blob: 7b5ae649768ed0c869761a28d92dad3165a67c7a [file] [log] [blame]
// This file is part of the ustl library, an STL implementation.
//
// Copyright (C) 2005 by Mike Sharov <msharov@users.sourceforge.net>
// This file is free software, distributed under the MIT License.
//
/// \file uutility.h
///
/// \brief Utility templates.
///
/// Everything in here except min(), max(), distance(), and advance()
/// are uSTL extensions and are absent from other STL implementations.
///
#ifndef UUTILITY_H_6A58BD296269A82A4AAAA4FD19FDB3AC
#define UUTILITY_H_6A58BD296269A82A4AAAA4FD19FDB3AC
#include "uassert.h"
#include "utypes.h"
#if PLATFORM_ANDROID
#include <stdio.h>
#undef CPU_HAS_MMX
#endif
namespace ustl {
#ifdef __GNUC__
/// Returns the number of elements in a static vector
#define VectorSize(v) (sizeof(v) / sizeof(*v))
#else
// Old compilers will not be able to evaluate *v on an empty vector.
// The tradeoff here is that VectorSize will not be able to measure arrays of local structs.
#define VectorSize(v) (sizeof(v) / ustl::size_of_elements(1, v))
#endif
/// Expands into a ptr,size expression for the given static vector; useful as link arguments.
#define VectorBlock(v) (v)+0, VectorSize(v) // +0 makes it work under gcc 2.95
/// Expands into a begin,end expression for the given static vector; useful for algorithm arguments.
#define VectorRange(v) VectorBlock(v)+(v)
/// Returns the number of bits in the given type
#define BitsInType(t) (sizeof(t) * CHAR_BIT)
/// Returns the mask of type \p t with the lowest \p n bits set.
#define BitMask(t,n) (t(~t(0)) >> ((sizeof(t) * CHAR_BIT) - (n)))
/// Argument that is used only in debug builds (as in an assert)
#ifndef NDEBUG
#define DebugArg(x) x
#else
#define DebugArg(x)
#endif
/// Shorthand for container iteration.
#define foreach(type,i,ctr) for (type i = (ctr).begin(); i != (ctr).end(); ++ i)
/// Shorthand for container reverse iteration.
#define eachfor(type,i,ctr) for (type i = (ctr).rbegin(); i != (ctr).rend(); ++ i)
/// Macro for passing template types as macro arguments.
/// \@{
#define TEMPLATE_FULL_DECL1(d1,t1) template <d1 t1>
#define TEMPLATE_FULL_DECL2(d1,t1,d2,t2) template <d1 t1, d2 t2>
#define TEMPLATE_FULL_DECL3(d1,t1,d2,t2,d3,t3) template <d1 t1, d2 t2, d3 t3>
#define TEMPLATE_DECL1(t1) TEMPLATE_FULL_DECL1(typename,t1)
#define TEMPLATE_DECL2(t1,t2) TEMPLATE_FULL_DECL2(typename,t1,typename,t2)
#define TEMPLATE_DECL3(t1,t2,t3) TEMPLATE_FULL_DECL3(typename,t1,typename,t2,typename,t3)
#define TEMPLATE_TYPE1(type,a1) type<a1>
#define TEMPLATE_TYPE2(type,a1,a2) type<a1,a2>
#define TEMPLATE_TYPE3(type,a1,a2,a3) type<a1,a2,a3>
/// \@}
/// Returns the minimum of \p a and \p b
template <typename T1, typename T2>
inline const T1 min (const T1& a, const T2& b)
{
return (a < b ? a : b);
}
/// Returns the maximum of \p a and \p b
template <typename T1, typename T2>
inline const T1 max (const T1& a, const T2& b)
{
return (b < a ? a : b);
}
/// \brief Divides \p n1 by \p n2 and rounds the result up.
/// This is in contrast to regular division, which rounds down.
/// Negative numbers are rounded down because they are an unusual case, supporting
/// which would require a branch. Since this is frequently used in graphics, the
/// speed is important.
///
template <typename T1, typename T2>
inline T1 DivRU (T1 n1, T2 n2)
{
return (n1 / n2 + (n1 % n2 > 0));
}
/// The alignment performed by default.
