blob: 4312ad9c001f3bae9e99204a2cdfd913d0498e91 [file] [log] [blame]
/*
* Copyright (C) 2006 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.text;
import android.annotation.Nullable;
import android.compat.annotation.UnsupportedAppUsage;
import android.graphics.BaseCanvas;
import android.graphics.Paint;
import android.os.Build;
import android.util.Log;
import com.android.internal.annotations.GuardedBy;
import com.android.internal.util.ArrayUtils;
import com.android.internal.util.GrowingArrayUtils;
import libcore.util.EmptyArray;
import java.lang.reflect.Array;
import java.util.IdentityHashMap;
/**
* This is the class for text whose content and markup can both be changed.
*/
public class SpannableStringBuilder implements CharSequence, GetChars, Spannable, Editable,
Appendable, GraphicsOperations {
private final static String TAG = "SpannableStringBuilder";
/**
* Create a new SpannableStringBuilder with empty contents
*/
public SpannableStringBuilder() {
this("");
}
/**
* Create a new SpannableStringBuilder containing a copy of the
* specified text, including its spans if any.
*/
public SpannableStringBuilder(CharSequence text) {
this(text, 0, text.length());
}
/**
* Create a new SpannableStringBuilder containing a copy of the
* specified slice of the specified text, including its spans if any.
*/
public SpannableStringBuilder(CharSequence text, int start, int end) {
int srclen = end - start;
if (srclen < 0) throw new StringIndexOutOfBoundsException();
mText = ArrayUtils.newUnpaddedCharArray(GrowingArrayUtils.growSize(srclen));
mGapStart = srclen;
mGapLength = mText.length - srclen;
TextUtils.getChars(text, start, end, mText, 0);
mSpanCount = 0;
mSpanInsertCount = 0;
mSpans = EmptyArray.OBJECT;
mSpanStarts = EmptyArray.INT;
mSpanEnds = EmptyArray.INT;
mSpanFlags = EmptyArray.INT;
mSpanMax = EmptyArray.INT;
mSpanOrder = EmptyArray.INT;
if (text instanceof Spanned) {
Spanned sp = (Spanned) text;
Object[] spans = sp.getSpans(start, end, Object.class);
for (int i = 0; i < spans.length; i++) {
if (spans[i] instanceof NoCopySpan) {
continue;
}
int st = sp.getSpanStart(spans[i]) - start;
int en = sp.getSpanEnd(spans[i]) - start;
int fl = sp.getSpanFlags(spans[i]);
if (st < 0)
st = 0;
if (st > end - start)
st = end - start;
if (en < 0)
en = 0;
if (en > end - start)
en = end - start;
setSpan(false, spans[i], st, en, fl, false/*enforceParagraph*/);
}
restoreInvariants();
}
}
public static SpannableStringBuilder valueOf(CharSequence source) {
if (source instanceof SpannableStringBuilder) {
return (SpannableStringBuilder) source;
} else {
return new SpannableStringBuilder(source);
}
}
/**
* Return the char at the specified offset within the buffer.
*/
public char charAt(int where) {
int len = length();
if (where < 0) {
throw new IndexOutOfBoundsException("charAt: " + where + " < 0");
} else if (where >= len) {
throw new IndexOutOfBoundsException("charAt: " + where + " >= length " + len);
}
if (where >= mGapStart)
return mText[where + mGapLength];
else
return mText[where];
}
/**
* Return the number of chars in the buffer.
*/
public int length() {
return mText.length - mGapLength;
}
private void resizeFor(int size) {
final int oldLength = mText.length;
if (size + 1 <= oldLength) {
return;
}
char[] newText = ArrayUtils.newUnpaddedCharArray(GrowingArrayUtils.growSize(size));
System.arraycopy(mText, 0, newText, 0, mGapStart);
final int newLength = newText.length;
final int delta = newLength - oldLength;
final int after = oldLength - (mGapStart + mGapLength);
System.arraycopy(mText, oldLength - after, newText, newLength - after, after);
mText = newText;
mGapLength += delta;
if (mGapLength < 1)
new Exception("mGapLength < 1").printStackTrace();
if (mSpanCount != 0) {
for (int i = 0; i < mSpanCount; i++) {
if (mSpanStarts[i] > mGapStart) mSpanStarts[i] += delta;
if (mSpanEnds[i] > mGapStart) mSpanEnds[i] += delta;
}
calcMax(treeRoot());
}
}
private void moveGapTo(int where) {
if (where == mGapStart)
return;
boolean atEnd = (where == length());
if (where < mGapStart) {
int overlap = mGapStart - where;
System.arraycopy(mText, where, mText, mGapStart + mGapLength - overlap, overlap);
} else /* where > mGapStart */ {
int overlap = where - mGapStart;
System.arraycopy(mText, where + mGapLength - overlap, mText, mGapStart, overlap);
}
// TODO: be more clever (although the win really isn't that big)
if (mSpanCount != 0) {
for (int i = 0; i < mSpanCount; i++) {
int start = mSpanStarts[i];
int end = mSpanEnds[i];
if (start > mGapStart)
start -= mGapLength;
if (start > where)
start += mGapLength;
else if (start == where) {
int flag = (mSpanFlags[i] & START_MASK) >> START_SHIFT;
if (flag == POINT || (atEnd && flag == PARAGRAPH))
start += mGapLength;
}
if (end > mGapStart)
end -= mGapLength;
if (end > where)
end += mGapLength;
else if (end == where) {
int flag = (mSpanFlags[i] & END_MASK);
if (flag == POINT || (atEnd && flag == PARAGRAPH))
end += mGapLength;
}
mSpanStarts[i] = start;
mSpanEnds[i] = end;
}
calcMax(treeRoot());
}
mGapStart = where;
}
// Documentation from interface
public SpannableStringBuilder insert(int where, CharSequence tb, int start, int end) {
return replace(where, where, tb, start, end);
}
// Documentation from interface
public SpannableStringBuilder insert(int where, CharSequence tb) {
return replace(where, where, tb, 0, tb.length());
}
// Documentation from interface
public SpannableStringBuilder delete(int start, int end) {
SpannableStringBuilder ret = replace(start, end, "", 0, 0);
if (mGapLength > 2 * length())
resizeFor(length());
return ret; // == this
}
// Documentation from interface
public void clear() {
replace(0, length(), "", 0, 0);
mSpanInsertCount = 0;
}
// Documentation from interface
public void clearSpans() {
for (int i = mSpanCount - 1; i >= 0; i--) {
Object what = mSpans[i];
int ostart = mSpanStarts[i];
int oend = mSpanEnds[i];
if (ostart > mGapStart)
ostart -= mGapLength;
if (oend > mGapStart)
oend -= mGapLength;
mSpanCount = i;
mSpans[i] = null;
sendSpanRemoved(what, ostart, oend);
}
if (mIndexOfSpan != null) {
mIndexOfSpan.clear();
}
mSpanInsertCount = 0;
}
// Documentation from interface
public SpannableStringBuilder append(CharSequence text) {
int length = length();
return replace(length, length, text, 0, text.length());
}
/**
* Appends the character sequence {@code text} and spans {@code what} over the appended part.
* See {@link Spanned} for an explanation of what the flags mean.
