Motion</a></li>
<li><a href="#touch">Respond to Touch Events</a></li>
</ol>
<h2 id="code-samples-list">Related Samples</h2>
<ol>
<li><a href="{@docRoot}resources/samples/ApiDemos/src/com/example/android/apis/graphics/
index.html">API Demos - graphics</a></li>
<li><a href="{@docRoot}resources/samples/ApiDemos/src/com/example/android/apis/graphics/
GLES20Activity.html">OpenGL ES 2.0 Sample</a></li>
<li><a href="{@docRoot}resources/samples/ApiDemos/src/com/example/android/apis/graphics/
TouchRotateActivity.html">TouchRotateActivity</a></li>
</ol>
<h2>See also</h2>
<ol>
<li><a href="{@docRoot}guide/topics/graphics/opengl.html">3D with OpenGL</a></li>
<li><a href="{@docRoot}resources/tutorials/opengl/opengl-es10.html">OpenGL
ES 1.0</a></li>
</ol>
</div>
</div>
<p>This tutorial shows you how to create a simple Android application that uses the OpenGL ES 2.0
API to perform some basic graphics operations. You'll learn how to:</p>
<ul>
<li>Create an activity using {@link android.opengl.GLSurfaceView} and {@link
android.opengl.GLSurfaceView.Renderer}</li>
<li>Create and draw a graphic object</li>
<li>Define a projection to correct for screen geometry</li>
<li>Define a camera view</li>
<li>Rotate a graphic object</li>
<li>Make graphics touch interactive</li>
</ul>
<p>The Android framework supports both the OpenGL ES 1.0/1.1 and OpenGL ES 2.0 APIs. You should
carefully consider which version of the OpenGL ES API (1.0/1.1 or 2.0) is most appropriate for your
needs. For more information, see
<a href="{@docRoot}guide/topics/graphics/opengl.html#choosing-version">Choosing an OpenGL API
Version</a>. If you would prefer to use OpenGL ES 1.0, see the <a
href="{@docRoot}resources/tutorials/opengl/opengl-es10.html">OpenGL ES 1.0 tutorial</a>.</p>
<p>Before you start, you should understand how to create a basic Android application. If you do not
know how to create an app, follow the <a href="{@docRoot}resources/tutorials/hello-world.html">Hello
World Tutorial</a> to familiarize yourself with the process.</p>
<p class="caution"><strong>Caution:</strong> OpenGL ES 2.0 <em>is currently not supported</em> by
the Android Emulator. You must have a physical test device running Android 2.2 (API Level 8) or
higher in order to run and test the example code in this tutorial.</p>
<h2 id="creating">Create an Activity with GLSurfaceView</h2>
<p>To get started using OpenGL, you must implement both a {@link android.opengl.GLSurfaceView} and a
{@link android.opengl.GLSurfaceView.Renderer}. The {@link android.opengl.GLSurfaceView} is the main
view type for applications that use OpenGL and the {@link android.opengl.GLSurfaceView.Renderer}
controls what is drawn within that view. (For more information about these classes, see the <a
href="{@docRoot}guide/topics/graphics/opengl.html">3D with OpenGL</a> document.)</p>
<p>To create an activity using {@code GLSurfaceView}:</p>
<ol>
<li>Start a new Android project that targets Android 2.2 (API Level 8) or higher.
</li>
<li>Name the project <strong>HelloOpenGLES20</strong> and make sure it includes an activity called
{@code HelloOpenGLES20}.
</li>
<li>Modify the {@code HelloOpenGLES20} class as follows:
<pre>
package com.example.android.apis.graphics;
import android.app.Activity;
import android.content.Context;
import android.opengl.GLSurfaceView;
import android.os.Bundle;
public class HelloOpenGLES20 extends Activity {
private GLSurfaceView mGLView;
&#64;Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
// Create a GLSurfaceView instance and set it
// as the ContentView for this Activity
mGLView = new HelloOpenGLES20SurfaceView(this);
setContentView(mGLView);
}
&#64;Override
protected void onPause() {
super.onPause();
// The following call pauses the rendering thread.
// If your OpenGL application is memory intensive,
// you should consider de-allocating objects that
// consume significant memory here.
mGLView.onPause();
}
&#64;Override
protected void onResume() {
super.onResume();
// The following call resumes a paused rendering thread.
