blob: 51a17c1707f18c9ef543f61257ec0e2220ce943d [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.hardware;
/**
* <p>
* This class represents a {@link android.hardware.Sensor Sensor} event and
* holds informations such as the sensor's type, the time-stamp, accuracy and of
* course the sensor's {@link SensorEvent#values data}.
* </p>
*
* <p>
* <u>Definition of the coordinate system used by the SensorEvent API.</u>
* </p>
*
* <p>
* The coordinate-system is defined relative to the screen of the phone in its
* default orientation. The axes are not swapped when the device's screen
* orientation changes.
* </p>
*
* <p>
* The X axis is horizontal and points to the right, the Y axis is vertical and
* points up and the Z axis points towards the outside of the front face of the
* screen. In this system, coordinates behind the screen have negative Z values.
* </p>
*
* <p>
* <center><img src="../../../images/axis_device.png"
* alt="Sensors coordinate-system diagram." border="0" /></center>
* </p>
*
* <p>
* <b>Note:</b> This coordinate system is different from the one used in the
* Android 2D APIs where the origin is in the top-left corner.
* </p>
*
* @see SensorManager
* @see SensorEvent
* @see Sensor
*
*/
public class SensorEvent {
/**
* <p>
* The length and contents of the {@link #values values} array depends on
* which {@link android.hardware.Sensor sensor} type is being monitored (see
* also {@link SensorEvent} for a definition of the coordinate system used).
* </p>
*
* <h4>{@link android.hardware.Sensor#TYPE_ACCELEROMETER
* Sensor.TYPE_ACCELEROMETER}:</h4> All values are in SI units (m/s^2)
*
* <ul>
* <p>
* values[0]: Acceleration minus Gx on the x-axis
* </p>
* <p>
* values[1]: Acceleration minus Gy on the y-axis
* </p>
* <p>
* values[2]: Acceleration minus Gz on the z-axis
* </p>
* </ul>
*
* <p>
* A sensor of this type measures the acceleration applied to the device
* (<b>Ad</b>). Conceptually, it does so by measuring forces applied to the
* sensor itself (<b>Fs</b>) using the relation:
* </p>
*
* <b><center>Ad = - &#8721;Fs / mass</center></b>
*
* <p>
* In particular, the force of gravity is always influencing the measured
* acceleration:
* </p>
*
* <b><center>Ad = -g - &#8721;F / mass</center></b>
*
* <p>
* For this reason, when the device is sitting on a table (and obviously not
* accelerating), the accelerometer reads a magnitude of <b>g</b> = 9.81
* m/s^2
* </p>
*
* <p>
* Similarly, when the device is in free-fall and therefore dangerously
* accelerating towards to ground at 9.81 m/s^2, its accelerometer reads a
* magnitude of 0 m/s^2.
* </p>
*
* <p>
* It should be apparent that in order to measure the real acceleration of
* the device, the contribution of the force of gravity must be eliminated.
* This can be achieved by applying a <i>high-pass</i> filter. Conversely, a
* <i>low-pass</i> filter can be used to isolate the force of gravity.
* </p>
*
* <pre class="prettyprint">
*
* public void onSensorChanged(SensorEvent event)
* {
* // alpha is calculated as t / (t + dT)
* // with t, the low-pass filter's time-constant
* // and dT, the event delivery rate
*
* final float alpha = 0.8;
*
* gravity[0] = alpha * gravity[0] + (1 - alpha) * event.values[0];
* gravity[1] = alpha * gravity[1] + (1 - alpha) * event.values[1];
* gravity[2] = alpha * gravity[2] + (1 - alpha) * event.values[2];
*
* linear_acceleration[0] = event.values[0] - gravity[0];
* linear_acceleration[1] = event.values[1] - gravity[1];
* linear_acceleration[2] = event.values[2] - gravity[2];
* }
* </pre>
*
* <p>
* <u>Examples</u>:
* <ul>
* <li>When the device lies flat on a table and is pushed on its left side
* toward the right, the x acceleration value is positive.</li>
*
* <li>When the device lies flat on a table, the acceleration value is
* +9.81, which correspond to the acceleration of the device (0 m/s^2) minus
* the force of gravity (-9.81 m/s^2).</li>
*
* <li>When the device lies flat on a table and is pushed toward the sky
* with an acceleration of A m/s^2, the acceleration value is equal to
* A+9.81 which correspond to the acceleration of the device (+A m/s^2)
* minus the force of gravity (-9.81 m/s^2).</li>
* </ul>
*
*
* <h4>{@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD
* Sensor.TYPE_MAGNETIC_FIELD}:</h4>
* All values are in micro-Tesla (uT) and measure the ambient magnetic field
* in the X, Y and Z axis.
