blob: 270527d551a9e0144faf58db0dabf72d71c1188e [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SkiaOpenGLPipeline.h"
#include "DeferredLayerUpdater.h"
#include "GlLayer.h"
#include "LayerDrawable.h"
#include "SkiaPipeline.h"
#include "SkiaProfileRenderer.h"
#include "hwui/Bitmap.h"
#include "renderstate/RenderState.h"
#include "renderthread/EglManager.h"
#include "renderthread/Frame.h"
#include "utils/TraceUtils.h"
#include <GrBackendSurface.h>
#include <SkImageInfo.h>
#include <SkBlendMode.h>
#include <cutils/properties.h>
#include <strings.h>
using namespace android::uirenderer::renderthread;
namespace android {
namespace uirenderer {
namespace skiapipeline {
SkiaOpenGLPipeline::SkiaOpenGLPipeline(RenderThread& thread)
: SkiaPipeline(thread), mEglManager(thread.eglManager()) {}
MakeCurrentResult SkiaOpenGLPipeline::makeCurrent() {
// TODO: Figure out why this workaround is needed, see b/13913604
// In the meantime this matches the behavior of GLRenderer, so it is not a regression
EGLint error = 0;
if (!mEglManager.makeCurrent(mEglSurface, &error)) {
return MakeCurrentResult::AlreadyCurrent;
}
return error ? MakeCurrentResult::Failed : MakeCurrentResult::Succeeded;
}
Frame SkiaOpenGLPipeline::getFrame() {
LOG_ALWAYS_FATAL_IF(mEglSurface == EGL_NO_SURFACE,
"drawRenderNode called on a context with no surface!");
return mEglManager.beginFrame(mEglSurface);
}
bool SkiaOpenGLPipeline::draw(const Frame& frame, const SkRect& screenDirty, const SkRect& dirty,
const FrameBuilder::LightGeometry& lightGeometry,
LayerUpdateQueue* layerUpdateQueue, const Rect& contentDrawBounds,
bool opaque, bool wideColorGamut,
const BakedOpRenderer::LightInfo& lightInfo,
const std::vector<sp<RenderNode>>& renderNodes,
FrameInfoVisualizer* profiler) {
mEglManager.damageFrame(frame, dirty);
// setup surface for fbo0
GrGLFramebufferInfo fboInfo;
fboInfo.fFBOID = 0;
GrPixelConfig pixelConfig =
wideColorGamut ? kRGBA_half_GrPixelConfig : kRGBA_8888_GrPixelConfig;
GrBackendRenderTarget backendRT(frame.width(), frame.height(), 0, STENCIL_BUFFER_SIZE,
pixelConfig, fboInfo);
SkSurfaceProps props(0, kUnknown_SkPixelGeometry);
SkASSERT(mRenderThread.getGrContext() != nullptr);
sk_sp<SkSurface> surface(SkSurface::MakeFromBackendRenderTarget(
mRenderThread.getGrContext(), backendRT, kBottomLeft_GrSurfaceOrigin, nullptr, &props));
SkiaPipeline::updateLighting(lightGeometry, lightInfo);
renderFrame(*layerUpdateQueue, dirty, renderNodes, opaque, wideColorGamut, contentDrawBounds,
surface);
layerUpdateQueue->clear();
// Draw visual debugging features
if (CC_UNLIKELY(Properties::showDirtyRegions ||
ProfileType::None != Properties::getProfileType())) {
SkCanvas* profileCanvas = surface->getCanvas();
SkiaProfileRenderer profileRenderer(profileCanvas);
profiler->draw(profileRenderer);
profileCanvas->flush();
}
// Log memory statistics
if (CC_UNLIKELY(Properties::debugLevel != kDebugDisabled)) {
dumpResourceCacheUsage();
}
return true;
}
bool SkiaOpenGLPipeline::swapBuffers(const Frame& frame, bool drew, const SkRect& screenDirty,
FrameInfo* currentFrameInfo, bool* requireSwap) {
GL_CHECKPOINT(LOW);
// Even if we decided to cancel the frame, from the perspective of jank
// metrics the frame was swapped at this point
currentFrameInfo->markSwapBuffers();
*requireSwap = drew || mEglManager.damageRequiresSwap();
if (*requireSwap && (CC_UNLIKELY(!mEglManager.swapBuffers(frame, screenDirty)))) {
return false;
}
return *requireSwap;
}
bool SkiaOpenGLPipeline::copyLayerInto(DeferredLayerUpdater* deferredLayer, SkBitmap* bitmap) {
if (!mRenderThread.getGrContext()) {
return false;
}
// acquire most recent buffer for drawing
deferredLayer->updateTexImage();
deferredLayer->apply();
// drop the colorSpace as we only support readback into sRGB or extended sRGB
SkImageInfo surfaceInfo = bitmap->info().makeColorSpace(nullptr);
/* This intermediate surface is present to work around a bug in SwiftShader that
* prevents us from reading the contents of the layer's texture directly. The
* workaround involves first rendering that texture into an intermediate buffer and
* then reading from the intermediate buffer into the bitmap.
