|  | // | 
|  | // Copyright 2010 The Android Open Source Project | 
|  | // | 
|  | // The input dispatcher. | 
|  | // | 
|  | #define LOG_TAG "InputDispatcher" | 
|  |  | 
|  | //#define LOG_NDEBUG 0 | 
|  |  | 
|  | // Log detailed debug messages about each inbound event notification to the dispatcher. | 
|  | #define DEBUG_INBOUND_EVENT_DETAILS 0 | 
|  |  | 
|  | // Log detailed debug messages about each outbound event processed by the dispatcher. | 
|  | #define DEBUG_OUTBOUND_EVENT_DETAILS 0 | 
|  |  | 
|  | // Log debug messages about batching. | 
|  | #define DEBUG_BATCHING 0 | 
|  |  | 
|  | // Log debug messages about the dispatch cycle. | 
|  | #define DEBUG_DISPATCH_CYCLE 0 | 
|  |  | 
|  | // Log debug messages about registrations. | 
|  | #define DEBUG_REGISTRATION 0 | 
|  |  | 
|  | // Log debug messages about performance statistics. | 
|  | #define DEBUG_PERFORMANCE_STATISTICS 0 | 
|  |  | 
|  | // Log debug messages about input event injection. | 
|  | #define DEBUG_INJECTION 0 | 
|  |  | 
|  | // Log debug messages about input event throttling. | 
|  | #define DEBUG_THROTTLING 0 | 
|  |  | 
|  | // Log debug messages about input focus tracking. | 
|  | #define DEBUG_FOCUS 0 | 
|  |  | 
|  | // Log debug messages about the app switch latency optimization. | 
|  | #define DEBUG_APP_SWITCH 0 | 
|  |  | 
|  | #include <cutils/log.h> | 
|  | #include <ui/InputDispatcher.h> | 
|  | #include <ui/PowerManager.h> | 
|  |  | 
|  | #include <stddef.h> | 
|  | #include <unistd.h> | 
|  | #include <errno.h> | 
|  | #include <limits.h> | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | // Delay between reporting long touch events to the power manager. | 
|  | const nsecs_t EVENT_IGNORE_DURATION = 300 * 1000000LL; // 300 ms | 
|  |  | 
|  | // Default input dispatching timeout if there is no focused application or paused window | 
|  | // from which to determine an appropriate dispatching timeout. | 
|  | const nsecs_t DEFAULT_INPUT_DISPATCHING_TIMEOUT = 5000 * 1000000LL; // 5 sec | 
|  |  | 
|  | // Amount of time to allow for all pending events to be processed when an app switch | 
|  | // key is on the way.  This is used to preempt input dispatch and drop input events | 
|  | // when an application takes too long to respond and the user has pressed an app switch key. | 
|  | const nsecs_t APP_SWITCH_TIMEOUT = 500 * 1000000LL; // 0.5sec | 
|  |  | 
|  |  | 
|  | static inline nsecs_t now() { | 
|  | return systemTime(SYSTEM_TIME_MONOTONIC); | 
|  | } | 
|  |  | 
|  | static inline const char* toString(bool value) { | 
|  | return value ? "true" : "false"; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputWindow --- | 
|  |  | 
|  | bool InputWindow::visibleFrameIntersects(const InputWindow* other) const { | 
|  | return visibleFrameRight > other->visibleFrameLeft | 
|  | && visibleFrameLeft < other->visibleFrameRight | 
|  | && visibleFrameBottom > other->visibleFrameTop | 
|  | && visibleFrameTop < other->visibleFrameBottom; | 
|  | } | 
|  |  | 
|  | bool InputWindow::touchableAreaContainsPoint(int32_t x, int32_t y) const { | 
|  | return x >= touchableAreaLeft && x <= touchableAreaRight | 
|  | && y >= touchableAreaTop && y <= touchableAreaBottom; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputDispatcher --- | 
|  |  | 
|  | InputDispatcher::InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy) : | 
|  | mPolicy(policy), | 
|  | mPendingEvent(NULL), mAppSwitchDueTime(LONG_LONG_MAX), | 
|  | mDispatchEnabled(true), mDispatchFrozen(false), | 
|  | mFocusedWindow(NULL), mTouchDown(false), mTouchedWindow(NULL), | 
|  | mFocusedApplication(NULL), | 
|  | mCurrentInputTargetsValid(false), | 
|  | mInputTargetWaitCause(INPUT_TARGET_WAIT_CAUSE_NONE) { | 
|  | mLooper = new Looper(false); | 
|  |  | 
|  | mInboundQueue.headSentinel.refCount = -1; | 
|  | mInboundQueue.headSentinel.type = EventEntry::TYPE_SENTINEL; | 
|  | mInboundQueue.headSentinel.eventTime = LONG_LONG_MIN; | 
|  |  | 
|  | mInboundQueue.tailSentinel.refCount = -1; | 
|  | mInboundQueue.tailSentinel.type = EventEntry::TYPE_SENTINEL; | 
|  | mInboundQueue.tailSentinel.eventTime = LONG_LONG_MAX; | 
|  |  | 
|  | mKeyRepeatState.lastKeyEntry = NULL; | 
|  |  | 
|  | int32_t maxEventsPerSecond = policy->getMaxEventsPerSecond(); | 
|  | mThrottleState.minTimeBetweenEvents = 1000000000LL / maxEventsPerSecond; | 
|  | mThrottleState.lastDeviceId = -1; | 
|  |  | 
|  | #if DEBUG_THROTTLING | 
|  | mThrottleState.originalSampleCount = 0; | 
|  | LOGD("Throttling - Max events per second = %d", maxEventsPerSecond); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | InputDispatcher::~InputDispatcher() { | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  |  | 
|  | resetKeyRepeatLocked(); | 
|  | releasePendingEventLocked(true); | 
|  | drainInboundQueueLocked(); | 
|  | } | 
|  |  | 
|  | while (mConnectionsByReceiveFd.size() != 0) { | 
|  | unregisterInputChannel(mConnectionsByReceiveFd.valueAt(0)->inputChannel); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::dispatchOnce() { | 
|  | nsecs_t keyRepeatTimeout = mPolicy->getKeyRepeatTimeout(); | 
|  | nsecs_t keyRepeatDelay = mPolicy->getKeyRepeatDelay(); | 
|  |  | 
|  | nsecs_t nextWakeupTime = LONG_LONG_MAX; | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  | dispatchOnceInnerLocked(keyRepeatTimeout, keyRepeatDelay, & nextWakeupTime); | 
|  |  | 
|  | if (runCommandsLockedInterruptible()) { | 
|  | nextWakeupTime = LONG_LONG_MIN;  // force next poll to wake up immediately | 
|  | } | 
|  | } // release lock | 
|  |  | 
|  | // Wait for callback or timeout or wake.  (make sure we round up, not down) | 
|  | nsecs_t currentTime = now(); | 
|  | int32_t timeoutMillis; | 
|  | if (nextWakeupTime > currentTime) { | 
|  | uint64_t timeout = uint64_t(nextWakeupTime - currentTime); | 
|  | timeout = (timeout + 999999LL) / 1000000LL; | 
|  | timeoutMillis = timeout > INT_MAX ? -1 : int32_t(timeout); | 
|  | } else { | 
|  | timeoutMillis = 0; | 
|  | } | 
|  |  | 
|  | mLooper->pollOnce(timeoutMillis); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::dispatchOnceInnerLocked(nsecs_t keyRepeatTimeout, | 
|  | nsecs_t keyRepeatDelay, nsecs_t* nextWakeupTime) { | 
|  | nsecs_t currentTime = now(); | 
|  |  | 
|  | // Reset the key repeat timer whenever we disallow key events, even if the next event | 
|  | // is not a key.  This is to ensure that we abort a key repeat if the device is just coming | 
|  | // out of sleep. | 
|  | if (keyRepeatTimeout < 0) { | 
|  | resetKeyRepeatLocked(); | 
|  | } | 
|  |  | 
|  | // If dispatching is disabled, drop all events in the queue. | 
|  | if (! mDispatchEnabled) { | 
|  | if (mPendingEvent || ! mInboundQueue.isEmpty()) { | 
|  | LOGI("Dropping pending events because input dispatch is disabled."); | 
|  | releasePendingEventLocked(true); | 
|  | drainInboundQueueLocked(); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If dispatching is frozen, do not process timeouts or try to deliver any new events. | 
|  | if (mDispatchFrozen) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Dispatch frozen.  Waiting some more."); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Optimize latency of app switches. | 
|  | // Essentially we start a short timeout when an app switch key (HOME / ENDCALL) has | 
|  | // been pressed.  When it expires, we preempt dispatch and drop all other pending events. | 
|  | bool isAppSwitchDue = mAppSwitchDueTime <= currentTime; | 
|  | if (mAppSwitchDueTime < *nextWakeupTime) { | 
|  | *nextWakeupTime = mAppSwitchDueTime; | 
|  | } | 
|  |  | 
|  | // Detect and process timeouts for all connections and determine if there are any | 
|  | // synchronous event dispatches pending.  This step is entirely non-interruptible. | 
|  | bool havePendingSyncTarget = false; | 
|  | size_t activeConnectionCount = mActiveConnections.size(); | 
|  | for (size_t i = 0; i < activeConnectionCount; i++) { | 
|  | Connection* connection = mActiveConnections.itemAt(i); | 
|  |  | 
|  | if (connection->hasPendingSyncTarget()) { | 
|  | if (isAppSwitchDue) { | 
|  | connection->preemptSyncTarget(); | 
|  | } else { | 
|  | havePendingSyncTarget = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | nsecs_t connectionTimeoutTime  = connection->nextTimeoutTime; | 
|  | if (connectionTimeoutTime <= currentTime) { | 
|  | mTimedOutConnections.add(connection); | 
|  | } else if (connectionTimeoutTime < *nextWakeupTime) { | 
|  | *nextWakeupTime = connectionTimeoutTime; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t timedOutConnectionCount = mTimedOutConnections.size(); | 
|  | for (size_t i = 0; i < timedOutConnectionCount; i++) { | 
|  | Connection* connection = mTimedOutConnections.itemAt(i); | 
|  | timeoutDispatchCycleLocked(currentTime, connection); | 
|  | *nextWakeupTime = LONG_LONG_MIN; // force next poll to wake up immediately | 
|  | } | 
|  | mTimedOutConnections.clear(); | 
|  |  | 
|  | // If we have a pending synchronous target, skip dispatch. | 
|  | if (havePendingSyncTarget) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Ready to start a new event. | 
|  | // If we don't already have a pending event, go grab one. | 
|  | if (! mPendingEvent) { | 
|  | if (mInboundQueue.isEmpty()) { | 
|  | if (isAppSwitchDue) { | 
|  | // The inbound queue is empty so the app switch key we were waiting | 
|  | // for will never arrive.  Stop waiting for it. | 
|  | resetPendingAppSwitchLocked(false); | 
|  | isAppSwitchDue = false; | 
|  | } | 
|  |  | 
|  | // Synthesize a key repeat if appropriate. | 
|  | if (mKeyRepeatState.lastKeyEntry) { | 
|  | if (currentTime >= mKeyRepeatState.nextRepeatTime) { | 
|  | mPendingEvent = synthesizeKeyRepeatLocked(currentTime, keyRepeatDelay); | 
|  | } else { | 
|  | if (mKeyRepeatState.nextRepeatTime < *nextWakeupTime) { | 
|  | *nextWakeupTime = mKeyRepeatState.nextRepeatTime; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (! mPendingEvent) { | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | // Inbound queue has at least one entry. | 
|  | EventEntry* entry = mInboundQueue.headSentinel.next; | 
|  |  | 
|  | // Throttle the entry if it is a move event and there are no | 
|  | // other events behind it in the queue.  Due to movement batching, additional | 
|  | // samples may be appended to this event by the time the throttling timeout | 
|  | // expires. | 
|  | // TODO Make this smarter and consider throttling per device independently. | 
|  | if (entry->type == EventEntry::TYPE_MOTION) { | 
|  | MotionEntry* motionEntry = static_cast<MotionEntry*>(entry); | 
|  | int32_t deviceId = motionEntry->deviceId; | 
|  | uint32_t source = motionEntry->source; | 
|  | if (! isAppSwitchDue | 
|  | && motionEntry->next == & mInboundQueue.tailSentinel // exactly one event | 
|  | && motionEntry->action == AMOTION_EVENT_ACTION_MOVE | 
|  | && deviceId == mThrottleState.lastDeviceId | 
|  | && source == mThrottleState.lastSource) { | 
|  | nsecs_t nextTime = mThrottleState.lastEventTime | 
|  | + mThrottleState.minTimeBetweenEvents; | 
|  | if (currentTime < nextTime) { | 
|  | // Throttle it! | 
|  | #if DEBUG_THROTTLING | 
|  | LOGD("Throttling - Delaying motion event for " | 
|  | "device 0x%x, source 0x%08x by up to %0.3fms.", | 
|  | deviceId, source, (nextTime - currentTime) * 0.000001); | 
|  | #endif | 
|  | if (nextTime < *nextWakeupTime) { | 
|  | *nextWakeupTime = nextTime; | 
|  | } | 
|  | if (mThrottleState.originalSampleCount == 0) { | 
|  | mThrottleState.originalSampleCount = | 
|  | motionEntry->countSamples(); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if DEBUG_THROTTLING | 
|  | if (mThrottleState.originalSampleCount != 0) { | 
|  | uint32_t count = motionEntry->countSamples(); | 
|  | LOGD("Throttling - Motion event sample count grew by %d from %d to %d.", | 
|  | count - mThrottleState.originalSampleCount, | 
|  | mThrottleState.originalSampleCount, count); | 
|  | mThrottleState.originalSampleCount = 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | mThrottleState.lastEventTime = entry->eventTime < currentTime | 
|  | ? entry->eventTime : currentTime; | 
|  | mThrottleState.lastDeviceId = deviceId; | 
|  | mThrottleState.lastSource = source; | 
|  | } | 
|  |  | 
|  | mInboundQueue.dequeue(entry); | 
|  | mPendingEvent = entry; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now we have an event to dispatch. | 
|  | assert(mPendingEvent != NULL); | 
|  | bool wasDispatched = false; | 
|  | bool wasDropped = false; | 
|  | switch (mPendingEvent->type) { | 
|  | case EventEntry::TYPE_CONFIGURATION_CHANGED: { | 
|  | ConfigurationChangedEntry* typedEntry = | 
|  | static_cast<ConfigurationChangedEntry*>(mPendingEvent); | 
|  | wasDispatched = dispatchConfigurationChangedLocked(currentTime, typedEntry); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case EventEntry::TYPE_KEY: { | 
|  | KeyEntry* typedEntry = static_cast<KeyEntry*>(mPendingEvent); | 
|  | if (isAppSwitchPendingLocked()) { | 
|  | if (isAppSwitchKey(typedEntry->keyCode)) { | 
|  | resetPendingAppSwitchLocked(true); | 
|  | } else if (isAppSwitchDue) { | 
|  | LOGI("Dropping key because of pending overdue app switch."); | 
|  | wasDropped = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | wasDispatched = dispatchKeyLocked(currentTime, typedEntry, keyRepeatTimeout, | 
|  | nextWakeupTime); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case EventEntry::TYPE_MOTION: { | 
|  | MotionEntry* typedEntry = static_cast<MotionEntry*>(mPendingEvent); | 
|  | if (isAppSwitchDue) { | 
|  | LOGI("Dropping motion because of pending overdue app switch."); | 
|  | wasDropped = true; | 
|  | break; | 
|  | } | 
|  | wasDispatched = dispatchMotionLocked(currentTime, typedEntry, nextWakeupTime); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | assert(false); | 
|  | wasDropped = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (wasDispatched || wasDropped) { | 
|  | releasePendingEventLocked(wasDropped); | 
|  | *nextWakeupTime = LONG_LONG_MIN;  // force next poll to wake up immediately | 
|  | } | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::enqueueInboundEventLocked(EventEntry* entry) { | 
|  | bool needWake = mInboundQueue.isEmpty(); | 
|  | mInboundQueue.enqueueAtTail(entry); | 
|  |  | 
|  | switch (entry->type) { | 
|  | case EventEntry::TYPE_KEY: | 
|  | needWake |= detectPendingAppSwitchLocked(static_cast<KeyEntry*>(entry)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return needWake; | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::isAppSwitchKey(int32_t keyCode) { | 
|  | return keyCode == AKEYCODE_HOME || keyCode == AKEYCODE_ENDCALL; | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::isAppSwitchPendingLocked() { | 
|  | return mAppSwitchDueTime != LONG_LONG_MAX; | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::detectPendingAppSwitchLocked(KeyEntry* inboundKeyEntry) { | 
|  | if (inboundKeyEntry->action == AKEY_EVENT_ACTION_UP | 
|  | && ! (inboundKeyEntry->flags & AKEY_EVENT_FLAG_CANCELED) | 
|  | && isAppSwitchKey(inboundKeyEntry->keyCode) | 
|  | && isEventFromReliableSourceLocked(inboundKeyEntry)) { | 
|  | #if DEBUG_APP_SWITCH | 
|  | LOGD("App switch is pending!"); | 
|  | #endif | 
|  | mAppSwitchDueTime = inboundKeyEntry->eventTime + APP_SWITCH_TIMEOUT; | 
|  | return true; // need wake | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::resetPendingAppSwitchLocked(bool handled) { | 
|  | mAppSwitchDueTime = LONG_LONG_MAX; | 
|  |  | 
|  | #if DEBUG_APP_SWITCH | 
|  | if (handled) { | 
|  | LOGD("App switch has arrived."); | 
