blob: ccbc45b327e9d14558e296df59c5d5fe95630f68 [file] [log] [blame]
// This file is part of the ustl library, an STL implementation.
//
// Copyright (C) 2005 by Mike Sharov <msharov@users.sourceforge.net>
// This file is free software, distributed under the MIT License.
//
// uvector.h
//
#ifndef UVECTOR_H_00BB13AF082BEB7829C031B265518169
#define UVECTOR_H_00BB13AF082BEB7829C031B265518169
#include "uassert.h"
#include "memblock.h"
#include "umemory.h"
namespace ustl {
/// \class vector uvector.h ustl.h
/// \ingroup Sequences
///
/// \brief STL vector equivalent.
///
/// Provides a typed array-like interface to a managed memory block, including
/// element access, iteration, modification, resizing, and serialization. In
/// this design elements frequently undergo bitwise move, so don't put it in
/// here if it doesn't support it. This mostly means having no self-pointers.
///
template <typename T>
class vector {
public:
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef pointer iterator;
typedef const_pointer const_iterator;
typedef memblock::size_type size_type;
typedef memblock::written_size_type written_size_type;
typedef memblock::difference_type difference_type;
typedef ::ustl::reverse_iterator<iterator> reverse_iterator;
typedef ::ustl::reverse_iterator<const_iterator> const_reverse_iterator;
public:
inline vector (void);
inline explicit vector (size_type n);
vector (size_type n, const T& v);
vector (const vector<T>& v);
vector (const_iterator i1, const_iterator i2);
~vector (void) throw();
inline const vector<T>& operator= (const vector<T>& v);
inline bool operator== (const vector<T>& v) { return (m_Data == v.m_Data); }
inline operator cmemlink (void) const { return (cmemlink (m_Data)); }
inline operator cmemlink (void) { return (cmemlink (m_Data)); }
inline operator memlink (void) { return (memlink (m_Data)); }
inline void reserve (size_type n, bool bExact = true);
inline void resize (size_type n, bool bExact = true);
inline size_type capacity (void) const { return (m_Data.capacity() / sizeof(T)); }
inline size_type size (void) const { return (m_Data.size() / sizeof(T)); }
inline size_type max_size (void) const { return (m_Data.max_size() / sizeof(T)); }
inline bool empty (void) const { return (m_Data.empty()); }
inline iterator begin (void) { return (iterator (m_Data.begin())); }
inline const_iterator begin (void) const { return (const_iterator (m_Data.begin())); }
inline iterator end (void) { return (iterator (m_Data.end())); }
inline const_iterator end (void) const { return (const_iterator (m_Data.end())); }
inline reverse_iterator rbegin (void) { return (reverse_iterator (end())); }
inline const_reverse_iterator rbegin (void) const { return (const_reverse_iterator (end())); }
inline reverse_iterator rend (void) { return (reverse_iterator (begin())); }
inline const_reverse_iterator rend (void) const { return (const_reverse_iterator (begin())); }
inline iterator iat (size_type i) { assert (i <= size()); return (begin() + i); }
inline const_iterator iat (size_type i) const { assert (i <= size()); return (begin() + i); }
inline reference at (size_type i) { assert (i < size()); return (begin()[i]); }
inline const_reference at (size_type i) const { assert (i < size()); return (begin()[i]); }
inline reference operator[] (size_type i) { return (at (i)); }
inline const_reference operator[] (size_type i) const { return (at (i)); }
inline reference front (void) { return (at(0)); }
inline const_reference front (void) const { return (at(0)); }
inline reference back (void) { assert (!empty()); return (end()[-1]); }
inline const_reference back (void) const { assert (!empty()); return (end()[-1]); }
inline void push_back (const T& v = T());
inline void pop_back (void) { m_Data.memlink::resize (m_Data.size() - sizeof(T)); }
inline void clear (void) { m_Data.clear(); }
void deallocate (void) throw();
inline void assign (const_iterator i1, const_iterator i2);
inline void assign (size_type n, const T& v);
inline void swap (vector<T>& v) { m_Data.swap (v.m_Data); }
inline iterator insert (iterator ip, const T& v = T());
inline iterator insert (iterator ip, size_type n, const T& v);
inline iterator insert (iterator ip, const_iterator i1, const_iterator i2);
inline iterator erase (iterator ep, size_type n = 1);
inline iterator erase (iterator ep1, iterator ep2);
inline void manage (pointer p, size_type n) { m_Data.manage (p, n * sizeof(T)); }
inline bool is_linked (void) const { return (m_Data.is_linked()); }
inline void unlink (void) { m_Data.unlink(); }
inline void copy_link (void) { m_Data.copy_link(); }
inline void link (const_pointer p, size_type n) { m_Data.link (p, n * sizeof(T)); }
inline void link (pointer p, size_type n) { m_Data.link (p, n * sizeof(T)); }
inline void link (const vector<T>& v) { m_Data.link (v); }
inline void link (vector<T>& v) { m_Data.link (v); }
inline void link (const_pointer first, const_pointer last) { m_Data.link (first, last); }
inline void link (pointer first, pointer last) { m_Data.link (first, last); }
OVERLOAD_POINTER_AND_SIZE_T_V2(link, pointer)
OVERLOAD_POINTER_AND_SIZE_T_V2(link, const_pointer)
private:
inline iterator insert_space (iterator ip, size_type n);
private:
memblock m_Data; ///< Raw element data, consecutively stored.
