blob: cd25865b3ab5557d60e0e72156e24943160f6270 [file] [log] [blame]
/*
* Copyright (C) 2006 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.media;
import android.content.ContentResolver;
import android.content.Context;
import android.content.res.AssetFileDescriptor;
import android.net.Uri;
import android.os.Handler;
import android.os.Looper;
import android.os.Message;
import android.os.Parcel;
import android.os.Parcelable;
import android.os.ParcelFileDescriptor;
import android.os.PowerManager;
import android.util.Log;
import android.view.Surface;
import android.view.SurfaceHolder;
import android.graphics.Bitmap;
import android.graphics.SurfaceTexture;
import android.media.AudioManager;
import java.io.File;
import java.io.FileDescriptor;
import java.io.FileInputStream;
import java.io.IOException;
import java.net.InetSocketAddress;
import java.util.Map;
import java.util.Set;
import java.lang.ref.WeakReference;
/**
* MediaPlayer class can be used to control playback
* of audio/video files and streams. An example on how to use the methods in
* this class can be found in {@link android.widget.VideoView}.
*
* <p>Topics covered here are:
* <ol>
* <li><a href="#StateDiagram">State Diagram</a>
* <li><a href="#Valid_and_Invalid_States">Valid and Invalid States</a>
* <li><a href="#Permissions">Permissions</a>
* <li><a href="#Callbacks">Register informational and error callbacks</a>
* </ol>
*
* <div class="special reference">
* <h3>Developer Guides</h3>
* <p>For more information about how to use MediaPlayer, read the
* <a href="{@docRoot}guide/topics/media/mediaplayer.html">Media Playback</a> developer guide.</p>
* </div>
*
* <a name="StateDiagram"></a>
* <h3>State Diagram</h3>
*
* <p>Playback control of audio/video files and streams is managed as a state
* machine. The following diagram shows the life cycle and the states of a
* MediaPlayer object driven by the supported playback control operations.
* The ovals represent the states a MediaPlayer object may reside
* in. The arcs represent the playback control operations that drive the object
* state transition. There are two types of arcs. The arcs with a single arrow
* head represent synchronous method calls, while those with
* a double arrow head represent asynchronous method calls.</p>
*
* <p><img src="../../../images/mediaplayer_state_diagram.gif"
* alt="MediaPlayer State diagram"
* border="0" /></p>
*
* <p>From this state diagram, one can see that a MediaPlayer object has the
* following states:</p>
* <ul>
* <li>When a MediaPlayer object is just created using <code>new</code> or
* after {@link #reset()} is called, it is in the <em>Idle</em> state; and after
* {@link #release()} is called, it is in the <em>End</em> state. Between these
* two states is the life cycle of the MediaPlayer object.
* <ul>
* <li>There is a subtle but important difference between a newly constructed
* MediaPlayer object and the MediaPlayer object after {@link #reset()}
* is called. It is a programming error to invoke methods such
* as {@link #getCurrentPosition()},
* {@link #getDuration()}, {@link #getVideoHeight()},
* {@link #getVideoWidth()}, {@link #setAudioStreamType(int)},
* {@link #setLooping(boolean)},
* {@link #setVolume(float, float)}, {@link #pause()}, {@link #start()},
* {@link #stop()}, {@link #seekTo(int)}, {@link #prepare()} or
* {@link #prepareAsync()} in the <em>Idle</em> state for both cases. If any of these
* methods is called right after a MediaPlayer object is constructed,
* the user supplied callback method OnErrorListener.onError() won't be
* called by the internal player engine and the object state remains
* unchanged; but if these methods are called right after {@link #reset()},
* the user supplied callback method OnErrorListener.onError() will be
* invoked by the internal player engine and the object will be
* transfered to the <em>Error</em> state. </li>
* <li>It is also recommended that once
* a MediaPlayer object is no longer being used, call {@link #release()} immediately
* so that resources used by the internal player engine associated with the
* MediaPlayer object can be released immediately. Resource may include
* singleton resources such as hardware acceleration components and
* failure to call {@link #release()} may cause subsequent instances of
* MediaPlayer objects to fallback to software implementations or fail
* altogether. Once the MediaPlayer
* object is in the <em>End</em> state, it can no longer be used and
* there is no way to bring it back to any other state. </li>
* <li>Furthermore,
* the MediaPlayer objects created using <code>new</code> is in the
* <em>Idle</em> state, while those created with one
* of the overloaded convenient <code>create</code> methods are <em>NOT</em>
* in the <em>Idle</em> state. In fact, the objects are in the <em>Prepared</em>
* state if the creation using <code>create</code> method is successful.
* </li>
* </ul>
* </li>
* <li>In general, some playback control operation may fail due to various
* reasons, such as unsupported audio/video format, poorly interleaved
* audio/video, resolution too high, streaming timeout, and the like.
* Thus, error reporting and recovery is an important concern under
* these circumstances. Sometimes, due to programming errors, invoking a playback
* control operation in an invalid state may also occur. Under all these
* error conditions, the internal player engine invokes a user supplied
* OnErrorListener.onError() method if an OnErrorListener has been
* registered beforehand via
* {@link #setOnErrorListener(android.media.MediaPlayer.OnErrorListener)}.
* <ul>
* <li>It is important to note that once an error occurs, the
* MediaPlayer object enters the <em>Error</em> state (except as noted
* above), even if an error listener has not been registered by the application.</li>
* <li>In order to reuse a MediaPlayer object that is in the <em>
* Error</em> state and recover from the error,
* {@link #reset()} can be called to restore the object to its <em>Idle</em>
* state.</li>
* <li>It is good programming practice to have your application
* register a OnErrorListener to look out for error notifications from
* the internal player engine.</li>
* <li>IllegalStateException is
* thrown to prevent programming errors such as calling {@link #prepare()},
* {@link #prepareAsync()}, or one of the overloaded <code>setDataSource
* </code> methods in an invalid state. </li>
* </ul>
* </li>
* <li>Calling
* {@link #setDataSource(FileDescriptor)}, or
* {@link #setDataSource(String)}, or
* {@link #setDataSource(Context, Uri)}, or
* {@link #setDataSource(FileDescriptor, long, long)} transfers a
* MediaPlayer object in the <em>Idle</em> state to the
* <em>Initialized</em> state.
* <ul>
* <li>An IllegalStateException is thrown if
* setDataSource() is called in any other state.</li>
* <li>It is good programming
* practice to always look out for <code>IllegalArgumentException</code>
* and <code>IOException</code> that may be thrown from the overloaded
* <code>setDataSource</code> methods.</li>
* </ul>
* </li>
* <li>A MediaPlayer object must first enter the <em>Prepared</em> state
* before playback can be started.
* <ul>
* <li>There are two ways (synchronous vs.
* asynchronous) that the <em>Prepared</em> state can be reached:
* either a call to {@link #prepare()} (synchronous) which
* transfers the object to the <em>Prepared</em> state once the method call
* returns, or a call to {@link #prepareAsync()} (asynchronous) which
* first transfers the object to the <em>Preparing</em> state after the
* call returns (which occurs almost right way) while the internal
* player engine continues working on the rest of preparation work
* until the preparation work completes. When the preparation completes or when {@link #prepare()} call returns,
* the internal player engine then calls a user supplied callback method,
* onPrepared() of the OnPreparedListener interface, if an
* OnPreparedListener is registered beforehand via {@link
* #setOnPreparedListener(android.media.MediaPlayer.OnPreparedListener)}.</li>
* <li>It is important to note that
* the <em>Preparing</em> state is a transient state, and the behavior
* of calling any method with side effect while a MediaPlayer object is
* in the <em>Preparing</em> state is undefined.</li>
* <li>An IllegalStateException is
* thrown if {@link #prepare()} or {@link #prepareAsync()} is called in
* any other state.</li>
* <li>While in the <em>Prepared</em> state, properties
* such as audio/sound volume, screenOnWhilePlaying, looping can be
* adjusted by invoking the corresponding set methods.</li>
* </ul>
* </li>
* <li>To start the playback, {@link #start()} must be called. After
* {@link #start()} returns successfully, the MediaPlayer object is in the
* <em>Started</em> state. {@link #isPlaying()} can be called to test
* whether the MediaPlayer object is in the <em>Started</em> state.
* <ul>
* <li>While in the <em>Started</em> state, the internal player engine calls
* a user supplied OnBufferingUpdateListener.onBufferingUpdate() callback
* method if a OnBufferingUpdateListener has been registered beforehand
* via {@link #setOnBufferingUpdateListener(OnBufferingUpdateListener)}.
* This callback allows applications to keep track of the buffering status
* while streaming audio/video.</li>
* <li>Calling {@link #start()} has not effect
* on a MediaPlayer object that is already in the <em>Started</em> state.</li>
* </ul>
* </li>
* <li>Playback can be paused and stopped, and the current playback position
* can be adjusted. Playback can be paused via {@link #pause()}. When the call to
* {@link #pause()} returns, the MediaPlayer object enters the
* <em>Paused</em> state. Note that the transition from the <em>Started</em>
* state to the <em>Paused</em> state and vice versa happens
* asynchronously in the player engine. It may take some time before
* the state is updated in calls to {@link #isPlaying()}, and it can be
* a number of seconds in the case of streamed content.
* <ul>
* <li>Calling {@link #start()} to resume playback for a paused
* MediaPlayer object, and the resumed playback
* position is the same as where it was paused. When the call to
* {@link #start()} returns, the paused MediaPlayer object goes back to
* the <em>Started</em> state.</li>
* <li>Calling {@link #pause()} has no effect on
* a MediaPlayer object that is already in the <em>Paused</em> state.</li>
* </ul>
* </li>
* <li>Calling {@link #stop()} stops playback and causes a
* MediaPlayer in the <em>Started</em>, <em>Paused</em>, <em>Prepared
* </em> or <em>PlaybackCompleted</em> state to enter the
* <em>Stopped</em> state.
* <ul>
* <li>Once in the <em>Stopped</em> state, playback cannot be started
* until {@link #prepare()} or {@link #prepareAsync()} are called to set
* the MediaPlayer object to the <em>Prepared</em> state again.</li>
* <li>Calling {@link #stop()} has no effect on a MediaPlayer
* object that is already in the <em>Stopped</em> state.</li>
* </ul>
* </li>
* <li>The playback position can be adjusted with a call to
* {@link #seekTo(int)}.