|  | } else { | 
|  | LOGD("App switch was abandoned."); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::runCommandsLockedInterruptible() { | 
|  | if (mCommandQueue.isEmpty()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | do { | 
|  | CommandEntry* commandEntry = mCommandQueue.dequeueAtHead(); | 
|  |  | 
|  | Command command = commandEntry->command; | 
|  | (this->*command)(commandEntry); // commands are implicitly 'LockedInterruptible' | 
|  |  | 
|  | commandEntry->connection.clear(); | 
|  | mAllocator.releaseCommandEntry(commandEntry); | 
|  | } while (! mCommandQueue.isEmpty()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | InputDispatcher::CommandEntry* InputDispatcher::postCommandLocked(Command command) { | 
|  | CommandEntry* commandEntry = mAllocator.obtainCommandEntry(command); | 
|  | mCommandQueue.enqueueAtTail(commandEntry); | 
|  | return commandEntry; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::drainInboundQueueLocked() { | 
|  | while (! mInboundQueue.isEmpty()) { | 
|  | EventEntry* entry = mInboundQueue.dequeueAtHead(); | 
|  | releaseInboundEventLocked(entry, true /*wasDropped*/); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::releasePendingEventLocked(bool wasDropped) { | 
|  | if (mPendingEvent) { | 
|  | releaseInboundEventLocked(mPendingEvent, wasDropped); | 
|  | mPendingEvent = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::releaseInboundEventLocked(EventEntry* entry, bool wasDropped) { | 
|  | if (wasDropped) { | 
|  | #if DEBUG_DISPATCH_CYCLE | 
|  | LOGD("Pending event was dropped."); | 
|  | #endif | 
|  | setInjectionResultLocked(entry, INPUT_EVENT_INJECTION_FAILED); | 
|  | } | 
|  | mAllocator.releaseEventEntry(entry); | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::isEventFromReliableSourceLocked(EventEntry* entry) { | 
|  | return ! entry->isInjected() | 
|  | || entry->injectorUid == 0 | 
|  | || mPolicy->checkInjectEventsPermissionNonReentrant( | 
|  | entry->injectorPid, entry->injectorUid); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::resetKeyRepeatLocked() { | 
|  | if (mKeyRepeatState.lastKeyEntry) { | 
|  | mAllocator.releaseKeyEntry(mKeyRepeatState.lastKeyEntry); | 
|  | mKeyRepeatState.lastKeyEntry = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | InputDispatcher::KeyEntry* InputDispatcher::synthesizeKeyRepeatLocked( | 
|  | nsecs_t currentTime, nsecs_t keyRepeatDelay) { | 
|  | KeyEntry* entry = mKeyRepeatState.lastKeyEntry; | 
|  |  | 
|  | // Reuse the repeated key entry if it is otherwise unreferenced. | 
|  | uint32_t policyFlags = entry->policyFlags & POLICY_FLAG_RAW_MASK; | 
|  | if (entry->refCount == 1) { | 
|  | entry->recycle(); | 
|  | entry->eventTime = currentTime; | 
|  | entry->policyFlags = policyFlags; | 
|  | entry->repeatCount += 1; | 
|  | } else { | 
|  | KeyEntry* newEntry = mAllocator.obtainKeyEntry(currentTime, | 
|  | entry->deviceId, entry->source, policyFlags, | 
|  | entry->action, entry->flags, entry->keyCode, entry->scanCode, | 
|  | entry->metaState, entry->repeatCount + 1, entry->downTime); | 
|  |  | 
|  | mKeyRepeatState.lastKeyEntry = newEntry; | 
|  | mAllocator.releaseKeyEntry(entry); | 
|  |  | 
|  | entry = newEntry; | 
|  | } | 
|  | entry->syntheticRepeat = true; | 
|  |  | 
|  | // Increment reference count since we keep a reference to the event in | 
|  | // mKeyRepeatState.lastKeyEntry in addition to the one we return. | 
|  | entry->refCount += 1; | 
|  |  | 
|  | if (entry->repeatCount == 1) { | 
|  | entry->flags |= AKEY_EVENT_FLAG_LONG_PRESS; | 
|  | } | 
|  |  | 
|  | mKeyRepeatState.nextRepeatTime = currentTime + keyRepeatDelay; | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::dispatchConfigurationChangedLocked( | 
|  | nsecs_t currentTime, ConfigurationChangedEntry* entry) { | 
|  | #if DEBUG_OUTBOUND_EVENT_DETAILS | 
|  | LOGD("dispatchConfigurationChanged - eventTime=%lld", entry->eventTime); | 
|  | #endif | 
|  |  | 
|  | // Reset key repeating in case a keyboard device was added or removed or something. | 
|  | resetKeyRepeatLocked(); | 
|  |  | 
|  | // Enqueue a command to run outside the lock to tell the policy that the configuration changed. | 
|  | CommandEntry* commandEntry = postCommandLocked( | 
|  | & InputDispatcher::doNotifyConfigurationChangedInterruptible); | 
|  | commandEntry->eventTime = entry->eventTime; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::dispatchKeyLocked( | 
|  | nsecs_t currentTime, KeyEntry* entry, nsecs_t keyRepeatTimeout, | 
|  | nsecs_t* nextWakeupTime) { | 
|  | // Preprocessing. | 
|  | if (! entry->dispatchInProgress) { | 
|  | logOutboundKeyDetailsLocked("dispatchKey - ", entry); | 
|  |  | 
|  | if (entry->repeatCount == 0 | 
|  | && entry->action == AKEY_EVENT_ACTION_DOWN | 
|  | && ! entry->isInjected()) { | 
|  | if (mKeyRepeatState.lastKeyEntry | 
|  | && mKeyRepeatState.lastKeyEntry->keyCode == entry->keyCode) { | 
|  | // We have seen two identical key downs in a row which indicates that the device | 
|  | // driver is automatically generating key repeats itself.  We take note of the | 
|  | // repeat here, but we disable our own next key repeat timer since it is clear that | 
|  | // we will not need to synthesize key repeats ourselves. | 
|  | entry->repeatCount = mKeyRepeatState.lastKeyEntry->repeatCount + 1; | 
|  | resetKeyRepeatLocked(); | 
|  | mKeyRepeatState.nextRepeatTime = LONG_LONG_MAX; // don't generate repeats ourselves | 
|  | } else { | 
|  | // Not a repeat.  Save key down state in case we do see a repeat later. | 
|  | resetKeyRepeatLocked(); | 
|  | mKeyRepeatState.nextRepeatTime = entry->eventTime + keyRepeatTimeout; | 
|  | } | 
|  | mKeyRepeatState.lastKeyEntry = entry; | 
|  | entry->refCount += 1; | 
|  | } else if (! entry->syntheticRepeat) { | 
|  | resetKeyRepeatLocked(); | 
|  | } | 
|  |  | 
|  | entry->dispatchInProgress = true; | 
|  | startFindingTargetsLocked(); | 
|  | } | 
|  |  | 
|  | // Identify targets. | 
|  | if (! mCurrentInputTargetsValid) { | 
|  | InputWindow* window = NULL; | 
|  | int32_t injectionResult = findFocusedWindowLocked(currentTime, | 
|  | entry, nextWakeupTime, & window); | 
|  | if (injectionResult == INPUT_EVENT_INJECTION_PENDING) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | setInjectionResultLocked(entry, injectionResult); | 
|  | if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | addMonitoringTargetsLocked(); | 
|  | finishFindingTargetsLocked(window); | 
|  | } | 
|  |  | 
|  | // Give the policy a chance to intercept the key. | 
|  | if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN) { | 
|  | CommandEntry* commandEntry = postCommandLocked( | 
|  | & InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible); | 
|  | commandEntry->inputChannel = mCurrentInputChannel; | 
|  | commandEntry->keyEntry = entry; | 
|  | entry->refCount += 1; | 
|  | return false; // wait for the command to run | 
|  | } | 
|  | if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_SKIP) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Dispatch the key. | 
|  | dispatchEventToCurrentInputTargetsLocked(currentTime, entry, false); | 
|  |  | 
|  | // Poke user activity. | 
|  | pokeUserActivityLocked(entry->eventTime, mCurrentInputWindowType, POWER_MANAGER_BUTTON_EVENT); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::logOutboundKeyDetailsLocked(const char* prefix, const KeyEntry* entry) { | 
|  | #if DEBUG_OUTBOUND_EVENT_DETAILS | 
|  | LOGD("%seventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, " | 
|  | "action=0x%x, flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, " | 
|  | "downTime=%lld", | 
|  | prefix, | 
|  | entry->eventTime, entry->deviceId, entry->source, entry->policyFlags, | 
|  | entry->action, entry->flags, entry->keyCode, entry->scanCode, entry->metaState, | 
|  | entry->downTime); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::dispatchMotionLocked( | 
|  | nsecs_t currentTime, MotionEntry* entry, nsecs_t* nextWakeupTime) { | 
|  | // Preprocessing. | 
|  | if (! entry->dispatchInProgress) { | 
|  | logOutboundMotionDetailsLocked("dispatchMotion - ", entry); | 
|  |  | 
|  | entry->dispatchInProgress = true; | 
|  | startFindingTargetsLocked(); | 
|  | } | 
|  |  | 
|  | bool isPointerEvent = entry->source & AINPUT_SOURCE_CLASS_POINTER; | 
|  |  | 
|  | // Identify targets. | 
|  | if (! mCurrentInputTargetsValid) { | 
|  | InputWindow* window = NULL; | 
|  | int32_t injectionResult; | 
|  | if (isPointerEvent) { | 
|  | // Pointer event.  (eg. touchscreen) | 
|  | injectionResult = findTouchedWindowLocked(currentTime, | 
|  | entry, nextWakeupTime, & window); | 
|  | } else { | 
|  | // Non touch event.  (eg. trackball) | 
|  | injectionResult = findFocusedWindowLocked(currentTime, | 
|  | entry, nextWakeupTime, & window); | 
|  | } | 
|  | if (injectionResult == INPUT_EVENT_INJECTION_PENDING) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | setInjectionResultLocked(entry, injectionResult); | 
|  | if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | addMonitoringTargetsLocked(); | 
|  | finishFindingTargetsLocked(window); | 
|  | } | 
|  |  | 
|  | // Dispatch the motion. | 
|  | dispatchEventToCurrentInputTargetsLocked(currentTime, entry, false); | 
|  |  | 
|  | // Poke user activity. | 
|  | int32_t eventType; | 
|  | if (isPointerEvent) { | 
|  | switch (entry->action) { | 
|  | case AMOTION_EVENT_ACTION_DOWN: | 
|  | eventType = POWER_MANAGER_TOUCH_EVENT; | 
|  | break; | 
|  | case AMOTION_EVENT_ACTION_UP: | 
|  | eventType = POWER_MANAGER_TOUCH_UP_EVENT; | 
|  | break; | 
|  | default: | 
|  | if (entry->eventTime - entry->downTime >= EVENT_IGNORE_DURATION) { | 
|  | eventType = POWER_MANAGER_TOUCH_EVENT; | 
|  | } else { | 
|  | eventType = POWER_MANAGER_LONG_TOUCH_EVENT; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | eventType = POWER_MANAGER_BUTTON_EVENT; | 
|  | } | 
|  | pokeUserActivityLocked(entry->eventTime, mCurrentInputWindowType, eventType); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | void InputDispatcher::logOutboundMotionDetailsLocked(const char* prefix, const MotionEntry* entry) { | 
|  | #if DEBUG_OUTBOUND_EVENT_DETAILS | 
|  | LOGD("%seventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, " | 
|  | "action=0x%x, flags=0x%x, " | 
|  | "metaState=0x%x, edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, downTime=%lld", | 
|  | prefix, | 
|  | entry->eventTime, entry->deviceId, entry->source, entry->policyFlags, | 
|  | entry->action, entry->flags, | 
|  | entry->metaState, entry->edgeFlags, entry->xPrecision, entry->yPrecision, | 
|  | entry->downTime); | 
|  |  | 
|  | // Print the most recent sample that we have available, this may change due to batching. | 
|  | size_t sampleCount = 1; | 
|  | const MotionSample* sample = & entry->firstSample; | 
|  | for (; sample->next != NULL; sample = sample->next) { | 
|  | sampleCount += 1; | 
|  | } | 
|  | for (uint32_t i = 0; i < entry->pointerCount; i++) { | 
|  | LOGD("  Pointer %d: id=%d, x=%f, y=%f, pressure=%f, size=%f, " | 
|  | "touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, " | 
|  | "orientation=%f", | 
|  | i, entry->pointerIds[i], | 
|  | sample->pointerCoords[i].x, sample->pointerCoords[i].y, | 
|  | sample->pointerCoords[i].pressure, sample->pointerCoords[i].size, | 
|  | sample->pointerCoords[i].touchMajor, sample->pointerCoords[i].touchMinor, | 
|  | sample->pointerCoords[i].toolMajor, sample->pointerCoords[i].toolMinor, | 
|  | sample->pointerCoords[i].orientation); | 
|  | } | 
|  |  | 
|  | // Keep in mind that due to batching, it is possible for the number of samples actually | 
|  | // dispatched to change before the application finally consumed them. | 
|  | if (entry->action == AMOTION_EVENT_ACTION_MOVE) { | 
|  | LOGD("  ... Total movement samples currently batched %d ...", sampleCount); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void InputDispatcher::dispatchEventToCurrentInputTargetsLocked(nsecs_t currentTime, | 
|  | EventEntry* eventEntry, bool resumeWithAppendedMotionSample) { | 
|  | #if DEBUG_DISPATCH_CYCLE | 
|  | LOGD("dispatchEventToCurrentInputTargets - " | 
|  | "resumeWithAppendedMotionSample=%s", | 
|  | toString(resumeWithAppendedMotionSample)); | 
|  | #endif | 
|  |  | 
|  | assert(eventEntry->dispatchInProgress); // should already have been set to true | 
|  |  | 
|  | for (size_t i = 0; i < mCurrentInputTargets.size(); i++) { | 
|  | const InputTarget& inputTarget = mCurrentInputTargets.itemAt(i); | 
|  |  | 
|  | ssize_t connectionIndex = getConnectionIndex(inputTarget.inputChannel); | 
|  | if (connectionIndex >= 0) { | 
|  | sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex); | 
|  | prepareDispatchCycleLocked(currentTime, connection, eventEntry, & inputTarget, | 
|  | resumeWithAppendedMotionSample); | 
|  | } else { | 
|  | LOGW("Framework requested delivery of an input event to channel '%s' but it " | 
|  | "is not registered with the input dispatcher.", | 
|  | inputTarget.inputChannel->getName().string()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::startFindingTargetsLocked() { | 
|  | mCurrentInputTargetsValid = false; | 
|  | mCurrentInputTargets.clear(); | 
|  | mCurrentInputChannel.clear(); | 
|  | mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_NONE; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::finishFindingTargetsLocked(const InputWindow* window) { | 
|  | mCurrentInputWindowType = window->layoutParamsType; | 
|  | mCurrentInputChannel = window->inputChannel; | 
|  | mCurrentInputTargetsValid = true; | 
|  | } | 
|  |  | 
|  | int32_t InputDispatcher::handleTargetsNotReadyLocked(nsecs_t currentTime, | 
|  | const EventEntry* entry, const InputApplication* application, const InputWindow* window, | 
|  | nsecs_t* nextWakeupTime) { | 
|  | if (application == NULL && window == NULL) { | 
|  | if (mInputTargetWaitCause != INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Waiting for system to become ready for input."); | 
|  | #endif | 
|  | mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY; | 
|  | mInputTargetWaitStartTime = currentTime; | 
|  | mInputTargetWaitTimeoutTime = LONG_LONG_MAX; | 
|  | mInputTargetWaitTimeoutExpired = false; | 
|  | } | 
|  | } else { | 
|  | if (mInputTargetWaitCause != INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Waiting for application to become ready for input: name=%s, window=%s", | 
|  | application ? application->name.string() : "<unknown>", | 
|  | window ? window->inputChannel->getName().string() : "<unknown>"); | 
|  | #endif | 
|  | nsecs_t timeout = window ? window->dispatchingTimeout : | 
|  | application ? application->dispatchingTimeout : DEFAULT_INPUT_DISPATCHING_TIMEOUT; | 
|  |  | 
|  | mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY; | 
|  | mInputTargetWaitStartTime = currentTime; | 
|  | mInputTargetWaitTimeoutTime = currentTime + timeout; | 
|  | mInputTargetWaitTimeoutExpired = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mInputTargetWaitTimeoutExpired) { | 
|  | return INPUT_EVENT_INJECTION_TIMED_OUT; | 
|  | } | 
|  |  | 
|  | if (currentTime >= mInputTargetWaitTimeoutTime) { | 
|  | LOGI("Application is not ready for input: name=%s, window=%s," | 
|  | "%01.1fms since event, %01.1fms since wait started", | 
|  | application ? application->name.string() : "<unknown>", | 
|  | window ? window->inputChannel->getName().string() : "<unknown>", | 
|  | (currentTime - entry->eventTime) / 1000000.0, | 
|  | (currentTime - mInputTargetWaitStartTime) / 1000000.0); | 