// If you de-allocated graphic objects for onPause()
// this is a good place to re-allocate them.
mGLView.onResume();
}
}
class HelloOpenGLES20SurfaceView extends GLSurfaceView {
public HelloOpenGLES20SurfaceView(Context context){
super(context);
// Create an OpenGL ES 2.0 context.
setEGLContextClientVersion(2);
// Set the Renderer for drawing on the GLSurfaceView
setRenderer(new HelloOpenGLES20Renderer());
}
}
</pre>
<p class="note"><strong>Note:</strong> You will get a compile error for the {@code
HelloOpenGLES20Renderer} class reference. That's expected; you will fix this error in the next step.
</p>
<p>As shown above, this activity uses a single {@link android.opengl.GLSurfaceView} for its
view. Notice that this activity implements crucial lifecycle callbacks for pausing and resuming its
work.</p>
<p>The {@code HelloOpenGLES20SurfaceView} class in this example code above is just a thin wrapper
for an instance of {@link android.opengl.GLSurfaceView} and is not strictly necessary for this
example. However, if you want your application to monitor and respond to touch screen
events&#8212;and we are guessing you do&#8212;you must extend {@link android.opengl.GLSurfaceView}
to add touch event listeners, which you will learn how to do in the <a href="#touch">Reponding to
Touch Events</a> section.</p>
<p>In order to draw graphics in the {@link android.opengl.GLSurfaceView}, you must define an
implementation of {@link android.opengl.GLSurfaceView.Renderer}. In the next step, you create
a renderer class to complete this OpenGL application.</p>
</li>
<li>Create a new file for the following class {@code HelloOpenGLES20Renderer}, which implements
the {@link android.opengl.GLSurfaceView.Renderer} interface:
<pre>
package com.example.android.apis.graphics;
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
import android.opengl.GLES20;
import android.opengl.GLSurfaceView;
public class HelloOpenGLES20Renderer implements GLSurfaceView.Renderer {
public void onSurfaceCreated(GL10 unused, EGLConfig config) {
// Set the background frame color
GLES20.glClearColor(0.5f, 0.5f, 0.5f, 1.0f);
}
public void onDrawFrame(GL10 unused) {
// Redraw background color
GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT | GLES20.GL_DEPTH_BUFFER_BIT);
}
public void onSurfaceChanged(GL10 unused, int width, int height) {
GLES20.glViewport(0, 0, width, height);
}
}
</pre>
<p>This minimal implementation of {@link android.opengl.GLSurfaceView.Renderer} provides the
code structure needed to use OpenGL drawing methods:
<ul>
<li>{@link
android.opengl.GLSurfaceView.Renderer#onSurfaceCreated(javax.microedition.khronos.opengles.GL10,
javax.microedition.khronos.egl.EGLConfig) onSurfaceCreated()} is called once to set up the
{@link android.opengl.GLSurfaceView}
environment.</li>
<li>{@link
android.opengl.GLSurfaceView.Renderer#onDrawFrame(javax.microedition.khronos.opengles.GL10)
onDrawFrame()} is called for each redraw of the {@link
android.opengl.GLSurfaceView}.</li>
<li>{@link
android.opengl.GLSurfaceView.Renderer#onSurfaceChanged(javax.microedition.khronos.opengles.GL10,
int, int) onSurfaceChanged()} is called if the geometry of the {@link
android.opengl.GLSurfaceView} changes, for example when the device's screen orientation
changes.</li>
</ul>
</p>
<p>For more information about these methods, see the <a
href="{@docRoot}guide/topics/graphics/opengl.html">3D with OpenGL</a> document.