* @param text the character sequence to append.
* @param what the object to be spanned over the appended text.
* @param flags see {@link Spanned}.
* @return this {@code SpannableStringBuilder}.
*/
public SpannableStringBuilder append(CharSequence text, Object what, int flags) {
int start = length();
append(text);
setSpan(what, start, length(), flags);
return this;
}
// Documentation from interface
public SpannableStringBuilder append(CharSequence text, int start, int end) {
int length = length();
return replace(length, length, text, start, end);
}
// Documentation from interface
public SpannableStringBuilder append(char text) {
return append(String.valueOf(text));
}
// Returns true if a node was removed (so we can restart search from root)
private boolean removeSpansForChange(int start, int end, boolean textIsRemoved, int i) {
if ((i & 1) != 0) {
// internal tree node
if (resolveGap(mSpanMax[i]) >= start &&
removeSpansForChange(start, end, textIsRemoved, leftChild(i))) {
return true;
}
}
if (i < mSpanCount) {
if ((mSpanFlags[i] & Spanned.SPAN_EXCLUSIVE_EXCLUSIVE) ==
Spanned.SPAN_EXCLUSIVE_EXCLUSIVE &&
mSpanStarts[i] >= start && mSpanStarts[i] < mGapStart + mGapLength &&
mSpanEnds[i] >= start && mSpanEnds[i] < mGapStart + mGapLength &&
// The following condition indicates that the span would become empty
(textIsRemoved || mSpanStarts[i] > start || mSpanEnds[i] < mGapStart)) {
mIndexOfSpan.remove(mSpans[i]);
removeSpan(i, 0 /* flags */);
return true;
}
return resolveGap(mSpanStarts[i]) <= end && (i & 1) != 0 &&
removeSpansForChange(start, end, textIsRemoved, rightChild(i));
}
return false;
}
private void change(int start, int end, CharSequence cs, int csStart, int csEnd) {
// Can be negative
final int replacedLength = end - start;
final int replacementLength = csEnd - csStart;
final int nbNewChars = replacementLength - replacedLength;
boolean changed = false;
for (int i = mSpanCount - 1; i >= 0; i--) {
int spanStart = mSpanStarts[i];
if (spanStart > mGapStart)
spanStart -= mGapLength;
int spanEnd = mSpanEnds[i];
if (spanEnd > mGapStart)
spanEnd -= mGapLength;
if ((mSpanFlags[i] & SPAN_PARAGRAPH) == SPAN_PARAGRAPH) {
int ost = spanStart;
int oen = spanEnd;
int clen = length();
if (spanStart > start && spanStart <= end) {
for (spanStart = end; spanStart < clen; spanStart++)
if (spanStart > end && charAt(spanStart - 1) == '\n')
break;
}
if (spanEnd > start && spanEnd <= end) {
for (spanEnd = end; spanEnd < clen; spanEnd++)
if (spanEnd > end && charAt(spanEnd - 1) == '\n')
break;
}
if (spanStart != ost || spanEnd != oen) {
setSpan(false, mSpans[i], spanStart, spanEnd, mSpanFlags[i],
true/*enforceParagraph*/);
changed = true;
}
}
int flags = 0;
if (spanStart == start) flags |= SPAN_START_AT_START;
else if (spanStart == end + nbNewChars) flags |= SPAN_START_AT_END;
if (spanEnd == start) flags |= SPAN_END_AT_START;
else if (spanEnd == end + nbNewChars) flags |= SPAN_END_AT_END;
mSpanFlags[i] |= flags;
}
if (changed) {
restoreInvariants();
}
moveGapTo(end);
if (nbNewChars >= mGapLength) {
resizeFor(mText.length + nbNewChars - mGapLength);
}
final boolean textIsRemoved = replacementLength == 0;
// The removal pass needs to be done before the gap is updated in order to broadcast the
// correct previous positions to the correct intersecting SpanWatchers
if (replacedLength > 0) { // no need for span fixup on pure insertion
while (mSpanCount > 0 &&
removeSpansForChange(start, end, textIsRemoved, treeRoot())) {
// keep deleting spans as needed, and restart from root after every deletion
// because deletion can invalidate an index.
}
}
mGapStart += nbNewChars;
mGapLength -= nbNewChars;
if (mGapLength < 1)
new Exception("mGapLength < 1").printStackTrace();
TextUtils.getChars(cs, csStart, csEnd, mText, start);
if (replacedLength > 0) { // no need for span fixup on pure insertion
// TODO potential optimization: only update bounds on intersecting spans
final boolean atEnd = (mGapStart + mGapLength == mText.length);
for (int i = 0; i < mSpanCount; i++) {
final int startFlag = (mSpanFlags[i] & START_MASK) >> START_SHIFT;
mSpanStarts[i] = updatedIntervalBound(mSpanStarts[i], start, nbNewChars, startFlag,
atEnd, textIsRemoved);
final int endFlag = (mSpanFlags[i] & END_MASK);
mSpanEnds[i] = updatedIntervalBound(mSpanEnds[i], start, nbNewChars, endFlag,
atEnd, textIsRemoved);
}
// TODO potential optimization: only fix up invariants when bounds actually changed
restoreInvariants();
}
if (cs instanceof Spanned) {
Spanned sp = (Spanned) cs;
Object[] spans = sp.getSpans(csStart, csEnd, Object.class);
for (int i = 0; i < spans.length; i++) {
int st = sp.getSpanStart(spans[i]);
int en = sp.getSpanEnd(spans[i]);
if (st < csStart) st = csStart;
if (en > csEnd) en = csEnd;
// Add span only if this object is not yet used as a span in this string
if (getSpanStart(spans[i]) < 0) {
int copySpanStart = st - csStart + start;
int copySpanEnd = en - csStart + start;
int copySpanFlags = sp.getSpanFlags(spans[i]) | SPAN_ADDED;
setSpan(false, spans[i], copySpanStart, copySpanEnd, copySpanFlags,
false/*enforceParagraph*/);
}
}
restoreInvariants();
}
}
private int updatedIntervalBound(int offset, int start, int nbNewChars, int flag, boolean atEnd,
boolean textIsRemoved) {
if (offset >= start && offset < mGapStart + mGapLength) {
if (flag == POINT) {
// A POINT located inside the replaced range should be moved to the end of the
// replaced text.