const size_t c_DefaultAlignment = __alignof__(void*);
/// \brief Rounds \p n up to be divisible by \p grain
template <typename T>
inline T Align (T n, size_t grain = c_DefaultAlignment)
{
T a, r = n % grain;
if (grain == 2) return (n + r);
switch (grain) {
case 4: case 8: case 16: a = (n & ~(grain - 1)) + grain; break;
default: a = n + (grain - r);
};
return (r ? a : n);
}
/// Offsets an iterator
template <typename T>
inline T advance (T i, ssize_t offset)
{
return (i + offset);
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
/// Offsets a void pointer
template <>
inline const void* advance (const void* p, ssize_t offset)
{
assert (p || !offset);
return (reinterpret_cast<const uint8_t*>(p) + offset);
}
/// Offsets a void pointer
template <>
inline void* advance (void* p, ssize_t offset)
{
assert (p || !offset);
return (reinterpret_cast<uint8_t*>(p) + offset);
}
#endif
/// Returns the difference \p p1 - \p p2
template <typename T1, typename T2>
inline ptrdiff_t distance (T1 i1, T2 i2)
{
return (i2 - i1);
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
#define UNVOID_DISTANCE(T1const,T2const) \
template <> inline ptrdiff_t distance (T1const void* p1, T2const void* p2) \
{ return ((T2const uint8_t*)(p2) - (T1const uint8_t*)(p1)); }
UNVOID_DISTANCE(,)
UNVOID_DISTANCE(const,const)
UNVOID_DISTANCE(,const)
UNVOID_DISTANCE(const,)
#undef UNVOID_DISTANCE
#endif
/// \brief Returns the absolute value of \p v
/// Unlike the stdlib functions, this is inline and works with all types.
template <typename T>
inline T absv (T v)
{
return (v < 0 ? -v : v);
}
/// \brief Returns -1 for negative values, 1 for positive, and 0 for 0
template <typename T>
inline T sign (T v)
{
return ((0 < v) - (v < 0));
}
/// Returns the absolute value of the distance i1 and i2
template <typename T1, typename T2>
inline size_t abs_distance (T1 i1, T2 i2)
{
return (absv (distance(i1, i2)));
}
/// Returns the size of \p n elements of size \p T
template <typename T>
inline size_t size_of_elements (size_t n, const T*)
{
return (n * sizeof(T));
}
// Defined in byteswap.h, which is usually unusable.
#undef bswap_16
#undef bswap_32
#undef bswap_64
#if CPU_HAS_CMPXCHG8 // If it has that, it has bswap.
inline uint16_t bswap_16 (uint16_t v) { asm ("rorw $8, %w0" : "=r"(v) : "0"(v) : "cc"); return (v); }
inline uint32_t bswap_32 (uint32_t v) { asm ("bswap %0" : "=r"(v) : "0"(v)); return (v); }
#else
inline uint16_t bswap_16 (uint16_t v) { return (v << 8 | v >> 8); }
inline uint32_t bswap_32 (uint32_t v) { return (v << 24 | (v & 0xFF00) << 8 | (v >> 8) & 0xFF00 | v >> 24); }
#endif
#if HAVE_INT64_T
inline uint64_t bswap_64 (uint64_t v) { return ((uint64_t(bswap_32(v)) << 32) | bswap_32(v >> 32)); }
#endif
/// \brief Swaps the byteorder of \p v.
template <typename T>
inline T bswap (const T& v)
{
switch (BitsInType(T)) {
default: return (v);
case 16: return (T (bswap_16 (uint16_t (v))));
case 32: return (T (bswap_32 (uint32_t (v))));
#if HAVE_INT64_T
case 64: return (T (bswap_64 (uint64_t (v))));
#endif
};
}
#if USTL_BYTE_ORDER == USTL_BIG_ENDIAN
template <typename T> inline T le_to_native (const T& v) { return (bswap (v)); }
template <typename T> inline T be_to_native (const T& v) { return (v); }
template <typename T> inline T native_to_le (const T& v) { return (bswap (v)); }
template <typename T> inline T native_to_be (const T& v) { return (v); }
#elif USTL_BYTE_ORDER == USTL_LITTLE_ENDIAN
template <typename T> inline T le_to_native (const T& v) { return (v); }
template <typename T> inline T be_to_native (const T& v) { return (bswap (v)); }
template <typename T> inline T native_to_le (const T& v) { return (v); }
template <typename T> inline T native_to_be (const T& v) { return (bswap (v)); }
#endif // USTL_BYTE_ORDER
/// Deletes \p p and sets it to NULL
template <typename T>
inline void Delete (T*& p)
{
delete p;
p = NULL;
}
/// Deletes \p p as an array and sets it to NULL
template <typename T>
inline void DeleteVector (T*& p)
{
delete [] p;
p = NULL;
}
/// Template of making != from ! and ==
template <typename T>
inline bool operator!= (const T& x, const T& y)
{
return (!(x == y));
}
/// Template of making > from <
template <typename T>
inline bool operator> (const T& x, const T& y)
{
return (y < x);
}
/// Template of making <= from < and ==
template <typename T>
inline bool operator<= (const T& x, const T& y)
{
return (!(y < x));
}
/// Template of making >= from < and ==
template <typename T>
inline bool operator>= (const T& x, const T& y)
{
return (!(x < y));
}
/// Packs \p s multiple times into \p b. Useful for loop unrolling.
