blob: 988981d65775539aa822815b45279d5403de2a27 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SkiaPipeline.h"
#include <SkImageEncoder.h>
#include <SkImagePriv.h>
#include <SkOverdrawCanvas.h>
#include <SkOverdrawColorFilter.h>
#include <SkPicture.h>
#include <SkPictureRecorder.h>
#include "TreeInfo.h"
#include "VectorDrawable.h"
#include "utils/TraceUtils.h"
#include <unistd.h>
using namespace android::uirenderer::renderthread;
namespace android {
namespace uirenderer {
namespace skiapipeline {
float SkiaPipeline::mLightRadius = 0;
uint8_t SkiaPipeline::mAmbientShadowAlpha = 0;
uint8_t SkiaPipeline::mSpotShadowAlpha = 0;
Vector3 SkiaPipeline::mLightCenter = {FLT_MIN, FLT_MIN, FLT_MIN};
SkiaPipeline::SkiaPipeline(RenderThread& thread) : mRenderThread(thread) {
mVectorDrawables.reserve(30);
}
SkiaPipeline::~SkiaPipeline() {
unpinImages();
}
TaskManager* SkiaPipeline::getTaskManager() {
return mRenderThread.cacheManager().getTaskManager();
}
void SkiaPipeline::onDestroyHardwareResources() {
unpinImages();
mRenderThread.cacheManager().trimStaleResources();
}
bool SkiaPipeline::pinImages(std::vector<SkImage*>& mutableImages) {
for (SkImage* image : mutableImages) {
if (SkImage_pinAsTexture(image, mRenderThread.getGrContext())) {
mPinnedImages.emplace_back(sk_ref_sp(image));
} else {
return false;
}
}
return true;
}
void SkiaPipeline::unpinImages() {
for (auto& image : mPinnedImages) {
SkImage_unpinAsTexture(image.get(), mRenderThread.getGrContext());
}
mPinnedImages.clear();
}
void SkiaPipeline::onPrepareTree() {
// The only time mVectorDrawables is not empty is if prepare tree was called 2 times without
// a renderFrame in the middle.
mVectorDrawables.clear();
}
void SkiaPipeline::renderLayers(const LightGeometry& lightGeometry,
LayerUpdateQueue* layerUpdateQueue, bool opaque,
bool wideColorGamut, const LightInfo& lightInfo) {
updateLighting(lightGeometry, lightInfo);
ATRACE_NAME("draw layers");
renderVectorDrawableCache();
renderLayersImpl(*layerUpdateQueue, opaque, wideColorGamut);
layerUpdateQueue->clear();
}
void SkiaPipeline::renderLayersImpl(const LayerUpdateQueue& layers, bool opaque,
bool wideColorGamut) {
sk_sp<GrContext> cachedContext;
// Render all layers that need to be updated, in order.