// The exception is when the point is at the start of the range and we are doing a
// text replacement (as opposed to a deletion): the point stays there.
if (textIsRemoved || offset > start) {
return mGapStart + mGapLength;
}
} else {
if (flag == PARAGRAPH) {
if (atEnd) {
return mGapStart + mGapLength;
}
} else { // MARK
// MARKs should be moved to the start, with the exception of a mark located at
// the end of the range (which will be < mGapStart + mGapLength since mGapLength
// is > 0, which should stay 'unchanged' at the end of the replaced text.
if (textIsRemoved || offset < mGapStart - nbNewChars) {
return start;
} else {
// Move to the end of replaced text (needed if nbNewChars != 0)
return mGapStart;
}
}
}
}
return offset;
}
// Note: caller is responsible for removing the mIndexOfSpan entry.
private void removeSpan(int i, int flags) {
Object object = mSpans[i];
int start = mSpanStarts[i];
int end = mSpanEnds[i];
if (start > mGapStart) start -= mGapLength;
if (end > mGapStart) end -= mGapLength;
int count = mSpanCount - (i + 1);
System.arraycopy(mSpans, i + 1, mSpans, i, count);
System.arraycopy(mSpanStarts, i + 1, mSpanStarts, i, count);
System.arraycopy(mSpanEnds, i + 1, mSpanEnds, i, count);
System.arraycopy(mSpanFlags, i + 1, mSpanFlags, i, count);
System.arraycopy(mSpanOrder, i + 1, mSpanOrder, i, count);
mSpanCount--;
invalidateIndex(i);
mSpans[mSpanCount] = null;
// Invariants must be restored before sending span removed notifications.
restoreInvariants();
if ((flags & Spanned.SPAN_INTERMEDIATE) == 0) {
sendSpanRemoved(object, start, end);
}
}
// Documentation from interface
public SpannableStringBuilder replace(int start, int end, CharSequence tb) {
return replace(start, end, tb, 0, tb.length());
}
// Documentation from interface
public SpannableStringBuilder replace(final int start, final int end,
CharSequence tb, int tbstart, int tbend) {
checkRange("replace", start, end);
int filtercount = mFilters.length;
for (int i = 0; i < filtercount; i++) {
CharSequence repl = mFilters[i].filter(tb, tbstart, tbend, this, start, end);
if (repl != null) {
tb = repl;
tbstart = 0;
tbend = repl.length();
}
}
final int origLen = end - start;
final int newLen = tbend - tbstart;
if (origLen == 0 && newLen == 0 && !hasNonExclusiveExclusiveSpanAt(tb, tbstart)) {
// This is a no-op iif there are no spans in tb that would be added (with a 0-length)
// Early exit so that the text watchers do not get notified
return this;
}
TextWatcher[] textWatchers = getSpans(start, start + origLen, TextWatcher.class);
sendBeforeTextChanged(textWatchers, start, origLen, newLen);
// Try to keep the cursor / selection at the same relative position during
// a text replacement. If replaced or replacement text length is zero, this
// is already taken care of.
boolean adjustSelection = origLen != 0 && newLen != 0;
int selectionStart = 0;
int selectionEnd = 0;
if (adjustSelection) {
selectionStart = Selection.getSelectionStart(this);
selectionEnd = Selection.getSelectionEnd(this);
}
change(start, end, tb, tbstart, tbend);
if (adjustSelection) {
boolean changed = false;
if (selectionStart > start && selectionStart < end) {
final long diff = selectionStart - start;
final int offset = Math.toIntExact(diff * newLen / origLen);
selectionStart = start + offset;
changed = true;
setSpan(false, Selection.SELECTION_START, selectionStart, selectionStart,
Spanned.SPAN_POINT_POINT, true/*enforceParagraph*/);
}
if (selectionEnd > start && selectionEnd < end) {
final long diff = selectionEnd - start;
final int offset = Math.toIntExact(diff * newLen / origLen);
selectionEnd = start + offset;
changed = true;
setSpan(false, Selection.SELECTION_END, selectionEnd, selectionEnd,
Spanned.SPAN_POINT_POINT, true/*enforceParagraph*/);
}
if (changed) {
restoreInvariants();
}
}
sendTextChanged(textWatchers, start, origLen, newLen);
sendAfterTextChanged(textWatchers);
// Span watchers need to be called after text watchers, which may update the layout
sendToSpanWatchers(start, end, newLen - origLen);
return this;
}
private static boolean hasNonExclusiveExclusiveSpanAt(CharSequence text, int offset) {
if (text instanceof Spanned) {
Spanned spanned = (Spanned) text;
Object[] spans = spanned.getSpans(offset, offset, Object.class);
final int length = spans.length;
for (int i = 0; i < length; i++) {
Object span = spans[i];
int flags = spanned.getSpanFlags(span);
if (flags != Spanned.SPAN_EXCLUSIVE_EXCLUSIVE) return true;
}
}
return false;
}
@UnsupportedAppUsage
private void sendToSpanWatchers(int replaceStart, int replaceEnd, int nbNewChars) {
for (int i = 0; i < mSpanCount; i++) {
int spanFlags = mSpanFlags[i];
// This loop handles only modified (not added) spans.
if ((spanFlags & SPAN_ADDED) != 0) continue;
int spanStart = mSpanStarts[i];
int spanEnd = mSpanEnds[i];
if (spanStart > mGapStart) spanStart -= mGapLength;
if (spanEnd > mGapStart) spanEnd -= mGapLength;
int newReplaceEnd = replaceEnd + nbNewChars;
boolean spanChanged = false;
int previousSpanStart = spanStart;
if (spanStart > newReplaceEnd) {
if (nbNewChars != 0) {
previousSpanStart -= nbNewChars;
spanChanged = true;
}
} else if (spanStart >= replaceStart) {
// No change if span start was already at replace interval boundaries before replace
if ((spanStart != replaceStart ||
((spanFlags & SPAN_START_AT_START) != SPAN_START_AT_START)) &&
(spanStart != newReplaceEnd ||
((spanFlags & SPAN_START_AT_END) != SPAN_START_AT_END))) {
// TODO A correct previousSpanStart cannot be computed at this point.
// It would require to save all the previous spans' positions before the replace
// Using an invalid -1 value to convey this would break the broacast range
spanChanged = true;
}
}
int previousSpanEnd = spanEnd;
if (spanEnd > newReplaceEnd) {
if (nbNewChars != 0) {
previousSpanEnd -= nbNewChars;
spanChanged = true;
}
} else if (spanEnd >= replaceStart) {
// No change if span start was already at replace interval boundaries before replace
if ((spanEnd != replaceStart ||
((spanFlags & SPAN_END_AT_START) != SPAN_END_AT_START)) &&
(spanEnd != newReplaceEnd ||
((spanFlags & SPAN_END_AT_END) != SPAN_END_AT_END))) {
// TODO same as above for previousSpanEnd
spanChanged = true;
}
}
if (spanChanged) {
sendSpanChanged(mSpans[i], previousSpanStart, previousSpanEnd, spanStart, spanEnd);
}
mSpanFlags[i] &= ~SPAN_START_END_MASK;
}
// Handle added spans
for (int i = 0; i < mSpanCount; i++) {
int spanFlags = mSpanFlags[i];
if ((spanFlags & SPAN_ADDED) != 0) {
mSpanFlags[i] &= ~SPAN_ADDED;
int spanStart = mSpanStarts[i];
int spanEnd = mSpanEnds[i];
if (spanStart > mGapStart) spanStart -= mGapLength;
if (spanEnd > mGapStart) spanEnd -= mGapLength;
sendSpanAdded(mSpans[i], spanStart, spanEnd);
}
}
}
/**
* Mark the specified range of text with the specified object.
* The flags determine how the span will behave when text is
* inserted at the start or end of the span's range.