* <ul>
* <li>Although the asynchronuous {@link #seekTo(int)}
* call returns right way, the actual seek operation may take a while to
* finish, especially for audio/video being streamed. When the actual
* seek operation completes, the internal player engine calls a user
* supplied OnSeekComplete.onSeekComplete() if an OnSeekCompleteListener
* has been registered beforehand via
* {@link #setOnSeekCompleteListener(OnSeekCompleteListener)}.</li>
* <li>Please
* note that {@link #seekTo(int)} can also be called in the other states,
* such as <em>Prepared</em>, <em>Paused</em> and <em>PlaybackCompleted
* </em> state.</li>
* <li>Furthermore, the actual current playback position
* can be retrieved with a call to {@link #getCurrentPosition()}, which
* is helpful for applications such as a Music player that need to keep
* track of the playback progress.</li>
* </ul>
* </li>
* <li>When the playback reaches the end of stream, the playback completes.
* <ul>
* <li>If the looping mode was being set to <var>true</var>with
* {@link #setLooping(boolean)}, the MediaPlayer object shall remain in
* the <em>Started</em> state.</li>
* <li>If the looping mode was set to <var>false
* </var>, the player engine calls a user supplied callback method,
* OnCompletion.onCompletion(), if a OnCompletionListener is registered
* beforehand via {@link #setOnCompletionListener(OnCompletionListener)}.
* The invoke of the callback signals that the object is now in the <em>
* PlaybackCompleted</em> state.</li>
* <li>While in the <em>PlaybackCompleted</em>
* state, calling {@link #start()} can restart the playback from the
* beginning of the audio/video source.</li>
* </ul>
*
*
* <a name="Valid_and_Invalid_States"></a>
* <h3>Valid and invalid states</h3>
*
* <table border="0" cellspacing="0" cellpadding="0">
* <tr><td>Method Name </p></td>
* <td>Valid Sates </p></td>
* <td>Invalid States </p></td>
* <td>Comments </p></td></tr>
* <tr><td>attachAuxEffect </p></td>
* <td>{Initialized, Prepared, Started, Paused, Stopped, PlaybackCompleted} </p></td>
* <td>{Idle, Error} </p></td>
* <td>This method must be called after setDataSource.
* Calling it does not change the object state. </p></td></tr>
* <tr><td>getAudioSessionId </p></td>
* <td>any </p></td>
* <td>{} </p></td>
* <td>This method can be called in any state and calling it does not change
* the object state. </p></td></tr>
* <tr><td>getCurrentPosition </p></td>
* <td>{Idle, Initialized, Prepared, Started, Paused, Stopped,
* PlaybackCompleted} </p></td>
* <td>{Error}</p></td>
* <td>Successful invoke of this method in a valid state does not change the
* state. Calling this method in an invalid state transfers the object
* to the <em>Error</em> state. </p></td></tr>
* <tr><td>getDuration </p></td>
* <td>{Prepared, Started, Paused, Stopped, PlaybackCompleted} </p></td>
* <td>{Idle, Initialized, Error} </p></td>
* <td>Successful invoke of this method in a valid state does not change the
* state. Calling this method in an invalid state transfers the object
* to the <em>Error</em> state. </p></td></tr>
* <tr><td>getVideoHeight </p></td>
* <td>{Idle, Initialized, Prepared, Started, Paused, Stopped,
* PlaybackCompleted}</p></td>
* <td>{Error}</p></td>
* <td>Successful invoke of this method in a valid state does not change the
* state. Calling this method in an invalid state transfers the object
* to the <em>Error</em> state. </p></td></tr>
* <tr><td>getVideoWidth </p></td>
* <td>{Idle, Initialized, Prepared, Started, Paused, Stopped,
* PlaybackCompleted}</p></td>
* <td>{Error}</p></td>
* <td>Successful invoke of this method in a valid state does not change
* the state. Calling this method in an invalid state transfers the
* object to the <em>Error</em> state. </p></td></tr>
* <tr><td>isPlaying </p></td>
* <td>{Idle, Initialized, Prepared, Started, Paused, Stopped,
* PlaybackCompleted}</p></td>
* <td>{Error}</p></td>
* <td>Successful invoke of this method in a valid state does not change
* the state. Calling this method in an invalid state transfers the
* object to the <em>Error</em> state. </p></td></tr>
* <tr><td>pause </p></td>
* <td>{Started, Paused}</p></td>
* <td>{Idle, Initialized, Prepared, Stopped, PlaybackCompleted, Error}</p></td>
* <td>Successful invoke of this method in a valid state transfers the
* object to the <em>Paused</em> state. Calling this method in an
* invalid state transfers the object to the <em>Error</em> state.</p></td></tr>
* <tr><td>prepare </p></td>
* <td>{Initialized, Stopped} </p></td>
* <td>{Idle, Prepared, Started, Paused, PlaybackCompleted, Error} </p></td>
* <td>Successful invoke of this method in a valid state transfers the
* object to the <em>Prepared</em> state. Calling this method in an
* invalid state throws an IllegalStateException.</p></td></tr>
* <tr><td>prepareAsync </p></td>
* <td>{Initialized, Stopped} </p></td>
* <td>{Idle, Prepared, Started, Paused, PlaybackCompleted, Error} </p></td>
* <td>Successful invoke of this method in a valid state transfers the
* object to the <em>Preparing</em> state. Calling this method in an
* invalid state throws an IllegalStateException.</p></td></tr>
* <tr><td>release </p></td>
* <td>any </p></td>
* <td>{} </p></td>
* <td>After {@link #release()}, the object is no longer available. </p></td></tr>
* <tr><td>reset </p></td>
* <td>{Idle, Initialized, Prepared, Started, Paused, Stopped,
* PlaybackCompleted, Error}</p></td>
* <td>{}</p></td>
* <td>After {@link #reset()}, the object is like being just created.</p></td></tr>
* <tr><td>seekTo </p></td>
* <td>{Prepared, Started, Paused, PlaybackCompleted} </p></td>
* <td>{Idle, Initialized, Stopped, Error}</p></td>
* <td>Successful invoke of this method in a valid state does not change
* the state. Calling this method in an invalid state transfers the
* object to the <em>Error</em> state. </p></td></tr>
* <tr><td>setAudioSessionId </p></td>
* <td>{Idle} </p></td>
* <td>{Initialized, Prepared, Started, Paused, Stopped, PlaybackCompleted,
* Error} </p></td>
* <td>This method must be called in idle state as the audio session ID must be known before
* calling setDataSource. Calling it does not change the object state. </p></td></tr>
* <tr><td>setAudioStreamType </p></td>
* <td>{Idle, Initialized, Stopped, Prepared, Started, Paused,
* PlaybackCompleted}</p></td>
* <td>{Error}</p></td>
* <td>Successful invoke of this method does not change the state. In order for the
* target audio stream type to become effective, this method must be called before
* prepare() or prepareAsync().</p></td></tr>
* <tr><td>setAuxEffectSendLevel </p></td>
* <td>any</p></td>
* <td>{} </p></td>
* <td>Calling this method does not change the object state. </p></td></tr>
* <tr><td>setDataSource </p></td>
* <td>{Idle} </p></td>
* <td>{Initialized, Prepared, Started, Paused, Stopped, PlaybackCompleted,
* Error} </p></td>
* <td>Successful invoke of this method in a valid state transfers the
* object to the <em>Initialized</em> state. Calling this method in an
* invalid state throws an IllegalStateException.</p></td></tr>
* <tr><td>setDisplay </p></td>
* <td>any </p></td>
* <td>{} </p></td>
* <td>This method can be called in any state and calling it does not change
* the object state. </p></td></tr>
* <tr><td>setSurface </p></td>
* <td>any </p></td>
* <td>{} </p></td>
* <td>This method can be called in any state and calling it does not change
* the object state. </p></td></tr>
* <tr><td>setVideoScalingMode </p></td>
* <td>{Initialized, Prepared, Started, Paused, Stopped, PlaybackCompleted} </p></td>
* <td>{Idle, Error}</p></td>
* <td>Successful invoke of this method does not change the state.</p></td></tr>
* <tr><td>setLooping </p></td>
* <td>{Idle, Initialized, Stopped, Prepared, Started, Paused,
* PlaybackCompleted}</p></td>
* <td>{Error}</p></td>
* <td>Successful invoke of this method in a valid state does not change
* the state. Calling this method in an
* invalid state transfers the object to the <em>Error</em> state.</p></td></tr>
* <tr><td>isLooping </p></td>
* <td>any </p></td>
* <td>{} </p></td>
* <td>This method can be called in any state and calling it does not change
* the object state. </p></td></tr>
* <tr><td>setOnBufferingUpdateListener </p></td>
* <td>any </p></td>
* <td>{} </p></td>
* <td>This method can be called in any state and calling it does not change
* the object state. </p></td></tr>
* <tr><td>setOnCompletionListener </p></td>
* <td>any </p></td>
* <td>{} </p></td>
* <td>This method can be called in any state and calling it does not change
* the object state. </p></td></tr>
* <tr><td>setOnErrorListener </p></td>
* <td>any </p></td>
* <td>{} </p></td>
* <td>This method can be called in any state and calling it does not change
* the object state. </p></td></tr>
* <tr><td>setOnPreparedListener </p></td>
* <td>any </p></td>
* <td>{} </p></td>
* <td>This method can be called in any state and calling it does not change
* the object state. </p></td></tr>
* <tr><td>setOnSeekCompleteListener </p></td>
* <td>any </p></td>
* <td>{} </p></td>
* <td>This method can be called in any state and calling it does not change
* the object state. </p></td></tr>
* <tr><td>setScreenOnWhilePlaying</></td>
* <td>any </p></td>
* <td>{} </p></td>
* <td>This method can be called in any state and calling it does not change
* the object state. </p></td></tr>
* <tr><td>setVolume </p></td>
* <td>{Idle, Initialized, Stopped, Prepared, Started, Paused,
* PlaybackCompleted}</p></td>
* <td>{Error}</p></td>
* <td>Successful invoke of this method does not change the state.