for (size_t i = 0; i < layers.entries().size(); i++) {
RenderNode* layerNode = layers.entries()[i].renderNode.get();
// only schedule repaint if node still on layer - possible it may have been
// removed during a dropped frame, but layers may still remain scheduled so
// as not to lose info on what portion is damaged
if (CC_LIKELY(layerNode->getLayerSurface() != nullptr)) {
SkASSERT(layerNode->getLayerSurface());
SkiaDisplayList* displayList = (SkiaDisplayList*)layerNode->getDisplayList();
if (!displayList || displayList->isEmpty()) {
SkDEBUGF(("%p drawLayers(%s) : missing drawable", layerNode, layerNode->getName()));
return;
}
const Rect& layerDamage = layers.entries()[i].damage;
SkCanvas* layerCanvas = tryCapture(layerNode->getLayerSurface());
int saveCount = layerCanvas->save();
SkASSERT(saveCount == 1);
layerCanvas->androidFramework_setDeviceClipRestriction(layerDamage.toSkIRect());
auto savedLightCenter = mLightCenter;
// map current light center into RenderNode's coordinate space
layerNode->getSkiaLayer()->inverseTransformInWindow.mapPoint3d(mLightCenter);
const RenderProperties& properties = layerNode->properties();
const SkRect bounds = SkRect::MakeWH(properties.getWidth(), properties.getHeight());
if (properties.getClipToBounds() && layerCanvas->quickReject(bounds)) {
return;
}
ATRACE_FORMAT("drawLayer [%s] %.1f x %.1f", layerNode->getName(), bounds.width(),
bounds.height());
layerNode->getSkiaLayer()->hasRenderedSinceRepaint = false;
layerCanvas->clear(SK_ColorTRANSPARENT);
RenderNodeDrawable root(layerNode, layerCanvas, false);
root.forceDraw(layerCanvas);
layerCanvas->restoreToCount(saveCount);
mLightCenter = savedLightCenter;
endCapture(layerNode->getLayerSurface());
// cache the current context so that we can defer flushing it until
// either all the layers have been rendered or the context changes
GrContext* currentContext = layerNode->getLayerSurface()->getCanvas()->getGrContext();
if (cachedContext.get() != currentContext) {
if (cachedContext.get()) {
ATRACE_NAME("flush layers (context changed)");
cachedContext->flush();
}
cachedContext.reset(SkSafeRef(currentContext));
}
}
}
if (cachedContext.get()) {
ATRACE_NAME("flush layers");
cachedContext->flush();
}
}
bool SkiaPipeline::createOrUpdateLayer(RenderNode* node, const DamageAccumulator& damageAccumulator,
bool wideColorGamut, ErrorHandler* errorHandler) {
// compute the size of the surface (i.e. texture) to be allocated for this layer
const int surfaceWidth = ceilf(node->getWidth() / float(LAYER_SIZE)) * LAYER_SIZE;
const int surfaceHeight = ceilf(node->getHeight() / float(LAYER_SIZE)) * LAYER_SIZE;
SkSurface* layer = node->getLayerSurface();
if (!layer || layer->width() != surfaceWidth || layer->height() != surfaceHeight) {
SkImageInfo info;
if (wideColorGamut) {
info = SkImageInfo::Make(surfaceWidth, surfaceHeight, kRGBA_F16_SkColorType,
kPremul_SkAlphaType);
} else {
info = SkImageInfo::MakeN32Premul(surfaceWidth, surfaceHeight);
}
SkSurfaceProps props(0, kUnknown_SkPixelGeometry);
SkASSERT(mRenderThread.getGrContext() != nullptr);
node->setLayerSurface(SkSurface::MakeRenderTarget(mRenderThread.getGrContext(),
SkBudgeted::kYes, info, 0, &props));
if (node->getLayerSurface()) {
// update the transform in window of the layer to reset its origin wrt light source
// position
Matrix4 windowTransform;
damageAccumulator.computeCurrentTransform(&windowTransform);
node->getSkiaLayer()->inverseTransformInWindow = windowTransform;
} else {
String8 cachesOutput;
mRenderThread.cacheManager().dumpMemoryUsage(cachesOutput,
&mRenderThread.renderState());
ALOGE("%s", cachesOutput.string());
if (errorHandler) {
std::ostringstream err;
err << "Unable to create layer for " << node->getName();
const int maxTextureSize = DeviceInfo::get()->maxTextureSize();
err << ", size " << info.width() << "x" << info.height() << " max size "
<< maxTextureSize << " color type " << (int)info.colorType()