*/
public void setSpan(Object what, int start, int end, int flags) {
setSpan(true, what, start, end, flags, true/*enforceParagraph*/);
}
// Note: if send is false, then it is the caller's responsibility to restore
// invariants. If send is false and the span already exists, then this method
// will not change the index of any spans.
private void setSpan(boolean send, Object what, int start, int end, int flags,
boolean enforceParagraph) {
checkRange("setSpan", start, end);
int flagsStart = (flags & START_MASK) >> START_SHIFT;
if (isInvalidParagraph(start, flagsStart)) {
if (!enforceParagraph) {
// do not set the span
return;
}
throw new RuntimeException("PARAGRAPH span must start at paragraph boundary"
+ " (" + start + " follows " + charAt(start - 1) + ")");
}
int flagsEnd = flags & END_MASK;
if (isInvalidParagraph(end, flagsEnd)) {
if (!enforceParagraph) {
// do not set the span
return;
}
throw new RuntimeException("PARAGRAPH span must end at paragraph boundary"
+ " (" + end + " follows " + charAt(end - 1) + ")");
}
// 0-length Spanned.SPAN_EXCLUSIVE_EXCLUSIVE
if (flagsStart == POINT && flagsEnd == MARK && start == end) {
if (send) {
Log.e(TAG, "SPAN_EXCLUSIVE_EXCLUSIVE spans cannot have a zero length");
}
// Silently ignore invalid spans when they are created from this class.
// This avoids the duplication of the above test code before all the
// calls to setSpan that are done in this class
return;
}
int nstart = start;
int nend = end;
if (start > mGapStart) {
start += mGapLength;
} else if (start == mGapStart) {
if (flagsStart == POINT || (flagsStart == PARAGRAPH && start == length()))
start += mGapLength;
}
if (end > mGapStart) {
end += mGapLength;
} else if (end == mGapStart) {
if (flagsEnd == POINT || (flagsEnd == PARAGRAPH && end == length()))
end += mGapLength;
}
if (mIndexOfSpan != null) {
Integer index = mIndexOfSpan.get(what);
if (index != null) {
int i = index;
int ostart = mSpanStarts[i];
int oend = mSpanEnds[i];
if (ostart > mGapStart)
ostart -= mGapLength;
if (oend > mGapStart)
oend -= mGapLength;
mSpanStarts[i] = start;
mSpanEnds[i] = end;
mSpanFlags[i] = flags;
if (send) {
restoreInvariants();
sendSpanChanged(what, ostart, oend, nstart, nend);
}
return;
}
}
mSpans = GrowingArrayUtils.append(mSpans, mSpanCount, what);
mSpanStarts = GrowingArrayUtils.append(mSpanStarts, mSpanCount, start);
mSpanEnds = GrowingArrayUtils.append(mSpanEnds, mSpanCount, end);
mSpanFlags = GrowingArrayUtils.append(mSpanFlags, mSpanCount, flags);
mSpanOrder = GrowingArrayUtils.append(mSpanOrder, mSpanCount, mSpanInsertCount);
invalidateIndex(mSpanCount);
mSpanCount++;
mSpanInsertCount++;
// Make sure there is enough room for empty interior nodes.
// This magic formula computes the size of the smallest perfect binary
// tree no smaller than mSpanCount.
int sizeOfMax = 2 * treeRoot() + 1;
if (mSpanMax.length < sizeOfMax) {
mSpanMax = new int[sizeOfMax];
}
if (send) {
restoreInvariants();
sendSpanAdded(what, nstart, nend);
}
}
private boolean isInvalidParagraph(int index, int flag) {
return flag == PARAGRAPH && index != 0 && index != length() && charAt(index - 1) != '\n';
}
/**
* Remove the specified markup object from the buffer.
*/
public void removeSpan(Object what) {
removeSpan(what, 0 /* flags */);
}
/**
* Remove the specified markup object from the buffer.
*
* @hide
*/
public void removeSpan(Object what, int flags) {
if (mIndexOfSpan == null) return;
Integer i = mIndexOfSpan.remove(what);
if (i != null) {
removeSpan(i.intValue(), flags);
}
}
/**
* Return externally visible offset given offset into gapped buffer.
*/
private int resolveGap(int i) {
return i > mGapStart ? i - mGapLength : i;
}
/**
* Return the buffer offset of the beginning of the specified
* markup object, or -1 if it is not attached to this buffer.
*/
public int getSpanStart(Object what) {
if (mIndexOfSpan == null) return -1;
Integer i = mIndexOfSpan.get(what);
return i == null ? -1 : resolveGap(mSpanStarts[i]);
}
/**
* Return the buffer offset of the end of the specified
* markup object, or -1 if it is not attached to this buffer.
*/
public int getSpanEnd(Object what) {
if (mIndexOfSpan == null) return -1;
Integer i = mIndexOfSpan.get(what);
return i == null ? -1 : resolveGap(mSpanEnds[i]);
}
/**
* Return the flags of the end of the specified
* markup object, or 0 if it is not attached to this buffer.
*/
public int getSpanFlags(Object what) {
if (mIndexOfSpan == null) return 0;
Integer i = mIndexOfSpan.get(what);
return i == null ? 0 : mSpanFlags[i];
}
/**
* Return an array of the spans of the specified type that overlap
* the specified range of the buffer. The kind may be Object.class to get
* a list of all the spans regardless of type.
*/
@SuppressWarnings("unchecked")
public <T> T[] getSpans(int queryStart, int queryEnd, @Nullable Class<T> kind) {
return getSpans(queryStart, queryEnd, kind, true);
}
/**
* Return an array of the spans of the specified type that overlap
* the specified range of the buffer. The kind may be Object.class to get
* a list of all the spans regardless of type.
*
* @param queryStart Start index.
* @param queryEnd End index.
* @param kind Class type to search for.
* @param sortByInsertionOrder If true the results are sorted by the insertion order.
* @param <T>
* @return Array of the spans. Empty array if no results are found.
*
* @hide
*/
@UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553)
public <T> T[] getSpans(int queryStart, int queryEnd, @Nullable Class<T> kind,
boolean sortByInsertionOrder) {
if (kind == null) return (T[]) ArrayUtils.emptyArray(Object.class);
if (mSpanCount == 0) return ArrayUtils.emptyArray(kind);
int count = countSpans(queryStart, queryEnd, kind, treeRoot());
if (count == 0) {
return ArrayUtils.emptyArray(kind);
}
// Safe conversion, but requires a suppressWarning
T[] ret = (T[]) Array.newInstance(kind, count);
final int[] prioSortBuffer = sortByInsertionOrder ? obtain(count) : EmptyArray.INT;
final int[] orderSortBuffer = sortByInsertionOrder ? obtain(count) : EmptyArray.INT;
getSpansRec(queryStart, queryEnd, kind, treeRoot(), ret, prioSortBuffer,
orderSortBuffer, 0, sortByInsertionOrder);
if (sortByInsertionOrder) {
sort(ret, prioSortBuffer, orderSortBuffer);
recycle(prioSortBuffer);
recycle(orderSortBuffer);
}
return ret;
}
private int countSpans(int queryStart, int queryEnd, Class kind, int i) {
int count = 0;
if ((i & 1) != 0) {
// internal tree node
int left = leftChild(i);
int spanMax = mSpanMax[left];
if (spanMax > mGapStart) {
spanMax -= mGapLength;
}
if (spanMax >= queryStart) {
count = countSpans(queryStart, queryEnd, kind, left);
}
}
if (i < mSpanCount) {
int spanStart = mSpanStarts[i];
if (spanStart > mGapStart) {
spanStart -= mGapLength;
}
if (spanStart <= queryEnd) {
int spanEnd = mSpanEnds[i];
if (spanEnd > mGapStart) {
spanEnd -= mGapLength;
}
if (spanEnd >= queryStart &&
(spanStart == spanEnd || queryStart == queryEnd ||
(spanStart != queryEnd && spanEnd != queryStart)) &&
(Object.class == kind || kind.isInstance(mSpans[i]))) {
count++;
}
if ((i & 1) != 0) {
count += countSpans(queryStart, queryEnd, kind, rightChild(i));
}
}
}
return count;
}
/**
* Fills the result array with the spans found under the current interval tree node.