</p>
</li>
</ol>
<p>The code example above creates a simple Android application that displays a grey screen using
OpenGL ES 2.0 calls. While this application does not do anything very interesting, by creating these
classes, you have layed the foundation needed to start drawing graphic elements with OpenGL ES
2.0.</p>
<p>If you are familiar with the OpenGL ES APIs, these classes should give you enough information
to use the OpenGL ES 2.0 API and create graphics. However, if you need a bit more help getting
started with OpenGL, head on to the next sections for a few more hints.</p>
<p class="note"><strong>Note:</strong> If your application requires OpenGL 2.0, make sure you
declare this in your manifest:</p>
<pre>
&lt;!-- Tell the system this app requires OpenGL ES 2.0. --&gt;
&lt;uses-feature android:glEsVersion="0x00020000" android:required="true" /&gt;
</pre>
<p>For more information, see <a
href="{@docRoot}guide/topics/graphics/opengl.html#manifest">OpenGL manifest declarations</a> in the
<em>3D with OpenGL</em> document.</p>
<h2 id="drawing">Draw a Shape on GLSurfaceView</h2>
<p>Once you have implemented a {@link android.opengl.GLSurfaceView.Renderer}, the next step is to
draw something with it. This section shows you how to define and draw a triangle.</p>
<h3 id="define-triangle">Define a Triangle</h3>
<p>OpenGL allows you to define objects using coordinates in three-dimensional space. So, before you
can draw a triangle, you must define its coordinates. In OpenGL, the typical way to do this is to
define a vertex array for the coordinates.</p>
<p>By default, OpenGL ES assumes a coordinate system where [0,0,0] (X,Y,Z) specifies the center of
the {@link android.opengl.GLSurfaceView} frame, [1,1,0] is the top-right corner of the frame and
[-1,-1,0] is bottom-left corner of the frame.</p>
<p>To define a vertex array for a triangle:</p>
<ol>
<li>In your {@code HelloOpenGLES20Renderer} class, add new member variable to contain the
vertices of a triangle shape:
<pre>
private FloatBuffer triangleVB;
</pre>
</li>
<li>Create a method, {@code initShapes()} which populates this member variable:
<pre>
private void initShapes(){
float triangleCoords[] = {
// X, Y, Z
-0.5f, -0.25f, 0,
0.5f, -0.25f, 0,
0.0f, 0.559016994f, 0
};
// initialize vertex Buffer for triangle
ByteBuffer vbb = ByteBuffer.allocateDirect(
// (# of coordinate values * 4 bytes per float)
triangleCoords.length * 4);
vbb.order(ByteOrder.nativeOrder());// use the device hardware's native byte order
triangleVB = vbb.asFloatBuffer(); // create a floating point buffer from the ByteBuffer
triangleVB.put(triangleCoords); // add the coordinates to the FloatBuffer
triangleVB.position(0); // set the buffer to read the first coordinate
}
</pre>
<p>This method defines a two-dimensional triangle shape with three equal sides.</p>
</li>
<li>Modify your {@code onSurfaceCreated()} method to initialize your triangle:
<pre>
public void onSurfaceCreated(GL10 unused, EGLConfig config) {
// Set the background frame color
GLES20.glClearColor(0.5f, 0.5f, 0.5f, 1.0f);
// initialize the triangle vertex array
initShapes();
}
</pre>
<p class="caution"><strong>Caution:</strong> Shapes and other static objects should be initialized
once in your {@code onSurfaceCreated()} method for best performance. Avoid initializing the
new objects in {@code onDrawFrame()}, as this causes the system to re-create the objects
for every frame redraw and slows down your application.
</p>
</li>
</ol>
<p>You have now defined a triangle shape, but if you run the application, nothing appears. What?!
You also have to tell OpenGL to draw the triangle, which you'll do in the next section.
</p>
<h3 id="draw-triangle">Draw the Triangle</h3>
<p>The OpenGL ES 2.0 requires a bit more code than OpenGL ES 1.0/1.1 in order to draw objects. In
this section, you'll create vertex and fragment shaders, a shader loader, apply the shaders, enable
the use of vertex arrays for your triangle and, finally, draw it on screen.</p>
<p>To draw the triangle:</p>
<ol>
<li>In your {@code HelloOpenGLES20Renderer} class, define a vertex shader and a fragment
shader. Shader code is defined as a string which is compiled and run by the OpenGL ES 2.0 rendering
engine.
<pre>
private final String vertexShaderCode =
"attribute vec4 vPosition; \n" +
"void main(){ \n" +
" gl_Position = vPosition; \n" +
"} \n";
private final String fragmentShaderCode =
"precision mediump float; \n" +
"void main(){ \n" +
" gl_FragColor = vec4 (0.63671875, 0.76953125, 0.22265625, 1.0); \n" +
"} \n";
</pre>
<p>The vertex shader controls how OpenGL positions and draws the vertices of shapes in space.