|  |  | 
|  | CommandEntry* commandEntry = postCommandLocked( | 
|  | & InputDispatcher::doTargetsNotReadyTimeoutLockedInterruptible); | 
|  | if (application) { | 
|  | commandEntry->inputApplicationHandle = application->handle; | 
|  | } | 
|  | if (window) { | 
|  | commandEntry->inputChannel = window->inputChannel; | 
|  | } | 
|  |  | 
|  | // Force poll loop to wake up immediately on next iteration once we get the | 
|  | // ANR response back from the policy. | 
|  | *nextWakeupTime = LONG_LONG_MIN; | 
|  | return INPUT_EVENT_INJECTION_PENDING; | 
|  | } else { | 
|  | // Force poll loop to wake up when timeout is due. | 
|  | if (mInputTargetWaitTimeoutTime < *nextWakeupTime) { | 
|  | *nextWakeupTime = mInputTargetWaitTimeoutTime; | 
|  | } | 
|  | return INPUT_EVENT_INJECTION_PENDING; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::resumeAfterTargetsNotReadyTimeoutLocked(nsecs_t newTimeout) { | 
|  | if (newTimeout > 0) { | 
|  | // Extend the timeout. | 
|  | mInputTargetWaitTimeoutTime = now() + newTimeout; | 
|  | } else { | 
|  | // Give up. | 
|  | mInputTargetWaitTimeoutExpired = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | nsecs_t InputDispatcher::getTimeSpentWaitingForApplicationWhileFindingTargetsLocked( | 
|  | nsecs_t currentTime) { | 
|  | if (mInputTargetWaitCause == INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY) { | 
|  | return currentTime - mInputTargetWaitStartTime; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::resetANRTimeoutsLocked() { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Resetting ANR timeouts."); | 
|  | #endif | 
|  |  | 
|  | // Reset timeouts for all active connections. | 
|  | nsecs_t currentTime = now(); | 
|  | for (size_t i = 0; i < mActiveConnections.size(); i++) { | 
|  | Connection* connection = mActiveConnections[i]; | 
|  | connection->resetTimeout(currentTime); | 
|  | } | 
|  |  | 
|  | // Reset input target wait timeout. | 
|  | mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_NONE; | 
|  | } | 
|  |  | 
|  | int32_t InputDispatcher::findFocusedWindowLocked(nsecs_t currentTime, const EventEntry* entry, | 
|  | nsecs_t* nextWakeupTime, InputWindow** outWindow) { | 
|  | *outWindow = NULL; | 
|  | mCurrentInputTargets.clear(); | 
|  |  | 
|  | int32_t injectionResult; | 
|  |  | 
|  | // If there is no currently focused window and no focused application | 
|  | // then drop the event. | 
|  | if (! mFocusedWindow) { | 
|  | if (mFocusedApplication) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Waiting because there is no focused window but there is a " | 
|  | "focused application that may eventually add a window: '%s'.", | 
|  | mFocusedApplication->name.string()); | 
|  | #endif | 
|  | injectionResult = handleTargetsNotReadyLocked(currentTime, entry, | 
|  | mFocusedApplication, NULL, nextWakeupTime); | 
|  | goto Unresponsive; | 
|  | } | 
|  |  | 
|  | LOGI("Dropping event because there is no focused window or focused application."); | 
|  | injectionResult = INPUT_EVENT_INJECTION_FAILED; | 
|  | goto Failed; | 
|  | } | 
|  |  | 
|  | // Check permissions. | 
|  | if (! checkInjectionPermission(mFocusedWindow, entry->injectorPid, entry->injectorUid)) { | 
|  | injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED; | 
|  | goto Failed; | 
|  | } | 
|  |  | 
|  | // If the currently focused window is paused then keep waiting. | 
|  | if (mFocusedWindow->paused) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Waiting because focused window is paused."); | 
|  | #endif | 
|  | injectionResult = handleTargetsNotReadyLocked(currentTime, entry, | 
|  | mFocusedApplication, mFocusedWindow, nextWakeupTime); | 
|  | goto Unresponsive; | 
|  | } | 
|  |  | 
|  | // Success!  Output targets. | 
|  | injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED; | 
|  | *outWindow = mFocusedWindow; | 
|  | addWindowTargetLocked(mFocusedWindow, InputTarget::FLAG_SYNC, | 
|  | getTimeSpentWaitingForApplicationWhileFindingTargetsLocked(currentTime)); | 
|  |  | 
|  | // Done. | 
|  | Failed: | 
|  | Unresponsive: | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("findFocusedWindow finished: injectionResult=%d", | 
|  | injectionResult); | 
|  | logDispatchStateLocked(); | 
|  | #endif | 
|  | return injectionResult; | 
|  | } | 
|  |  | 
|  | int32_t InputDispatcher::findTouchedWindowLocked(nsecs_t currentTime, const MotionEntry* entry, | 
|  | nsecs_t* nextWakeupTime, InputWindow** outWindow) { | 
|  | enum InjectionPermission { | 
|  | INJECTION_PERMISSION_UNKNOWN, | 
|  | INJECTION_PERMISSION_GRANTED, | 
|  | INJECTION_PERMISSION_DENIED | 
|  | }; | 
|  |  | 
|  | *outWindow = NULL; | 
|  | mCurrentInputTargets.clear(); | 
|  |  | 
|  | nsecs_t startTime = now(); | 
|  |  | 
|  | // For security reasons, we defer updating the touch state until we are sure that | 
|  | // event injection will be allowed. | 
|  | // | 
|  | // FIXME In the original code, screenWasOff could never be set to true. | 
|  | //       The reason is that the POLICY_FLAG_WOKE_HERE | 
|  | //       and POLICY_FLAG_BRIGHT_HERE flags were set only when preprocessing raw | 
|  | //       EV_KEY, EV_REL and EV_ABS events.  As it happens, the touch event was | 
|  | //       actually enqueued using the policyFlags that appeared in the final EV_SYN | 
|  | //       events upon which no preprocessing took place.  So policyFlags was always 0. | 
|  | //       In the new native input dispatcher we're a bit more careful about event | 
|  | //       preprocessing so the touches we receive can actually have non-zero policyFlags. | 
|  | //       Unfortunately we obtain undesirable behavior. | 
|  | // | 
|  | //       Here's what happens: | 
|  | // | 
|  | //       When the device dims in anticipation of going to sleep, touches | 
|  | //       in windows which have FLAG_TOUCHABLE_WHEN_WAKING cause | 
|  | //       the device to brighten and reset the user activity timer. | 
|  | //       Touches on other windows (such as the launcher window) | 
|  | //       are dropped.  Then after a moment, the device goes to sleep.  Oops. | 
|  | // | 
|  | //       Also notice how screenWasOff was being initialized using POLICY_FLAG_BRIGHT_HERE | 
|  | //       instead of POLICY_FLAG_WOKE_HERE... | 
|  | // | 
|  | bool screenWasOff = false; // original policy: policyFlags & POLICY_FLAG_BRIGHT_HERE; | 
|  |  | 
|  | int32_t action = entry->action; | 
|  |  | 
|  | // Update the touch state as needed based on the properties of the touch event. | 
|  | int32_t injectionResult; | 
|  | InjectionPermission injectionPermission; | 
|  | if (action == AMOTION_EVENT_ACTION_DOWN) { | 
|  | /* Case 1: ACTION_DOWN */ | 
|  |  | 
|  | InputWindow* newTouchedWindow = NULL; | 
|  | mTempTouchedOutsideTargets.clear(); | 
|  |  | 
|  | int32_t x = int32_t(entry->firstSample.pointerCoords[0].x); | 
|  | int32_t y = int32_t(entry->firstSample.pointerCoords[0].y); | 
|  | InputWindow* topErrorWindow = NULL; | 
|  | bool obscured = false; | 
|  |  | 
|  | // Traverse windows from front to back to find touched window and outside targets. | 
|  | size_t numWindows = mWindows.size(); | 
|  | for (size_t i = 0; i < numWindows; i++) { | 
|  | InputWindow* window = & mWindows.editItemAt(i); | 
|  | int32_t flags = window->layoutParamsFlags; | 
|  |  | 
|  | if (flags & InputWindow::FLAG_SYSTEM_ERROR) { | 
|  | if (! topErrorWindow) { | 
|  | topErrorWindow = window; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (window->visible) { | 
|  | if (! (flags & InputWindow::FLAG_NOT_TOUCHABLE)) { | 
|  | bool isTouchModal = (flags & (InputWindow::FLAG_NOT_FOCUSABLE | 
|  | | InputWindow::FLAG_NOT_TOUCH_MODAL)) == 0; | 
|  | if (isTouchModal || window->touchableAreaContainsPoint(x, y)) { | 
|  | if (! screenWasOff || flags & InputWindow::FLAG_TOUCHABLE_WHEN_WAKING) { | 
|  | newTouchedWindow = window; | 
|  | obscured = isWindowObscuredLocked(window); | 
|  | } | 
|  | break; // found touched window, exit window loop | 
|  | } | 
|  | } | 
|  |  | 
|  | if (flags & InputWindow::FLAG_WATCH_OUTSIDE_TOUCH) { | 
|  | OutsideTarget outsideTarget; | 
|  | outsideTarget.window = window; | 
|  | outsideTarget.obscured = isWindowObscuredLocked(window); | 
|  | mTempTouchedOutsideTargets.push(outsideTarget); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there is an error window but it is not taking focus (typically because | 
|  | // it is invisible) then wait for it.  Any other focused window may in | 
|  | // fact be in ANR state. | 
|  | if (topErrorWindow && newTouchedWindow != topErrorWindow) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Waiting because system error window is pending."); | 
|  | #endif | 
|  | injectionResult = handleTargetsNotReadyLocked(currentTime, entry, | 
|  | NULL, NULL, nextWakeupTime); | 
|  | injectionPermission = INJECTION_PERMISSION_UNKNOWN; | 
|  | goto Unresponsive; | 
|  | } | 
|  |  | 
|  | // If we did not find a touched window then fail. | 
|  | if (! newTouchedWindow) { | 
|  | if (mFocusedApplication) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("Waiting because there is no touched window but there is a " | 
|  | "focused application that may eventually add a new window: '%s'.", | 
|  | mFocusedApplication->name.string()); | 
|  | #endif | 
|  | injectionResult = handleTargetsNotReadyLocked(currentTime, entry, | 
|  | mFocusedApplication, NULL, nextWakeupTime); | 
|  | injectionPermission = INJECTION_PERMISSION_UNKNOWN; | 
|  | goto Unresponsive; | 
|  | } | 
|  |  | 
|  | LOGI("Dropping event because there is no touched window or focused application."); | 
|  | injectionResult = INPUT_EVENT_INJECTION_FAILED; | 
|  | injectionPermission = INJECTION_PERMISSION_UNKNOWN; | 
|  | goto Failed; | 
|  | } | 
|  |  | 
|  | // Check permissions. | 
|  | if (! checkInjectionPermission(newTouchedWindow, entry->injectorPid, entry->injectorUid)) { | 
|  | injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED; | 
|  | injectionPermission = INJECTION_PERMISSION_DENIED; | 
|  | goto Failed; | 
|  | } | 
|  |  | 
|  | // If the touched window is paused then keep waiting. | 
|  | if (newTouchedWindow->paused) { | 
|  | #if DEBUG_INPUT_DISPATCHER_POLICY | 
|  | LOGD("Waiting because touched window is paused."); | 
|  | #endif | 
|  | injectionResult = handleTargetsNotReadyLocked(currentTime, entry, | 
|  | NULL, newTouchedWindow, nextWakeupTime); | 
|  | injectionPermission = INJECTION_PERMISSION_GRANTED; | 
|  | goto Unresponsive; | 
|  | } | 
|  |  | 
|  | // Success!  Update the touch dispatch state for real. | 
|  | releaseTouchedWindowLocked(); | 
|  |  | 
|  | mTouchedWindow = newTouchedWindow; | 
|  | mTouchedWindowIsObscured = obscured; | 
|  |  | 
|  | if (newTouchedWindow->hasWallpaper) { | 
|  | mTouchedWallpaperWindows.appendVector(mWallpaperWindows); | 
|  | } | 
|  | } else { | 
|  | /* Case 2: Everything but ACTION_DOWN */ | 
|  |  | 
|  | // Check permissions. | 
|  | if (! checkInjectionPermission(mTouchedWindow, entry->injectorPid, entry->injectorUid)) { | 
|  | injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED; | 
|  | injectionPermission = INJECTION_PERMISSION_DENIED; | 
|  | goto Failed; | 
|  | } | 
|  |  | 
|  | // If the pointer is not currently down, then ignore the event. | 
|  | if (! mTouchDown) { | 
|  | LOGI("Dropping event because the pointer is not down."); | 
|  | injectionResult = INPUT_EVENT_INJECTION_FAILED; | 
|  | injectionPermission = INJECTION_PERMISSION_GRANTED; | 
|  | goto Failed; | 
|  | } | 
|  |  | 
|  | // If there is no currently touched window then fail. | 
|  | if (! mTouchedWindow) { | 
|  | #if DEBUG_INPUT_DISPATCHER_POLICY | 
|  | LOGD("Dropping event because there is no touched window to receive it."); | 
|  | #endif | 
|  | injectionResult = INPUT_EVENT_INJECTION_FAILED; | 
|  | injectionPermission = INJECTION_PERMISSION_GRANTED; | 
|  | goto Failed; | 
|  | } | 
|  |  | 
|  | // If the touched window is paused then keep waiting. | 
|  | if (mTouchedWindow->paused) { | 
|  | #if DEBUG_INPUT_DISPATCHER_POLICY | 
|  | LOGD("Waiting because touched window is paused."); | 
|  | #endif | 
|  | injectionResult = handleTargetsNotReadyLocked(currentTime, entry, | 
|  | NULL, mTouchedWindow, nextWakeupTime); | 
|  | injectionPermission = INJECTION_PERMISSION_GRANTED; | 
|  | goto Unresponsive; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Success!  Output targets. | 
|  | injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED; | 
|  | injectionPermission = INJECTION_PERMISSION_GRANTED; | 
|  |  | 
|  | { | 
|  | size_t numWallpaperWindows = mTouchedWallpaperWindows.size(); | 
|  | for (size_t i = 0; i < numWallpaperWindows; i++) { | 
|  | addWindowTargetLocked(mTouchedWallpaperWindows[i], | 
|  | InputTarget::FLAG_WINDOW_IS_OBSCURED, 0); | 
|  | } | 
|  |  | 
|  | size_t numOutsideTargets = mTempTouchedOutsideTargets.size(); | 
|  | for (size_t i = 0; i < numOutsideTargets; i++) { | 
|  | const OutsideTarget& outsideTarget = mTempTouchedOutsideTargets[i]; | 
|  | int32_t outsideTargetFlags = InputTarget::FLAG_OUTSIDE; | 
|  | if (outsideTarget.obscured) { | 
|  | outsideTargetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED; | 
|  | } | 
|  | addWindowTargetLocked(outsideTarget.window, outsideTargetFlags, 0); | 
|  | } | 
|  | mTempTouchedOutsideTargets.clear(); | 
|  |  | 
|  | int32_t targetFlags = InputTarget::FLAG_SYNC; | 
|  | if (mTouchedWindowIsObscured) { | 
|  | targetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED; | 
|  | } | 
|  | addWindowTargetLocked(mTouchedWindow, targetFlags, | 
|  | getTimeSpentWaitingForApplicationWhileFindingTargetsLocked(currentTime)); | 
|  | *outWindow = mTouchedWindow; | 
|  | } | 
|  |  | 
|  | Failed: | 
|  | // Check injection permission once and for all. | 
|  | if (injectionPermission == INJECTION_PERMISSION_UNKNOWN) { | 
|  | if (checkInjectionPermission(action == AMOTION_EVENT_ACTION_DOWN ? NULL : mTouchedWindow, | 
|  | entry->injectorPid, entry->injectorUid)) { | 
|  | injectionPermission = INJECTION_PERMISSION_GRANTED; | 
|  | } else { | 
|  | injectionPermission = INJECTION_PERMISSION_DENIED; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update final pieces of touch state if the injector had permission. | 
|  | if (injectionPermission == INJECTION_PERMISSION_GRANTED) { | 
|  | if (action == AMOTION_EVENT_ACTION_DOWN) { | 
|  | if (mTouchDown) { | 
|  | // This is weird.  We got a down but we thought it was already down! | 
|  | LOGW("Pointer down received while already down."); | 
|  | } else { | 
|  | mTouchDown = true; | 
|  | } | 
|  |  | 
|  | if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) { | 
|  | // Since we failed to identify a target for this touch down, we may still | 
|  | // be holding on to an earlier target from a previous touch down.  Release it. | 
|  | releaseTouchedWindowLocked(); | 
|  | } | 
|  | } else if (action == AMOTION_EVENT_ACTION_UP) { | 
|  | mTouchDown = false; | 
|  | releaseTouchedWindowLocked(); | 
|  | } | 
|  | } else { | 
|  | LOGW("Not updating touch focus because injection was denied."); | 
|  | } | 
|  |  | 
|  | Unresponsive: | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("findTouchedWindow finished: injectionResult=%d, injectionPermission=%d", | 
|  | injectionResult, injectionPermission); | 
|  | logDispatchStateLocked(); | 
|  | #endif | 
|  | return injectionResult; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::releaseTouchedWindowLocked() { | 
|  | mTouchedWindow = NULL; | 
|  | mTouchedWindowIsObscured = false; | 