*
* @param queryStart Start index for the interval query.
* @param queryEnd End index for the interval query.
* @param kind Class type to search for.
* @param i Index of the current tree node.
* @param ret Array to be filled with results.
* @param priority Buffer to keep record of the priorities of spans found.
* @param insertionOrder Buffer to keep record of the insertion orders of spans found.
* @param count The number of found spans.
* @param sort Flag to fill the priority and insertion order buffers. If false then
* the spans with priority flag will be sorted in the result array.
* @param <T>
* @return The total number of spans found.
*/
@SuppressWarnings("unchecked")
private <T> int getSpansRec(int queryStart, int queryEnd, Class<T> kind,
int i, T[] ret, int[] priority, int[] insertionOrder, int count, boolean sort) {
if ((i & 1) != 0) {
// internal tree node
int left = leftChild(i);
int spanMax = mSpanMax[left];
if (spanMax > mGapStart) {
spanMax -= mGapLength;
}
if (spanMax >= queryStart) {
count = getSpansRec(queryStart, queryEnd, kind, left, ret, priority,
insertionOrder, count, sort);
}
}
if (i >= mSpanCount) return count;
int spanStart = mSpanStarts[i];
if (spanStart > mGapStart) {
spanStart -= mGapLength;
}
if (spanStart <= queryEnd) {
int spanEnd = mSpanEnds[i];
if (spanEnd > mGapStart) {
spanEnd -= mGapLength;
}
if (spanEnd >= queryStart &&
(spanStart == spanEnd || queryStart == queryEnd ||
(spanStart != queryEnd && spanEnd != queryStart)) &&
(Object.class == kind || kind.isInstance(mSpans[i]))) {
int spanPriority = mSpanFlags[i] & SPAN_PRIORITY;
int target = count;
if (sort) {
priority[target] = spanPriority;
insertionOrder[target] = mSpanOrder[i];
} else if (spanPriority != 0) {
//insertion sort for elements with priority
int j = 0;
for (; j < count; j++) {
int p = getSpanFlags(ret[j]) & SPAN_PRIORITY;
if (spanPriority > p) break;
}
System.arraycopy(ret, j, ret, j + 1, count - j);
target = j;
}
ret[target] = (T) mSpans[i];
count++;
}
if (count < ret.length && (i & 1) != 0) {
count = getSpansRec(queryStart, queryEnd, kind, rightChild(i), ret, priority,
insertionOrder, count, sort);
}
}
return count;
}
/**
* Obtain a temporary sort buffer.
*
* @param elementCount the size of the int[] to be returned
* @return an int[] with elementCount length
*/
private static int[] obtain(final int elementCount) {
int[] result = null;
synchronized (sCachedIntBuffer) {
// try finding a tmp buffer with length of at least elementCount
// if not get the first available one
int candidateIndex = -1;
for (int i = sCachedIntBuffer.length - 1; i >= 0; i--) {
if (sCachedIntBuffer[i] != null) {
if (sCachedIntBuffer[i].length >= elementCount) {
candidateIndex = i;
break;
} else if (candidateIndex == -1) {
candidateIndex = i;
}
}
}
if (candidateIndex != -1) {
result = sCachedIntBuffer[candidateIndex];
sCachedIntBuffer[candidateIndex] = null;
}
}
result = checkSortBuffer(result, elementCount);
return result;
}
/**
* Recycle sort buffer.
*
* @param buffer buffer to be recycled
*/
private static void recycle(int[] buffer) {
synchronized (sCachedIntBuffer) {
for (int i = 0; i < sCachedIntBuffer.length; i++) {
if (sCachedIntBuffer[i] == null || buffer.length > sCachedIntBuffer[i].length) {
sCachedIntBuffer[i] = buffer;
break;
}
}
}
}
/**
* Check the size of the buffer and grow if required.
*
* @param buffer buffer to be checked.
* @param size required size.
* @return Same buffer instance if the current size is greater than required size. Otherwise a
* new instance is created and returned.
*/
private static int[] checkSortBuffer(int[] buffer, int size) {
if (buffer == null || size > buffer.length) {
return ArrayUtils.newUnpaddedIntArray(GrowingArrayUtils.growSize(size));
}
return buffer;
}
/**
* An iterative heap sort implementation. It will sort the spans using first their priority
* then insertion order. A span with higher priority will be before a span with lower
* priority. If priorities are the same, the spans will be sorted with insertion order. A
* span with a lower insertion order will be before a span with a higher insertion order.
*
* @param array Span array to be sorted.
* @param priority Priorities of the spans
* @param insertionOrder Insertion orders of the spans
* @param <T> Span object type.
* @param <T>
*/
private final <T> void sort(T[] array, int[] priority, int[] insertionOrder) {
int size = array.length;
for (int i = size / 2 - 1; i >= 0; i--) {
siftDown(i, array, size, priority, insertionOrder);
}
for (int i = size - 1; i > 0; i--) {
final T tmpSpan = array[0];
array[0] = array[i];
array[i] = tmpSpan;
final int tmpPriority = priority[0];
priority[0] = priority[i];
priority[i] = tmpPriority;
final int tmpOrder = insertionOrder[0];
insertionOrder[0] = insertionOrder[i];
insertionOrder[i] = tmpOrder;
siftDown(0, array, i, priority, insertionOrder);
}
}
/**
* Helper function for heap sort.
*
* @param index Index of the element to sift down.
* @param array Span array to be sorted.
* @param size Current heap size.
* @param priority Priorities of the spans
* @param insertionOrder Insertion orders of the spans
* @param <T> Span object type.
*/
private final <T> void siftDown(int index, T[] array, int size, int[] priority,
int[] insertionOrder) {
int left = 2 * index + 1;
while (left < size) {
if (left < size - 1 && compareSpans(left, left + 1, priority, insertionOrder) < 0) {
left++;
}
if (compareSpans(index, left, priority, insertionOrder) >= 0) {
break;
}
final T tmpSpan = array[index];
array[index] = array[left];
array[left] = tmpSpan;
final int tmpPriority = priority[index];
priority[index] = priority[left];
priority[left] = tmpPriority;
final int tmpOrder = insertionOrder[index];
insertionOrder[index] = insertionOrder[left];
insertionOrder[left] = tmpOrder;
index = left;
left = 2 * index + 1;
}
}
/**
* Compare two span elements in an array. Comparison is based first on the priority flag of
* the span, and then the insertion order of the span.
*
* @param left Index of the element to compare.
* @param right Index of the other element to compare.