*
* <h4>{@link android.hardware.Sensor#TYPE_GYROSCOPE Sensor.TYPE_GYROSCOPE}:
* </h4> All values are in radians/second and measure the rate of rotation
* around the device's local X, Y and Z axis. The coordinate system is the
* same as is used for the acceleration sensor. Rotation is positive in the
* counter-clockwise direction. That is, an observer looking from some
* positive location on the x, y or z axis at a device positioned on the
* origin would report positive rotation if the device appeared to be
* rotating counter clockwise. Note that this is the standard mathematical
* definition of positive rotation and does not agree with the definition of
* roll given earlier.
* <ul>
* <p>
* values[0]: Angular speed around the x-axis
* </p>
* <p>
* values[1]: Angular speed around the y-axis
* </p>
* <p>
* values[2]: Angular speed around the z-axis
* </p>
* </ul>
* <p>
* Typically the output of the gyroscope is integrated over time to
* calculate a rotation describing the change of angles over the timestep,
* for example:
* </p>
*
* <pre class="prettyprint">
* private static final float NS2S = 1.0f / 1000000000.0f;
* private final float[] deltaRotationVector = new float[4]();
* private float timestamp;
*
* public void onSensorChanged(SensorEvent event) {
* // This timestep's delta rotation to be multiplied by the current rotation
* // after computing it from the gyro sample data.
* if (timestamp != 0) {
* final float dT = (event.timestamp - timestamp) * NS2S;
* // Axis of the rotation sample, not normalized yet.
* float axisX = event.values[0];
* float axisY = event.values[1];
* float axisZ = event.values[2];
*
* // Calculate the angular speed of the sample
* float omegaMagnitude = sqrt(axisX*axisX + axisY*axisY + axisZ*axisZ);
*
* // Normalize the rotation vector if it's big enough to get the axis
* if (omegaMagnitude > EPSILON) {
* axisX /= omegaMagnitude;
* axisY /= omegaMagnitude;
* axisZ /= omegaMagnitude;
* }
*
* // Integrate around this axis with the angular speed by the timestep
* // in order to get a delta rotation from this sample over the timestep
* // We will convert this axis-angle representation of the delta rotation
* // into a quaternion before turning it into the rotation matrix.
* float thetaOverTwo = omegaMagnitude * dT / 2.0f;
* float sinThetaOverTwo = sin(thetaOverTwo);
* float cosThetaOverTwo = cos(thetaOverTwo);
* deltaRotationVector[0] = sinThetaOverTwo * axisX;
* deltaRotationVector[1] = sinThetaOverTwo * axisY;
* deltaRotationVector[2] = sinThetaOverTwo * axisZ;
* deltaRotationVector[3] = cosThetaOverTwo;
* }
* timestamp = event.timestamp;
* float[] deltaRotationMatrix = new float[9];
* SensorManager.getRotationMatrixFromVector(deltaRotationMatrix, deltaRotationVector);
* // User code should concatenate the delta rotation we computed with the current rotation
* // in order to get the updated rotation.
* // rotationCurrent = rotationCurrent * deltaRotationMatrix;
* }
* </pre>
* <p>
* In practice, the gyroscope noise and offset will introduce some errors
* which need to be compensated for. This is usually done using the
* information from other sensors, but is beyond the scope of this document.