<< " has context " << (int)(mRenderThread.getGrContext() != nullptr);
errorHandler->onError(err.str());
}
}
return true;
}
return false;
}
void SkiaPipeline::destroyLayer(RenderNode* node) {
node->setLayerSurface(nullptr);
}
void SkiaPipeline::prepareToDraw(const RenderThread& thread, Bitmap* bitmap) {
GrContext* context = thread.getGrContext();
if (context) {
ATRACE_FORMAT("Bitmap#prepareToDraw %dx%d", bitmap->width(), bitmap->height());
sk_sp<SkColorFilter> colorFilter;
auto image = bitmap->makeImage(&colorFilter);
if (image.get() && !bitmap->isHardware()) {
SkImage_pinAsTexture(image.get(), context);
SkImage_unpinAsTexture(image.get(), context);
}
}
}
void SkiaPipeline::renderVectorDrawableCache() {
if (!mVectorDrawables.empty()) {
sp<VectorDrawableAtlas> atlas = mRenderThread.cacheManager().acquireVectorDrawableAtlas();
auto grContext = mRenderThread.getGrContext();
atlas->prepareForDraw(grContext);
ATRACE_NAME("Update VectorDrawables");
for (auto vd : mVectorDrawables) {
vd->updateCache(atlas, grContext);
}
mVectorDrawables.clear();
}
}
class SkiaPipeline::SavePictureProcessor : public TaskProcessor<bool> {
public:
explicit SavePictureProcessor(TaskManager* taskManager) : TaskProcessor<bool>(taskManager) {}
struct SavePictureTask : public Task<bool> {
sk_sp<SkData> data;
std::string filename;
};
void savePicture(const sk_sp<SkData>& data, const std::string& filename) {
sp<SavePictureTask> task(new SavePictureTask());
task->data = data;
task->filename = filename;
TaskProcessor<bool>::add(task);
}
virtual void onProcess(const sp<Task<bool>>& task) override {
SavePictureTask* t = static_cast<SavePictureTask*>(task.get());
if (0 == access(t->filename.c_str(), F_OK)) {
task->setResult(false);
return;
}
SkFILEWStream stream(t->filename.c_str());
if (stream.isValid()) {
stream.write(t->data->data(), t->data->size());
stream.flush();
SkDebugf("SKP Captured Drawing Output (%d bytes) for frame. %s", stream.bytesWritten(),
t->filename.c_str());
}
task->setResult(true);
}
};
SkCanvas* SkiaPipeline::tryCapture(SkSurface* surface) {
if (CC_UNLIKELY(Properties::skpCaptureEnabled)) {
bool recordingPicture = mCaptureSequence > 0;
char prop[PROPERTY_VALUE_MAX] = {'\0'};
if (!recordingPicture) {
property_get(PROPERTY_CAPTURE_SKP_FILENAME, prop, "0");
recordingPicture = prop[0] != '0' &&
mCapturedFile != prop; // ensure we capture only once per filename
if (recordingPicture) {
mCapturedFile = prop;
mCaptureSequence = property_get_int32(PROPERTY_CAPTURE_SKP_FRAMES, 1);
}
}
if (recordingPicture) {
mRecorder.reset(new SkPictureRecorder());
return mRecorder->beginRecording(surface->width(), surface->height(), nullptr,
SkPictureRecorder::kPlaybackDrawPicture_RecordFlag);
}
}
return surface->getCanvas();
}
void SkiaPipeline::endCapture(SkSurface* surface) {
if (CC_UNLIKELY(mRecorder.get())) {
sk_sp<SkPicture> picture = mRecorder->finishRecordingAsPicture();
surface->getCanvas()->drawPicture(picture);
if (picture->approximateOpCount() > 0) {
auto data = picture->serialize();
// offload saving to file in a different thread
if (!mSavePictureProcessor.get()) {
TaskManager* taskManager = getTaskManager();
mSavePictureProcessor = new SavePictureProcessor(
taskManager->canRunTasks() ? taskManager : nullptr);
}
if (1 == mCaptureSequence) {
mSavePictureProcessor->savePicture(data, mCapturedFile);
} else {
mSavePictureProcessor->savePicture(
data,
mCapturedFile + "_" + std::to_string(mCaptureSequence));
}
mCaptureSequence--;
}
mRecorder.reset();
}
}
void SkiaPipeline::renderFrame(const LayerUpdateQueue& layers, const SkRect& clip,
const std::vector<sp<RenderNode>>& nodes, bool opaque,
bool wideColorGamut, const Rect& contentDrawBounds,
sk_sp<SkSurface> surface) {
renderVectorDrawableCache();
// draw all layers up front
renderLayersImpl(layers, opaque, wideColorGamut);
// initialize the canvas for the current frame, that might be a recording canvas if SKP
// capture is enabled.