* @param priority Priorities of the spans
* @param insertionOrder Insertion orders of the spans
* @return
*/
private final int compareSpans(int left, int right, int[] priority,
int[] insertionOrder) {
int priority1 = priority[left];
int priority2 = priority[right];
if (priority1 == priority2) {
return Integer.compare(insertionOrder[left], insertionOrder[right]);
}
// since high priority has to be before a lower priority, the arguments to compare are
// opposite of the insertion order check.
return Integer.compare(priority2, priority1);
}
/**
* Return the next offset after <code>start</code> but less than or
* equal to <code>limit</code> where a span of the specified type
* begins or ends.
*/
public int nextSpanTransition(int start, int limit, Class kind) {
if (mSpanCount == 0) return limit;
if (kind == null) {
kind = Object.class;
}
return nextSpanTransitionRec(start, limit, kind, treeRoot());
}
private int nextSpanTransitionRec(int start, int limit, Class kind, int i) {
if ((i & 1) != 0) {
// internal tree node
int left = leftChild(i);
if (resolveGap(mSpanMax[left]) > start) {
limit = nextSpanTransitionRec(start, limit, kind, left);
}
}
if (i < mSpanCount) {
int st = resolveGap(mSpanStarts[i]);
int en = resolveGap(mSpanEnds[i]);
if (st > start && st < limit && kind.isInstance(mSpans[i]))
limit = st;
if (en > start && en < limit && kind.isInstance(mSpans[i]))
limit = en;
if (st < limit && (i & 1) != 0) {
limit = nextSpanTransitionRec(start, limit, kind, rightChild(i));
}
}
return limit;
}
/**
* Return a new CharSequence containing a copy of the specified
* range of this buffer, including the overlapping spans.
*/
public CharSequence subSequence(int start, int end) {
return new SpannableStringBuilder(this, start, end);
}
/**
* Copy the specified range of chars from this buffer into the
* specified array, beginning at the specified offset.
*/
public void getChars(int start, int end, char[] dest, int destoff) {
checkRange("getChars", start, end);
if (end <= mGapStart) {
System.arraycopy(mText, start, dest, destoff, end - start);
} else if (start >= mGapStart) {
System.arraycopy(mText, start + mGapLength, dest, destoff, end - start);
} else {
System.arraycopy(mText, start, dest, destoff, mGapStart - start);
System.arraycopy(mText, mGapStart + mGapLength,
dest, destoff + (mGapStart - start),
end - mGapStart);
}
}
/**
* Return a String containing a copy of the chars in this buffer.
*/
@Override
public String toString() {
int len = length();
char[] buf = new char[len];
getChars(0, len, buf, 0);
return new String(buf);
}
/**
* Return a String containing a copy of the chars in this buffer, limited to the
* [start, end[ range.
* @hide
*/
@UnsupportedAppUsage
public String substring(int start, int end) {
char[] buf = new char[end - start];
getChars(start, end, buf, 0);
return new String(buf);
}
/**
* Returns the depth of TextWatcher callbacks. Returns 0 when the object is not handling
* TextWatchers. A return value greater than 1 implies that a TextWatcher caused a change that
* recursively triggered a TextWatcher.
*/
public int getTextWatcherDepth() {
return mTextWatcherDepth;
}
private void sendBeforeTextChanged(TextWatcher[] watchers, int start, int before, int after) {
int n = watchers.length;
mTextWatcherDepth++;
for (int i = 0; i < n; i++) {
watchers[i].beforeTextChanged(this, start, before, after);
}
mTextWatcherDepth--;
}
private void sendTextChanged(TextWatcher[] watchers, int start, int before, int after) {
int n = watchers.length;
mTextWatcherDepth++;
for (int i = 0; i < n; i++) {
watchers[i].onTextChanged(this, start, before, after);
}
mTextWatcherDepth--;
}
private void sendAfterTextChanged(TextWatcher[] watchers) {
int n = watchers.length;
mTextWatcherDepth++;
for (int i = 0; i < n; i++) {
watchers[i].afterTextChanged(this);
}
mTextWatcherDepth--;
}
private void sendSpanAdded(Object what, int start, int end) {
SpanWatcher[] recip = getSpans(start, end, SpanWatcher.class);
int n = recip.length;
for (int i = 0; i < n; i++) {
recip[i].onSpanAdded(this, what, start, end);
}
}
private void sendSpanRemoved(Object what, int start, int end) {
SpanWatcher[] recip = getSpans(start, end, SpanWatcher.class);
int n = recip.length;
for (int i = 0; i < n; i++) {
recip[i].onSpanRemoved(this, what, start, end);
}
}
private void sendSpanChanged(Object what, int oldStart, int oldEnd, int start, int end) {
// The bounds of a possible SpanWatcher are guaranteed to be set before this method is
// called, so that the order of the span does not affect this broadcast.
SpanWatcher[] spanWatchers = getSpans(Math.min(oldStart, start),
Math.min(Math.max(oldEnd, end), length()), SpanWatcher.class);
int n = spanWatchers.length;
for (int i = 0; i < n; i++) {
spanWatchers[i].onSpanChanged(this, what, oldStart, oldEnd, start, end);
}
}
private static String region(int start, int end) {
return "(" + start + " ... " + end + ")";
}
private void checkRange(final String operation, int start, int end) {
if (end < start) {
throw new IndexOutOfBoundsException(operation + " " +
region(start, end) + " has end before start");
}
int len = length();
if (start > len || end > len) {
throw new IndexOutOfBoundsException(operation + " " +
region(start, end) + " ends beyond length " + len);
}
if (start < 0 || end < 0) {
throw new IndexOutOfBoundsException(operation + " " +
region(start, end) + " starts before 0");
}
}
/*
private boolean isprint(char c) { // XXX
if (c >= ' ' && c <= '~')
return true;
else
return false;
}
private static final int startFlag(int flag) {
return (flag >> 4) & 0x0F;
}
private static final int endFlag(int flag) {
return flag & 0x0F;
}
public void dump() { // XXX
for (int i = 0; i < mGapStart; i++) {
System.out.print('|');
System.out.print(' ');
System.out.print(isprint(mText[i]) ? mText[i] : '.');
System.out.print(' ');
}
for (int i = mGapStart; i < mGapStart + mGapLength; i++) {
System.out.print('|');
System.out.print('(');
System.out.print(isprint(mText[i]) ? mText[i] : '.');
System.out.print(')');
}
for (int i = mGapStart + mGapLength; i < mText.length; i++) {
System.out.print('|');
System.out.print(' ');
System.out.print(isprint(mText[i]) ? mText[i] : '.');
System.out.print(' ');
}
System.out.print('\n');
for (int i = 0; i < mText.length + 1; i++) {
int found = 0;
int wfound = 0;
for (int j = 0; j < mSpanCount; j++) {
if (mSpanStarts[j] == i) {
found = 1;
wfound = j;
break;
}
if (mSpanEnds[j] == i) {
found = 2;
wfound = j;
break;
}
}
if (found == 1) {
if (startFlag(mSpanFlags[wfound]) == MARK)
System.out.print("( ");
if (startFlag(mSpanFlags[wfound]) == PARAGRAPH)
System.out.print("< ");
else
System.out.print("[ ");
} else if (found == 2) {
if (endFlag(mSpanFlags[wfound]) == POINT)
System.out.print(") ");
if (endFlag(mSpanFlags[wfound]) == PARAGRAPH)
System.out.print("> ");
else
System.out.print("] ");
} else {
System.out.print(" ");
}
}
System.out.print("\n");
}
*/
/**
* Don't call this yourself -- exists for Canvas to use internally.