* </p>
* <h4>{@link android.hardware.Sensor#TYPE_LIGHT Sensor.TYPE_LIGHT}:</h4>
* <ul>
* <p>
* values[0]: Ambient light level in SI lux units
* </ul>
*
* <h4>{@link android.hardware.Sensor#TYPE_PRESSURE Sensor.TYPE_PRESSURE}:</h4>
* <ul>
* <p>
* values[0]: Atmospheric pressure in hPa (millibar)
* </ul>
*
* <h4>{@link android.hardware.Sensor#TYPE_PROXIMITY Sensor.TYPE_PROXIMITY}:
* </h4>
*
* <ul>
* <p>
* values[0]: Proximity sensor distance measured in centimeters
* </ul>
*
* <p>
* <b>Note:</b> Some proximity sensors only support a binary <i>near</i> or
* <i>far</i> measurement. In this case, the sensor should report its
* {@link android.hardware.Sensor#getMaximumRange() maximum range} value in
* the <i>far</i> state and a lesser value in the <i>near</i> state.
* </p>
*
* <h4>{@link android.hardware.Sensor#TYPE_GRAVITY Sensor.TYPE_GRAVITY}:</h4>
* <p>A three dimensional vector indicating the direction and magnitude of gravity. Units
* are m/s^2. The coordinate system is the same as is used by the acceleration sensor.</p>
* <p><b>Note:</b> When the device is at rest, the output of the gravity sensor should be identical
* to that of the accelerometer.</p>
*
* <h4>{@link android.hardware.Sensor#TYPE_LINEAR_ACCELERATION Sensor.TYPE_LINEAR_ACCELERATION}:</h4>
* A three dimensional vector indicating acceleration along each device axis, not including
* gravity. All values have units of m/s^2. The coordinate system is the same as is used by the
* acceleration sensor.
* <p>The output of the accelerometer, gravity and linear-acceleration sensors must obey the
* following relation:</p>
* <p><ul>acceleration = gravity + linear-acceleration</ul></p>
*
* <h4>{@link android.hardware.Sensor#TYPE_ROTATION_VECTOR Sensor.TYPE_ROTATION_VECTOR}:</h4>
* <p>The rotation vector represents the orientation of the device as a combination of an <i>angle</i>
* and an <i>axis</i>, in which the device has rotated through an angle &#952 around an axis
* &lt;x, y, z>.</p>
* <p>The three elements of the rotation vector are
* &lt;x*sin(&#952/2), y*sin(&#952/2), z*sin(&#952/2)>, such that the magnitude of the rotation
* vector is equal to sin(&#952/2), and the direction of the rotation vector is equal to the
* direction of the axis of rotation.</p>
* </p>The three elements of the rotation vector are equal to
* the last three components of a <b>unit</b> quaternion
* &lt;cos(&#952/2), x*sin(&#952/2), y*sin(&#952/2), z*sin(&#952/2)>.</p>
* <p>Elements of the rotation vector are unitless.
* The x,y, and z axis are defined in the same way as the acceleration
* sensor.</p>
* The reference coordinate system is defined as a direct orthonormal basis,
* where:
* </p>
*
* <ul>
* <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
* the ground at the device's current location and roughly points East).</li>
* <li>Y is tangential to the ground at the device's current location and
* points towards magnetic north.</li>
* <li>Z points towards the sky and is perpendicular to the ground.</li>
* </ul>
*
* <p>
* <center><img src="../../../images/axis_globe.png"
* alt="World coordinate-system diagram." border="0" /></center>
* </p>
*
* <ul>
* <p>
* values[0]: x*sin(&#952/2)
* </p>
* <p>
* values[1]: y*sin(&#952/2)
* </p>
* <p>
* values[2]: z*sin(&#952/2)
* </p>
* <p>
* values[3]: cos(&#952/2) <i>(optional: only if value.length = 4)</i>
* </p>
* </ul>
*
* <h4>{@link android.hardware.Sensor#TYPE_ORIENTATION
* Sensor.TYPE_ORIENTATION}:</h4> All values are angles in degrees.
*
* <ul>
* <p>
* values[0]: Azimuth, angle between the magnetic north direction and the
* y-axis, around the z-axis (0 to 359). 0=North, 90=East, 180=South,
* 270=West
* </p>
*
* <p>
* values[1]: Pitch, rotation around x-axis (-180 to 180), with positive
* values when the z-axis moves <b>toward</b> the y-axis.
* </p>
*
* <p>
* values[2]: Roll, rotation around y-axis (-90 to 90), with positive values
* when the x-axis moves <b>toward</b> the z-axis.
