blob: 7283eb123d6a13bf0b959dbe461ee138bb463850 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "OpenGLPipeline.h"
#include "DeferredLayerUpdater.h"
#include "EglManager.h"
#include "Frame.h"
#include "GlLayer.h"
#include "ProfileRenderer.h"
#include "renderstate/RenderState.h"
#include "OpenGLReadback.h"
#include <cutils/properties.h>
#include <strings.h>
namespace android {
namespace uirenderer {
namespace renderthread {
OpenGLPipeline::OpenGLPipeline(RenderThread& thread)
: mEglManager(thread.eglManager())
, mRenderThread(thread) {
}
MakeCurrentResult OpenGLPipeline::makeCurrent() {
// TODO: Figure out why this workaround is needed, see b/13913604
// In the meantime this matches the behavior of GLRenderer, so it is not a regression
EGLint error = 0;
bool haveNewSurface = mEglManager.makeCurrent(mEglSurface, &error);
Caches::getInstance().textureCache.resetMarkInUse(this);
if (!haveNewSurface) {
return MakeCurrentResult::AlreadyCurrent;
}
return error ? MakeCurrentResult::Failed : MakeCurrentResult::Succeeded;
}
Frame OpenGLPipeline::getFrame() {
LOG_ALWAYS_FATAL_IF(mEglSurface == EGL_NO_SURFACE,
"drawRenderNode called on a context with no surface!");
return mEglManager.beginFrame(mEglSurface);
}
bool OpenGLPipeline::draw(const Frame& frame, const SkRect& screenDirty, const SkRect& dirty,
const FrameBuilder::LightGeometry& lightGeometry,
LayerUpdateQueue* layerUpdateQueue,
const Rect& contentDrawBounds, bool opaque, bool wideColorGamut,
const BakedOpRenderer::LightInfo& lightInfo,
const std::vector< sp<RenderNode> >& renderNodes,
FrameInfoVisualizer* profiler) {
mEglManager.damageFrame(frame, dirty);
bool drew = false;
auto& caches = Caches::getInstance();
FrameBuilder frameBuilder(dirty, frame.width(), frame.height(), lightGeometry, caches);
frameBuilder.deferLayers(*layerUpdateQueue);
layerUpdateQueue->clear();
frameBuilder.deferRenderNodeScene(renderNodes, contentDrawBounds);
BakedOpRenderer renderer(caches, mRenderThread.renderState(),
opaque, wideColorGamut, lightInfo);
frameBuilder.replayBakedOps<BakedOpDispatcher>(renderer);
ProfileRenderer profileRenderer(renderer);
profiler->draw(profileRenderer);
drew = renderer.didDraw();
// post frame cleanup
caches.clearGarbage();
caches.pathCache.trim();
caches.tessellationCache.trim();
#if DEBUG_MEMORY_USAGE
caches.dumpMemoryUsage();
#else
if (CC_UNLIKELY(Properties::debugLevel & kDebugMemory)) {
caches.dumpMemoryUsage();
}
#endif
return drew;
}
bool OpenGLPipeline::swapBuffers(const Frame& frame, bool drew, const SkRect& screenDirty,
FrameInfo* currentFrameInfo, bool* requireSwap) {
GL_CHECKPOINT(LOW);
// Even if we decided to cancel the frame, from the perspective of jank
// metrics the frame was swapped at this point
currentFrameInfo->markSwapBuffers();
*requireSwap = drew || mEglManager.damageRequiresSwap();
if (*requireSwap && (CC_UNLIKELY(!mEglManager.swapBuffers(frame, screenDirty)))) {
return false;
}
return *requireSwap;
}
bool OpenGLPipeline::copyLayerInto(DeferredLayerUpdater* layer, SkBitmap* bitmap) {
ATRACE_CALL();
// acquire most recent buffer for drawing
layer->updateTexImage();
layer->apply();
return OpenGLReadbackImpl::copyLayerInto(mRenderThread,
static_cast<GlLayer&>(*layer->backingLayer()), bitmap);
}
static Layer* createLayer(RenderState& renderState, uint32_t layerWidth, uint32_t layerHeight,
SkColorFilter* colorFilter, int alpha, SkBlendMode mode, bool blend) {
GlLayer* layer = new GlLayer(renderState, layerWidth, layerHeight, colorFilter, alpha,