|  | mTouchedWallpaperWindows.clear(); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::addWindowTargetLocked(const InputWindow* window, int32_t targetFlags, | 
|  | nsecs_t timeSpentWaitingForApplication) { | 
|  | mCurrentInputTargets.push(); | 
|  |  | 
|  | InputTarget& target = mCurrentInputTargets.editTop(); | 
|  | target.inputChannel = window->inputChannel; | 
|  | target.flags = targetFlags; | 
|  | target.timeout = window->dispatchingTimeout; | 
|  | target.timeSpentWaitingForApplication = timeSpentWaitingForApplication; | 
|  | target.xOffset = - window->frameLeft; | 
|  | target.yOffset = - window->frameTop; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::addMonitoringTargetsLocked() { | 
|  | for (size_t i = 0; i < mMonitoringChannels.size(); i++) { | 
|  | mCurrentInputTargets.push(); | 
|  |  | 
|  | InputTarget& target = mCurrentInputTargets.editTop(); | 
|  | target.inputChannel = mMonitoringChannels[i]; | 
|  | target.flags = 0; | 
|  | target.timeout = -1; | 
|  | target.timeSpentWaitingForApplication = 0; | 
|  | target.xOffset = 0; | 
|  | target.yOffset = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::checkInjectionPermission(const InputWindow* window, | 
|  | int32_t injectorPid, int32_t injectorUid) { | 
|  | if (injectorUid > 0 && (window == NULL || window->ownerUid != injectorUid)) { | 
|  | bool result = mPolicy->checkInjectEventsPermissionNonReentrant(injectorPid, injectorUid); | 
|  | if (! result) { | 
|  | if (window) { | 
|  | LOGW("Permission denied: injecting event from pid %d uid %d to window " | 
|  | "with input channel %s owned by uid %d", | 
|  | injectorPid, injectorUid, window->inputChannel->getName().string(), | 
|  | window->ownerUid); | 
|  | } else { | 
|  | LOGW("Permission denied: injecting event from pid %d uid %d", | 
|  | injectorPid, injectorUid); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::isWindowObscuredLocked(const InputWindow* window) { | 
|  | size_t numWindows = mWindows.size(); | 
|  | for (size_t i = 0; i < numWindows; i++) { | 
|  | const InputWindow* other = & mWindows.itemAt(i); | 
|  | if (other == window) { | 
|  | break; | 
|  | } | 
|  | if (other->visible && window->visibleFrameIntersects(other)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::pokeUserActivityLocked(nsecs_t eventTime, | 
|  | int32_t windowType, int32_t eventType) { | 
|  | CommandEntry* commandEntry = postCommandLocked( | 
|  | & InputDispatcher::doPokeUserActivityLockedInterruptible); | 
|  | commandEntry->eventTime = eventTime; | 
|  | commandEntry->windowType = windowType; | 
|  | commandEntry->userActivityEventType = eventType; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime, | 
|  | const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget, | 
|  | bool resumeWithAppendedMotionSample) { | 
|  | #if DEBUG_DISPATCH_CYCLE | 
|  | LOGD("channel '%s' ~ prepareDispatchCycle - flags=%d, timeout=%lldns, " | 
|  | "xOffset=%f, yOffset=%f, resumeWithAppendedMotionSample=%s", | 
|  | connection->getInputChannelName(), inputTarget->flags, inputTarget->timeout, | 
|  | inputTarget->xOffset, inputTarget->yOffset, | 
|  | toString(resumeWithAppendedMotionSample)); | 
|  | #endif | 
|  |  | 
|  | // Skip this event if the connection status is not normal. | 
|  | // We don't want to enqueue additional outbound events if the connection is broken or | 
|  | // not responding. | 
|  | if (connection->status != Connection::STATUS_NORMAL) { | 
|  | LOGW("channel '%s' ~ Dropping event because the channel status is %s", | 
|  | connection->getInputChannelName(), connection->getStatusLabel()); | 
|  |  | 
|  | // If the connection is not responding but the user is poking the application anyways, | 
|  | // retrigger the original timeout. | 
|  | if (connection->status == Connection::STATUS_NOT_RESPONDING) { | 
|  | timeoutDispatchCycleLocked(currentTime, connection); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Resume the dispatch cycle with a freshly appended motion sample. | 
|  | // First we check that the last dispatch entry in the outbound queue is for the same | 
|  | // motion event to which we appended the motion sample.  If we find such a dispatch | 
|  | // entry, and if it is currently in progress then we try to stream the new sample. | 
|  | bool wasEmpty = connection->outboundQueue.isEmpty(); | 
|  |  | 
|  | if (! wasEmpty && resumeWithAppendedMotionSample) { | 
|  | DispatchEntry* motionEventDispatchEntry = | 
|  | connection->findQueuedDispatchEntryForEvent(eventEntry); | 
|  | if (motionEventDispatchEntry) { | 
|  | // If the dispatch entry is not in progress, then we must be busy dispatching an | 
|  | // earlier event.  Not a problem, the motion event is on the outbound queue and will | 
|  | // be dispatched later. | 
|  | if (! motionEventDispatchEntry->inProgress) { | 
|  | #if DEBUG_BATCHING | 
|  | LOGD("channel '%s' ~ Not streaming because the motion event has " | 
|  | "not yet been dispatched.  " | 
|  | "(Waiting for earlier events to be consumed.)", | 
|  | connection->getInputChannelName()); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the dispatch entry is in progress but it already has a tail of pending | 
|  | // motion samples, then it must mean that the shared memory buffer filled up. | 
|  | // Not a problem, when this dispatch cycle is finished, we will eventually start | 
|  | // a new dispatch cycle to process the tail and that tail includes the newly | 
|  | // appended motion sample. | 
|  | if (motionEventDispatchEntry->tailMotionSample) { | 
|  | #if DEBUG_BATCHING | 
|  | LOGD("channel '%s' ~ Not streaming because no new samples can " | 
|  | "be appended to the motion event in this dispatch cycle.  " | 
|  | "(Waiting for next dispatch cycle to start.)", | 
|  | connection->getInputChannelName()); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The dispatch entry is in progress and is still potentially open for streaming. | 
|  | // Try to stream the new motion sample.  This might fail if the consumer has already | 
|  | // consumed the motion event (or if the channel is broken). | 
|  | MotionSample* appendedMotionSample = static_cast<MotionEntry*>(eventEntry)->lastSample; | 
|  | status_t status = connection->inputPublisher.appendMotionSample( | 
|  | appendedMotionSample->eventTime, appendedMotionSample->pointerCoords); | 
|  | if (status == OK) { | 
|  | #if DEBUG_BATCHING | 
|  | LOGD("channel '%s' ~ Successfully streamed new motion sample.", | 
|  | connection->getInputChannelName()); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  |  | 
|  | #if DEBUG_BATCHING | 
|  | if (status == NO_MEMORY) { | 
|  | LOGD("channel '%s' ~ Could not append motion sample to currently " | 
|  | "dispatched move event because the shared memory buffer is full.  " | 
|  | "(Waiting for next dispatch cycle to start.)", | 
|  | connection->getInputChannelName()); | 
|  | } else if (status == status_t(FAILED_TRANSACTION)) { | 
|  | LOGD("channel '%s' ~ Could not append motion sample to currently " | 
|  | "dispatched move event because the event has already been consumed.  " | 
|  | "(Waiting for next dispatch cycle to start.)", | 
|  | connection->getInputChannelName()); | 
|  | } else { | 
|  | LOGD("channel '%s' ~ Could not append motion sample to currently " | 
|  | "dispatched move event due to an error, status=%d.  " | 
|  | "(Waiting for next dispatch cycle to start.)", | 
|  | connection->getInputChannelName(), status); | 
|  | } | 
|  | #endif | 
|  | // Failed to stream.  Start a new tail of pending motion samples to dispatch | 
|  | // in the next cycle. | 
|  | motionEventDispatchEntry->tailMotionSample = appendedMotionSample; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Bring the input state back in line with reality in case it drifted off during an ANR. | 
|  | if (connection->inputState.isOutOfSync()) { | 
|  | mTempCancelationEvents.clear(); | 
|  | connection->inputState.synthesizeCancelationEvents(& mAllocator, mTempCancelationEvents); | 
|  | connection->inputState.resetOutOfSync(); | 
|  |  | 
|  | if (! mTempCancelationEvents.isEmpty()) { | 
|  | LOGI("channel '%s' ~ Generated %d cancelation events to bring channel back in sync " | 
|  | "with reality.", | 
|  | connection->getInputChannelName(), mTempCancelationEvents.size()); | 
|  |  | 
|  | for (size_t i = 0; i < mTempCancelationEvents.size(); i++) { | 
|  | EventEntry* cancelationEventEntry = mTempCancelationEvents.itemAt(i); | 
|  | switch (cancelationEventEntry->type) { | 
|  | case EventEntry::TYPE_KEY: | 
|  | logOutboundKeyDetailsLocked("  ", | 
|  | static_cast<KeyEntry*>(cancelationEventEntry)); | 
|  | break; | 
|  | case EventEntry::TYPE_MOTION: | 
|  | logOutboundMotionDetailsLocked("  ", | 
|  | static_cast<MotionEntry*>(cancelationEventEntry)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | DispatchEntry* cancelationDispatchEntry = | 
|  | mAllocator.obtainDispatchEntry(cancelationEventEntry, | 
|  | 0, inputTarget->xOffset, inputTarget->yOffset, inputTarget->timeout); | 
|  | connection->outboundQueue.enqueueAtTail(cancelationDispatchEntry); | 
|  |  | 
|  | mAllocator.releaseEventEntry(cancelationEventEntry); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // This is a new event. | 
|  | // Enqueue a new dispatch entry onto the outbound queue for this connection. | 
|  | DispatchEntry* dispatchEntry = mAllocator.obtainDispatchEntry(eventEntry, // increments ref | 
|  | inputTarget->flags, inputTarget->xOffset, inputTarget->yOffset, | 
|  | inputTarget->timeout); | 
|  | if (dispatchEntry->isSyncTarget()) { | 
|  | eventEntry->pendingSyncDispatches += 1; | 
|  | } | 
|  |  | 
|  | // Handle the case where we could not stream a new motion sample because the consumer has | 
|  | // already consumed the motion event (otherwise the corresponding dispatch entry would | 
|  | // still be in the outbound queue for this connection).  We set the head motion sample | 
|  | // to the list starting with the newly appended motion sample. | 
|  | if (resumeWithAppendedMotionSample) { | 
|  | #if DEBUG_BATCHING | 
|  | LOGD("channel '%s' ~ Preparing a new dispatch cycle for additional motion samples " | 
|  | "that cannot be streamed because the motion event has already been consumed.", | 
|  | connection->getInputChannelName()); | 
|  | #endif | 
|  | MotionSample* appendedMotionSample = static_cast<MotionEntry*>(eventEntry)->lastSample; | 
|  | dispatchEntry->headMotionSample = appendedMotionSample; | 
|  | } | 
|  |  | 
|  | // Enqueue the dispatch entry. | 
|  | connection->outboundQueue.enqueueAtTail(dispatchEntry); | 
|  |  | 
|  | // If the outbound queue was previously empty, start the dispatch cycle going. | 
|  | if (wasEmpty) { | 
|  | activateConnectionLocked(connection.get()); | 
|  | startDispatchCycleLocked(currentTime, connection, | 
|  | inputTarget->timeSpentWaitingForApplication); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime, | 
|  | const sp<Connection>& connection, nsecs_t timeSpentWaitingForApplication) { | 
|  | #if DEBUG_DISPATCH_CYCLE | 
|  | LOGD("channel '%s' ~ startDispatchCycle", | 
|  | connection->getInputChannelName()); | 
|  | #endif | 
|  |  | 
|  | assert(connection->status == Connection::STATUS_NORMAL); | 
|  | assert(! connection->outboundQueue.isEmpty()); | 
|  |  | 
|  | DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next; | 
|  | assert(! dispatchEntry->inProgress); | 
|  |  | 
|  | // Mark the dispatch entry as in progress. | 
|  | dispatchEntry->inProgress = true; | 
|  |  | 
|  | // Update the connection's input state. | 
|  | InputState::Consistency consistency = connection->inputState.trackEvent( | 
|  | dispatchEntry->eventEntry); | 
|  |  | 
|  | #if FILTER_INPUT_EVENTS | 
|  | // Filter out inconsistent sequences of input events. | 
|  | // The input system may drop or inject events in a way that could violate implicit | 
|  | // invariants on input state and potentially cause an application to crash | 
|  | // or think that a key or pointer is stuck down.  Technically we make no guarantees | 
|  | // of consistency but it would be nice to improve on this where possible. | 
|  | // XXX: This code is a proof of concept only.  Not ready for prime time. | 
|  | if (consistency == InputState::TOLERABLE) { | 
|  | #if DEBUG_DISPATCH_CYCLE | 
|  | LOGD("channel '%s' ~ Sending an event that is inconsistent with the connection's " | 
|  | "current input state but that is likely to be tolerated by the application.", | 
|  | connection->getInputChannelName()); | 
|  | #endif | 
|  | } else if (consistency == InputState::BROKEN) { | 
|  | LOGI("channel '%s' ~ Dropping an event that is inconsistent with the connection's " | 
|  | "current input state and that is likely to cause the application to crash.", | 
|  | connection->getInputChannelName()); | 
|  | startNextDispatchCycleLocked(currentTime, connection); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Publish the event. | 
|  | status_t status; | 
|  | switch (dispatchEntry->eventEntry->type) { | 
|  | case EventEntry::TYPE_KEY: { | 
|  | KeyEntry* keyEntry = static_cast<KeyEntry*>(dispatchEntry->eventEntry); | 
|  |  | 
|  | // Apply target flags. | 
|  | int32_t action = keyEntry->action; | 
|  | int32_t flags = keyEntry->flags; | 
|  | if (dispatchEntry->targetFlags & InputTarget::FLAG_CANCEL) { | 
|  | flags |= AKEY_EVENT_FLAG_CANCELED; | 
|  | } | 
|  |  | 
|  | // Publish the key event. | 
|  | status = connection->inputPublisher.publishKeyEvent(keyEntry->deviceId, keyEntry->source, | 
|  | action, flags, keyEntry->keyCode, keyEntry->scanCode, | 
|  | keyEntry->metaState, keyEntry->repeatCount, keyEntry->downTime, | 
|  | keyEntry->eventTime); | 
|  |  | 
|  | if (status) { | 
|  | LOGE("channel '%s' ~ Could not publish key event, " | 
|  | "status=%d", connection->getInputChannelName(), status); | 
|  | abortDispatchCycleLocked(currentTime, connection, true /*broken*/); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case EventEntry::TYPE_MOTION: { | 
|  | MotionEntry* motionEntry = static_cast<MotionEntry*>(dispatchEntry->eventEntry); | 
|  |  | 
|  | // Apply target flags. | 
|  | int32_t action = motionEntry->action; | 
|  | int32_t flags = motionEntry->flags; | 
|  | if (dispatchEntry->targetFlags & InputTarget::FLAG_OUTSIDE) { | 
|  | action = AMOTION_EVENT_ACTION_OUTSIDE; | 
|  | } | 
|  | if (dispatchEntry->targetFlags & InputTarget::FLAG_CANCEL) { | 
|  | action = AMOTION_EVENT_ACTION_CANCEL; | 
|  | } | 
|  | if (dispatchEntry->targetFlags & InputTarget::FLAG_WINDOW_IS_OBSCURED) { | 
|  | flags |= AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED; | 
|  | } | 
|  |  | 
|  | // If headMotionSample is non-NULL, then it points to the first new sample that we | 
|  | // were unable to dispatch during the previous cycle so we resume dispatching from | 
|  | // that point in the list of motion samples. | 
|  | // Otherwise, we just start from the first sample of the motion event. | 
|  | MotionSample* firstMotionSample = dispatchEntry->headMotionSample; | 
|  | if (! firstMotionSample) { | 
|  | firstMotionSample = & motionEntry->firstSample; | 
|  | } | 
|  |  | 
|  | // Set the X and Y offset depending on the input source. | 
|  | float xOffset, yOffset; | 
|  | if (motionEntry->source & AINPUT_SOURCE_CLASS_POINTER) { | 
|  | xOffset = dispatchEntry->xOffset; | 
|  | yOffset = dispatchEntry->yOffset; | 
|  | } else { | 
|  | xOffset = 0.0f; | 
|  | yOffset = 0.0f; | 
|  | } | 
|  |  | 
|  | // Publish the motion event and the first motion sample. | 
|  | status = connection->inputPublisher.publishMotionEvent(motionEntry->deviceId, | 