* <tr><td>setWakeMode </p></td>
* <td>any </p></td>
* <td>{} </p></td>
* <td>This method can be called in any state and calling it does not change
* the object state.</p></td></tr>
* <tr><td>start </p></td>
* <td>{Prepared, Started, Paused, PlaybackCompleted}</p></td>
* <td>{Idle, Initialized, Stopped, Error}</p></td>
* <td>Successful invoke of this method in a valid state transfers the
* object to the <em>Started</em> state. Calling this method in an
* invalid state transfers the object to the <em>Error</em> state.</p></td></tr>
* <tr><td>stop </p></td>
* <td>{Prepared, Started, Stopped, Paused, PlaybackCompleted}</p></td>
* <td>{Idle, Initialized, Error}</p></td>
* <td>Successful invoke of this method in a valid state transfers the
* object to the <em>Stopped</em> state. Calling this method in an
* invalid state transfers the object to the <em>Error</em> state.</p></td></tr>
* <tr><td>getTrackInfo </p></td>
* <td>{Prepared, Started, Stopped, Paused, PlaybackCompleted}</p></td>
* <td>{Idle, Initialized, Error}</p></td>
* <td>Successful invoke of this method does not change the state.</p></td></tr>
* <tr><td>addTimedTextSource </p></td>
* <td>{Prepared, Started, Stopped, Paused, PlaybackCompleted}</p></td>
* <td>{Idle, Initialized, Error}</p></td>
* <td>Successful invoke of this method does not change the state.</p></td></tr>
* <tr><td>selectTrack </p></td>
* <td>{Prepared, Started, Stopped, Paused, PlaybackCompleted}</p></td>
* <td>{Idle, Initialized, Error}</p></td>
* <td>Successful invoke of this method does not change the state.</p></td></tr>
* <tr><td>deselectTrack </p></td>
* <td>{Prepared, Started, Stopped, Paused, PlaybackCompleted}</p></td>
* <td>{Idle, Initialized, Error}</p></td>
* <td>Successful invoke of this method does not change the state.</p></td></tr>
*
* </table>
*
* <a name="Permissions"></a>
* <h3>Permissions</h3>
* <p>One may need to declare a corresponding WAKE_LOCK permission {@link
* android.R.styleable#AndroidManifestUsesPermission &lt;uses-permission&gt;}
* element.
*
* <p>This class requires the {@link android.Manifest.permission#INTERNET} permission
* when used with network-based content.
*
* <a name="Callbacks"></a>
* <h3>Callbacks</h3>
* <p>Applications may want to register for informational and error
* events in order to be informed of some internal state update and
* possible runtime errors during playback or streaming. Registration for
* these events is done by properly setting the appropriate listeners (via calls
* to
* {@link #setOnPreparedListener(OnPreparedListener)}setOnPreparedListener,
* {@link #setOnVideoSizeChangedListener(OnVideoSizeChangedListener)}setOnVideoSizeChangedListener,
* {@link #setOnSeekCompleteListener(OnSeekCompleteListener)}setOnSeekCompleteListener,
* {@link #setOnCompletionListener(OnCompletionListener)}setOnCompletionListener,
* {@link #setOnBufferingUpdateListener(OnBufferingUpdateListener)}setOnBufferingUpdateListener,
* {@link #setOnInfoListener(OnInfoListener)}setOnInfoListener,
* {@link #setOnErrorListener(OnErrorListener)}setOnErrorListener, etc).
* In order to receive the respective callback
* associated with these listeners, applications are required to create
* MediaPlayer objects on a thread with its own Looper running (main UI
* thread by default has a Looper running).
*
*/
public class MediaPlayer
{
/**
Constant to retrieve only the new metadata since the last
call.
// FIXME: unhide.
// FIXME: add link to getMetadata(boolean, boolean)
{@hide}
*/
public static final boolean METADATA_UPDATE_ONLY = true;
/**
Constant to retrieve all the metadata.
// FIXME: unhide.
// FIXME: add link to getMetadata(boolean, boolean)
{@hide}
*/
public static final boolean METADATA_ALL = false;
/**
Constant to enable the metadata filter during retrieval.
// FIXME: unhide.
// FIXME: add link to getMetadata(boolean, boolean)
{@hide}
*/
public static final boolean APPLY_METADATA_FILTER = true;
/**
Constant to disable the metadata filter during retrieval.
// FIXME: unhide.
// FIXME: add link to getMetadata(boolean, boolean)
{@hide}
*/
public static final boolean BYPASS_METADATA_FILTER = false;
static {
System.loadLibrary("media_jni");
native_init();
}
private final static String TAG = "MediaPlayer";
// Name of the remote interface for the media player. Must be kept
// in sync with the 2nd parameter of the IMPLEMENT_META_INTERFACE
// macro invocation in IMediaPlayer.cpp
private final static String IMEDIA_PLAYER = "android.media.IMediaPlayer";
private int mNativeContext; // accessed by native methods
private int mNativeSurfaceTexture; // accessed by native methods
private int mListenerContext; // accessed by native methods
private SurfaceHolder mSurfaceHolder;
private EventHandler mEventHandler;
private PowerManager.WakeLock mWakeLock = null;
private boolean mScreenOnWhilePlaying;
private boolean mStayAwake;
/**
* Default constructor. Consider using one of the create() methods for
* synchronously instantiating a MediaPlayer from a Uri or resource.
* <p>When done with the MediaPlayer, you should call {@link #release()},
* to free the resources. If not released, too many MediaPlayer instances may
* result in an exception.</p>
*/
public MediaPlayer() {
Looper looper;
if ((looper = Looper.myLooper()) != null) {
mEventHandler = new EventHandler(this, looper);
} else if ((looper = Looper.getMainLooper()) != null) {
mEventHandler = new EventHandler(this, looper);
} else {
mEventHandler = null;
}
/* Native setup requires a weak reference to our object.
* It's easier to create it here than in C++.
*/
native_setup(new WeakReference<MediaPlayer>(this));
}
/*
* Update the MediaPlayer SurfaceTexture.
* Call after setting a new display surface.
*/
private native void _setVideoSurface(Surface surface);
/* Do not change these values (starting with INVOKE_ID) without updating
* their counterparts in include/media/mediaplayer.h!
*/
private static final int INVOKE_ID_GET_TRACK_INFO = 1;
private static final int INVOKE_ID_ADD_EXTERNAL_SOURCE = 2;
private static final int INVOKE_ID_ADD_EXTERNAL_SOURCE_FD = 3;
private static final int INVOKE_ID_SELECT_TRACK = 4;
private static final int INVOKE_ID_DESELECT_TRACK = 5;
private static final int INVOKE_ID_SET_VIDEO_SCALE_MODE = 6;
/**
* Create a request parcel which can be routed to the native media
* player using {@link #invoke(Parcel, Parcel)}. The Parcel
* returned has the proper InterfaceToken set. The caller should
* not overwrite that token, i.e it can only append data to the
* Parcel.
*
* @return A parcel suitable to hold a request for the native
* player.
* {@hide}
*/
public Parcel newRequest() {
Parcel parcel = Parcel.obtain();
parcel.writeInterfaceToken(IMEDIA_PLAYER);
return parcel;
}
/**
* Invoke a generic method on the native player using opaque
* parcels for the request and reply. Both payloads' format is a
* convention between the java caller and the native player.
* Must be called after setDataSource to make sure a native player
* exists. On failure, a RuntimeException is thrown.
*
* @param request Parcel with the data for the extension. The
* caller must use {@link #newRequest()} to get one.
*
* @param reply Output parcel with the data returned by the
* native player.
*
* {@hide}
*/
public void invoke(Parcel request, Parcel reply) {
int retcode = native_invoke(request, reply);
reply.setDataPosition(0);
if (retcode != 0) {
throw new RuntimeException("failure code: " + retcode);
}
}
/**
* Sets the {@link SurfaceHolder} to use for displaying the video
* portion of the media.
*
* Either a surface holder or surface must be set if a display or video sink
* is needed. Not calling this method or {@link #setSurface(Surface)}
* when playing back a video will result in only the audio track being played.
* A null surface holder or surface will result in only the audio track being
* played.
*
* @param sh the SurfaceHolder to use for video display
*/
public void setDisplay(SurfaceHolder sh) {
mSurfaceHolder = sh;
Surface surface;
if (sh != null) {
surface = sh.getSurface();
} else {
surface = null;
}
_setVideoSurface(surface);
updateSurfaceScreenOn();
}
/**
* Sets the {@link Surface} to be used as the sink for the video portion of
* the media. This is similar to {@link #setDisplay(SurfaceHolder)}, but
* does not support {@link #setScreenOnWhilePlaying(boolean)}. Setting a
* Surface will un-set any Surface or SurfaceHolder that was previously set.
* A null surface will result in only the audio track being played.
*
* If the Surface sends frames to a {@link SurfaceTexture}, the timestamps
* returned from {@link SurfaceTexture#getTimestamp()} will have an
* unspecified zero point. These timestamps cannot be directly compared
* between different media sources, different instances of the same media
* source, or multiple runs of the same program. The timestamp is normally
* monotonically increasing and is unaffected by time-of-day adjustments,
* but it is reset when the position is set.
*
* @param surface The {@link Surface} to be used for the video portion of
* the media.
*/
public void setSurface(Surface surface) {
if (mScreenOnWhilePlaying && surface != null) {
Log.w(TAG, "setScreenOnWhilePlaying(true) is ineffective for Surface");
}
mSurfaceHolder = null;
_setVideoSurface(surface);
updateSurfaceScreenOn();
}
/* Do not change these video scaling mode values below without updating
* their counterparts in system/window.h! Please do not forget to update
* {@link #isVideoScalingModeSupported} when new video scaling modes
* are added.
*/
/**
* Specifies a video scaling mode. The content is stretched to the
* surface rendering area. When the surface has the same aspect ratio
* as the content, the aspect ratio of the content is maintained;
* otherwise, the aspect ratio of the content is not maintained when video
* is being rendered. Unlike {@link #VIDEO_SCALING_MODE_SCALE_TO_FIT_WITH_CROPPING},
* there is no content cropping with this video scaling mode.
*/
public static final int VIDEO_SCALING_MODE_SCALE_TO_FIT = 1;
/**
* Specifies a video scaling mode. The content is scaled, maintaining
* its aspect ratio. The whole surface area is always used. When the
* aspect ratio of the content is the same as the surface, no content
* is cropped; otherwise, content is cropped to fit the surface.
*/
public static final int VIDEO_SCALING_MODE_SCALE_TO_FIT_WITH_CROPPING = 2;
/**
* Sets video scaling mode. To make the target video scaling mode
* effective during playback, this method must be called after
* data source is set. If not called, the default video
* scaling mode is {@link #VIDEO_SCALING_MODE_SCALE_TO_FIT}.