* {@hide}
*/
@Override
public void drawText(BaseCanvas c, int start, int end, float x, float y, Paint p) {
checkRange("drawText", start, end);
if (end <= mGapStart) {
c.drawText(mText, start, end - start, x, y, p);
} else if (start >= mGapStart) {
c.drawText(mText, start + mGapLength, end - start, x, y, p);
} else {
char[] buf = TextUtils.obtain(end - start);
getChars(start, end, buf, 0);
c.drawText(buf, 0, end - start, x, y, p);
TextUtils.recycle(buf);
}
}
/**
* Don't call this yourself -- exists for Canvas to use internally.
* {@hide}
*/
@Override
public void drawTextRun(BaseCanvas c, int start, int end, int contextStart, int contextEnd,
float x, float y, boolean isRtl, Paint p) {
checkRange("drawTextRun", start, end);
int contextLen = contextEnd - contextStart;
int len = end - start;
if (contextEnd <= mGapStart) {
c.drawTextRun(mText, start, len, contextStart, contextLen, x, y, isRtl, p);
} else if (contextStart >= mGapStart) {
c.drawTextRun(mText, start + mGapLength, len, contextStart + mGapLength,
contextLen, x, y, isRtl, p);
} else {
char[] buf = TextUtils.obtain(contextLen);
getChars(contextStart, contextEnd, buf, 0);
c.drawTextRun(buf, start - contextStart, len, 0, contextLen, x, y, isRtl, p);
TextUtils.recycle(buf);
}
}
/**
* Don't call this yourself -- exists for Paint to use internally.
* {@hide}
*/
public float measureText(int start, int end, Paint p) {
checkRange("measureText", start, end);
float ret;
if (end <= mGapStart) {
ret = p.measureText(mText, start, end - start);
} else if (start >= mGapStart) {
ret = p.measureText(mText, start + mGapLength, end - start);
} else {
char[] buf = TextUtils.obtain(end - start);
getChars(start, end, buf, 0);
ret = p.measureText(buf, 0, end - start);
TextUtils.recycle(buf);
}
return ret;
}
/**
* Don't call this yourself -- exists for Paint to use internally.
* {@hide}
*/
public int getTextWidths(int start, int end, float[] widths, Paint p) {
checkRange("getTextWidths", start, end);
int ret;
if (end <= mGapStart) {
ret = p.getTextWidths(mText, start, end - start, widths);
} else if (start >= mGapStart) {
ret = p.getTextWidths(mText, start + mGapLength, end - start, widths);
} else {
char[] buf = TextUtils.obtain(end - start);
getChars(start, end, buf, 0);
ret = p.getTextWidths(buf, 0, end - start, widths);
TextUtils.recycle(buf);
}
return ret;
}
/**
* Don't call this yourself -- exists for Paint to use internally.
* {@hide}
*/
public float getTextRunAdvances(int start, int end, int contextStart, int contextEnd, boolean isRtl,
float[] advances, int advancesPos, Paint p) {
float ret;
int contextLen = contextEnd - contextStart;
int len = end - start;
if (end <= mGapStart) {
ret = p.getTextRunAdvances(mText, start, len, contextStart, contextLen,
isRtl, advances, advancesPos);
} else if (start >= mGapStart) {
ret = p.getTextRunAdvances(mText, start + mGapLength, len,
contextStart + mGapLength, contextLen, isRtl, advances, advancesPos);
} else {
char[] buf = TextUtils.obtain(contextLen);
getChars(contextStart, contextEnd, buf, 0);
ret = p.getTextRunAdvances(buf, start - contextStart, len,
0, contextLen, isRtl, advances, advancesPos);
TextUtils.recycle(buf);
}
return ret;
}
/**
* Returns the next cursor position in the run. This avoids placing the cursor between
* surrogates, between characters that form conjuncts, between base characters and combining
* marks, or within a reordering cluster.
*
* <p>The context is the shaping context for cursor movement, generally the bounds of the metric
* span enclosing the cursor in the direction of movement.
* <code>contextStart</code>, <code>contextEnd</code> and <code>offset</code> are relative to
* the start of the string.</p>
*
* <p>If cursorOpt is CURSOR_AT and the offset is not a valid cursor position,
* this returns -1. Otherwise this will never return a value before contextStart or after
* contextEnd.</p>
*
* @param contextStart the start index of the context
* @param contextEnd the (non-inclusive) end index of the context
* @param dir 1 if the run is RTL, otherwise 0
* @param offset the cursor position to move from
* @param cursorOpt how to move the cursor, one of CURSOR_AFTER,
* CURSOR_AT_OR_AFTER, CURSOR_BEFORE,
* CURSOR_AT_OR_BEFORE, or CURSOR_AT
* @param p the Paint object that is requesting this information
* @return the offset of the next position, or -1
* @deprecated This is an internal method, refrain from using it in your code
*/
@Deprecated
public int getTextRunCursor(int contextStart, int contextEnd, int dir, int offset,
int cursorOpt, Paint p) {
return getTextRunCursor(contextStart, contextEnd, dir == 1, offset, cursorOpt, p);
}
/** @hide */
@Override
public int getTextRunCursor(int contextStart, int contextEnd, boolean isRtl, int offset,
int cursorOpt, Paint p) {
int ret;
int contextLen = contextEnd - contextStart;
if (contextEnd <= mGapStart) {
ret = p.getTextRunCursor(mText, contextStart, contextLen,
isRtl, offset, cursorOpt);
} else if (contextStart >= mGapStart) {
ret = p.getTextRunCursor(mText, contextStart + mGapLength, contextLen,
isRtl, offset + mGapLength, cursorOpt) - mGapLength;
} else {
char[] buf = TextUtils.obtain(contextLen);
getChars(contextStart, contextEnd, buf, 0);
ret = p.getTextRunCursor(buf, 0, contextLen,
isRtl, offset - contextStart, cursorOpt) + contextStart;
TextUtils.recycle(buf);
}
return ret;
}
// Documentation from interface
public void setFilters(InputFilter[] filters) {
if (filters == null) {
throw new IllegalArgumentException();
}
mFilters = filters;
}
// Documentation from interface
public InputFilter[] getFilters() {
return mFilters;
}
// Same as SpannableStringInternal
@Override
public boolean equals(Object o) {
if (o instanceof Spanned &&
toString().equals(o.toString())) {
final Spanned other = (Spanned) o;
// Check span data
final Object[] otherSpans = other.getSpans(0, other.length(), Object.class);
final Object[] thisSpans = getSpans(0, length(), Object.class);
if (mSpanCount == otherSpans.length) {
for (int i = 0; i < mSpanCount; ++i) {
final Object thisSpan = thisSpans[i];
final Object otherSpan = otherSpans[i];
if (thisSpan == this) {
if (other != otherSpan ||
getSpanStart(thisSpan) != other.getSpanStart(otherSpan) ||
getSpanEnd(thisSpan) != other.getSpanEnd(otherSpan) ||
getSpanFlags(thisSpan) != other.getSpanFlags(otherSpan)) {
return false;
}
} else if (!thisSpan.equals(otherSpan) ||
getSpanStart(thisSpan) != other.getSpanStart(otherSpan) ||
getSpanEnd(thisSpan) != other.getSpanEnd(otherSpan) ||
getSpanFlags(thisSpan) != other.getSpanFlags(otherSpan)) {
return false;
}
}
return true;
}
}
return false;
}
// Same as SpannableStringInternal
@Override
public int hashCode() {
int hash = toString().hashCode();
hash = hash * 31 + mSpanCount;
for (int i = 0; i < mSpanCount; ++i) {
Object span = mSpans[i];
if (span != this) {
hash = hash * 31 + span.hashCode();
}
hash = hash * 31 + getSpanStart(span);
hash = hash * 31 + getSpanEnd(span);
hash = hash * 31 + getSpanFlags(span);
}
return hash;
}
// Primitives for treating span list as binary tree
// The spans (along with start and end offsets and flags) are stored in linear arrays sorted
// by start offset. For fast searching, there is a binary search structure imposed over these
// arrays. This structure is inorder traversal of a perfect binary tree, a slightly unusual
// but advantageous approach.