* </p>
* </ul>
*
* <p>
* <b>Note:</b> This definition is different from <b>yaw, pitch and roll</b>
* used in aviation where the X axis is along the long side of the plane
* (tail to nose).
* </p>
*
* <p>
* <b>Note:</b> This sensor type exists for legacy reasons, please use
* {@link android.hardware.SensorManager#getRotationMatrix
* getRotationMatrix()} in conjunction with
* {@link android.hardware.SensorManager#remapCoordinateSystem
* remapCoordinateSystem()} and
* {@link android.hardware.SensorManager#getOrientation getOrientation()} to
* compute these values instead.
* </p>
*
* <p>
* <b>Important note:</b> For historical reasons the roll angle is positive
* in the clockwise direction (mathematically speaking, it should be
* positive in the counter-clockwise direction).
* </p>
*
* <h4>{@link android.hardware.Sensor#TYPE_RELATIVE_HUMIDITY
* Sensor.TYPE_RELATIVE_HUMIDITY}:</h4>
* <ul>
* <p>
* values[0]: Relative ambient air humidity in percent
* </p>
* </ul>
* <p>
* When relative ambient air humidity and ambient temperature are
* measured, the dew point and absolute humidity can be calculated.
* </p>
* <u>Dew Point</u>
* <p>
* The dew point is the temperature to which a given parcel of air must be
* cooled, at constant barometric pressure, for water vapor to condense
* into water.
* </p>
* <center><pre>
* ln(RH/100%) + m&#183;t/(T<sub>n</sub>+t)
* t<sub>d</sub>(t,RH) = T<sub>n</sub> &#183; ------------------------------
* m - [ln(RH/100%) + m&#183;t/(T<sub>n</sub>+t)]
* </pre></center>
* <dl>
* <dt>t<sub>d</sub></dt> <dd>dew point temperature in &deg;C</dd>
* <dt>t</dt> <dd>actual temperature in &deg;C</dd>
* <dt>RH</dt> <dd>actual relative humidity in %</dd>
* <dt>m</dt> <dd>17.62</dd>
* <dt>T<sub>n</sub></dt> <dd>243.12 &deg;C</dd>
* </dl>
* <p>for example:</p>
* <pre class="prettyprint">
* h = Math.log(rh / 100.0) + (17.62 * t) / (243.12 + t);
* td = 243.12 * h / (17.62 - h);
* </pre>
* <u>Absolute Humidity</u>
* <p>
* The absolute humidity is the mass of water vapor in a particular volume
* of dry air. The unit is g/m<sup>3</sup>.
* </p>
* <center><pre>
* RH/100%&#183;A&#183;exp(m&#183;t/(T<sub>n</sub>+t))
* d<sub>v</sub>(t,RH) = 216.7 &#183; -------------------------
* 273.15 + t
* </pre></center>
* <dl>
* <dt>d<sub>v</sub></dt> <dd>absolute humidity in g/m<sup>3</sup></dd>
* <dt>t</dt> <dd>actual temperature in &deg;C</dd>
* <dt>RH</dt> <dd>actual relative humidity in %</dd>
* <dt>m</dt> <dd>17.62</dd>
* <dt>T<sub>n</sub></dt> <dd>243.12 &deg;C</dd>
* <dt>A</dt> <dd>6.112 hPa</dd>
* </dl>
* <p>for example:</p>
* <pre class="prettyprint">
* dv = 216.7 *
* (rh / 100.0 * 6.112 * Math.exp(17.62 * t / (243.12 + t)) / (273.15 + t));
* </pre>
*
* <h4>{@link android.hardware.Sensor#TYPE_AMBIENT_TEMPERATURE Sensor.TYPE_AMBIENT_TEMPERATURE}:
* </h4>
*
* <ul>
* <p>
* values[0]: ambient (room) temperature in degree Celsius.
* </ul>
*
* @see SensorEvent
* @see GeomagneticField
*/
public final float[] values;
/**
* The sensor that generated this event. See
* {@link android.hardware.SensorManager SensorManager} for details.
*/
public Sensor sensor;
/**
* The accuracy of this event. See {@link android.hardware.SensorManager
* SensorManager} for details.
*/
public int accuracy;
/**
* The time in nanosecond at which the event happened
*/
public long timestamp;
SensorEvent(int size) {
values = new float[size];
}
}