*
* <p> The supported video scaling modes are:
* <ul>
* <li> {@link #VIDEO_SCALING_MODE_SCALE_TO_FIT}
* <li> {@link #VIDEO_SCALING_MODE_SCALE_TO_FIT_WITH_CROPPING}
* </ul>
*
* @param mode target video scaling mode. Most be one of the supported
* video scaling modes; otherwise, IllegalArgumentException will be thrown.
*
* @see MediaPlayer#VIDEO_SCALING_MODE_SCALE_TO_FIT
* @see MediaPlayer#VIDEO_SCALING_MODE_SCALE_TO_FIT_WITH_CROPPING
*/
public void setVideoScalingMode(int mode) {
if (!isVideoScalingModeSupported(mode)) {
final String msg = "Scaling mode " + mode + " is not supported";
throw new IllegalArgumentException(msg);
}
Parcel request = Parcel.obtain();
Parcel reply = Parcel.obtain();
try {
request.writeInterfaceToken(IMEDIA_PLAYER);
request.writeInt(INVOKE_ID_SET_VIDEO_SCALE_MODE);
request.writeInt(mode);
invoke(request, reply);
} finally {
request.recycle();
reply.recycle();
}
}
/**
* Convenience method to create a MediaPlayer for a given Uri.
* On success, {@link #prepare()} will already have been called and must not be called again.
* <p>When done with the MediaPlayer, you should call {@link #release()},
* to free the resources. If not released, too many MediaPlayer instances will
* result in an exception.</p>
*
* @param context the Context to use
* @param uri the Uri from which to get the datasource
* @return a MediaPlayer object, or null if creation failed
*/
public static MediaPlayer create(Context context, Uri uri) {
return create (context, uri, null);
}
/**
* Convenience method to create a MediaPlayer for a given Uri.
* On success, {@link #prepare()} will already have been called and must not be called again.
* <p>When done with the MediaPlayer, you should call {@link #release()},
* to free the resources. If not released, too many MediaPlayer instances will
* result in an exception.</p>
*
* @param context the Context to use
* @param uri the Uri from which to get the datasource
* @param holder the SurfaceHolder to use for displaying the video
* @return a MediaPlayer object, or null if creation failed
*/
public static MediaPlayer create(Context context, Uri uri, SurfaceHolder holder) {
try {
MediaPlayer mp = new MediaPlayer();
mp.setDataSource(context, uri);
if (holder != null) {
mp.setDisplay(holder);
}
mp.prepare();
return mp;
} catch (IOException ex) {
Log.d(TAG, "create failed:", ex);
// fall through
} catch (IllegalArgumentException ex) {
Log.d(TAG, "create failed:", ex);
// fall through
} catch (SecurityException ex) {
Log.d(TAG, "create failed:", ex);
// fall through
}
return null;
}
// Note no convenience method to create a MediaPlayer with SurfaceTexture sink.
/**
* Convenience method to create a MediaPlayer for a given resource id.
* On success, {@link #prepare()} will already have been called and must not be called again.
* <p>When done with the MediaPlayer, you should call {@link #release()},
* to free the resources. If not released, too many MediaPlayer instances will
* result in an exception.</p>
*
* @param context the Context to use
* @param resid the raw resource id (<var>R.raw.&lt;something></var>) for
* the resource to use as the datasource
* @return a MediaPlayer object, or null if creation failed
*/
public static MediaPlayer create(Context context, int resid) {
try {
AssetFileDescriptor afd = context.getResources().openRawResourceFd(resid);
if (afd == null) return null;
MediaPlayer mp = new MediaPlayer();
mp.setDataSource(afd.getFileDescriptor(), afd.getStartOffset(), afd.getLength());
afd.close();
mp.prepare();
return mp;
} catch (IOException ex) {
Log.d(TAG, "create failed:", ex);
// fall through
} catch (IllegalArgumentException ex) {
Log.d(TAG, "create failed:", ex);
// fall through
} catch (SecurityException ex) {
Log.d(TAG, "create failed:", ex);
// fall through
}
return null;
}
/**
* Sets the data source as a content Uri.
*
* @param context the Context to use when resolving the Uri
* @param uri the Content URI of the data you want to play
* @throws IllegalStateException if it is called in an invalid state
*/
public void setDataSource(Context context, Uri uri)
throws IOException, IllegalArgumentException, SecurityException, IllegalStateException {
setDataSource(context, uri, null);
}
/**
* Sets the data source as a content Uri.
*
* @param context the Context to use when resolving the Uri
* @param uri the Content URI of the data you want to play
* @param headers the headers to be sent together with the request for the data
* @throws IllegalStateException if it is called in an invalid state
*/
public void setDataSource(Context context, Uri uri, Map<String, String> headers)
throws IOException, IllegalArgumentException, SecurityException, IllegalStateException {
String scheme = uri.getScheme();
if(scheme == null || scheme.equals("file")) {
setDataSource(uri.getPath());
return;
}
AssetFileDescriptor fd = null;
try {
ContentResolver resolver = context.getContentResolver();
fd = resolver.openAssetFileDescriptor(uri, "r");
if (fd == null) {
return;
}
// Note: using getDeclaredLength so that our behavior is the same
// as previous versions when the content provider is returning
// a full file.
if (fd.getDeclaredLength() < 0) {
setDataSource(fd.getFileDescriptor());
} else {
setDataSource(fd.getFileDescriptor(), fd.getStartOffset(), fd.getDeclaredLength());
}
return;
} catch (SecurityException ex) {
} catch (IOException ex) {
} finally {
if (fd != null) {
fd.close();
}
}
Log.d(TAG, "Couldn't open file on client side, trying server side");
setDataSource(uri.toString(), headers);
return;
}
/**
* Sets the data source (file-path or http/rtsp URL) to use.
*
* @param path the path of the file, or the http/rtsp URL of the stream you want to play
* @throws IllegalStateException if it is called in an invalid state
*
* <p>When <code>path</code> refers to a local file, the file may actually be opened by a
* process other than the calling application. This implies that the pathname
* should be an absolute path (as any other process runs with unspecified current working
* directory), and that the pathname should reference a world-readable file.
* As an alternative, the application could first open the file for reading,
* and then use the file descriptor form {@link #setDataSource(FileDescriptor)}.
*/
public void setDataSource(String path)
throws IOException, IllegalArgumentException, SecurityException, IllegalStateException {
setDataSource(path, null, null);
}
/**
* Sets the data source (file-path or http/rtsp URL) to use.
*
* @param path the path of the file, or the http/rtsp URL of the stream you want to play
* @param headers the headers associated with the http request for the stream you want to play
* @throws IllegalStateException if it is called in an invalid state
* @hide pending API council
*/
public void setDataSource(String path, Map<String, String> headers)
throws IOException, IllegalArgumentException, SecurityException, IllegalStateException
{
String[] keys = null;
String[] values = null;
if (headers != null) {
keys = new String[headers.size()];
values = new String[headers.size()];
int i = 0;
for (Map.Entry<String, String> entry: headers.entrySet()) {
keys[i] = entry.getKey();
values[i] = entry.getValue();
++i;
}
}
setDataSource(path, keys, values);
}
private void setDataSource(String path, String[] keys, String[] values)
throws IOException, IllegalArgumentException, SecurityException, IllegalStateException {
File file = new File(path);
if (file.exists()) {
FileInputStream is = new FileInputStream(file);
FileDescriptor fd = is.getFD();
setDataSource(fd);
is.close();
} else {
_setDataSource(path, keys, values);
}
}
private native void _setDataSource(
String path, String[] keys, String[] values)
throws IOException, IllegalArgumentException, SecurityException, IllegalStateException;
/**
* Sets the data source (FileDescriptor) to use. It is the caller's responsibility
* to close the file descriptor. It is safe to do so as soon as this call returns.
*
* @param fd the FileDescriptor for the file you want to play
* @throws IllegalStateException if it is called in an invalid state
*/
public void setDataSource(FileDescriptor fd)
throws IOException, IllegalArgumentException, IllegalStateException {
// intentionally less than LONG_MAX
setDataSource(fd, 0, 0x7ffffffffffffffL);
}
/**
* Sets the data source (FileDescriptor) to use. The FileDescriptor must be
* seekable (N.B. a LocalSocket is not seekable). It is the caller's responsibility
* to close the file descriptor. It is safe to do so as soon as this call returns.
*
* @param fd the FileDescriptor for the file you want to play
* @param offset the offset into the file where the data to be played starts, in bytes
* @param length the length in bytes of the data to be played
* @throws IllegalStateException if it is called in an invalid state
*/
public native void setDataSource(FileDescriptor fd, long offset, long length)
throws IOException, IllegalArgumentException, IllegalStateException;
/**
* Prepares the player for playback, synchronously.
*
* After setting the datasource and the display surface, you need to either
* call prepare() or prepareAsync(). For files, it is OK to call prepare(),
* which blocks until MediaPlayer is ready for playback.
*
* @throws IllegalStateException if it is called in an invalid state
*/
public native void prepare() throws IOException, IllegalStateException;
/**
* Prepares the player for playback, asynchronously.
*
* After setting the datasource and the display surface, you need to either
* call prepare() or prepareAsync(). For streams, you should call prepareAsync(),
* which returns immediately, rather than blocking until enough data has been
* buffered.
*
* @throws IllegalStateException if it is called in an invalid state
*/
public native void prepareAsync() throws IllegalStateException;
/**
* Starts or resumes playback. If playback had previously been paused,
* playback will continue from where it was paused. If playback had
* been stopped, or never started before, playback will start at the
* beginning.
*
* @throws IllegalStateException if it is called in an invalid state
*/
public void start() throws IllegalStateException {
stayAwake(true);
_start();
}
private native void _start() throws IllegalStateException;
/**
* Stops playback after playback has been stopped or paused.
*
* @throws IllegalStateException if the internal player engine has not been
* initialized.
*/
public void stop() throws IllegalStateException {
stayAwake(false);
_stop();
}
private native void _stop() throws IllegalStateException;
/**
* Pauses playback. Call start() to resume.
*
* @throws IllegalStateException if the internal player engine has not been
* initialized.