template <typename TSmall, typename TBig>
inline void pack_type (TSmall s, TBig& b)
{
const size_t n = sizeof(TBig) / sizeof(TSmall);
b = s;
// Calls to min are here to avoid warnings for shifts bigger than the type. min will be gone when optimized.
if (n < 2) return;
b = (b << min (BitsInType(TSmall), BitsInType(TBig))) | b;
if (n < 4) return;
b = (b << min (BitsInType(TSmall) * 2, BitsInType(TBig))) | b;
if (n < 8) return;
b = (b << min (BitsInType(TSmall) * 4, BitsInType(TBig))) | b;
}
#if __GNUC__ >= 3
inline bool TestAndSet (int* pm) __attribute__((always_inline));
#endif
/// Sets the contents of \p pm to 1 and returns true if the previous value was 0.
inline bool TestAndSet (int* pm)
{
#if CPU_HAS_CMPXCHG8
bool rv;
int oldVal (1);
asm volatile ( // cmpxchg compares to %eax and swaps if equal
"cmpxchgl %3, %1\n\t"
"sete %0"
: "=a" (rv), "=m" (*pm), "=r" (oldVal)
: "2" (oldVal), "a" (0)
: "memory");
return (rv);
#elif __i386__ || __x86_64__
int oldVal (1);
asm volatile ("xchgl %0, %1" : "=r"(oldVal), "=m"(*pm) : "0"(oldVal), "m"(*pm) : "memory");
return (!oldVal);
#elif __sparc32__ // This has not been tested
int rv;
asm volatile ("ldstub %1, %0" : "=r"(rv), "=m"(*pm) : "m"(pm));
return (!rv);
#else
const int oldVal (*pm);
*pm = 1;
return (!oldVal);
#endif
}
/// \brief This template is to be used for dereferencing a type-punned pointer without a warning.
///
/// When casting a local variable to an unrelated type through a pointer (for
/// example, casting a float to a uint32_t without conversion), the resulting
/// memory location can be accessed through either pointer, which violates the
/// strict aliasing rule. While -fno-strict-aliasing option can be given to
/// the compiler, eliminating this warning, inefficient code may result in
/// some instances, because aliasing inhibits some optimizations. By using
/// this template, and by ensuring the memory is accessed in one way only,
/// efficient code can be produced without the warning. For gcc 4.1.0+.
///
template <typename DEST, typename SRC>
inline DEST noalias (DEST, SRC* s)
{
union UPun { SRC s; DEST d; };
return (((UPun*)(s))->d);
}
namespace simd {
/// Call after you are done using SIMD algorithms for 64 bit tuples.
#if CPU_HAS_MMX
inline void reset_mmx (void) __attribute__((always_inline));
#define ALL_MMX_REGS_CHANGELIST "mm0","mm1","mm2","mm3","mm4","mm5","mm6","mm7","st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)"
#if CPU_HAS_3DNOW
inline void reset_mmx (void) { asm ("femms":::ALL_MMX_REGS_CHANGELIST); }
#else
inline void reset_mmx (void) { asm ("emms":::ALL_MMX_REGS_CHANGELIST); }
#endif
#else
inline void reset_mmx (void) {}
#endif
} // namespace simd
/// \brief Type that is not size_t
///
/// Because size_t may be declared as unsigned long or unsigned int on
/// different machines, this macro is convenient when defining overloads
/// of size_t to use other types.
///
#if defined(SIZE_T_IS_LONG) && !defined(__ARM_EABI__)
#define NOT_SIZE_T_I_OR_L unsigned int
#else
#define NOT_SIZE_T_I_OR_L unsigned long
#endif
/// \brief Required when you want to overload size_t and a pointer.
///
/// The compiler will happily cast a number to a pointer and declare
/// that the overload is ambiguous unless you define overloads for all
/// possible integral types that a number may represent. This behaviour,
/// although braindead, is in the ANSI standard, and thus not a bug. If
/// you want to change the standard, the best solution is to disallow any
/// implicit casts to pointer from an integral type. Ironically, such an
/// implicit cast is already detected by gcc.
///
#if defined(USTL_ANDROID_X86)
#define OVERLOAD_POINTER_AND_SIZE_T_V2(name, arg1type)
#else
#define OVERLOAD_POINTER_AND_SIZE_T_V2(name, arg1type) \
inline void name (arg1type a1, short a2) { name (a1, size_t(a2)); } \
inline void name (arg1type a1, unsigned short a2) { name (a1, size_t(a2)); } \
inline void name (arg1type a1, int a2) { name (a1, size_t(a2)); } \
inline void name (arg1type a1, long a2) { name (a1, size_t(a2)); } \
inline void name (arg1type a1, NOT_SIZE_T_I_OR_L a2) { name (a1, size_t(a2)); }
#endif
} // namespace ustl
#endif