|  | motionEntry->source, action, flags, motionEntry->edgeFlags, motionEntry->metaState, | 
|  | xOffset, yOffset, | 
|  | motionEntry->xPrecision, motionEntry->yPrecision, | 
|  | motionEntry->downTime, firstMotionSample->eventTime, | 
|  | motionEntry->pointerCount, motionEntry->pointerIds, | 
|  | firstMotionSample->pointerCoords); | 
|  |  | 
|  | if (status) { | 
|  | LOGE("channel '%s' ~ Could not publish motion event, " | 
|  | "status=%d", connection->getInputChannelName(), status); | 
|  | abortDispatchCycleLocked(currentTime, connection, true /*broken*/); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Append additional motion samples. | 
|  | MotionSample* nextMotionSample = firstMotionSample->next; | 
|  | for (; nextMotionSample != NULL; nextMotionSample = nextMotionSample->next) { | 
|  | status = connection->inputPublisher.appendMotionSample( | 
|  | nextMotionSample->eventTime, nextMotionSample->pointerCoords); | 
|  | if (status == NO_MEMORY) { | 
|  | #if DEBUG_DISPATCH_CYCLE | 
|  | LOGD("channel '%s' ~ Shared memory buffer full.  Some motion samples will " | 
|  | "be sent in the next dispatch cycle.", | 
|  | connection->getInputChannelName()); | 
|  | #endif | 
|  | break; | 
|  | } | 
|  | if (status != OK) { | 
|  | LOGE("channel '%s' ~ Could not append motion sample " | 
|  | "for a reason other than out of memory, status=%d", | 
|  | connection->getInputChannelName(), status); | 
|  | abortDispatchCycleLocked(currentTime, connection, true /*broken*/); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remember the next motion sample that we could not dispatch, in case we ran out | 
|  | // of space in the shared memory buffer. | 
|  | dispatchEntry->tailMotionSample = nextMotionSample; | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: { | 
|  | assert(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Send the dispatch signal. | 
|  | status = connection->inputPublisher.sendDispatchSignal(); | 
|  | if (status) { | 
|  | LOGE("channel '%s' ~ Could not send dispatch signal, status=%d", | 
|  | connection->getInputChannelName(), status); | 
|  | abortDispatchCycleLocked(currentTime, connection, true /*broken*/); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Record information about the newly started dispatch cycle. | 
|  | connection->lastEventTime = dispatchEntry->eventEntry->eventTime; | 
|  | connection->lastDispatchTime = currentTime; | 
|  |  | 
|  | nsecs_t timeout = dispatchEntry->timeout - timeSpentWaitingForApplication; | 
|  | connection->setNextTimeoutTime(currentTime, timeout); | 
|  |  | 
|  | // Notify other system components. | 
|  | onDispatchCycleStartedLocked(currentTime, connection); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::finishDispatchCycleLocked(nsecs_t currentTime, | 
|  | const sp<Connection>& connection) { | 
|  | #if DEBUG_DISPATCH_CYCLE | 
|  | LOGD("channel '%s' ~ finishDispatchCycle - %01.1fms since event, " | 
|  | "%01.1fms since dispatch", | 
|  | connection->getInputChannelName(), | 
|  | connection->getEventLatencyMillis(currentTime), | 
|  | connection->getDispatchLatencyMillis(currentTime)); | 
|  | #endif | 
|  |  | 
|  | if (connection->status == Connection::STATUS_BROKEN | 
|  | || connection->status == Connection::STATUS_ZOMBIE) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Clear the pending timeout. | 
|  | connection->nextTimeoutTime = LONG_LONG_MAX; | 
|  |  | 
|  | if (connection->status == Connection::STATUS_NOT_RESPONDING) { | 
|  | // Recovering from an ANR. | 
|  | connection->status = Connection::STATUS_NORMAL; | 
|  |  | 
|  | // Notify other system components. | 
|  | onDispatchCycleFinishedLocked(currentTime, connection, true /*recoveredFromANR*/); | 
|  | } else { | 
|  | // Normal finish.  Not much to do here. | 
|  |  | 
|  | // Notify other system components. | 
|  | onDispatchCycleFinishedLocked(currentTime, connection, false /*recoveredFromANR*/); | 
|  | } | 
|  |  | 
|  | // Reset the publisher since the event has been consumed. | 
|  | // We do this now so that the publisher can release some of its internal resources | 
|  | // while waiting for the next dispatch cycle to begin. | 
|  | status_t status = connection->inputPublisher.reset(); | 
|  | if (status) { | 
|  | LOGE("channel '%s' ~ Could not reset publisher, status=%d", | 
|  | connection->getInputChannelName(), status); | 
|  | abortDispatchCycleLocked(currentTime, connection, true /*broken*/); | 
|  | return; | 
|  | } | 
|  |  | 
|  | startNextDispatchCycleLocked(currentTime, connection); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::startNextDispatchCycleLocked(nsecs_t currentTime, | 
|  | const sp<Connection>& connection) { | 
|  | // Start the next dispatch cycle for this connection. | 
|  | while (! connection->outboundQueue.isEmpty()) { | 
|  | DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next; | 
|  | if (dispatchEntry->inProgress) { | 
|  | // Finish or resume current event in progress. | 
|  | if (dispatchEntry->tailMotionSample) { | 
|  | // We have a tail of undispatched motion samples. | 
|  | // Reuse the same DispatchEntry and start a new cycle. | 
|  | dispatchEntry->inProgress = false; | 
|  | dispatchEntry->headMotionSample = dispatchEntry->tailMotionSample; | 
|  | dispatchEntry->tailMotionSample = NULL; | 
|  | startDispatchCycleLocked(currentTime, connection, 0); | 
|  | return; | 
|  | } | 
|  | // Finished. | 
|  | connection->outboundQueue.dequeueAtHead(); | 
|  | if (dispatchEntry->isSyncTarget()) { | 
|  | decrementPendingSyncDispatchesLocked(dispatchEntry->eventEntry); | 
|  | } | 
|  | mAllocator.releaseDispatchEntry(dispatchEntry); | 
|  | } else { | 
|  | // If the head is not in progress, then we must have already dequeued the in | 
|  | // progress event, which means we actually aborted it (due to ANR). | 
|  | // So just start the next event for this connection. | 
|  | startDispatchCycleLocked(currentTime, connection, 0); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Outbound queue is empty, deactivate the connection. | 
|  | deactivateConnectionLocked(connection.get()); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::timeoutDispatchCycleLocked(nsecs_t currentTime, | 
|  | const sp<Connection>& connection) { | 
|  | #if DEBUG_DISPATCH_CYCLE | 
|  | LOGD("channel '%s' ~ timeoutDispatchCycle", | 
|  | connection->getInputChannelName()); | 
|  | #endif | 
|  |  | 
|  | if (connection->status == Connection::STATUS_NORMAL) { | 
|  | // Enter the not responding state. | 
|  | connection->status = Connection::STATUS_NOT_RESPONDING; | 
|  | connection->lastANRTime = currentTime; | 
|  | } else if (connection->status != Connection::STATUS_NOT_RESPONDING) { | 
|  | // Connection is broken or dead. | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Notify other system components. | 
|  | // This enqueues a command which will eventually call resumeAfterTimeoutDispatchCycleLocked. | 
|  | onDispatchCycleANRLocked(currentTime, connection); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::resumeAfterTimeoutDispatchCycleLocked(nsecs_t currentTime, | 
|  | const sp<Connection>& connection, nsecs_t newTimeout) { | 
|  | #if DEBUG_DISPATCH_CYCLE | 
|  | LOGD("channel '%s' ~ resumeAfterTimeoutDispatchCycleLocked - newTimeout=%lld", | 
|  | connection->getInputChannelName(), newTimeout); | 
|  | #endif | 
|  |  | 
|  | if (connection->status != Connection::STATUS_NOT_RESPONDING) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (newTimeout > 0) { | 
|  | // The system has decided to give the application some more time. | 
|  | // Keep waiting synchronously and resume normal dispatch. | 
|  | connection->status = Connection::STATUS_NORMAL; | 
|  | connection->setNextTimeoutTime(currentTime, newTimeout); | 
|  | } else { | 
|  | // The system is about to throw up an ANR dialog and has requested that we abort dispatch. | 
|  | // Reset the timeout. | 
|  | connection->nextTimeoutTime = LONG_LONG_MAX; | 
|  |  | 
|  | // Input state will no longer be realistic. | 
|  | connection->inputState.setOutOfSync(); | 
|  |  | 
|  | if (! connection->outboundQueue.isEmpty()) { | 
|  | // Make the current pending dispatch asynchronous (if it isn't already) so that | 
|  | // subsequent events can be delivered to the ANR dialog or to another application. | 
|  | DispatchEntry* currentDispatchEntry = connection->outboundQueue.headSentinel.next; | 
|  | currentDispatchEntry->preemptSyncTarget(); | 
|  |  | 
|  | // Drain all but the first entry in the outbound queue.  We keep the first entry | 
|  | // since that is the one that dispatch is stuck on.  We throw away the others | 
|  | // so that we don't spam the application with stale messages if it eventually | 
|  | // wakes up and recovers from the ANR. | 
|  | drainOutboundQueueLocked(connection.get(), currentDispatchEntry->next); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::abortDispatchCycleLocked(nsecs_t currentTime, | 
|  | const sp<Connection>& connection, bool broken) { | 
|  | #if DEBUG_DISPATCH_CYCLE | 
|  | LOGD("channel '%s' ~ abortDispatchCycle - broken=%s", | 
|  | connection->getInputChannelName(), toString(broken)); | 
|  | #endif | 
|  |  | 
|  | // Clear the pending timeout. | 
|  | connection->nextTimeoutTime = LONG_LONG_MAX; | 
|  |  | 
|  | // Input state will no longer be realistic. | 
|  | connection->inputState.setOutOfSync(); | 
|  |  | 
|  | // Clear the outbound queue. | 
|  | drainOutboundQueueLocked(connection.get(), connection->outboundQueue.headSentinel.next); | 
|  |  | 
|  | // Handle the case where the connection appears to be unrecoverably broken. | 
|  | // Ignore already broken or zombie connections. | 
|  | if (broken) { | 
|  | if (connection->status == Connection::STATUS_NORMAL | 
|  | || connection->status == Connection::STATUS_NOT_RESPONDING) { | 
|  | connection->status = Connection::STATUS_BROKEN; | 
|  |  | 
|  | // Notify other system components. | 
|  | onDispatchCycleBrokenLocked(currentTime, connection); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::drainOutboundQueueLocked(Connection* connection, | 
|  | DispatchEntry* firstDispatchEntryToDrain) { | 
|  | for (DispatchEntry* dispatchEntry = firstDispatchEntryToDrain; | 
|  | dispatchEntry != & connection->outboundQueue.tailSentinel;) { | 
|  | DispatchEntry* next = dispatchEntry->next; | 
|  | connection->outboundQueue.dequeue(dispatchEntry); | 
|  |  | 
|  | if (dispatchEntry->isSyncTarget()) { | 
|  | decrementPendingSyncDispatchesLocked(dispatchEntry->eventEntry); | 
|  | } | 
|  | mAllocator.releaseDispatchEntry(dispatchEntry); | 
|  |  | 
|  | dispatchEntry = next; | 
|  | } | 
|  |  | 
|  | if (connection->outboundQueue.isEmpty()) { | 
|  | deactivateConnectionLocked(connection); | 
|  | } | 
|  | } | 
|  |  | 
|  | int InputDispatcher::handleReceiveCallback(int receiveFd, int events, void* data) { | 
|  | InputDispatcher* d = static_cast<InputDispatcher*>(data); | 
|  |  | 
|  | { // acquire lock | 
|  | AutoMutex _l(d->mLock); | 
|  |  | 
|  | ssize_t connectionIndex = d->mConnectionsByReceiveFd.indexOfKey(receiveFd); | 
|  | if (connectionIndex < 0) { | 
|  | LOGE("Received spurious receive callback for unknown input channel.  " | 
|  | "fd=%d, events=0x%x", receiveFd, events); | 
|  | return 0; // remove the callback | 
|  | } | 
|  |  | 
|  | nsecs_t currentTime = now(); | 
|  |  | 
|  | sp<Connection> connection = d->mConnectionsByReceiveFd.valueAt(connectionIndex); | 
|  | if (events & (ALOOPER_EVENT_ERROR | ALOOPER_EVENT_HANGUP)) { | 
|  | LOGE("channel '%s' ~ Consumer closed input channel or an error occurred.  " | 
|  | "events=0x%x", connection->getInputChannelName(), events); | 
|  | d->abortDispatchCycleLocked(currentTime, connection, true /*broken*/); | 
|  | d->runCommandsLockedInterruptible(); | 
|  | return 0; // remove the callback | 
|  | } | 
|  |  | 
|  | if (! (events & ALOOPER_EVENT_INPUT)) { | 
|  | LOGW("channel '%s' ~ Received spurious callback for unhandled poll event.  " | 
|  | "events=0x%x", connection->getInputChannelName(), events); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | status_t status = connection->inputPublisher.receiveFinishedSignal(); | 
|  | if (status) { | 
|  | LOGE("channel '%s' ~ Failed to receive finished signal.  status=%d", | 
|  | connection->getInputChannelName(), status); | 
|  | d->abortDispatchCycleLocked(currentTime, connection, true /*broken*/); | 
|  | d->runCommandsLockedInterruptible(); | 
|  | return 0; // remove the callback | 
|  | } | 
|  |  | 
|  | d->finishDispatchCycleLocked(currentTime, connection); | 
|  | d->runCommandsLockedInterruptible(); | 
|  | return 1; | 
|  | } // release lock | 
|  | } | 
|  |  | 
|  | void InputDispatcher::notifyConfigurationChanged(nsecs_t eventTime) { | 
|  | #if DEBUG_INBOUND_EVENT_DETAILS | 
|  | LOGD("notifyConfigurationChanged - eventTime=%lld", eventTime); | 
|  | #endif | 
|  |  | 
|  | bool needWake; | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  |  | 
|  | ConfigurationChangedEntry* newEntry = mAllocator.obtainConfigurationChangedEntry(eventTime); | 
|  | needWake = enqueueInboundEventLocked(newEntry); | 
|  | } // release lock | 
|  |  | 
|  | if (needWake) { | 
|  | mLooper->wake(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::notifyKey(nsecs_t eventTime, int32_t deviceId, int32_t source, | 
|  | uint32_t policyFlags, int32_t action, int32_t flags, | 
|  | int32_t keyCode, int32_t scanCode, int32_t metaState, nsecs_t downTime) { | 
|  | #if DEBUG_INBOUND_EVENT_DETAILS | 
|  | LOGD("notifyKey - eventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, action=0x%x, " | 
|  | "flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, downTime=%lld", | 
|  | eventTime, deviceId, source, policyFlags, action, flags, | 
|  | keyCode, scanCode, metaState, downTime); | 
|  | #endif | 
|  |  | 
|  | bool needWake; | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  |  | 
|  | int32_t repeatCount = 0; | 
|  | KeyEntry* newEntry = mAllocator.obtainKeyEntry(eventTime, | 
|  | deviceId, source, policyFlags, action, flags, keyCode, scanCode, | 
|  | metaState, repeatCount, downTime); | 
|  |  | 
|  | needWake = enqueueInboundEventLocked(newEntry); | 
|  | } // release lock | 
|  |  | 
|  | if (needWake) { | 
|  | mLooper->wake(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::notifyMotion(nsecs_t eventTime, int32_t deviceId, int32_t source, | 
|  | uint32_t policyFlags, int32_t action, int32_t flags, int32_t metaState, int32_t edgeFlags, | 
|  | uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords, | 
|  | float xPrecision, float yPrecision, nsecs_t downTime) { | 
|  | #if DEBUG_INBOUND_EVENT_DETAILS | 
|  | LOGD("notifyMotion - eventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, " | 
|  | "action=0x%x, flags=0x%x, metaState=0x%x, edgeFlags=0x%x, " | 
|  | "xPrecision=%f, yPrecision=%f, downTime=%lld", | 
|  | eventTime, deviceId, source, policyFlags, action, flags, metaState, edgeFlags, | 
|  | xPrecision, yPrecision, downTime); | 
|  | for (uint32_t i = 0; i < pointerCount; i++) { | 
|  | LOGD("  Pointer %d: id=%d, x=%f, y=%f, pressure=%f, size=%f, " | 
|  | "touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, " | 
|  | "orientation=%f", | 
|  | i, pointerIds[i], pointerCoords[i].x, pointerCoords[i].y, | 
|  | pointerCoords[i].pressure, pointerCoords[i].size, | 
|  | pointerCoords[i].touchMajor, pointerCoords[i].touchMinor, | 
|  | pointerCoords[i].toolMajor, pointerCoords[i].toolMinor, | 