*/
public void pause() throws IllegalStateException {
stayAwake(false);
_pause();
}
private native void _pause() throws IllegalStateException;
/**
* Set the low-level power management behavior for this MediaPlayer. This
* can be used when the MediaPlayer is not playing through a SurfaceHolder
* set with {@link #setDisplay(SurfaceHolder)} and thus can use the
* high-level {@link #setScreenOnWhilePlaying(boolean)} feature.
*
* <p>This function has the MediaPlayer access the low-level power manager
* service to control the device's power usage while playing is occurring.
* The parameter is a combination of {@link android.os.PowerManager} wake flags.
* Use of this method requires {@link android.Manifest.permission#WAKE_LOCK}
* permission.
* By default, no attempt is made to keep the device awake during playback.
*
* @param context the Context to use
* @param mode the power/wake mode to set
* @see android.os.PowerManager
*/
public void setWakeMode(Context context, int mode) {
boolean washeld = false;
if (mWakeLock != null) {
if (mWakeLock.isHeld()) {
washeld = true;
mWakeLock.release();
}
mWakeLock = null;
}
PowerManager pm = (PowerManager)context.getSystemService(Context.POWER_SERVICE);
mWakeLock = pm.newWakeLock(mode|PowerManager.ON_AFTER_RELEASE, MediaPlayer.class.getName());
mWakeLock.setReferenceCounted(false);
if (washeld) {
mWakeLock.acquire();
}
}
/**
* Control whether we should use the attached SurfaceHolder to keep the
* screen on while video playback is occurring. This is the preferred
* method over {@link #setWakeMode} where possible, since it doesn't
* require that the application have permission for low-level wake lock
* access.
*
* @param screenOn Supply true to keep the screen on, false to allow it
* to turn off.
*/
public void setScreenOnWhilePlaying(boolean screenOn) {
if (mScreenOnWhilePlaying != screenOn) {
if (screenOn && mSurfaceHolder == null) {
Log.w(TAG, "setScreenOnWhilePlaying(true) is ineffective without a SurfaceHolder");
}
mScreenOnWhilePlaying = screenOn;
updateSurfaceScreenOn();
}
}
private void stayAwake(boolean awake) {
if (mWakeLock != null) {
if (awake && !mWakeLock.isHeld()) {
mWakeLock.acquire();
} else if (!awake && mWakeLock.isHeld()) {
mWakeLock.release();
}
}
mStayAwake = awake;
updateSurfaceScreenOn();
}
private void updateSurfaceScreenOn() {
if (mSurfaceHolder != null) {
mSurfaceHolder.setKeepScreenOn(mScreenOnWhilePlaying && mStayAwake);
}
}
/**
* Returns the width of the video.
*
* @return the width of the video, or 0 if there is no video,
* no display surface was set, or the width has not been determined
* yet. The OnVideoSizeChangedListener can be registered via
* {@link #setOnVideoSizeChangedListener(OnVideoSizeChangedListener)}
* to provide a notification when the width is available.
*/
public native int getVideoWidth();
/**
* Returns the height of the video.
*
* @return the height of the video, or 0 if there is no video,
* no display surface was set, or the height has not been determined
* yet. The OnVideoSizeChangedListener can be registered via
* {@link #setOnVideoSizeChangedListener(OnVideoSizeChangedListener)}
* to provide a notification when the height is available.
*/
public native int getVideoHeight();
/**
* Checks whether the MediaPlayer is playing.
*
* @return true if currently playing, false otherwise
* @throws IllegalStateException if the internal player engine has not been
* initialized or has been released.
*/
public native boolean isPlaying();
/**
* Seeks to specified time position.
*
* @param msec the offset in milliseconds from the start to seek to
* @throws IllegalStateException if the internal player engine has not been
* initialized
*/
public native void seekTo(int msec) throws IllegalStateException;
/**
* Gets the current playback position.
*
* @return the current position in milliseconds
*/
public native int getCurrentPosition();
/**
* Gets the duration of the file.
*
* @return the duration in milliseconds
*/
public native int getDuration();
/**
* Gets the media metadata.
*
* @param update_only controls whether the full set of available
* metadata is returned or just the set that changed since the
* last call. See {@see #METADATA_UPDATE_ONLY} and {@see
* #METADATA_ALL}.
*
* @param apply_filter if true only metadata that matches the
* filter is returned. See {@see #APPLY_METADATA_FILTER} and {@see
* #BYPASS_METADATA_FILTER}.
*
* @return The metadata, possibly empty. null if an error occured.
// FIXME: unhide.
* {@hide}
*/
public Metadata getMetadata(final boolean update_only,
final boolean apply_filter) {
Parcel reply = Parcel.obtain();
Metadata data = new Metadata();
if (!native_getMetadata(update_only, apply_filter, reply)) {
reply.recycle();
return null;
}
// Metadata takes over the parcel, don't recycle it unless
// there is an error.
if (!data.parse(reply)) {
reply.recycle();
return null;
}
return data;
}
/**
* Set a filter for the metadata update notification and update
* retrieval. The caller provides 2 set of metadata keys, allowed
* and blocked. The blocked set always takes precedence over the
* allowed one.
* Metadata.MATCH_ALL and Metadata.MATCH_NONE are 2 sets available as
* shorthands to allow/block all or no metadata.
*
* By default, there is no filter set.
*
* @param allow Is the set of metadata the client is interested
* in receiving new notifications for.
* @param block Is the set of metadata the client is not interested
* in receiving new notifications for.
* @return The call status code.
*
// FIXME: unhide.
* {@hide}
*/
public int setMetadataFilter(Set<Integer> allow, Set<Integer> block) {
// Do our serialization manually instead of calling
// Parcel.writeArray since the sets are made of the same type
// we avoid paying the price of calling writeValue (used by
// writeArray) which burns an extra int per element to encode
// the type.
Parcel request = newRequest();
// The parcel starts already with an interface token. There
// are 2 filters. Each one starts with a 4bytes number to
// store the len followed by a number of int (4 bytes as well)
// representing the metadata type.
int capacity = request.dataSize() + 4 * (1 + allow.size() + 1 + block.size());
if (request.dataCapacity() < capacity) {
request.setDataCapacity(capacity);
}
request.writeInt(allow.size());
for(Integer t: allow) {
request.writeInt(t);
}
request.writeInt(block.size());
for(Integer t: block) {
request.writeInt(t);
}
return native_setMetadataFilter(request);
}
/**
* Set the MediaPlayer to start when this MediaPlayer finishes playback
* (i.e. reaches the end of the stream).
* The media framework will attempt to transition from this player to
* the next as seamlessly as possible. The next player can be set at
* any time before completion. The next player must be prepared by the
* app, and the application should not call start() on it.
* The next MediaPlayer must be different from 'this'. An exception
* will be thrown if next == this.
* The application may call setNextMediaPlayer(null) to indicate no
* next player should be started at the end of playback.
* If the current player is looping, it will keep looping and the next
* player will not be started.
*
* @param next the player to start after this one completes playback.
*
*/
public native void setNextMediaPlayer(MediaPlayer next);
/**
* Releases resources associated with this MediaPlayer object.
* It is considered good practice to call this method when you're
* done using the MediaPlayer. In particular, whenever an Activity
* of an application is paused (its onPause() method is called),
* or stopped (its onStop() method is called), this method should be
* invoked to release the MediaPlayer object, unless the application
* has a special need to keep the object around. In addition to
* unnecessary resources (such as memory and instances of codecs)
* being held, failure to call this method immediately if a
* MediaPlayer object is no longer needed may also lead to
* continuous battery consumption for mobile devices, and playback
* failure for other applications if no multiple instances of the
* same codec are supported on a device. Even if multiple instances
* of the same codec are supported, some performance degradation
* may be expected when unnecessary multiple instances are used
* at the same time.
*/
public void release() {
stayAwake(false);
updateSurfaceScreenOn();
mOnPreparedListener = null;
mOnBufferingUpdateListener = null;
mOnCompletionListener = null;
mOnSeekCompleteListener = null;
mOnErrorListener = null;
mOnInfoListener = null;
mOnVideoSizeChangedListener = null;
mOnTimedTextListener = null;
_release();
}
private native void _release();
/**
* Resets the MediaPlayer to its uninitialized state. After calling
* this method, you will have to initialize it again by setting the
* data source and calling prepare().
*/
public void reset() {
stayAwake(false);
_reset();
// make sure none of the listeners get called anymore
mEventHandler.removeCallbacksAndMessages(null);
}
private native void _reset();
/**
* Sets the audio stream type for this MediaPlayer. See {@link AudioManager}
* for a list of stream types. Must call this method before prepare() or
* prepareAsync() in order for the target stream type to become effective
* thereafter.
*
* @param streamtype the audio stream type
* @see android.media.AudioManager
*/
public native void setAudioStreamType(int streamtype);
/**
* Sets the player to be looping or non-looping.
*
* @param looping whether to loop or not
*/
public native void setLooping(boolean looping);
/**
* Checks whether the MediaPlayer is looping or non-looping.
*
* @return true if the MediaPlayer is currently looping, false otherwise
*/
public native boolean isLooping();
/**
* Sets the volume on this player.
* This API is recommended for balancing the output of audio streams
* within an application. Unless you are writing an application to
* control user settings, this API should be used in preference to
* {@link AudioManager#setStreamVolume(int, int, int)} which sets the volume of ALL streams of
* a particular type. Note that the passed volume values are raw scalars.
* UI controls should be scaled logarithmically.
*
* @param leftVolume left volume scalar
* @param rightVolume right volume scalar
*/
public native void setVolume(float leftVolume, float rightVolume);
/**
* Currently not implemented, returns null.
* @deprecated
* @hide
*/
public native Bitmap getFrameAt(int msec) throws IllegalStateException;
/**
* Sets the audio session ID.
*
* @param sessionId the audio session ID.
* The audio session ID is a system wide unique identifier for the audio stream played by
* this MediaPlayer instance.
* The primary use of the audio session ID is to associate audio effects to a particular
* instance of MediaPlayer: if an audio session ID is provided when creating an audio effect,
* this effect will be applied only to the audio content of media players within the same
* audio session and not to the output mix.
* When created, a MediaPlayer instance automatically generates its own audio session ID.
* However, it is possible to force this player to be part of an already existing audio session
* by calling this method.
* This method must be called before one of the overloaded <code> setDataSource </code> methods.
* @throws IllegalStateException if it is called in an invalid state
*/
public native void setAudioSessionId(int sessionId) throws IllegalArgumentException, IllegalStateException;
/**
* Returns the audio session ID.