};
/// Allocates space for at least \p n elements.
template <typename T>
void vector<T>::reserve (size_type n, bool bExact)
{
const size_type oldCapacity = capacity();
m_Data.reserve (n * sizeof(T), bExact);
if (capacity() > oldCapacity)
construct (begin() + oldCapacity, begin() + capacity());
}
/// Resizes the vector to contain \p n elements.
template <typename T>
void vector<T>::resize (size_type n, bool bExact)
{
if (m_Data.capacity() < n * sizeof(T))
reserve (n, bExact);
m_Data.memlink::resize (n * sizeof(T));
}
/// Calls element destructors and frees storage.
template <typename T>
void vector<T>::deallocate (void) throw()
{
if (!is_linked())
destroy (begin(), begin() + capacity());
m_Data.deallocate();
}
/// Initializes empty vector.
template <typename T>
inline vector<T>::vector (void)
: m_Data ()
{
}
/// Initializes a vector of size \p n.
template <typename T>
inline vector<T>::vector (size_type n)
: m_Data ()
{
resize (n);
}
/// Copies \p n elements from \p v.
template <typename T>
vector<T>::vector (size_type n, const T& v)
: m_Data ()
{
resize (n);
::ustl::fill (begin(), end(), v);
}
/// Copies \p v.
template <typename T>
vector<T>::vector (const vector<T>& v)
: m_Data ()
{
resize (v.size());
::ustl::copy (v.begin(), v.end(), begin());
}
/// Copies range [\p i1, \p i2]
template <typename T>
vector<T>::vector (const_iterator i1, const_iterator i2)
: m_Data ()
{
resize (distance (i1, i2));
::ustl::copy (i1, i2, begin());
}
/// Destructor
template <typename T>
inline vector<T>::~vector (void) throw()
{
if (!numeric_limits<value_type>::is_integral)
deallocate();
}
/// Copies the range [\p i1, \p i2]
template <typename T>
inline void vector<T>::assign (const_iterator i1, const_iterator i2)
{
assert (i1 <= i2);
resize (distance (i1, i2));
::ustl::copy (i1, i2, begin());
}
/// Copies \p n elements with value \p v.
template <typename T>
inline void vector<T>::assign (size_type n, const T& v)
{
resize (n);
::ustl::fill (begin(), end(), v);
}
/// Copies contents of \p v.
template <typename T>
inline const vector<T>& vector<T>::operator= (const vector<T>& v)
{
assign (v.begin(), v.end());
return (*this);
}
/// Inserts \p n uninitialized elements at \p ip.
template <typename T>
typename vector<T>::iterator vector<T>::insert_space (iterator ip, size_type n)
{
const uoff_t ipmi = distance (m_Data.begin(), memblock::iterator(ip));
reserve (size() + n, false);
return (iterator (m_Data.insert (m_Data.iat(ipmi), n * sizeof(T))));
}
/// Inserts \p n elements with value \p v at offsets \p ip.
template <typename T>
typename vector<T>::iterator vector<T>::insert (iterator ip, size_type n, const T& v)
{
ip = insert_space (ip, n);
::ustl::fill (ip, ip + n, v);
return (ip);
}
/// Inserts value \p v at offset \p ip.
template <typename T>
typename vector<T>::iterator vector<T>::insert (iterator ip, const T& v)
{
*(ip = insert_space (ip, 1)) = v;
return (ip);
}
/// Inserts range [\p i1, \p i2] at offset \p ip.
template <typename T>
typename vector<T>::iterator vector<T>::insert (iterator ip, const_iterator i1, const_iterator i2)
{
assert (i1 <= i2);
ip = insert_space (ip, distance (i1, i2));
::ustl::copy (i1, i2, ip);
return (ip);
}
/// Removes \p count elements at offset \p ep.
template <typename T>
inline typename vector<T>::iterator vector<T>::erase (iterator ep, size_type n)
{
return (iterator (m_Data.erase (memblock::iterator(ep), n * sizeof(T))));
}
/// Removes elements from \p ep1 to \p ep2.
template <typename T>
inline typename vector<T>::iterator vector<T>::erase (iterator ep1, iterator ep2)
{
assert (ep1 <= ep2);
return (erase (ep1, distance(ep1, ep2)));
}
/// Inserts value \p v at the end of the vector.
template <typename T>
void vector<T>::push_back (const T& v)
{
resize (size() + 1, false);
back() = v;
}
/// Use with vector classes to allocate and link to stack space. \p n is in elements.
#define typed_alloca_link(m,T,n) (m).link ((T*) alloca ((n) * sizeof(T)), (n))
} // namespace ustl
#endif