*/
sk_sp<SkSurface> tmpSurface = SkSurface::MakeRenderTarget(mRenderThread.getGrContext(),
SkBudgeted::kYes, surfaceInfo);
if (!tmpSurface.get()) {
surfaceInfo = surfaceInfo.makeColorType(SkColorType::kN32_SkColorType);
tmpSurface = SkSurface::MakeRenderTarget(mRenderThread.getGrContext(),
SkBudgeted::kYes, surfaceInfo);
if (!tmpSurface.get()) {
ALOGW("Unable to readback GPU contents into the provided bitmap");
return false;
}
}
Layer* layer = deferredLayer->backingLayer();
const SkRect dstRect = SkRect::MakeIWH(bitmap->width(), bitmap->height());
if (LayerDrawable::DrawLayer(mRenderThread.getGrContext(), tmpSurface->getCanvas(), layer,
&dstRect)) {
sk_sp<SkImage> tmpImage = tmpSurface->makeImageSnapshot();
if (tmpImage->readPixels(surfaceInfo, bitmap->getPixels(), bitmap->rowBytes(), 0, 0)) {
bitmap->notifyPixelsChanged();
return true;
}
// if we fail to readback from the GPU directly (e.g. 565) then we attempt to read into 8888
// and then draw that into the destination format before giving up.
SkBitmap tmpBitmap;
SkImageInfo bitmapInfo = SkImageInfo::MakeN32(bitmap->width(), bitmap->height(),
bitmap->alphaType());
if (tmpBitmap.tryAllocPixels(bitmapInfo) &&
tmpImage->readPixels(bitmapInfo, tmpBitmap.getPixels(),
tmpBitmap.rowBytes(), 0, 0)) {
SkCanvas canvas(*bitmap);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
canvas.drawBitmap(tmpBitmap, 0, 0, &paint);
bitmap->notifyPixelsChanged();
return true;
}
}
return false;
}
static Layer* createLayer(RenderState& renderState, uint32_t layerWidth, uint32_t layerHeight,
sk_sp<SkColorFilter> colorFilter, int alpha, SkBlendMode mode, bool blend) {
GlLayer* layer =
new GlLayer(renderState, layerWidth, layerHeight, colorFilter, alpha, mode, blend);
layer->generateTexture();
return layer;
}
DeferredLayerUpdater* SkiaOpenGLPipeline::createTextureLayer() {
mEglManager.initialize();
return new DeferredLayerUpdater(mRenderThread.renderState(), createLayer, Layer::Api::OpenGL);
}
void SkiaOpenGLPipeline::onStop() {
if (mEglManager.isCurrent(mEglSurface)) {
mEglManager.makeCurrent(EGL_NO_SURFACE);
}
}
bool SkiaOpenGLPipeline::setSurface(Surface* surface, SwapBehavior swapBehavior,
ColorMode colorMode) {
if (mEglSurface != EGL_NO_SURFACE) {
mEglManager.destroySurface(mEglSurface);
mEglSurface = EGL_NO_SURFACE;
}
if (surface) {
const bool wideColorGamut = colorMode == ColorMode::WideColorGamut;
mEglSurface = mEglManager.createSurface(surface, wideColorGamut);
}
if (mEglSurface != EGL_NO_SURFACE) {
const bool preserveBuffer = (swapBehavior != SwapBehavior::kSwap_discardBuffer);
mBufferPreserved = mEglManager.setPreserveBuffer(mEglSurface, preserveBuffer);
return true;
}
return false;
}
bool SkiaOpenGLPipeline::isSurfaceReady() {
return CC_UNLIKELY(mEglSurface != EGL_NO_SURFACE);
}
bool SkiaOpenGLPipeline::isContextReady() {
return CC_LIKELY(mEglManager.hasEglContext());
}
void SkiaOpenGLPipeline::invokeFunctor(const RenderThread& thread, Functor* functor) {
DrawGlInfo::Mode mode = DrawGlInfo::kModeProcessNoContext;
if (thread.eglManager().hasEglContext()) {