*
* @return the audio session ID. {@see #setAudioSessionId(int)}
* Note that the audio session ID is 0 only if a problem occured when the MediaPlayer was contructed.
*/
public native int getAudioSessionId();
/**
* Attaches an auxiliary effect to the player. A typical auxiliary effect is a reverberation
* effect which can be applied on any sound source that directs a certain amount of its
* energy to this effect. This amount is defined by setAuxEffectSendLevel().
* {@see #setAuxEffectSendLevel(float)}.
* <p>After creating an auxiliary effect (e.g.
* {@link android.media.audiofx.EnvironmentalReverb}), retrieve its ID with
* {@link android.media.audiofx.AudioEffect#getId()} and use it when calling this method
* to attach the player to the effect.
* <p>To detach the effect from the player, call this method with a null effect id.
* <p>This method must be called after one of the overloaded <code> setDataSource </code>
* methods.
* @param effectId system wide unique id of the effect to attach
*/
public native void attachAuxEffect(int effectId);
/* Do not change these values (starting with KEY_PARAMETER) without updating
* their counterparts in include/media/mediaplayer.h!
*/
// There are currently no defined keys usable from Java with get*Parameter.
// But if any keys are defined, the order must be kept in sync with include/media/mediaplayer.h.
// private static final int KEY_PARAMETER_... = ...;
/**
* Sets the parameter indicated by key.
* @param key key indicates the parameter to be set.
* @param value value of the parameter to be set.
* @return true if the parameter is set successfully, false otherwise
* {@hide}
*/
public native boolean setParameter(int key, Parcel value);
/**
* Sets the parameter indicated by key.
* @param key key indicates the parameter to be set.
* @param value value of the parameter to be set.
* @return true if the parameter is set successfully, false otherwise
* {@hide}
*/
public boolean setParameter(int key, String value) {
Parcel p = Parcel.obtain();
p.writeString(value);
boolean ret = setParameter(key, p);
p.recycle();
return ret;
}
/**
* Sets the parameter indicated by key.
* @param key key indicates the parameter to be set.
* @param value value of the parameter to be set.
* @return true if the parameter is set successfully, false otherwise
* {@hide}
*/
public boolean setParameter(int key, int value) {
Parcel p = Parcel.obtain();
p.writeInt(value);
boolean ret = setParameter(key, p);
p.recycle();
return ret;
}
/*
* Gets the value of the parameter indicated by key.
* @param key key indicates the parameter to get.
* @param reply value of the parameter to get.
*/
private native void getParameter(int key, Parcel reply);
/**
* Gets the value of the parameter indicated by key.
* The caller is responsible for recycling the returned parcel.
* @param key key indicates the parameter to get.
* @return value of the parameter.
* {@hide}
*/
public Parcel getParcelParameter(int key) {
Parcel p = Parcel.obtain();
getParameter(key, p);
return p;
}
/**
* Gets the value of the parameter indicated by key.
* @param key key indicates the parameter to get.
* @return value of the parameter.
* {@hide}
*/
public String getStringParameter(int key) {
Parcel p = Parcel.obtain();
getParameter(key, p);
String ret = p.readString();
p.recycle();
return ret;
}
/**
* Gets the value of the parameter indicated by key.
* @param key key indicates the parameter to get.
* @return value of the parameter.
* {@hide}
*/
public int getIntParameter(int key) {
Parcel p = Parcel.obtain();
getParameter(key, p);
int ret = p.readInt();
p.recycle();
return ret;
}
/**
* Sets the send level of the player to the attached auxiliary effect
* {@see #attachAuxEffect(int)}. The level value range is 0 to 1.0.
* <p>By default the send level is 0, so even if an effect is attached to the player
* this method must be called for the effect to be applied.
* <p>Note that the passed level value is a raw scalar. UI controls should be scaled
* logarithmically: the gain applied by audio framework ranges from -72dB to 0dB,
* so an appropriate conversion from linear UI input x to level is:
* x == 0 -> level = 0
* 0 < x <= R -> level = 10^(72*(x-R)/20/R)
* @param level send level scalar
*/
public native void setAuxEffectSendLevel(float level);
/*
* @param request Parcel destinated to the media player. The
* Interface token must be set to the IMediaPlayer
* one to be routed correctly through the system.
* @param reply[out] Parcel that will contain the reply.
* @return The status code.
*/
private native final int native_invoke(Parcel request, Parcel reply);
/*
* @param update_only If true fetch only the set of metadata that have
* changed since the last invocation of getMetadata.
* The set is built using the unfiltered
* notifications the native player sent to the
* MediaPlayerService during that period of
* time. If false, all the metadatas are considered.
* @param apply_filter If true, once the metadata set has been built based on
* the value update_only, the current filter is applied.
* @param reply[out] On return contains the serialized
* metadata. Valid only if the call was successful.
* @return The status code.
*/
private native final boolean native_getMetadata(boolean update_only,
boolean apply_filter,
Parcel reply);
/*
* @param request Parcel with the 2 serialized lists of allowed
* metadata types followed by the one to be
* dropped. Each list starts with an integer
* indicating the number of metadata type elements.
* @return The status code.
*/
private native final int native_setMetadataFilter(Parcel request);
private static native final void native_init();
private native final void native_setup(Object mediaplayer_this);
private native final void native_finalize();
/**
* Class for MediaPlayer to return each audio/video/subtitle track's metadata.
*
* @see android.media.MediaPlayer#getTrackInfo
*/
static public class TrackInfo implements Parcelable {
/**
* Gets the track type.
* @return TrackType which indicates if the track is video, audio, timed text.
*/
public int getTrackType() {
return mTrackType;
}
/**
* Gets the language code of the track.
* @return a language code in either way of ISO-639-1 or ISO-639-2.
* When the language is unknown or could not be determined,
* ISO-639-2 language code, "und", is returned.
*/
public String getLanguage() {
return mLanguage;
}
public static final int MEDIA_TRACK_TYPE_UNKNOWN = 0;
public static final int MEDIA_TRACK_TYPE_VIDEO = 1;
public static final int MEDIA_TRACK_TYPE_AUDIO = 2;
public static final int MEDIA_TRACK_TYPE_TIMEDTEXT = 3;
final int mTrackType;
final String mLanguage;
TrackInfo(Parcel in) {
mTrackType = in.readInt();
mLanguage = in.readString();
}
/**
* {@inheritDoc}
*/
@Override
public int describeContents() {
return 0;
}
/**
* {@inheritDoc}
*/
@Override
public void writeToParcel(Parcel dest, int flags) {
dest.writeInt(mTrackType);
dest.writeString(mLanguage);
}
/**
* Used to read a TrackInfo from a Parcel.
*/
static final Parcelable.Creator<TrackInfo> CREATOR
= new Parcelable.Creator<TrackInfo>() {
@Override
public TrackInfo createFromParcel(Parcel in) {
return new TrackInfo(in);
}
@Override
public TrackInfo[] newArray(int size) {
return new TrackInfo[size];
}
};
};
/**
* Returns an array of track information.
*
* @return Array of track info. The total number of tracks is the array length.
* Must be called again if an external timed text source has been added after any of the
* addTimedTextSource methods are called.
* @throws IllegalStateException if it is called in an invalid state.
*/
public TrackInfo[] getTrackInfo() throws IllegalStateException {
Parcel request = Parcel.obtain();
Parcel reply = Parcel.obtain();
try {
request.writeInterfaceToken(IMEDIA_PLAYER);
request.writeInt(INVOKE_ID_GET_TRACK_INFO);
invoke(request, reply);
TrackInfo trackInfo[] = reply.createTypedArray(TrackInfo.CREATOR);
return trackInfo;
} finally {
request.recycle();
reply.recycle();
}
}
/* Do not change these values without updating their counterparts
* in include/media/stagefright/MediaDefs.h and media/libstagefright/MediaDefs.cpp!
*/
/**
* MIME type for SubRip (SRT) container. Used in addTimedTextSource APIs.
*/
public static final String MEDIA_MIMETYPE_TEXT_SUBRIP = "application/x-subrip";
/*
* A helper function to check if the mime type is supported by media framework.
*/
private static boolean availableMimeTypeForExternalSource(String mimeType) {
if (mimeType == MEDIA_MIMETYPE_TEXT_SUBRIP) {
return true;
}
return false;
}
/* TODO: Limit the total number of external timed text source to a reasonable number.
*/
/**
* Adds an external timed text source file.
*
* Currently supported format is SubRip with the file extension .srt, case insensitive.
* Note that a single external timed text source may contain multiple tracks in it.
* One can find the total number of available tracks using {@link #getTrackInfo()} to see what
* additional tracks become available after this method call.
*
* @param path The file path of external timed text source file.
* @param mimeType The mime type of the file. Must be one of the mime types listed above.
* @throws IOException if the file cannot be accessed or is corrupted.
* @throws IllegalArgumentException if the mimeType is not supported.
* @throws IllegalStateException if called in an invalid state.
*/
public void addTimedTextSource(String path, String mimeType)
throws IOException, IllegalArgumentException, IllegalStateException {
if (!availableMimeTypeForExternalSource(mimeType)) {
final String msg = "Illegal mimeType for timed text source: " + mimeType;
throw new IllegalArgumentException(msg);
}
File file = new File(path);
if (file.exists()) {
FileInputStream is = new FileInputStream(file);
FileDescriptor fd = is.getFD();
addTimedTextSource(fd, mimeType);
is.close();
} else {
// We do not support the case where the path is not a file.
throw new IOException(path);
}
}
/**
* Adds an external timed text source file (Uri).
*
* Currently supported format is SubRip with the file extension .srt, case insensitive.
* Note that a single external timed text source may contain multiple tracks in it.
* One can find the total number of available tracks using {@link #getTrackInfo()} to see what
* additional tracks become available after this method call.
*
* @param context the Context to use when resolving the Uri
* @param uri the Content URI of the data you want to play
* @param mimeType The mime type of the file. Must be one of the mime types listed above.
* @throws IOException if the file cannot be accessed or is corrupted.
* @throws IllegalArgumentException if the mimeType is not supported.
* @throws IllegalStateException if called in an invalid state.