std::unique_ptr<SkPictureRecorder> recorder;
SkCanvas* canvas = tryCapture(surface.get());
renderFrameImpl(layers, clip, nodes, opaque, wideColorGamut, contentDrawBounds, canvas);
endCapture(surface.get());
if (CC_UNLIKELY(Properties::debugOverdraw)) {
renderOverdraw(layers, clip, nodes, contentDrawBounds, surface);
}
ATRACE_NAME("flush commands");
surface->getCanvas()->flush();
}
namespace {
static Rect nodeBounds(RenderNode& node) {
auto& props = node.properties();
return Rect(props.getLeft(), props.getTop(), props.getRight(), props.getBottom());
}
}
void SkiaPipeline::renderFrameImpl(const LayerUpdateQueue& layers, const SkRect& clip,
const std::vector<sp<RenderNode>>& nodes, bool opaque,
bool wideColorGamut, const Rect& contentDrawBounds,
SkCanvas* canvas) {
SkAutoCanvasRestore saver(canvas, true);
canvas->androidFramework_setDeviceClipRestriction(clip.roundOut());
// STOPSHIP: Revert, temporary workaround to clear always F16 frame buffer for b/74976293
if (!opaque || wideColorGamut) {
canvas->clear(SK_ColorTRANSPARENT);
}
if (1 == nodes.size()) {
if (!nodes[0]->nothingToDraw()) {
RenderNodeDrawable root(nodes[0].get(), canvas);
root.draw(canvas);
}
} else if (0 == nodes.size()) {
// nothing to draw
} else {
// It there are multiple render nodes, they are laid out as follows:
// #0 - backdrop (content + caption)
// #1 - content (local bounds are at (0,0), will be translated and clipped to backdrop)
// #2 - additional overlay nodes
// Usually the backdrop cannot be seen since it will be entirely covered by the content.
// While
// resizing however it might become partially visible. The following render loop will crop
// the
// backdrop against the content and draw the remaining part of it. It will then draw the
// content
// cropped to the backdrop (since that indicates a shrinking of the window).
//
// Additional nodes will be drawn on top with no particular clipping semantics.
// Usually the contents bounds should be mContentDrawBounds - however - we will
// move it towards the fixed edge to give it a more stable appearance (for the moment).
// If there is no content bounds we ignore the layering as stated above and start with 2.
// Backdrop bounds in render target space
const Rect backdrop = nodeBounds(*nodes[0]);
// Bounds that content will fill in render target space (note content node bounds may be
// bigger)
Rect content(contentDrawBounds.getWidth(), contentDrawBounds.getHeight());
content.translate(backdrop.left, backdrop.top);
if (!content.contains(backdrop) && !nodes[0]->nothingToDraw()) {
// Content doesn't entirely overlap backdrop, so fill around content (right/bottom)
// Note: in the future, if content doesn't snap to backdrop's left/top, this may need to
// also fill left/top. Currently, both 2up and freeform position content at the top/left
// of
// the backdrop, so this isn't necessary.