mode = DrawGlInfo::kModeProcess;
}
(*functor)(mode, nullptr);
// If there's no context we don't need to reset as there's no gl state to save/restore
if (mode != DrawGlInfo::kModeProcessNoContext) {
thread.getGrContext()->resetContext();
}
}
#define FENCE_TIMEOUT 2000000000
class AutoEglFence {
public:
AutoEglFence(EGLDisplay display) : mDisplay(display) {
fence = eglCreateSyncKHR(mDisplay, EGL_SYNC_FENCE_KHR, NULL);
}
~AutoEglFence() {
if (fence != EGL_NO_SYNC_KHR) {
eglDestroySyncKHR(mDisplay, fence);
}
}
EGLSyncKHR fence = EGL_NO_SYNC_KHR;
private:
EGLDisplay mDisplay = EGL_NO_DISPLAY;
};
class AutoEglImage {
public:
AutoEglImage(EGLDisplay display, EGLClientBuffer clientBuffer) : mDisplay(display) {
EGLint imageAttrs[] = {EGL_IMAGE_PRESERVED_KHR, EGL_TRUE, EGL_NONE};
image = eglCreateImageKHR(display, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID, clientBuffer,
imageAttrs);
}
~AutoEglImage() {
if (image != EGL_NO_IMAGE_KHR) {
eglDestroyImageKHR(mDisplay, image);
}
}
EGLImageKHR image = EGL_NO_IMAGE_KHR;
private:
EGLDisplay mDisplay = EGL_NO_DISPLAY;
};
class AutoSkiaGlTexture {
public:
AutoSkiaGlTexture() {
glGenTextures(1, &mTexture);
glBindTexture(GL_TEXTURE_2D, mTexture);
}
~AutoSkiaGlTexture() { glDeleteTextures(1, &mTexture); }
private:
GLuint mTexture = 0;
};
static bool isFP16Supported(const sk_sp<GrContext>& grContext) {
static std::once_flag sOnceFlag;
static bool supported = false;
std::call_once(sOnceFlag, [](const sk_sp<GrContext>& grContext) {
if (!grContext->caps()->isConfigTexturable(kRGBA_half_GrPixelConfig)) {
supported = false;
return;
}
sp<GraphicBuffer> buffer = new GraphicBuffer(1, 1, PIXEL_FORMAT_RGBA_FP16,
GraphicBuffer::USAGE_HW_TEXTURE | GraphicBuffer::USAGE_SW_WRITE_NEVER |
GraphicBuffer::USAGE_SW_READ_NEVER, "tempFp16Buffer");
status_t error = buffer->initCheck();
supported = !error;
}, grContext);
return supported;
}
sk_sp<Bitmap> SkiaOpenGLPipeline::allocateHardwareBitmap(renderthread::RenderThread& renderThread,
SkBitmap& skBitmap) {
renderThread.eglManager().initialize();
sk_sp<GrContext> grContext = sk_ref_sp(renderThread.getGrContext());
const SkImageInfo& info = skBitmap.info();
PixelFormat pixelFormat;
GLint format, type;
bool isSupported = false;
// TODO: add support for linear blending (when ANDROID_ENABLE_LINEAR_BLENDING is defined)
switch (info.colorType()) {
case kRGBA_8888_SkColorType:
isSupported = true;
// ARGB_4444 is upconverted to RGBA_8888
case kARGB_4444_SkColorType:
pixelFormat = PIXEL_FORMAT_RGBA_8888;
format = GL_RGBA;
type = GL_UNSIGNED_BYTE;
break;
case kRGBA_F16_SkColorType:
isSupported = isFP16Supported(grContext);
if (isSupported) {
type = GL_HALF_FLOAT;
pixelFormat = PIXEL_FORMAT_RGBA_FP16;
} else {
type = GL_UNSIGNED_BYTE;
pixelFormat = PIXEL_FORMAT_RGBA_8888;
}
format = GL_RGBA;
break;
case kRGB_565_SkColorType:
isSupported = true;
pixelFormat = PIXEL_FORMAT_RGB_565;
format = GL_RGB;
type = GL_UNSIGNED_SHORT_5_6_5;
break;
case kGray_8_SkColorType:
isSupported = true;
pixelFormat = PIXEL_FORMAT_RGBA_8888;
format = GL_LUMINANCE;
type = GL_UNSIGNED_BYTE;