The fragment shader controls what OpenGL draws <em>between</em> the vertices of shapes.</p>
</li>
<li>In your {@code HelloOpenGLES20Renderer} class, create a method for loading the shaders.
<pre>
private int loadShader(int type, String shaderCode){
// create a vertex shader type (GLES20.GL_VERTEX_SHADER)
// or a fragment shader type (GLES20.GL_FRAGMENT_SHADER)
int shader = GLES20.glCreateShader(type);
// add the source code to the shader and compile it
GLES20.glShaderSource(shader, shaderCode);
GLES20.glCompileShader(shader);
return shader;
}
</pre>
</li>
<li>Add the following members to your {@code HelloOpenGLES20Renderer} class for an OpenGL
Program and the positioning control for your triangle.
<pre>
private int mProgram;
private int maPositionHandle;
</pre>
<p>In OpenGL ES 2.0, you attach vertex and fragment shaders to a <em>Program</em> and then
apply the program to the OpenGL graphics pipeline.</p>
</li>
<li>Add the following code to the end of your {@code onSurfaceCreated()} method to load the
shaders and attach them to an OpenGL Program.
<pre>
int vertexShader = loadShader(GLES20.GL_VERTEX_SHADER, vertexShaderCode);
int fragmentShader = loadShader(GLES20.GL_FRAGMENT_SHADER, fragmentShaderCode);
mProgram = GLES20.glCreateProgram(); // create empty OpenGL Program
GLES20.glAttachShader(mProgram, vertexShader); // add the vertex shader to program
GLES20.glAttachShader(mProgram, fragmentShader); // add the fragment shader to program
GLES20.glLinkProgram(mProgram); // creates OpenGL program executables
// get handle to the vertex shader's vPosition member
maPositionHandle = GLES20.glGetAttribLocation(mProgram, "vPosition");
</pre>
<p>At this point, you are ready to draw the triangle object in the OpenGL view.</p>
</li>
<li>Add the following code to the end of your {@code onDrawFrame()} method apply the OpenGL
program you created, load the triangle object and draw the triangle.
<pre>
// Add program to OpenGL environment
GLES20.glUseProgram(mProgram);
// Prepare the triangle data
GLES20.glVertexAttribPointer(maPositionHandle, 3, GLES20.GL_FLOAT, false, 12, triangleVB);
GLES20.glEnableVertexAttribArray(maPositionHandle);
// Draw the triangle
GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, 3);
</pre>
</li>
<li id="squashed-triangle">Run the app! Your application should look something like this:
</li>
</ol>
<img src="{@docRoot}images/opengl/helloopengl-es20-1.png">
<p class="img-caption">
<strong>Figure 1.</strong> Triangle drawn without a projection or camera view.
</p>
<p>There are a few problems with this example. First of all, it is not going to impress your
friends. Secondly, the triangle is a bit squashed and changes shape when you change the screen
orientation of the device. The reason the shape is skewed is due to the fact that the object is
being rendered in a frame which is not perfectly square. You'll fix that problem using a projection
and camera view in the next section.</p>
<p>Lastly, because the triangle is stationary, the system is redrawing the object repeatedly in
exactly the same place, which is not the most efficient use of the OpenGL graphics pipeline. In the
<a href="#motion">Add Motion</a> section, you'll make this shape rotate and justify
this use of processing power.</p>
<h2 id="projection-and-views">Apply Projection and Camera View</h2>
<p>One of the basic problems in displaying graphics is that Android device displays are typically
not square and, by default, OpenGL happily maps a perfectly square, uniform coordinate
system onto your typically non-square screen. To solve this problem, you can apply an OpenGL
projection mode and camera view (eye point) to transform the coordinates of your graphic objects
so they have the correct proportions on any display. For more information about OpenGL coordinate
mapping, see <a href="{@docRoot}guide/topics/graphics/opengl.html#coordinate-mapping">Mapping
Coordinates for Drawn Objects</a>.</p>
<p>To apply projection and camera view transformations to your triangle:
</p>
<ol>
<li>Add the following members to your {@code HelloOpenGLES20Renderer} class.