RenderNodeDrawable backdropNode(nodes[0].get(), canvas);
if (content.right < backdrop.right) {
// draw backdrop to right side of content
SkAutoCanvasRestore acr(canvas, true);
canvas->clipRect(SkRect::MakeLTRB(content.right, backdrop.top, backdrop.right,
backdrop.bottom));
backdropNode.draw(canvas);
}
if (content.bottom < backdrop.bottom) {
// draw backdrop to bottom of content
// Note: bottom fill uses content left/right, to avoid overdrawing left/right fill
SkAutoCanvasRestore acr(canvas, true);
canvas->clipRect(SkRect::MakeLTRB(content.left, content.bottom, content.right,
backdrop.bottom));
backdropNode.draw(canvas);
}
}
RenderNodeDrawable contentNode(nodes[1].get(), canvas);
if (!backdrop.isEmpty()) {
// content node translation to catch up with backdrop
float dx = backdrop.left - contentDrawBounds.left;
float dy = backdrop.top - contentDrawBounds.top;
SkAutoCanvasRestore acr(canvas, true);
canvas->translate(dx, dy);
const SkRect contentLocalClip =
SkRect::MakeXYWH(contentDrawBounds.left, contentDrawBounds.top,
backdrop.getWidth(), backdrop.getHeight());
canvas->clipRect(contentLocalClip);
contentNode.draw(canvas);
} else {
SkAutoCanvasRestore acr(canvas, true);
contentNode.draw(canvas);
}
// remaining overlay nodes, simply defer
for (size_t index = 2; index < nodes.size(); index++) {
if (!nodes[index]->nothingToDraw()) {
SkAutoCanvasRestore acr(canvas, true);
RenderNodeDrawable overlayNode(nodes[index].get(), canvas);
overlayNode.draw(canvas);
}
}
}
}
void SkiaPipeline::dumpResourceCacheUsage() const {
int resources, maxResources;
size_t bytes, maxBytes;
mRenderThread.getGrContext()->getResourceCacheUsage(&resources, &bytes);
mRenderThread.getGrContext()->getResourceCacheLimits(&maxResources, &maxBytes);
SkString log("Resource Cache Usage:\n");
log.appendf("%8d items out of %d maximum items\n", resources, maxResources);
log.appendf("%8zu bytes (%.2f MB) out of %.2f MB maximum\n", bytes,
bytes * (1.0f / (1024.0f * 1024.0f)), maxBytes * (1.0f / (1024.0f * 1024.0f)));
ALOGD("%s", log.c_str());
}
// Overdraw debugging
// These colors should be kept in sync with Caches::getOverdrawColor() with a few differences.
// This implementation:
// (1) Requires transparent entries for "no overdraw" and "single draws".
// (2) Requires premul colors (instead of unpremul).
// (3) Requires RGBA colors (instead of BGRA).
static const uint32_t kOverdrawColors[2][6] = {
{
0x00000000, 0x00000000, 0x2f2f0000, 0x2f002f00, 0x3f00003f, 0x7f00007f,
},
{
0x00000000, 0x00000000, 0x2f2f0000, 0x4f004f4f, 0x5f50335f, 0x7f00007f,
},
};
void SkiaPipeline::renderOverdraw(const LayerUpdateQueue& layers, const SkRect& clip,
const std::vector<sp<RenderNode>>& nodes,
const Rect& contentDrawBounds, sk_sp<SkSurface> surface) {
// Set up the overdraw canvas.
SkImageInfo offscreenInfo = SkImageInfo::MakeA8(surface->width(), surface->height());
sk_sp<SkSurface> offscreen = surface->makeSurface(offscreenInfo);
SkOverdrawCanvas overdrawCanvas(offscreen->getCanvas());
// Fake a redraw to replay the draw commands. This will increment the alpha channel
// each time a pixel would have been drawn.
// Pass true for opaque so we skip the clear - the overdrawCanvas is already zero
// initialized.
renderFrameImpl(layers, clip, nodes, true, false, contentDrawBounds, &overdrawCanvas);
sk_sp<SkImage> counts = offscreen->makeImageSnapshot();
// Draw overdraw colors to the canvas. The color filter will convert counts to colors.
SkPaint paint;
const SkPMColor* colors = kOverdrawColors[static_cast<int>(Properties::overdrawColorSet)];
paint.setColorFilter(SkOverdrawColorFilter::Make(colors));
surface->getCanvas()->drawImage(counts.get(), 0.0f, 0.0f, &paint);
}
} /* namespace skiapipeline */
} /* namespace uirenderer */
} /* namespace android */