break;
default:
ALOGW("unable to create hardware bitmap of colortype: %d", info.colorType());
return nullptr;
}
SkBitmap bitmap;
if (isSupported) {
bitmap = skBitmap;
} else {
bitmap.allocPixels(
SkImageInfo::MakeN32(info.width(), info.height(), info.alphaType(), nullptr));
bitmap.eraseColor(0);
if (info.colorType() == kRGBA_F16_SkColorType) {
// Drawing RGBA_F16 onto ARGB_8888 is not supported
skBitmap.readPixels(bitmap.info().makeColorSpace(SkColorSpace::MakeSRGB()),
bitmap.getPixels(), bitmap.rowBytes(), 0, 0);
} else {
SkCanvas canvas(bitmap);
canvas.drawBitmap(skBitmap, 0.0f, 0.0f, nullptr);
}
}
sp<GraphicBuffer> buffer = new GraphicBuffer(
info.width(), info.height(), pixelFormat,
GraphicBuffer::USAGE_HW_TEXTURE | GraphicBuffer::USAGE_SW_WRITE_NEVER |
GraphicBuffer::USAGE_SW_READ_NEVER,
std::string("Bitmap::allocateSkiaHardwareBitmap pid [") + std::to_string(getpid()) +
"]");
status_t error = buffer->initCheck();
if (error < 0) {
ALOGW("createGraphicBuffer() failed in GraphicBuffer.create()");
return nullptr;
}
// upload the bitmap into a texture
EGLDisplay display = eglGetCurrentDisplay();
LOG_ALWAYS_FATAL_IF(display == EGL_NO_DISPLAY, "Failed to get EGL_DEFAULT_DISPLAY! err=%s",
uirenderer::renderthread::EglManager::eglErrorString());
// We use an EGLImage to access the content of the GraphicBuffer
// The EGL image is later bound to a 2D texture
EGLClientBuffer clientBuffer = (EGLClientBuffer)buffer->getNativeBuffer();
AutoEglImage autoImage(display, clientBuffer);
if (autoImage.image == EGL_NO_IMAGE_KHR) {
ALOGW("Could not create EGL image, err =%s",
uirenderer::renderthread::EglManager::eglErrorString());
return nullptr;
}
AutoSkiaGlTexture glTexture;
glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, autoImage.image);
GL_CHECKPOINT(MODERATE);
// glTexSubImage2D is synchronous in sense that it memcpy() from pointer that we provide.
// But asynchronous in sense that driver may upload texture onto hardware buffer when we first
// use it in drawing
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, info.width(), info.height(), format, type,
bitmap.getPixels());
GL_CHECKPOINT(MODERATE);
// The fence is used to wait for the texture upload to finish
// properly. We cannot rely on glFlush() and glFinish() as
// some drivers completely ignore these API calls
AutoEglFence autoFence(display);
if (autoFence.fence == EGL_NO_SYNC_KHR) {
LOG_ALWAYS_FATAL("Could not create sync fence %#x", eglGetError());
return nullptr;
}
// The flag EGL_SYNC_FLUSH_COMMANDS_BIT_KHR will trigger a
// pipeline flush (similar to what a glFlush() would do.)
EGLint waitStatus = eglClientWaitSyncKHR(display, autoFence.fence,
EGL_SYNC_FLUSH_COMMANDS_BIT_KHR, FENCE_TIMEOUT);
if (waitStatus != EGL_CONDITION_SATISFIED_KHR) {
LOG_ALWAYS_FATAL("Failed to wait for the fence %#x", eglGetError());
return nullptr;
}
grContext->resetContext(kTextureBinding_GrGLBackendState);
return sk_sp<Bitmap>(new Bitmap(buffer.get(), bitmap.info()));
}
} /* namespace skiapipeline */
} /* namespace uirenderer */
} /* namespace android */