|  | pointerCoords[i].orientation); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | bool needWake; | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  |  | 
|  | // Attempt batching and streaming of move events. | 
|  | if (action == AMOTION_EVENT_ACTION_MOVE) { | 
|  | // BATCHING CASE | 
|  | // | 
|  | // Try to append a move sample to the tail of the inbound queue for this device. | 
|  | // Give up if we encounter a non-move motion event for this device since that | 
|  | // means we cannot append any new samples until a new motion event has started. | 
|  | for (EventEntry* entry = mInboundQueue.tailSentinel.prev; | 
|  | entry != & mInboundQueue.headSentinel; entry = entry->prev) { | 
|  | if (entry->type != EventEntry::TYPE_MOTION) { | 
|  | // Keep looking for motion events. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | MotionEntry* motionEntry = static_cast<MotionEntry*>(entry); | 
|  | if (motionEntry->deviceId != deviceId) { | 
|  | // Keep looking for this device. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (motionEntry->action != AMOTION_EVENT_ACTION_MOVE | 
|  | || motionEntry->pointerCount != pointerCount | 
|  | || motionEntry->isInjected()) { | 
|  | // Last motion event in the queue for this device is not compatible for | 
|  | // appending new samples.  Stop here. | 
|  | goto NoBatchingOrStreaming; | 
|  | } | 
|  |  | 
|  | // The last motion event is a move and is compatible for appending. | 
|  | // Do the batching magic. | 
|  | mAllocator.appendMotionSample(motionEntry, eventTime, pointerCoords); | 
|  | #if DEBUG_BATCHING | 
|  | LOGD("Appended motion sample onto batch for most recent " | 
|  | "motion event for this device in the inbound queue."); | 
|  | #endif | 
|  | return; // done! | 
|  | } | 
|  |  | 
|  | // STREAMING CASE | 
|  | // | 
|  | // There is no pending motion event (of any kind) for this device in the inbound queue. | 
|  | // Search the outbound queues for a synchronously dispatched motion event for this | 
|  | // device.  If found, then we append the new sample to that event and then try to | 
|  | // push it out to all current targets.  It is possible that some targets will already | 
|  | // have consumed the motion event.  This case is automatically handled by the | 
|  | // logic in prepareDispatchCycleLocked by tracking where resumption takes place. | 
|  | // | 
|  | // The reason we look for a synchronously dispatched motion event is because we | 
|  | // want to be sure that no other motion events have been dispatched since the move. | 
|  | // It's also convenient because it means that the input targets are still valid. | 
|  | // This code could be improved to support streaming of asynchronously dispatched | 
|  | // motion events (which might be significantly more efficient) but it may become | 
|  | // a little more complicated as a result. | 
|  | // | 
|  | // Note: This code crucially depends on the invariant that an outbound queue always | 
|  | //       contains at most one synchronous event and it is always last (but it might | 
|  | //       not be first!). | 
|  | if (mCurrentInputTargetsValid) { | 
|  | for (size_t i = 0; i < mActiveConnections.size(); i++) { | 
|  | Connection* connection = mActiveConnections.itemAt(i); | 
|  | if (! connection->outboundQueue.isEmpty()) { | 
|  | DispatchEntry* dispatchEntry = connection->outboundQueue.tailSentinel.prev; | 
|  | if (dispatchEntry->isSyncTarget()) { | 
|  | if (dispatchEntry->eventEntry->type != EventEntry::TYPE_MOTION) { | 
|  | goto NoBatchingOrStreaming; | 
|  | } | 
|  |  | 
|  | MotionEntry* syncedMotionEntry = static_cast<MotionEntry*>( | 
|  | dispatchEntry->eventEntry); | 
|  | if (syncedMotionEntry->action != AMOTION_EVENT_ACTION_MOVE | 
|  | || syncedMotionEntry->deviceId != deviceId | 
|  | || syncedMotionEntry->pointerCount != pointerCount | 
|  | || syncedMotionEntry->isInjected()) { | 
|  | goto NoBatchingOrStreaming; | 
|  | } | 
|  |  | 
|  | // Found synced move entry.  Append sample and resume dispatch. | 
|  | mAllocator.appendMotionSample(syncedMotionEntry, eventTime, | 
|  | pointerCoords); | 
|  | #if DEBUG_BATCHING | 
|  | LOGD("Appended motion sample onto batch for most recent synchronously " | 
|  | "dispatched motion event for this device in the outbound queues."); | 
|  | #endif | 
|  | nsecs_t currentTime = now(); | 
|  | dispatchEventToCurrentInputTargetsLocked(currentTime, syncedMotionEntry, | 
|  | true /*resumeWithAppendedMotionSample*/); | 
|  |  | 
|  | runCommandsLockedInterruptible(); | 
|  | return; // done! | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | NoBatchingOrStreaming:; | 
|  | } | 
|  |  | 
|  | // Just enqueue a new motion event. | 
|  | MotionEntry* newEntry = mAllocator.obtainMotionEntry(eventTime, | 
|  | deviceId, source, policyFlags, action, flags, metaState, edgeFlags, | 
|  | xPrecision, yPrecision, downTime, | 
|  | pointerCount, pointerIds, pointerCoords); | 
|  |  | 
|  | needWake = enqueueInboundEventLocked(newEntry); | 
|  | } // release lock | 
|  |  | 
|  | if (needWake) { | 
|  | mLooper->wake(); | 
|  | } | 
|  | } | 
|  |  | 
|  | int32_t InputDispatcher::injectInputEvent(const InputEvent* event, | 
|  | int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis) { | 
|  | #if DEBUG_INBOUND_EVENT_DETAILS | 
|  | LOGD("injectInputEvent - eventType=%d, injectorPid=%d, injectorUid=%d, " | 
|  | "syncMode=%d, timeoutMillis=%d", | 
|  | event->getType(), injectorPid, injectorUid, syncMode, timeoutMillis); | 
|  | #endif | 
|  |  | 
|  | nsecs_t endTime = now() + milliseconds_to_nanoseconds(timeoutMillis); | 
|  |  | 
|  | EventEntry* injectedEntry; | 
|  | bool needWake; | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  |  | 
|  | injectedEntry = createEntryFromInjectedInputEventLocked(event); | 
|  | if (! injectedEntry) { | 
|  | return INPUT_EVENT_INJECTION_FAILED; | 
|  | } | 
|  |  | 
|  | injectedEntry->refCount += 1; | 
|  | injectedEntry->injectorPid = injectorPid; | 
|  | injectedEntry->injectorUid = injectorUid; | 
|  |  | 
|  | if (syncMode == INPUT_EVENT_INJECTION_SYNC_NONE) { | 
|  | injectedEntry->injectionIsAsync = true; | 
|  | } | 
|  |  | 
|  | needWake = enqueueInboundEventLocked(injectedEntry); | 
|  | } // release lock | 
|  |  | 
|  | if (needWake) { | 
|  | mLooper->wake(); | 
|  | } | 
|  |  | 
|  | int32_t injectionResult; | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  |  | 
|  | if (syncMode == INPUT_EVENT_INJECTION_SYNC_NONE) { | 
|  | injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED; | 
|  | } else { | 
|  | for (;;) { | 
|  | injectionResult = injectedEntry->injectionResult; | 
|  | if (injectionResult != INPUT_EVENT_INJECTION_PENDING) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | nsecs_t remainingTimeout = endTime - now(); | 
|  | if (remainingTimeout <= 0) { | 
|  | #if DEBUG_INJECTION | 
|  | LOGD("injectInputEvent - Timed out waiting for injection result " | 
|  | "to become available."); | 
|  | #endif | 
|  | injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | mInjectionResultAvailableCondition.waitRelative(mLock, remainingTimeout); | 
|  | } | 
|  |  | 
|  | if (injectionResult == INPUT_EVENT_INJECTION_SUCCEEDED | 
|  | && syncMode == INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_FINISHED) { | 
|  | while (injectedEntry->pendingSyncDispatches != 0) { | 
|  | #if DEBUG_INJECTION | 
|  | LOGD("injectInputEvent - Waiting for %d pending synchronous dispatches.", | 
|  | injectedEntry->pendingSyncDispatches); | 
|  | #endif | 
|  | nsecs_t remainingTimeout = endTime - now(); | 
|  | if (remainingTimeout <= 0) { | 
|  | #if DEBUG_INJECTION | 
|  | LOGD("injectInputEvent - Timed out waiting for pending synchronous " | 
|  | "dispatches to finish."); | 
|  | #endif | 
|  | injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | mInjectionSyncFinishedCondition.waitRelative(mLock, remainingTimeout); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | mAllocator.releaseEventEntry(injectedEntry); | 
|  | } // release lock | 
|  |  | 
|  | #if DEBUG_INJECTION | 
|  | LOGD("injectInputEvent - Finished with result %d.  " | 
|  | "injectorPid=%d, injectorUid=%d", | 
|  | injectionResult, injectorPid, injectorUid); | 
|  | #endif | 
|  |  | 
|  | return injectionResult; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::setInjectionResultLocked(EventEntry* entry, int32_t injectionResult) { | 
|  | if (entry->isInjected()) { | 
|  | #if DEBUG_INJECTION | 
|  | LOGD("Setting input event injection result to %d.  " | 
|  | "injectorPid=%d, injectorUid=%d", | 
|  | injectionResult, entry->injectorPid, entry->injectorUid); | 
|  | #endif | 
|  |  | 
|  | if (entry->injectionIsAsync) { | 
|  | // Log the outcome since the injector did not wait for the injection result. | 
|  | switch (injectionResult) { | 
|  | case INPUT_EVENT_INJECTION_SUCCEEDED: | 
|  | LOGV("Asynchronous input event injection succeeded."); | 
|  | break; | 
|  | case INPUT_EVENT_INJECTION_FAILED: | 
|  | LOGW("Asynchronous input event injection failed."); | 
|  | break; | 
|  | case INPUT_EVENT_INJECTION_PERMISSION_DENIED: | 
|  | LOGW("Asynchronous input event injection permission denied."); | 
|  | break; | 
|  | case INPUT_EVENT_INJECTION_TIMED_OUT: | 
|  | LOGW("Asynchronous input event injection timed out."); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | entry->injectionResult = injectionResult; | 
|  | mInjectionResultAvailableCondition.broadcast(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::decrementPendingSyncDispatchesLocked(EventEntry* entry) { | 
|  | entry->pendingSyncDispatches -= 1; | 
|  |  | 
|  | if (entry->isInjected() && entry->pendingSyncDispatches == 0) { | 
|  | mInjectionSyncFinishedCondition.broadcast(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool isValidKeyAction(int32_t action) { | 
|  | switch (action) { | 
|  | case AKEY_EVENT_ACTION_DOWN: | 
|  | case AKEY_EVENT_ACTION_UP: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool isValidMotionAction(int32_t action) { | 
|  | switch (action & AMOTION_EVENT_ACTION_MASK) { | 
|  | case AMOTION_EVENT_ACTION_DOWN: | 
|  | case AMOTION_EVENT_ACTION_UP: | 
|  | case AMOTION_EVENT_ACTION_CANCEL: | 
|  | case AMOTION_EVENT_ACTION_MOVE: | 
|  | case AMOTION_EVENT_ACTION_POINTER_DOWN: | 
|  | case AMOTION_EVENT_ACTION_POINTER_UP: | 
|  | case AMOTION_EVENT_ACTION_OUTSIDE: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | InputDispatcher::EventEntry* InputDispatcher::createEntryFromInjectedInputEventLocked( | 
|  | const InputEvent* event) { | 
|  | switch (event->getType()) { | 
|  | case AINPUT_EVENT_TYPE_KEY: { | 
|  | const KeyEvent* keyEvent = static_cast<const KeyEvent*>(event); | 
|  | if (! isValidKeyAction(keyEvent->getAction())) { | 
|  | LOGE("Dropping injected key event since it has invalid action code 0x%x", | 
|  | keyEvent->getAction()); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | uint32_t policyFlags = POLICY_FLAG_INJECTED; | 
|  |  | 
|  | KeyEntry* keyEntry = mAllocator.obtainKeyEntry(keyEvent->getEventTime(), | 
|  | keyEvent->getDeviceId(), keyEvent->getSource(), policyFlags, | 
|  | keyEvent->getAction(), keyEvent->getFlags(), | 
|  | keyEvent->getKeyCode(), keyEvent->getScanCode(), keyEvent->getMetaState(), | 
|  | keyEvent->getRepeatCount(), keyEvent->getDownTime()); | 
|  | return keyEntry; | 
|  | } | 
|  |  | 
|  | case AINPUT_EVENT_TYPE_MOTION: { | 
|  | const MotionEvent* motionEvent = static_cast<const MotionEvent*>(event); | 
|  | if (! isValidMotionAction(motionEvent->getAction())) { | 
|  | LOGE("Dropping injected motion event since it has invalid action code 0x%x.", | 
|  | motionEvent->getAction()); | 
|  | return NULL; | 
|  | } | 
|  | if (motionEvent->getPointerCount() == 0 | 
|  | || motionEvent->getPointerCount() > MAX_POINTERS) { | 
|  | LOGE("Dropping injected motion event since it has an invalid pointer count %d.", | 
|  | motionEvent->getPointerCount()); | 
|  | } | 
|  |  | 
|  | uint32_t policyFlags = POLICY_FLAG_INJECTED; | 
|  |  | 
|  | const nsecs_t* sampleEventTimes = motionEvent->getSampleEventTimes(); | 
|  | const PointerCoords* samplePointerCoords = motionEvent->getSamplePointerCoords(); | 
|  | size_t pointerCount = motionEvent->getPointerCount(); | 
|  |  | 
|  | MotionEntry* motionEntry = mAllocator.obtainMotionEntry(*sampleEventTimes, | 
|  | motionEvent->getDeviceId(), motionEvent->getSource(), policyFlags, | 
|  | motionEvent->getAction(), motionEvent->getFlags(), | 
|  | motionEvent->getMetaState(), motionEvent->getEdgeFlags(), | 
|  | motionEvent->getXPrecision(), motionEvent->getYPrecision(), | 
|  | motionEvent->getDownTime(), uint32_t(pointerCount), | 
|  | motionEvent->getPointerIds(), samplePointerCoords); | 
|  | for (size_t i = motionEvent->getHistorySize(); i > 0; i--) { | 
|  | sampleEventTimes += 1; | 
|  | samplePointerCoords += pointerCount; | 
|  | mAllocator.appendMotionSample(motionEntry, *sampleEventTimes, samplePointerCoords); | 
|  | } | 
|  | return motionEntry; | 
|  | } | 
|  |  | 
|  | default: | 
|  | assert(false); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::setInputWindows(const Vector<InputWindow>& inputWindows) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("setInputWindows"); | 
|  | #endif | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  |  | 
|  | sp<InputChannel> touchedWindowChannel; | 
|  | if (mTouchedWindow) { | 
|  | touchedWindowChannel = mTouchedWindow->inputChannel; | 
|  | mTouchedWindow = NULL; | 
|  | } | 
|  | size_t numTouchedWallpapers = mTouchedWallpaperWindows.size(); | 
|  | if (numTouchedWallpapers != 0) { | 
|  | for (size_t i = 0; i < numTouchedWallpapers; i++) { | 
|  | mTempTouchedWallpaperChannels.push(mTouchedWallpaperWindows[i]->inputChannel); | 
|  | } | 
|  | mTouchedWallpaperWindows.clear(); | 
|  | } | 
|  |  | 
|  | bool hadFocusedWindow = mFocusedWindow != NULL; | 
|  |  | 
|  | mFocusedWindow = NULL; | 
|  | mWallpaperWindows.clear(); | 
|  |  | 
|  | mWindows.clear(); | 
|  | mWindows.appendVector(inputWindows); | 
|  |  | 
|  | size_t numWindows = mWindows.size(); | 
|  | for (size_t i = 0; i < numWindows; i++) { | 
|  | InputWindow* window = & mWindows.editItemAt(i); | 
|  | if (window->hasFocus) { | 
|  | mFocusedWindow = window; | 
|  | } | 
|  |  | 
|  | if (window->layoutParamsType == InputWindow::TYPE_WALLPAPER) { | 
|  | mWallpaperWindows.push(window); | 
|  |  | 
|  | for (size_t j = 0; j < numTouchedWallpapers; j++) { | 
|  | if (window->inputChannel == mTempTouchedWallpaperChannels[i]) { | 
|  | mTouchedWallpaperWindows.push(window); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (window->inputChannel == touchedWindowChannel) { | 
|  | mTouchedWindow = window; | 
|  | } | 
|  | } | 
|  |  | 
|  | mTempTouchedWallpaperChannels.clear(); | 
|  |  | 
|  | if ((hadFocusedWindow && ! mFocusedWindow) | 
|  | || (mFocusedWindow && ! mFocusedWindow->visible)) { | 
|  | preemptInputDispatchInnerLocked(); | 
|  | } | 
|  |  | 
|  | #if DEBUG_FOCUS | 
|  | logDispatchStateLocked(); | 
|  | #endif | 
|  | } // release lock | 
|  |  | 
|  | // Wake up poll loop since it may need to make new input dispatching choices. | 
|  | mLooper->wake(); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::setFocusedApplication(const InputApplication* inputApplication) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("setFocusedApplication"); | 
|  | #endif | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  |  | 
|  | releaseFocusedApplicationLocked(); | 
|  |  | 
|  | if (inputApplication) { | 
|  | mFocusedApplicationStorage = *inputApplication; | 