// The value-containing nodes are indexed 0 <= i < n (where n = mSpanCount), thus preserving
// logic that accesses the values as a contiguous array. Other balanced binary tree approaches
// (such as a complete binary tree) would require some shuffling of node indices.
// Basic properties of this structure: For a perfect binary tree of height m:
// The tree has 2^(m+1) - 1 total nodes.
// The root of the tree has index 2^m - 1.
// All leaf nodes have even index, all interior nodes odd.
// The height of a node of index i is the number of trailing ones in i's binary representation.
// The left child of a node i of height h is i - 2^(h - 1).
// The right child of a node i of height h is i + 2^(h - 1).
// Note that for arbitrary n, interior nodes of this tree may be >= n. Thus, the general
// structure of a recursive traversal of node i is:
// * traverse left child if i is an interior node
// * process i if i < n
// * traverse right child if i is an interior node and i < n
private int treeRoot() {
return Integer.highestOneBit(mSpanCount) - 1;
}
// (i+1) & ~i is equal to 2^(the number of trailing ones in i)
private static int leftChild(int i) {
return i - (((i + 1) & ~i) >> 1);
}
private static int rightChild(int i) {
return i + (((i + 1) & ~i) >> 1);
}
// The span arrays are also augmented by an mSpanMax[] array that represents an interval tree
// over the binary tree structure described above. For each node, the mSpanMax[] array contains
// the maximum value of mSpanEnds of that node and its descendants. Thus, traversals can
// easily reject subtrees that contain no spans overlapping the area of interest.
// Note that mSpanMax[] also has a valid valuefor interior nodes of index >= n, but which have
// descendants of index < n. In these cases, it simply represents the maximum span end of its
// descendants. This is a consequence of the perfect binary tree structure.
private int calcMax(int i) {
int max = 0;
if ((i & 1) != 0) {
// internal tree node
max = calcMax(leftChild(i));
}
if (i < mSpanCount) {
max = Math.max(max, mSpanEnds[i]);
if ((i & 1) != 0) {
max = Math.max(max, calcMax(rightChild(i)));
}
}
mSpanMax[i] = max;
return max;
}
// restores binary interval tree invariants after any mutation of span structure
private void restoreInvariants() {
if (mSpanCount == 0) return;
// invariant 1: span starts are nondecreasing
// This is a simple insertion sort because we expect it to be mostly sorted.
for (int i = 1; i < mSpanCount; i++) {
if (mSpanStarts[i] < mSpanStarts[i - 1]) {
Object span = mSpans[i];
int start = mSpanStarts[i];
int end = mSpanEnds[i];
int flags = mSpanFlags[i];
int insertionOrder = mSpanOrder[i];
int j = i;
do {
mSpans[j] = mSpans[j - 1];
mSpanStarts[j] = mSpanStarts[j - 1];
mSpanEnds[j] = mSpanEnds[j - 1];
mSpanFlags[j] = mSpanFlags[j - 1];
mSpanOrder[j] = mSpanOrder[j - 1];
j--;
} while (j > 0 && start < mSpanStarts[j - 1]);
mSpans[j] = span;
mSpanStarts[j] = start;
mSpanEnds[j] = end;
mSpanFlags[j] = flags;
mSpanOrder[j] = insertionOrder;
invalidateIndex(j);
}
}
// invariant 2: max is max span end for each node and its descendants
calcMax(treeRoot());
// invariant 3: mIndexOfSpan maps spans back to indices
if (mIndexOfSpan == null) {
mIndexOfSpan = new IdentityHashMap<Object, Integer>();
}
for (int i = mLowWaterMark; i < mSpanCount; i++) {
Integer existing = mIndexOfSpan.get(mSpans[i]);
if (existing == null || existing != i) {
mIndexOfSpan.put(mSpans[i], i);
}
}
mLowWaterMark = Integer.MAX_VALUE;
}
// Call this on any update to mSpans[], so that mIndexOfSpan can be updated
private void invalidateIndex(int i) {
mLowWaterMark = Math.min(i, mLowWaterMark);
}
private static final InputFilter[] NO_FILTERS = new InputFilter[0];
@GuardedBy("sCachedIntBuffer")
private static final int[][] sCachedIntBuffer = new int[6][0];
private InputFilter[] mFilters = NO_FILTERS;
@UnsupportedAppUsage
private char[] mText;
@UnsupportedAppUsage
private int mGapStart;
@UnsupportedAppUsage
private int mGapLength;
@UnsupportedAppUsage
private Object[] mSpans;
@UnsupportedAppUsage
private int[] mSpanStarts;
@UnsupportedAppUsage
private int[] mSpanEnds;
private int[] mSpanMax; // see calcMax() for an explanation of what this array stores
@UnsupportedAppUsage
private int[] mSpanFlags;
private int[] mSpanOrder; // store the order of span insertion
private int mSpanInsertCount; // counter for the span insertion
@UnsupportedAppUsage
private int mSpanCount;
private IdentityHashMap<Object, Integer> mIndexOfSpan;
private int mLowWaterMark; // indices below this have not been touched
// TextWatcher callbacks may trigger changes that trigger more callbacks. This keeps track of
// how deep the callbacks go.
private int mTextWatcherDepth;
// TODO These value are tightly related to the public SPAN_MARK/POINT values in {@link Spanned}
private static final int MARK = 1;
private static final int POINT = 2;
private static final int PARAGRAPH = 3;
private static final int START_MASK = 0xF0;
private static final int END_MASK = 0x0F;
private static final int START_SHIFT = 4;
// These bits are not (currently) used by SPANNED flags
private static final int SPAN_ADDED = 0x800;
private static final int SPAN_START_AT_START = 0x1000;
private static final int SPAN_START_AT_END = 0x2000;
private static final int SPAN_END_AT_START = 0x4000;
private static final int SPAN_END_AT_END = 0x8000;
private static final int SPAN_START_END_MASK = 0xF000;
}