<pre>
private int muMVPMatrixHandle;
private float[] mMVPMatrix = new float[16];
private float[] mMMatrix = new float[16];
private float[] mVMatrix = new float[16];
private float[] mProjMatrix = new float[16];
</pre>
</li>
<li>Modify your {@code vertexShaderCode} string to add a variable for a model view
projection matrix.
<pre>
private final String vertexShaderCode =
// This matrix member variable provides a hook to manipulate
// the coordinates of the objects that use this vertex shader
"uniform mat4 uMVPMatrix; \n" +
"attribute vec4 vPosition; \n" +
"void main(){ \n" +
// the matrix must be included as a modifier of gl_Position
" gl_Position = uMVPMatrix * vPosition; \n" +
"} \n";
</pre>
</li>
<li>Modify the {@code onSurfaceChanged()} method to calculate the device screen ratio and
create a projection matrix.
<pre>
public void onSurfaceChanged(GL10 unused, int width, int height) {
GLES20.glViewport(0, 0, width, height);
float ratio = (float) width / height;
// this projection matrix is applied to object coodinates
// in the onDrawFrame() method
Matrix.frustumM(mProjMatrix, 0, -ratio, ratio, -1, 1, 3, 7);
}
</pre>
</li>
<li>Add the following code to the end of your {@code onSurfaceChanged()} method to
reference the {@code uMVPMatrix} shader matrix variable you added in step 2.
<pre>
muMVPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uMVPMatrix");
</pre>
</li>
<li>Add the following code to the end of your {@code onSurfaceChanged()} method to define
a camera view matrix.
<pre>
Matrix.setLookAtM(mVMatrix, 0, 0, 0, -3, 0f, 0f, 0f, 0f, 1.0f, 0.0f);
</pre>
</li>
<li>Finally, modify your {@code onDrawFrame()} method to combine the projection and
camera view matrices and then apply the combined transformation to the OpenGL rendering pipeline.
<pre>
public void onDrawFrame(GL10 unused) {
...
// Apply a ModelView Projection transformation
Matrix.multiplyMM(mMVPMatrix, 0, mProjMatrix, 0, mVMatrix, 0);
GLES20.glUniformMatrix4fv(muMVPMatrixHandle, 1, false, mMVPMatrix, 0);
// Draw the triangle
...
}
</pre>
</li>
<li>Run the updated application and you should see something like this:</li>
</ol>
<img src="{@docRoot}images/opengl/helloopengl-es20-2.png">
<p class="img-caption">
<strong>Figure 2.</strong> Triangle drawn with a projection and camera view applied.
</p>
<p>Now that you have applied this transformation, the triangle has three equal sides, instead of the
<a href="#squashed-triangle">squashed triangle</a> in the earlier version.</p>
<h2 id="motion">Add Motion</h2>
<p>While it may be an interesting exercise to create static graphic objects with OpenGL ES, chances
are you want at least <em>some</em> of your objects to move. In this section, you'll add motion to
your triangle by rotating it.</p>
<p>To add rotation to your triangle:</p>
<ol>
<li>Add an additional tranformation matrix member to your {@code HelloOpenGLES20Renderer}
class.
<pre>
private float[] mMMatrix = new float[16];
</pre>
</li>
<li>Modify your {@code onDrawFrame()} method to rotate the triangle object.
<pre>
public void onDrawFrame(GL10 gl) {
...
// Create a rotation for the triangle
long time = SystemClock.uptimeMillis() % 4000L;
float angle = 0.090f * ((int) time);
Matrix.setRotateM(mMMatrix, 0, angle, 0, 0, 1.0f);
Matrix.multiplyMM(mMVPMatrix, 0, mVMatrix, 0, mMMatrix, 0);
Matrix.multiplyMM(mMVPMatrix, 0, mProjMatrix, 0, mMVPMatrix, 0);
// Apply a ModelView Projection transformation
GLES20.glUniformMatrix4fv(muMVPMatrixHandle, 1, false, mMVPMatrix, 0);
// Draw the triangle
...