*/
public void addTimedTextSource(Context context, Uri uri, String mimeType)
throws IOException, IllegalArgumentException, IllegalStateException {
String scheme = uri.getScheme();
if(scheme == null || scheme.equals("file")) {
addTimedTextSource(uri.getPath(), mimeType);
return;
}
AssetFileDescriptor fd = null;
try {
ContentResolver resolver = context.getContentResolver();
fd = resolver.openAssetFileDescriptor(uri, "r");
if (fd == null) {
return;
}
addTimedTextSource(fd.getFileDescriptor(), mimeType);
return;
} catch (SecurityException ex) {
} catch (IOException ex) {
} finally {
if (fd != null) {
fd.close();
}
}
}
/**
* Adds an external timed text source file (FileDescriptor).
*
* It is the caller's responsibility to close the file descriptor.
* It is safe to do so as soon as this call returns.
*
* Currently supported format is SubRip. Note that a single external timed text source may
* contain multiple tracks in it. One can find the total number of available tracks
* using {@link #getTrackInfo()} to see what additional tracks become available
* after this method call.
*
* @param fd the FileDescriptor for the file you want to play
* @param mimeType The mime type of the file. Must be one of the mime types listed above.
* @throws IllegalArgumentException if the mimeType is not supported.
* @throws IllegalStateException if called in an invalid state.
*/
public void addTimedTextSource(FileDescriptor fd, String mimeType)
throws IllegalArgumentException, IllegalStateException {
// intentionally less than LONG_MAX
addTimedTextSource(fd, 0, 0x7ffffffffffffffL, mimeType);
}
/**
* Adds an external timed text file (FileDescriptor).
*
* It is the caller's responsibility to close the file descriptor.
* It is safe to do so as soon as this call returns.
*
* Currently supported format is SubRip. Note that a single external timed text source may
* contain multiple tracks in it. One can find the total number of available tracks
* using {@link #getTrackInfo()} to see what additional tracks become available
* after this method call.
*
* @param fd the FileDescriptor for the file you want to play
* @param offset the offset into the file where the data to be played starts, in bytes
* @param length the length in bytes of the data to be played
* @param mimeType The mime type of the file. Must be one of the mime types listed above.
* @throws IllegalArgumentException if the mimeType is not supported.
* @throws IllegalStateException if called in an invalid state.
*/
public void addTimedTextSource(FileDescriptor fd, long offset, long length, String mimeType)
throws IllegalArgumentException, IllegalStateException {
if (!availableMimeTypeForExternalSource(mimeType)) {
throw new IllegalArgumentException("Illegal mimeType for timed text source: " + mimeType);
}
Parcel request = Parcel.obtain();
Parcel reply = Parcel.obtain();
try {
request.writeInterfaceToken(IMEDIA_PLAYER);
request.writeInt(INVOKE_ID_ADD_EXTERNAL_SOURCE_FD);
request.writeFileDescriptor(fd);
request.writeLong(offset);
request.writeLong(length);
request.writeString(mimeType);
invoke(request, reply);
} finally {
request.recycle();
reply.recycle();
}
}
/**
* Selects a track.
* <p>
* If a MediaPlayer is in invalid state, it throws an IllegalStateException exception.
* If a MediaPlayer is in <em>Started</em> state, the selected track is presented immediately.
* If a MediaPlayer is not in Started state, it just marks the track to be played.
* </p>
* <p>
* In any valid state, if it is called multiple times on the same type of track (ie. Video,
* Audio, Timed Text), the most recent one will be chosen.
* </p>
* <p>
* The first audio and video tracks are selected by default if available, even though
* this method is not called. However, no timed text track will be selected until
* this function is called.
* </p>
* <p>
* Currently, only timed text tracks or audio tracks can be selected via this method.
* In addition, the support for selecting an audio track at runtime is pretty limited
* in that an audio track can only be selected in the <em>Prepared</em> state.
* </p>
* @param index the index of the track to be selected. The valid range of the index
* is 0..total number of track - 1. The total number of tracks as well as the type of
* each individual track can be found by calling {@link #getTrackInfo()} method.
* @throws IllegalStateException if called in an invalid state.
*
* @see android.media.MediaPlayer#getTrackInfo
*/
public void selectTrack(int index) throws IllegalStateException {
selectOrDeselectTrack(index, true /* select */);
}
/**
* Deselect a track.
* <p>
* Currently, the track must be a timed text track and no audio or video tracks can be
* deselected. If the timed text track identified by index has not been
* selected before, it throws an exception.
* </p>
* @param index the index of the track to be deselected. The valid range of the index
* is 0..total number of tracks - 1. The total number of tracks as well as the type of
* each individual track can be found by calling {@link #getTrackInfo()} method.
* @throws IllegalStateException if called in an invalid state.
*
* @see android.media.MediaPlayer#getTrackInfo
*/
public void deselectTrack(int index) throws IllegalStateException {
selectOrDeselectTrack(index, false /* select */);
}
private void selectOrDeselectTrack(int index, boolean select)
throws IllegalStateException {
Parcel request = Parcel.obtain();
Parcel reply = Parcel.obtain();
try {
request.writeInterfaceToken(IMEDIA_PLAYER);
request.writeInt(select? INVOKE_ID_SELECT_TRACK: INVOKE_ID_DESELECT_TRACK);
request.writeInt(index);
invoke(request, reply);
} finally {
request.recycle();
reply.recycle();
}
}
/**
* @param reply Parcel with audio/video duration info for battery
tracking usage
* @return The status code.
* {@hide}
*/
public native static int native_pullBatteryData(Parcel reply);
/**
* Sets the target UDP re-transmit endpoint for the low level player.
* Generally, the address portion of the endpoint is an IP multicast
* address, although a unicast address would be equally valid. When a valid
* retransmit endpoint has been set, the media player will not decode and
* render the media presentation locally. Instead, the player will attempt
* to re-multiplex its media data using the Android@Home RTP profile and
* re-transmit to the target endpoint. Receiver devices (which may be
* either the same as the transmitting device or different devices) may
* instantiate, prepare, and start a receiver player using a setDataSource
* URL of the form...
*
* aahRX://&lt;multicastIP&gt;:&lt;port&gt;
*
* to receive, decode and render the re-transmitted content.
*
* setRetransmitEndpoint may only be called before setDataSource has been
* called; while the player is in the Idle state.
*
* @param endpoint the address and UDP port of the re-transmission target or
* null if no re-transmission is to be performed.
* @throws IllegalStateException if it is called in an invalid state
* @throws IllegalArgumentException if the retransmit endpoint is supplied,
* but invalid.
*
* {@hide} pending API council
*/
public void setRetransmitEndpoint(InetSocketAddress endpoint)
throws IllegalStateException, IllegalArgumentException
{
String addrString = null;
int port = 0;
if (null != endpoint) {
addrString = endpoint.getAddress().getHostAddress();
port = endpoint.getPort();
}
int ret = native_setRetransmitEndpoint(addrString, port);
if (ret != 0) {
throw new IllegalArgumentException("Illegal re-transmit endpoint; native ret " + ret);
}
}
private native final int native_setRetransmitEndpoint(String addrString, int port);
@Override
protected void finalize() { native_finalize(); }
/* Do not change these values without updating their counterparts
* in include/media/mediaplayer.h!
*/
private static final int MEDIA_NOP = 0; // interface test message
private static final int MEDIA_PREPARED = 1;
private static final int MEDIA_PLAYBACK_COMPLETE = 2;
private static final int MEDIA_BUFFERING_UPDATE = 3;
private static final int MEDIA_SEEK_COMPLETE = 4;
private static final int MEDIA_SET_VIDEO_SIZE = 5;
private static final int MEDIA_TIMED_TEXT = 99;
private static final int MEDIA_ERROR = 100;
private static final int MEDIA_INFO = 200;
private class EventHandler extends Handler
{
private MediaPlayer mMediaPlayer;
public EventHandler(MediaPlayer mp, Looper looper) {
super(looper);
mMediaPlayer = mp;
}
@Override
public void handleMessage(Message msg) {
if (mMediaPlayer.mNativeContext == 0) {
Log.w(TAG, "mediaplayer went away with unhandled events");
return;
}
switch(msg.what) {
case MEDIA_PREPARED:
if (mOnPreparedListener != null)
mOnPreparedListener.onPrepared(mMediaPlayer);
return;
case MEDIA_PLAYBACK_COMPLETE:
if (mOnCompletionListener != null)
mOnCompletionListener.onCompletion(mMediaPlayer);
stayAwake(false);
return;
case MEDIA_BUFFERING_UPDATE:
if (mOnBufferingUpdateListener != null)
mOnBufferingUpdateListener.onBufferingUpdate(mMediaPlayer, msg.arg1);
return;
case MEDIA_SEEK_COMPLETE:
if (mOnSeekCompleteListener != null)
mOnSeekCompleteListener.onSeekComplete(mMediaPlayer);
return;
case MEDIA_SET_VIDEO_SIZE:
if (mOnVideoSizeChangedListener != null)
mOnVideoSizeChangedListener.onVideoSizeChanged(mMediaPlayer, msg.arg1, msg.arg2);
return;
case MEDIA_ERROR:
Log.e(TAG, "Error (" + msg.arg1 + "," + msg.arg2 + ")");
boolean error_was_handled = false;
if (mOnErrorListener != null) {
error_was_handled = mOnErrorListener.onError(mMediaPlayer, msg.arg1, msg.arg2);
}
if (mOnCompletionListener != null && ! error_was_handled) {
mOnCompletionListener.onCompletion(mMediaPlayer);
}
stayAwake(false);
return;
case MEDIA_INFO:
if (msg.arg1 != MEDIA_INFO_VIDEO_TRACK_LAGGING) {
Log.i(TAG, "Info (" + msg.arg1 + "," + msg.arg2 + ")");
}
if (mOnInfoListener != null) {
mOnInfoListener.onInfo(mMediaPlayer, msg.arg1, msg.arg2);
}
// No real default action so far.
return;
case MEDIA_TIMED_TEXT:
if (mOnTimedTextListener == null)
return;
if (msg.obj == null) {
mOnTimedTextListener.onTimedText(mMediaPlayer, null);
} else {
if (msg.obj instanceof Parcel) {
Parcel parcel = (Parcel)msg.obj;
TimedText text = new TimedText(parcel);
parcel.recycle();
mOnTimedTextListener.onTimedText(mMediaPlayer, text);
}
}
return;
case MEDIA_NOP: // interface test message - ignore
break;
default:
Log.e(TAG, "Unknown message type " + msg.what);
return;
}
}
}
/*
* Called from native code when an interesting event happens. This method
* just uses the EventHandler system to post the event back to the main app thread.