|  | mFocusedApplication = & mFocusedApplicationStorage; | 
|  | } | 
|  |  | 
|  | #if DEBUG_FOCUS | 
|  | logDispatchStateLocked(); | 
|  | #endif | 
|  | } // release lock | 
|  |  | 
|  | // Wake up poll loop since it may need to make new input dispatching choices. | 
|  | mLooper->wake(); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::releaseFocusedApplicationLocked() { | 
|  | if (mFocusedApplication) { | 
|  | mFocusedApplication = NULL; | 
|  | mFocusedApplicationStorage.handle.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::setInputDispatchMode(bool enabled, bool frozen) { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("setInputDispatchMode: enabled=%d, frozen=%d", enabled, frozen); | 
|  | #endif | 
|  |  | 
|  | bool changed; | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  |  | 
|  | if (mDispatchEnabled != enabled || mDispatchFrozen != frozen) { | 
|  | if (mDispatchFrozen && ! frozen) { | 
|  | resetANRTimeoutsLocked(); | 
|  | } | 
|  |  | 
|  | mDispatchEnabled = enabled; | 
|  | mDispatchFrozen = frozen; | 
|  | changed = true; | 
|  | } else { | 
|  | changed = false; | 
|  | } | 
|  |  | 
|  | #if DEBUG_FOCUS | 
|  | logDispatchStateLocked(); | 
|  | #endif | 
|  | } // release lock | 
|  |  | 
|  | if (changed) { | 
|  | // Wake up poll loop since it may need to make new input dispatching choices. | 
|  | mLooper->wake(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::preemptInputDispatch() { | 
|  | #if DEBUG_FOCUS | 
|  | LOGD("preemptInputDispatch"); | 
|  | #endif | 
|  |  | 
|  | bool preemptedOne; | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  | preemptedOne = preemptInputDispatchInnerLocked(); | 
|  | } // release lock | 
|  |  | 
|  | if (preemptedOne) { | 
|  | // Wake up the poll loop so it can get a head start dispatching the next event. | 
|  | mLooper->wake(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::preemptInputDispatchInnerLocked() { | 
|  | bool preemptedOne = false; | 
|  | for (size_t i = 0; i < mActiveConnections.size(); i++) { | 
|  | Connection* connection = mActiveConnections[i]; | 
|  | if (connection->hasPendingSyncTarget()) { | 
|  | #if DEBUG_DISPATCH_CYCLE | 
|  | LOGD("channel '%s' ~ Preempted pending synchronous dispatch", | 
|  | connection->getInputChannelName()); | 
|  | #endif | 
|  | connection->preemptSyncTarget(); | 
|  | preemptedOne = true; | 
|  | } | 
|  | } | 
|  | return preemptedOne; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::logDispatchStateLocked() { | 
|  | String8 dump; | 
|  | dumpDispatchStateLocked(dump); | 
|  | LOGD("%s", dump.string()); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::dumpDispatchStateLocked(String8& dump) { | 
|  | dump.appendFormat("  dispatchEnabled: %d\n", mDispatchEnabled); | 
|  | dump.appendFormat("  dispatchFrozen: %d\n", mDispatchFrozen); | 
|  |  | 
|  | if (mFocusedApplication) { | 
|  | dump.appendFormat("  focusedApplication: name='%s', dispatchingTimeout=%0.3fms\n", | 
|  | mFocusedApplication->name.string(), | 
|  | mFocusedApplication->dispatchingTimeout / 1000000.0); | 
|  | } else { | 
|  | dump.append("  focusedApplication: <null>\n"); | 
|  | } | 
|  | dump.appendFormat("  focusedWindow: '%s'\n", | 
|  | mFocusedWindow != NULL ? mFocusedWindow->inputChannel->getName().string() : "<null>"); | 
|  | dump.appendFormat("  touchedWindow: '%s', touchDown=%d\n", | 
|  | mTouchedWindow != NULL ? mTouchedWindow->inputChannel->getName().string() : "<null>", | 
|  | mTouchDown); | 
|  | for (size_t i = 0; i < mTouchedWallpaperWindows.size(); i++) { | 
|  | dump.appendFormat("  touchedWallpaperWindows[%d]: '%s'\n", | 
|  | i, mTouchedWallpaperWindows[i]->inputChannel->getName().string()); | 
|  | } | 
|  | for (size_t i = 0; i < mWindows.size(); i++) { | 
|  | dump.appendFormat("  windows[%d]: '%s', paused=%s, hasFocus=%s, hasWallpaper=%s, " | 
|  | "visible=%s, flags=0x%08x, type=0x%08x, " | 
|  | "frame=[%d,%d][%d,%d], " | 
|  | "visibleFrame=[%d,%d][%d,%d], " | 
|  | "touchableArea=[%d,%d][%d,%d], " | 
|  | "ownerPid=%d, ownerUid=%d, dispatchingTimeout=%0.3fms\n", | 
|  | i, mWindows[i].inputChannel->getName().string(), | 
|  | toString(mWindows[i].paused), | 
|  | toString(mWindows[i].hasFocus), | 
|  | toString(mWindows[i].hasWallpaper), | 
|  | toString(mWindows[i].visible), | 
|  | mWindows[i].layoutParamsFlags, mWindows[i].layoutParamsType, | 
|  | mWindows[i].frameLeft, mWindows[i].frameTop, | 
|  | mWindows[i].frameRight, mWindows[i].frameBottom, | 
|  | mWindows[i].visibleFrameLeft, mWindows[i].visibleFrameTop, | 
|  | mWindows[i].visibleFrameRight, mWindows[i].visibleFrameBottom, | 
|  | mWindows[i].touchableAreaLeft, mWindows[i].touchableAreaTop, | 
|  | mWindows[i].touchableAreaRight, mWindows[i].touchableAreaBottom, | 
|  | mWindows[i].ownerPid, mWindows[i].ownerUid, | 
|  | mWindows[i].dispatchingTimeout / 1000000.0); | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < mMonitoringChannels.size(); i++) { | 
|  | const sp<InputChannel>& channel = mMonitoringChannels[i]; | 
|  | dump.appendFormat("  monitoringChannel[%d]: '%s'\n", | 
|  | i, channel->getName().string()); | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < mActiveConnections.size(); i++) { | 
|  | const Connection* connection = mActiveConnections[i]; | 
|  | dump.appendFormat("  activeConnection[%d]: '%s', status=%s, hasPendingSyncTarget=%s, " | 
|  | "inputState.isNeutral=%s, inputState.isOutOfSync=%s\n", | 
|  | i, connection->getInputChannelName(), connection->getStatusLabel(), | 
|  | toString(connection->hasPendingSyncTarget()), | 
|  | toString(connection->inputState.isNeutral()), | 
|  | toString(connection->inputState.isOutOfSync())); | 
|  | } | 
|  |  | 
|  | if (isAppSwitchPendingLocked()) { | 
|  | dump.appendFormat("  appSwitch: pending, due in %01.1fms\n", | 
|  | (mAppSwitchDueTime - now()) / 1000000.0); | 
|  | } else { | 
|  | dump.append("  appSwitch: not pending\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | status_t InputDispatcher::registerInputChannel(const sp<InputChannel>& inputChannel, bool monitor) { | 
|  | #if DEBUG_REGISTRATION | 
|  | LOGD("channel '%s' ~ registerInputChannel - monitor=%s", inputChannel->getName().string(), | 
|  | toString(monitor)); | 
|  | #endif | 
|  |  | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  |  | 
|  | if (getConnectionIndex(inputChannel) >= 0) { | 
|  | LOGW("Attempted to register already registered input channel '%s'", | 
|  | inputChannel->getName().string()); | 
|  | return BAD_VALUE; | 
|  | } | 
|  |  | 
|  | sp<Connection> connection = new Connection(inputChannel); | 
|  | status_t status = connection->initialize(); | 
|  | if (status) { | 
|  | LOGE("Failed to initialize input publisher for input channel '%s', status=%d", | 
|  | inputChannel->getName().string(), status); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | int32_t receiveFd = inputChannel->getReceivePipeFd(); | 
|  | mConnectionsByReceiveFd.add(receiveFd, connection); | 
|  |  | 
|  | if (monitor) { | 
|  | mMonitoringChannels.push(inputChannel); | 
|  | } | 
|  |  | 
|  | mLooper->addFd(receiveFd, 0, ALOOPER_EVENT_INPUT, handleReceiveCallback, this); | 
|  |  | 
|  | runCommandsLockedInterruptible(); | 
|  | } // release lock | 
|  | return OK; | 
|  | } | 
|  |  | 
|  | status_t InputDispatcher::unregisterInputChannel(const sp<InputChannel>& inputChannel) { | 
|  | #if DEBUG_REGISTRATION | 
|  | LOGD("channel '%s' ~ unregisterInputChannel", inputChannel->getName().string()); | 
|  | #endif | 
|  |  | 
|  | { // acquire lock | 
|  | AutoMutex _l(mLock); | 
|  |  | 
|  | ssize_t connectionIndex = getConnectionIndex(inputChannel); | 
|  | if (connectionIndex < 0) { | 
|  | LOGW("Attempted to unregister already unregistered input channel '%s'", | 
|  | inputChannel->getName().string()); | 
|  | return BAD_VALUE; | 
|  | } | 
|  |  | 
|  | sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex); | 
|  | mConnectionsByReceiveFd.removeItemsAt(connectionIndex); | 
|  |  | 
|  | connection->status = Connection::STATUS_ZOMBIE; | 
|  |  | 
|  | for (size_t i = 0; i < mMonitoringChannels.size(); i++) { | 
|  | if (mMonitoringChannels[i] == inputChannel) { | 
|  | mMonitoringChannels.removeAt(i); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | mLooper->removeFd(inputChannel->getReceivePipeFd()); | 
|  |  | 
|  | nsecs_t currentTime = now(); | 
|  | abortDispatchCycleLocked(currentTime, connection, true /*broken*/); | 
|  |  | 
|  | runCommandsLockedInterruptible(); | 
|  | } // release lock | 
|  |  | 
|  | // Wake the poll loop because removing the connection may have changed the current | 
|  | // synchronization state. | 
|  | mLooper->wake(); | 
|  | return OK; | 
|  | } | 
|  |  | 
|  | ssize_t InputDispatcher::getConnectionIndex(const sp<InputChannel>& inputChannel) { | 
|  | ssize_t connectionIndex = mConnectionsByReceiveFd.indexOfKey(inputChannel->getReceivePipeFd()); | 
|  | if (connectionIndex >= 0) { | 
|  | sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex); | 
|  | if (connection->inputChannel.get() == inputChannel.get()) { | 
|  | return connectionIndex; | 
|  | } | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::activateConnectionLocked(Connection* connection) { | 
|  | for (size_t i = 0; i < mActiveConnections.size(); i++) { | 
|  | if (mActiveConnections.itemAt(i) == connection) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | mActiveConnections.add(connection); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::deactivateConnectionLocked(Connection* connection) { | 
|  | for (size_t i = 0; i < mActiveConnections.size(); i++) { | 
|  | if (mActiveConnections.itemAt(i) == connection) { | 
|  | mActiveConnections.removeAt(i); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::onDispatchCycleStartedLocked( | 
|  | nsecs_t currentTime, const sp<Connection>& connection) { | 
|  | } | 
|  |  | 
|  | void InputDispatcher::onDispatchCycleFinishedLocked( | 
|  | nsecs_t currentTime, const sp<Connection>& connection, bool recoveredFromANR) { | 
|  | if (recoveredFromANR) { | 
|  | LOGI("channel '%s' ~ Recovered from ANR.  %01.1fms since event, " | 
|  | "%01.1fms since dispatch, %01.1fms since ANR", | 
|  | connection->getInputChannelName(), | 
|  | connection->getEventLatencyMillis(currentTime), | 
|  | connection->getDispatchLatencyMillis(currentTime), | 
|  | connection->getANRLatencyMillis(currentTime)); | 
|  |  | 
|  | CommandEntry* commandEntry = postCommandLocked( | 
|  | & InputDispatcher::doNotifyInputChannelRecoveredFromANRLockedInterruptible); | 
|  | commandEntry->connection = connection; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::onDispatchCycleANRLocked( | 
|  | nsecs_t currentTime, const sp<Connection>& connection) { | 
|  | LOGI("channel '%s' ~ Not responding!  %01.1fms since event, %01.1fms since dispatch", | 
|  | connection->getInputChannelName(), | 
|  | connection->getEventLatencyMillis(currentTime), | 
|  | connection->getDispatchLatencyMillis(currentTime)); | 
|  |  | 
|  | CommandEntry* commandEntry = postCommandLocked( | 
|  | & InputDispatcher::doNotifyInputChannelANRLockedInterruptible); | 
|  | commandEntry->connection = connection; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::onDispatchCycleBrokenLocked( | 
|  | nsecs_t currentTime, const sp<Connection>& connection) { | 
|  | LOGE("channel '%s' ~ Channel is unrecoverably broken and will be disposed!", | 
|  | connection->getInputChannelName()); | 
|  |  | 
|  | CommandEntry* commandEntry = postCommandLocked( | 
|  | & InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible); | 
|  | commandEntry->connection = connection; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::doNotifyConfigurationChangedInterruptible( | 
|  | CommandEntry* commandEntry) { | 
|  | mLock.unlock(); | 
|  |  | 
|  | mPolicy->notifyConfigurationChanged(commandEntry->eventTime); | 
|  |  | 
|  | mLock.lock(); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible( | 
|  | CommandEntry* commandEntry) { | 
|  | sp<Connection> connection = commandEntry->connection; | 
|  |  | 
|  | if (connection->status != Connection::STATUS_ZOMBIE) { | 
|  | mLock.unlock(); | 
|  |  | 
|  | mPolicy->notifyInputChannelBroken(connection->inputChannel); | 
|  |  | 
|  | mLock.lock(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::doNotifyInputChannelANRLockedInterruptible( | 
|  | CommandEntry* commandEntry) { | 
|  | sp<Connection> connection = commandEntry->connection; | 
|  |  | 
|  | if (connection->status != Connection::STATUS_ZOMBIE) { | 
|  | mLock.unlock(); | 
|  |  | 
|  | nsecs_t newTimeout = mPolicy->notifyInputChannelANR(connection->inputChannel); | 
|  |  | 
|  | mLock.lock(); | 
|  |  | 
|  | nsecs_t currentTime = now(); | 
|  | resumeAfterTimeoutDispatchCycleLocked(currentTime, connection, newTimeout); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::doNotifyInputChannelRecoveredFromANRLockedInterruptible( | 
|  | CommandEntry* commandEntry) { | 
|  | sp<Connection> connection = commandEntry->connection; | 
|  |  | 
|  | if (connection->status != Connection::STATUS_ZOMBIE) { | 
|  | mLock.unlock(); | 
|  |  | 
|  | mPolicy->notifyInputChannelRecoveredFromANR(connection->inputChannel); | 
|  |  | 
|  | mLock.lock(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible( | 
|  | CommandEntry* commandEntry) { | 
|  | KeyEntry* entry = commandEntry->keyEntry; | 
|  | mReusableKeyEvent.initialize(entry->deviceId, entry->source, entry->action, entry->flags, | 
|  | entry->keyCode, entry->scanCode, entry->metaState, entry->repeatCount, | 
|  | entry->downTime, entry->eventTime); | 
|  |  | 
|  | mLock.unlock(); | 
|  |  | 
|  | bool consumed = mPolicy->interceptKeyBeforeDispatching(commandEntry->inputChannel, | 
|  | & mReusableKeyEvent, entry->policyFlags); | 
|  |  | 
|  | mLock.lock(); | 
|  |  | 
|  | entry->interceptKeyResult = consumed | 
|  | ? KeyEntry::INTERCEPT_KEY_RESULT_SKIP | 
|  | : KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE; | 
|  | mAllocator.releaseKeyEntry(entry); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::doPokeUserActivityLockedInterruptible(CommandEntry* commandEntry) { | 
|  | mLock.unlock(); | 
|  |  | 
|  | mPolicy->pokeUserActivity(commandEntry->eventTime, commandEntry->windowType, | 
|  | commandEntry->userActivityEventType); | 
|  |  | 
|  | mLock.lock(); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::doTargetsNotReadyTimeoutLockedInterruptible( | 
|  | CommandEntry* commandEntry) { | 
|  | mLock.unlock(); | 
|  |  | 
|  | nsecs_t newTimeout; | 
|  | if (commandEntry->inputChannel.get()) { | 
|  | newTimeout = mPolicy->notifyInputChannelANR(commandEntry->inputChannel); | 
|  | } else if (commandEntry->inputApplicationHandle.get()) { | 
|  | newTimeout = mPolicy->notifyANR(commandEntry->inputApplicationHandle); | 
|  | } else { | 
|  | newTimeout = 0; | 
|  | } | 
|  |  | 
|  | mLock.lock(); | 
|  |  | 
|  | resumeAfterTargetsNotReadyTimeoutLocked(newTimeout); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::dump(String8& dump) { | 
|  | dumpDispatchStateLocked(dump); | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputDispatcher::Allocator --- | 
|  |  | 
|  | InputDispatcher::Allocator::Allocator() { | 
|  | } | 
|  |  | 
|  | void InputDispatcher::Allocator::initializeEventEntry(EventEntry* entry, int32_t type, | 
|  | nsecs_t eventTime) { | 
|  | entry->type = type; | 
|  | entry->refCount = 1; | 
|  | entry->dispatchInProgress = false; | 
|  | entry->eventTime = eventTime; | 
|  | entry->injectionResult = INPUT_EVENT_INJECTION_PENDING; | 