}
</pre>
</li>
<li>Run the application and your triangle should rotate around its center.</li>
</ol>
<h2 id="touch">Respond to Touch Events</h2>
<p>Making objects move according to a preset program like the rotating triangle is useful for
getting some attention, but what if you want to have users interact with your OpenGL graphics? In
this section, you'll learn how listen for touch events to let users interact with objects in your
{@code HelloOpenGLES20SurfaceView}.</p>
<p>The key to making your OpenGL application touch interactive is expanding your implementation of
{@link android.opengl.GLSurfaceView} to override the {@link
android.view.View#onTouchEvent(android.view.MotionEvent) onTouchEvent()} to listen for touch events.
Before you do that, however, you'll modify the renderer class to expose the rotation angle of the
triangle. Afterwards, you'll modify the {@code HelloOpenGLES20SurfaceView} to process touch events
and pass that data to your renderer.</p>
<p>To make your triangle rotate in response to touch events:</p>
<ol>
<li>Modify your {@code HelloOpenGLES20Renderer} class to include a new, public member so that
your {@code HelloOpenGLES10SurfaceView} class is able to pass new rotation values your renderer:
<pre>
public float mAngle;
</pre>
</li>
<li>In your {@code onDrawFrame()} method, comment out the code that generates an angle and
replace the {@code angle} variable with {@code mAngle}.
<pre>
// Create a rotation for the triangle (Boring! Comment this out:)
// long time = SystemClock.uptimeMillis() % 4000L;
// float angle = 0.090f * ((int) time);
// Use the mAngle member as the rotation value
Matrix.setRotateM(mMMatrix, 0, mAngle, 0, 0, 1.0f);
</pre>
</li>
<li>In your {@code HelloOpenGLES20SurfaceView} class, add the following member variables.
<pre>
private final float TOUCH_SCALE_FACTOR = 180.0f / 320;
private HelloOpenGLES20Renderer mRenderer;
private float mPreviousX;
private float mPreviousY;
</pre>
</li>
<li>In the constructor method for {@code HelloOpenGLES20SurfaceView}, set the {@code mRenderer}
member so you have a handle to pass in rotation input and set the render mode to {@link
android.opengl.GLSurfaceView#RENDERMODE_WHEN_DIRTY}.<pre>
public HelloOpenGLES20SurfaceView(Context context){
super(context);
// Create an OpenGL ES 2.0 context.
setEGLContextClientVersion(2);
// set the mRenderer member
mRenderer = new HelloOpenGLES20Renderer();
setRenderer(mRenderer);
// Render the view only when there is a change
setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);
}
</pre>
</li>
<li>In your {@code HelloOpenGLES20SurfaceView} class, override the {@link
android.view.View#onTouchEvent(android.view.MotionEvent) onTouchEvent()} method to listen for touch
events and pass them to your renderer.
<pre>
&#64;Override
public boolean onTouchEvent(MotionEvent e) {
// MotionEvent reports input details from the touch screen
// and other input controls. In this case, you are only
// interested in events where the touch position changed.
float x = e.getX();
float y = e.getY();
switch (e.getAction()) {
case MotionEvent.ACTION_MOVE:
float dx = x - mPreviousX;
float dy = y - mPreviousY;
// reverse direction of rotation above the mid-line
if (y &gt; getHeight() / 2) {
dx = dx * -1 ;
}
// reverse direction of rotation to left of the mid-line
if (x &lt; getWidth() / 2) {
dy = dy * -1 ;
}
mRenderer.mAngle += (dx + dy) * TOUCH_SCALE_FACTOR;
requestRender();
}
mPreviousX = x;
mPreviousY = y;
return true;
}
</pre>
<p class="note"><strong>Note:</strong> Touch events return pixel coordinates which <em>are not the
same</em> as OpenGL coordinates. Touch coordinate [0,0] is the bottom-left of the screen and the
highest value [max_X, max_Y] is the top-right corner of the screen. To match touch events to OpenGL
graphic objects, you must translate touch coordinates into OpenGL coordinates.</p>
</li>
<li>Run the application and drag your finger or cursor around the screen to rotate the
triangle.</li>
</ol>
<p>For another example of OpenGL touch event functionality, see <a
href="{@docRoot}resources/samples/ApiDemos/src/com/example/android/apis/graphics/
TouchRotateActivity.html">TouchRotateActivity</a>.</p>