* We use a weak reference to the original MediaPlayer object so that the native
* code is safe from the object disappearing from underneath it. (This is
* the cookie passed to native_setup().)
*/
private static void postEventFromNative(Object mediaplayer_ref,
int what, int arg1, int arg2, Object obj)
{
MediaPlayer mp = (MediaPlayer)((WeakReference)mediaplayer_ref).get();
if (mp == null) {
return;
}
if (what == MEDIA_INFO && arg1 == MEDIA_INFO_STARTED_AS_NEXT) {
// this acquires the wakelock if needed, and sets the client side state
mp.start();
}
if (mp.mEventHandler != null) {
Message m = mp.mEventHandler.obtainMessage(what, arg1, arg2, obj);
mp.mEventHandler.sendMessage(m);
}
}
/**
* Interface definition for a callback to be invoked when the media
* source is ready for playback.
*/
public interface OnPreparedListener
{
/**
* Called when the media file is ready for playback.
*
* @param mp the MediaPlayer that is ready for playback
*/
void onPrepared(MediaPlayer mp);
}
/**
* Register a callback to be invoked when the media source is ready
* for playback.
*
* @param listener the callback that will be run
*/
public void setOnPreparedListener(OnPreparedListener listener)
{
mOnPreparedListener = listener;
}
private OnPreparedListener mOnPreparedListener;
/**
* Interface definition for a callback to be invoked when playback of
* a media source has completed.
*/
public interface OnCompletionListener
{
/**
* Called when the end of a media source is reached during playback.
*
* @param mp the MediaPlayer that reached the end of the file
*/
void onCompletion(MediaPlayer mp);
}
/**
* Register a callback to be invoked when the end of a media source
* has been reached during playback.
*
* @param listener the callback that will be run
*/
public void setOnCompletionListener(OnCompletionListener listener)
{
mOnCompletionListener = listener;
}
private OnCompletionListener mOnCompletionListener;
/**
* Interface definition of a callback to be invoked indicating buffering
* status of a media resource being streamed over the network.
*/
public interface OnBufferingUpdateListener
{
/**
* Called to update status in buffering a media stream received through
* progressive HTTP download. The received buffering percentage
* indicates how much of the content has been buffered or played.
* For example a buffering update of 80 percent when half the content
* has already been played indicates that the next 30 percent of the
* content to play has been buffered.
*
* @param mp the MediaPlayer the update pertains to
* @param percent the percentage (0-100) of the content
* that has been buffered or played thus far
*/
void onBufferingUpdate(MediaPlayer mp, int percent);
}
/**
* Register a callback to be invoked when the status of a network
* stream's buffer has changed.
*
* @param listener the callback that will be run.
*/
public void setOnBufferingUpdateListener(OnBufferingUpdateListener listener)
{
mOnBufferingUpdateListener = listener;
}
private OnBufferingUpdateListener mOnBufferingUpdateListener;
/**
* Interface definition of a callback to be invoked indicating
* the completion of a seek operation.
*/
public interface OnSeekCompleteListener
{
/**
* Called to indicate the completion of a seek operation.
*
* @param mp the MediaPlayer that issued the seek operation
*/
public void onSeekComplete(MediaPlayer mp);
}
/**
* Register a callback to be invoked when a seek operation has been
* completed.
*
* @param listener the callback that will be run
*/
public void setOnSeekCompleteListener(OnSeekCompleteListener listener)
{
mOnSeekCompleteListener = listener;
}
private OnSeekCompleteListener mOnSeekCompleteListener;
/**
* Interface definition of a callback to be invoked when the
* video size is first known or updated
*/
public interface OnVideoSizeChangedListener
{
/**
* Called to indicate the video size
*
* The video size (width and height) could be 0 if there was no video,
* no display surface was set, or the value was not determined yet.
*
* @param mp the MediaPlayer associated with this callback
* @param width the width of the video
* @param height the height of the video
*/
public void onVideoSizeChanged(MediaPlayer mp, int width, int height);
}
/**
* Register a callback to be invoked when the video size is
* known or updated.
*
* @param listener the callback that will be run
*/
public void setOnVideoSizeChangedListener(OnVideoSizeChangedListener listener)
{
mOnVideoSizeChangedListener = listener;
}
private OnVideoSizeChangedListener mOnVideoSizeChangedListener;
/**
* Interface definition of a callback to be invoked when a
* timed text is available for display.
*/
public interface OnTimedTextListener
{
/**
* Called to indicate an avaliable timed text
*
* @param mp the MediaPlayer associated with this callback
* @param text the timed text sample which contains the text
* needed to be displayed and the display format.
*/
public void onTimedText(MediaPlayer mp, TimedText text);
}
/**
* Register a callback to be invoked when a timed text is available
* for display.
*
* @param listener the callback that will be run
*/
public void setOnTimedTextListener(OnTimedTextListener listener)
{
mOnTimedTextListener = listener;
}
private OnTimedTextListener mOnTimedTextListener;
/* Do not change these values without updating their counterparts
* in include/media/mediaplayer.h!
*/
/** Unspecified media player error.
* @see android.media.MediaPlayer.OnErrorListener
*/
public static final int MEDIA_ERROR_UNKNOWN = 1;
/** Media server died. In this case, the application must release the
* MediaPlayer object and instantiate a new one.
* @see android.media.MediaPlayer.OnErrorListener
*/
public static final int MEDIA_ERROR_SERVER_DIED = 100;
/** The video is streamed and its container is not valid for progressive
* playback i.e the video's index (e.g moov atom) is not at the start of the
* file.
* @see android.media.MediaPlayer.OnErrorListener
*/
public static final int MEDIA_ERROR_NOT_VALID_FOR_PROGRESSIVE_PLAYBACK = 200;
/**
* Interface definition of a callback to be invoked when there
* has been an error during an asynchronous operation (other errors
* will throw exceptions at method call time).
*/
public interface OnErrorListener
{
/**
* Called to indicate an error.
*
* @param mp the MediaPlayer the error pertains to
* @param what the type of error that has occurred:
* <ul>
* <li>{@link #MEDIA_ERROR_UNKNOWN}
* <li>{@link #MEDIA_ERROR_SERVER_DIED}
* </ul>
* @param extra an extra code, specific to the error. Typically
* implementation dependant.
* @return True if the method handled the error, false if it didn't.
* Returning false, or not having an OnErrorListener at all, will
* cause the OnCompletionListener to be called.
*/
boolean onError(MediaPlayer mp, int what, int extra);
}
/**
* Register a callback to be invoked when an error has happened
* during an asynchronous operation.
*
* @param listener the callback that will be run
*/
public void setOnErrorListener(OnErrorListener listener)
{
mOnErrorListener = listener;
}
private OnErrorListener mOnErrorListener;
/* Do not change these values without updating their counterparts
* in include/media/mediaplayer.h!
*/
/** Unspecified media player info.
* @see android.media.MediaPlayer.OnInfoListener
*/
public static final int MEDIA_INFO_UNKNOWN = 1;
/** The player was started because it was used as the next player for another
* player, which just completed playback.
* @see android.media.MediaPlayer.OnInfoListener
* @hide
*/
public static final int MEDIA_INFO_STARTED_AS_NEXT = 2;
/** The video is too complex for the decoder: it can't decode frames fast
* enough. Possibly only the audio plays fine at this stage.
* @see android.media.MediaPlayer.OnInfoListener
*/
public static final int MEDIA_INFO_VIDEO_TRACK_LAGGING = 700;
/** MediaPlayer is temporarily pausing playback internally in order to
* buffer more data.
* @see android.media.MediaPlayer.OnInfoListener
*/
public static final int MEDIA_INFO_BUFFERING_START = 701;
/** MediaPlayer is resuming playback after filling buffers.
* @see android.media.MediaPlayer.OnInfoListener
*/
public static final int MEDIA_INFO_BUFFERING_END = 702;
/** Bad interleaving means that a media has been improperly interleaved or
* not interleaved at all, e.g has all the video samples first then all the
* audio ones. Video is playing but a lot of disk seeks may be happening.
* @see android.media.MediaPlayer.OnInfoListener
*/
public static final int MEDIA_INFO_BAD_INTERLEAVING = 800;
/** The media cannot be seeked (e.g live stream)
* @see android.media.MediaPlayer.OnInfoListener
*/
public static final int MEDIA_INFO_NOT_SEEKABLE = 801;
/** A new set of metadata is available.
* @see android.media.MediaPlayer.OnInfoListener
*/
public static final int MEDIA_INFO_METADATA_UPDATE = 802;
/** Failed to handle timed text track properly.
* @see android.media.MediaPlayer.OnInfoListener
*
* {@hide}
*/
public static final int MEDIA_INFO_TIMED_TEXT_ERROR = 900;
/**
* Interface definition of a callback to be invoked to communicate some
* info and/or warning about the media or its playback.
*/
public interface OnInfoListener
{
/**
* Called to indicate an info or a warning.
*
* @param mp the MediaPlayer the info pertains to.
* @param what the type of info or warning.
* <ul>
* <li>{@link #MEDIA_INFO_UNKNOWN}
* <li>{@link #MEDIA_INFO_VIDEO_TRACK_LAGGING}
* <li>{@link #MEDIA_INFO_BUFFERING_START}
* <li>{@link #MEDIA_INFO_BUFFERING_END}
* <li>{@link #MEDIA_INFO_BAD_INTERLEAVING}
* <li>{@link #MEDIA_INFO_NOT_SEEKABLE}
* <li>{@link #MEDIA_INFO_METADATA_UPDATE}
* </ul>
* @param extra an extra code, specific to the info. Typically
* implementation dependant.
* @return True if the method handled the info, false if it didn't.
* Returning false, or not having an OnErrorListener at all, will
* cause the info to be discarded.
*/
boolean onInfo(MediaPlayer mp, int what, int extra);
}
/**
* Register a callback to be invoked when an info/warning is available.
*
* @param listener the callback that will be run
*/
public void setOnInfoListener(OnInfoListener listener)
{
mOnInfoListener = listener;
}
private OnInfoListener mOnInfoListener;
/*
* Test whether a given video scaling mode is supported.
*/
private boolean isVideoScalingModeSupported(int mode) {
return (mode == VIDEO_SCALING_MODE_SCALE_TO_FIT ||
mode == VIDEO_SCALING_MODE_SCALE_TO_FIT_WITH_CROPPING);
}
}