|  | entry->injectionIsAsync = false; | 
|  | entry->injectorPid = -1; | 
|  | entry->injectorUid = -1; | 
|  | entry->pendingSyncDispatches = 0; | 
|  | } | 
|  |  | 
|  | InputDispatcher::ConfigurationChangedEntry* | 
|  | InputDispatcher::Allocator::obtainConfigurationChangedEntry(nsecs_t eventTime) { | 
|  | ConfigurationChangedEntry* entry = mConfigurationChangeEntryPool.alloc(); | 
|  | initializeEventEntry(entry, EventEntry::TYPE_CONFIGURATION_CHANGED, eventTime); | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | InputDispatcher::KeyEntry* InputDispatcher::Allocator::obtainKeyEntry(nsecs_t eventTime, | 
|  | int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action, | 
|  | int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState, | 
|  | int32_t repeatCount, nsecs_t downTime) { | 
|  | KeyEntry* entry = mKeyEntryPool.alloc(); | 
|  | initializeEventEntry(entry, EventEntry::TYPE_KEY, eventTime); | 
|  |  | 
|  | entry->deviceId = deviceId; | 
|  | entry->source = source; | 
|  | entry->policyFlags = policyFlags; | 
|  | entry->action = action; | 
|  | entry->flags = flags; | 
|  | entry->keyCode = keyCode; | 
|  | entry->scanCode = scanCode; | 
|  | entry->metaState = metaState; | 
|  | entry->repeatCount = repeatCount; | 
|  | entry->downTime = downTime; | 
|  | entry->syntheticRepeat = false; | 
|  | entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN; | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | InputDispatcher::MotionEntry* InputDispatcher::Allocator::obtainMotionEntry(nsecs_t eventTime, | 
|  | int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action, int32_t flags, | 
|  | int32_t metaState, int32_t edgeFlags, float xPrecision, float yPrecision, | 
|  | nsecs_t downTime, uint32_t pointerCount, | 
|  | const int32_t* pointerIds, const PointerCoords* pointerCoords) { | 
|  | MotionEntry* entry = mMotionEntryPool.alloc(); | 
|  | initializeEventEntry(entry, EventEntry::TYPE_MOTION, eventTime); | 
|  |  | 
|  | entry->eventTime = eventTime; | 
|  | entry->deviceId = deviceId; | 
|  | entry->source = source; | 
|  | entry->policyFlags = policyFlags; | 
|  | entry->action = action; | 
|  | entry->flags = flags; | 
|  | entry->metaState = metaState; | 
|  | entry->edgeFlags = edgeFlags; | 
|  | entry->xPrecision = xPrecision; | 
|  | entry->yPrecision = yPrecision; | 
|  | entry->downTime = downTime; | 
|  | entry->pointerCount = pointerCount; | 
|  | entry->firstSample.eventTime = eventTime; | 
|  | entry->firstSample.next = NULL; | 
|  | entry->lastSample = & entry->firstSample; | 
|  | for (uint32_t i = 0; i < pointerCount; i++) { | 
|  | entry->pointerIds[i] = pointerIds[i]; | 
|  | entry->firstSample.pointerCoords[i] = pointerCoords[i]; | 
|  | } | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | InputDispatcher::DispatchEntry* InputDispatcher::Allocator::obtainDispatchEntry( | 
|  | EventEntry* eventEntry, | 
|  | int32_t targetFlags, float xOffset, float yOffset, nsecs_t timeout) { | 
|  | DispatchEntry* entry = mDispatchEntryPool.alloc(); | 
|  | entry->eventEntry = eventEntry; | 
|  | eventEntry->refCount += 1; | 
|  | entry->targetFlags = targetFlags; | 
|  | entry->xOffset = xOffset; | 
|  | entry->yOffset = yOffset; | 
|  | entry->timeout = timeout; | 
|  | entry->inProgress = false; | 
|  | entry->headMotionSample = NULL; | 
|  | entry->tailMotionSample = NULL; | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | InputDispatcher::CommandEntry* InputDispatcher::Allocator::obtainCommandEntry(Command command) { | 
|  | CommandEntry* entry = mCommandEntryPool.alloc(); | 
|  | entry->command = command; | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::Allocator::releaseEventEntry(EventEntry* entry) { | 
|  | switch (entry->type) { | 
|  | case EventEntry::TYPE_CONFIGURATION_CHANGED: | 
|  | releaseConfigurationChangedEntry(static_cast<ConfigurationChangedEntry*>(entry)); | 
|  | break; | 
|  | case EventEntry::TYPE_KEY: | 
|  | releaseKeyEntry(static_cast<KeyEntry*>(entry)); | 
|  | break; | 
|  | case EventEntry::TYPE_MOTION: | 
|  | releaseMotionEntry(static_cast<MotionEntry*>(entry)); | 
|  | break; | 
|  | default: | 
|  | assert(false); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::Allocator::releaseConfigurationChangedEntry( | 
|  | ConfigurationChangedEntry* entry) { | 
|  | entry->refCount -= 1; | 
|  | if (entry->refCount == 0) { | 
|  | mConfigurationChangeEntryPool.free(entry); | 
|  | } else { | 
|  | assert(entry->refCount > 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::Allocator::releaseKeyEntry(KeyEntry* entry) { | 
|  | entry->refCount -= 1; | 
|  | if (entry->refCount == 0) { | 
|  | mKeyEntryPool.free(entry); | 
|  | } else { | 
|  | assert(entry->refCount > 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::Allocator::releaseMotionEntry(MotionEntry* entry) { | 
|  | entry->refCount -= 1; | 
|  | if (entry->refCount == 0) { | 
|  | for (MotionSample* sample = entry->firstSample.next; sample != NULL; ) { | 
|  | MotionSample* next = sample->next; | 
|  | mMotionSamplePool.free(sample); | 
|  | sample = next; | 
|  | } | 
|  | mMotionEntryPool.free(entry); | 
|  | } else { | 
|  | assert(entry->refCount > 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::Allocator::releaseDispatchEntry(DispatchEntry* entry) { | 
|  | releaseEventEntry(entry->eventEntry); | 
|  | mDispatchEntryPool.free(entry); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::Allocator::releaseCommandEntry(CommandEntry* entry) { | 
|  | mCommandEntryPool.free(entry); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::Allocator::appendMotionSample(MotionEntry* motionEntry, | 
|  | nsecs_t eventTime, const PointerCoords* pointerCoords) { | 
|  | MotionSample* sample = mMotionSamplePool.alloc(); | 
|  | sample->eventTime = eventTime; | 
|  | uint32_t pointerCount = motionEntry->pointerCount; | 
|  | for (uint32_t i = 0; i < pointerCount; i++) { | 
|  | sample->pointerCoords[i] = pointerCoords[i]; | 
|  | } | 
|  |  | 
|  | sample->next = NULL; | 
|  | motionEntry->lastSample->next = sample; | 
|  | motionEntry->lastSample = sample; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputDispatcher::EventEntry --- | 
|  |  | 
|  | void InputDispatcher::EventEntry::recycle() { | 
|  | injectionResult = INPUT_EVENT_INJECTION_PENDING; | 
|  | dispatchInProgress = false; | 
|  | pendingSyncDispatches = 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputDispatcher::KeyEntry --- | 
|  |  | 
|  | void InputDispatcher::KeyEntry::recycle() { | 
|  | EventEntry::recycle(); | 
|  | syntheticRepeat = false; | 
|  | interceptKeyResult = INTERCEPT_KEY_RESULT_UNKNOWN; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputDispatcher::MotionEntry --- | 
|  |  | 
|  | uint32_t InputDispatcher::MotionEntry::countSamples() const { | 
|  | uint32_t count = 1; | 
|  | for (MotionSample* sample = firstSample.next; sample != NULL; sample = sample->next) { | 
|  | count += 1; | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputDispatcher::InputState --- | 
|  |  | 
|  | InputDispatcher::InputState::InputState() : | 
|  | mIsOutOfSync(false) { | 
|  | } | 
|  |  | 
|  | InputDispatcher::InputState::~InputState() { | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::InputState::isNeutral() const { | 
|  | return mKeyMementos.isEmpty() && mMotionMementos.isEmpty(); | 
|  | } | 
|  |  | 
|  | bool InputDispatcher::InputState::isOutOfSync() const { | 
|  | return mIsOutOfSync; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::InputState::setOutOfSync() { | 
|  | if (! isNeutral()) { | 
|  | mIsOutOfSync = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::InputState::resetOutOfSync() { | 
|  | mIsOutOfSync = false; | 
|  | } | 
|  |  | 
|  | InputDispatcher::InputState::Consistency InputDispatcher::InputState::trackEvent( | 
|  | const EventEntry* entry) { | 
|  | switch (entry->type) { | 
|  | case EventEntry::TYPE_KEY: | 
|  | return trackKey(static_cast<const KeyEntry*>(entry)); | 
|  |  | 
|  | case EventEntry::TYPE_MOTION: | 
|  | return trackMotion(static_cast<const MotionEntry*>(entry)); | 
|  |  | 
|  | default: | 
|  | return CONSISTENT; | 
|  | } | 
|  | } | 
|  |  | 
|  | InputDispatcher::InputState::Consistency InputDispatcher::InputState::trackKey( | 
|  | const KeyEntry* entry) { | 
|  | int32_t action = entry->action; | 
|  | for (size_t i = 0; i < mKeyMementos.size(); i++) { | 
|  | KeyMemento& memento = mKeyMementos.editItemAt(i); | 
|  | if (memento.deviceId == entry->deviceId | 
|  | && memento.source == entry->source | 
|  | && memento.keyCode == entry->keyCode | 
|  | && memento.scanCode == entry->scanCode) { | 
|  | switch (action) { | 
|  | case AKEY_EVENT_ACTION_UP: | 
|  | mKeyMementos.removeAt(i); | 
|  | if (isNeutral()) { | 
|  | mIsOutOfSync = false; | 
|  | } | 
|  | return CONSISTENT; | 
|  |  | 
|  | case AKEY_EVENT_ACTION_DOWN: | 
|  | return TOLERABLE; | 
|  |  | 
|  | default: | 
|  | return BROKEN; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (action) { | 
|  | case AKEY_EVENT_ACTION_DOWN: { | 
|  | mKeyMementos.push(); | 
|  | KeyMemento& memento = mKeyMementos.editTop(); | 
|  | memento.deviceId = entry->deviceId; | 
|  | memento.source = entry->source; | 
|  | memento.keyCode = entry->keyCode; | 
|  | memento.scanCode = entry->scanCode; | 
|  | memento.downTime = entry->downTime; | 
|  | return CONSISTENT; | 
|  | } | 
|  |  | 
|  | default: | 
|  | return BROKEN; | 
|  | } | 
|  | } | 
|  |  | 
|  | InputDispatcher::InputState::Consistency InputDispatcher::InputState::trackMotion( | 
|  | const MotionEntry* entry) { | 
|  | int32_t action = entry->action & AMOTION_EVENT_ACTION_MASK; | 
|  | for (size_t i = 0; i < mMotionMementos.size(); i++) { | 
|  | MotionMemento& memento = mMotionMementos.editItemAt(i); | 
|  | if (memento.deviceId == entry->deviceId | 
|  | && memento.source == entry->source) { | 
|  | switch (action) { | 
|  | case AMOTION_EVENT_ACTION_UP: | 
|  | case AMOTION_EVENT_ACTION_CANCEL: | 
|  | mMotionMementos.removeAt(i); | 
|  | if (isNeutral()) { | 
|  | mIsOutOfSync = false; | 
|  | } | 
|  | return CONSISTENT; | 
|  |  | 
|  | case AMOTION_EVENT_ACTION_DOWN: | 
|  | return TOLERABLE; | 
|  |  | 
|  | case AMOTION_EVENT_ACTION_POINTER_DOWN: | 
|  | if (entry->pointerCount == memento.pointerCount + 1) { | 
|  | memento.setPointers(entry); | 
|  | return CONSISTENT; | 
|  | } | 
|  | return BROKEN; | 
|  |  | 
|  | case AMOTION_EVENT_ACTION_POINTER_UP: | 
|  | if (entry->pointerCount == memento.pointerCount - 1) { | 
|  | memento.setPointers(entry); | 
|  | return CONSISTENT; | 
|  | } | 
|  | return BROKEN; | 
|  |  | 
|  | case AMOTION_EVENT_ACTION_MOVE: | 
|  | if (entry->pointerCount == memento.pointerCount) { | 
|  | return CONSISTENT; | 
|  | } | 
|  | return BROKEN; | 
|  |  | 
|  | default: | 
|  | return BROKEN; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (action) { | 
|  | case AMOTION_EVENT_ACTION_DOWN: { | 
|  | mMotionMementos.push(); | 
|  | MotionMemento& memento = mMotionMementos.editTop(); | 
|  | memento.deviceId = entry->deviceId; | 
|  | memento.source = entry->source; | 
|  | memento.xPrecision = entry->xPrecision; | 
|  | memento.yPrecision = entry->yPrecision; | 
|  | memento.downTime = entry->downTime; | 
|  | memento.setPointers(entry); | 
|  | return CONSISTENT; | 
|  | } | 
|  |  | 
|  | default: | 
|  | return BROKEN; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::InputState::MotionMemento::setPointers(const MotionEntry* entry) { | 
|  | pointerCount = entry->pointerCount; | 
|  | for (uint32_t i = 0; i < entry->pointerCount; i++) { | 
|  | pointerIds[i] = entry->pointerIds[i]; | 
|  | pointerCoords[i] = entry->lastSample->pointerCoords[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::InputState::synthesizeCancelationEvents( | 
|  | Allocator* allocator, Vector<EventEntry*>& outEvents) const { | 
|  | for (size_t i = 0; i < mKeyMementos.size(); i++) { | 
|  | const KeyMemento& memento = mKeyMementos.itemAt(i); | 
|  | outEvents.push(allocator->obtainKeyEntry(now(), | 
|  | memento.deviceId, memento.source, 0, | 
|  | AKEY_EVENT_ACTION_UP, AKEY_EVENT_FLAG_CANCELED, | 
|  | memento.keyCode, memento.scanCode, 0, 0, memento.downTime)); | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < mMotionMementos.size(); i++) { | 
|  | const MotionMemento& memento = mMotionMementos.itemAt(i); | 
|  | outEvents.push(allocator->obtainMotionEntry(now(), | 
|  | memento.deviceId, memento.source, 0, | 
|  | AMOTION_EVENT_ACTION_CANCEL, 0, 0, 0, | 
|  | memento.xPrecision, memento.yPrecision, memento.downTime, | 
|  | memento.pointerCount, memento.pointerIds, memento.pointerCoords)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InputDispatcher::InputState::clear() { | 
|  | mKeyMementos.clear(); | 
|  | mMotionMementos.clear(); | 
|  | mIsOutOfSync = false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputDispatcher::Connection --- | 
|  |  | 
|  | InputDispatcher::Connection::Connection(const sp<InputChannel>& inputChannel) : | 
|  | status(STATUS_NORMAL), inputChannel(inputChannel), inputPublisher(inputChannel), | 
|  | nextTimeoutTime(LONG_LONG_MAX), | 
|  | lastEventTime(LONG_LONG_MAX), lastDispatchTime(LONG_LONG_MAX), | 
|  | lastANRTime(LONG_LONG_MAX) { | 
|  | } | 
|  |  | 
|  | InputDispatcher::Connection::~Connection() { | 
|  | } | 
|  |  | 
|  | status_t InputDispatcher::Connection::initialize() { | 
|  | return inputPublisher.initialize(); | 
|  | } | 
|  |  | 
|  | void InputDispatcher::Connection::setNextTimeoutTime(nsecs_t currentTime, nsecs_t timeout) { | 
|  | nextTimeoutTime = (timeout >= 0) ? currentTime + timeout : LONG_LONG_MAX; | 
|  | } | 
|  |  | 
|  | void InputDispatcher::Connection::resetTimeout(nsecs_t currentTime) { | 
|  | if (outboundQueue.isEmpty()) { | 
|  | nextTimeoutTime = LONG_LONG_MAX; | 
|  | } else { | 
|  | setNextTimeoutTime(currentTime, outboundQueue.headSentinel.next->timeout); | 
|  | } | 
|  | } | 
|  |  | 
|  | const char* InputDispatcher::Connection::getStatusLabel() const { | 
|  | switch (status) { | 
|  | case STATUS_NORMAL: | 
|  | return "NORMAL"; | 
|  |  | 
|  | case STATUS_BROKEN: | 
|  | return "BROKEN"; | 
|  |  | 
|  | case STATUS_NOT_RESPONDING: | 
|  | return "NOT_RESPONDING"; | 
|  |  | 
|  | case STATUS_ZOMBIE: | 
|  | return "ZOMBIE"; | 
|  |  | 
|  | default: | 
|  | return "UNKNOWN"; | 
|  | } | 
|  | } | 
|  |  | 
|  | InputDispatcher::DispatchEntry* InputDispatcher::Connection::findQueuedDispatchEntryForEvent( | 
|  | const EventEntry* eventEntry) const { | 
|  | for (DispatchEntry* dispatchEntry = outboundQueue.tailSentinel.prev; | 
|  | dispatchEntry != & outboundQueue.headSentinel; dispatchEntry = dispatchEntry->prev) { | 
|  | if (dispatchEntry->eventEntry == eventEntry) { | 
|  | return dispatchEntry; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputDispatcher::CommandEntry --- | 
|  |  | 
|  | InputDispatcher::CommandEntry::CommandEntry() : | 
|  | keyEntry(NULL) { | 
|  | } | 
|  |  | 
|  | InputDispatcher::CommandEntry::~CommandEntry() { | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputDispatcherThread --- | 
|  |  | 
|  | InputDispatcherThread::InputDispatcherThread(const sp<InputDispatcherInterface>& dispatcher) : | 
|  | Thread(/*canCallJava*/ true), mDispatcher(dispatcher) { | 
|  | } | 
|  |  | 
|  | InputDispatcherThread::~InputDispatcherThread() { | 
|  | } | 
|  |  | 
|  | bool InputDispatcherThread::threadLoop() { | 
|  | mDispatcher->dispatchOnce(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | } // namespace android |