mode, blend);
Caches::getInstance().textureState().activateTexture(0);
layer->generateTexture();
return layer;
}
DeferredLayerUpdater* OpenGLPipeline::createTextureLayer() {
mEglManager.initialize();
return new DeferredLayerUpdater(mRenderThread.renderState(), createLayer, Layer::Api::OpenGL);
}
void OpenGLPipeline::onStop() {
if (mEglManager.isCurrent(mEglSurface)) {
mEglManager.makeCurrent(EGL_NO_SURFACE);
}
}
bool OpenGLPipeline::setSurface(Surface* surface, SwapBehavior swapBehavior, ColorMode colorMode) {
if (mEglSurface != EGL_NO_SURFACE) {
mEglManager.destroySurface(mEglSurface);
mEglSurface = EGL_NO_SURFACE;
}
if (surface) {
const bool wideColorGamut = colorMode == ColorMode::WideColorGamut;
mEglSurface = mEglManager.createSurface(surface, wideColorGamut);
}
if (mEglSurface != EGL_NO_SURFACE) {
const bool preserveBuffer = (swapBehavior != SwapBehavior::kSwap_discardBuffer);
mBufferPreserved = mEglManager.setPreserveBuffer(mEglSurface, preserveBuffer);
return true;
}
return false;
}
bool OpenGLPipeline::isSurfaceReady() {
return CC_UNLIKELY(mEglSurface != EGL_NO_SURFACE);
}
bool OpenGLPipeline::isContextReady() {
return CC_LIKELY(mEglManager.hasEglContext());
}
void OpenGLPipeline::onDestroyHardwareResources() {
Caches& caches = Caches::getInstance();
// Make sure to release all the textures we were owning as there won't
// be another draw
caches.textureCache.resetMarkInUse(this);
mRenderThread.renderState().flush(Caches::FlushMode::Layers);
}
void OpenGLPipeline::renderLayers(const FrameBuilder::LightGeometry& lightGeometry,
LayerUpdateQueue* layerUpdateQueue, bool opaque, bool wideColorGamut,
const BakedOpRenderer::LightInfo& lightInfo) {
static const std::vector< sp<RenderNode> > emptyNodeList;
auto& caches = Caches::getInstance();
FrameBuilder frameBuilder(*layerUpdateQueue, lightGeometry, caches);
layerUpdateQueue->clear();
// TODO: Handle wide color gamut contexts
BakedOpRenderer renderer(caches, mRenderThread.renderState(), opaque, wideColorGamut, lightInfo);
LOG_ALWAYS_FATAL_IF(renderer.didDraw(), "shouldn't draw in buildlayer case");
frameBuilder.replayBakedOps<BakedOpDispatcher>(renderer);
}
TaskManager* OpenGLPipeline::getTaskManager() {
return &Caches::getInstance().tasks;
}
static bool layerMatchesWH(OffscreenBuffer* layer, int width, int height) {
return layer->viewportWidth == (uint32_t)width && layer->viewportHeight == (uint32_t)height;
}
bool OpenGLPipeline::createOrUpdateLayer(RenderNode* node,
const DamageAccumulator& damageAccumulator, bool wideColorGamut) {
RenderState& renderState = mRenderThread.renderState();
OffscreenBufferPool& layerPool = renderState.layerPool();
bool transformUpdateNeeded = false;
if (node->getLayer() == nullptr) {
node->setLayer(layerPool.get(renderState,
node->getWidth(), node->getHeight(), wideColorGamut));
transformUpdateNeeded = true;
} else if (!layerMatchesWH(node->getLayer(), node->getWidth(), node->getHeight())) {
// TODO: remove now irrelevant, currently enqueued damage (respecting damage ordering)
// Or, ideally, maintain damage between frames on node/layer so ordering is always correct
if (node->properties().fitsOnLayer()) {
node->setLayer(layerPool.resize(node->getLayer(), node->getWidth(), node->getHeight()));
} else {
destroyLayer(node);
}
transformUpdateNeeded = true;
}
if (transformUpdateNeeded && node->getLayer()) {
// update the transform in window of the layer to reset its origin wrt light source position
Matrix4 windowTransform;
damageAccumulator.computeCurrentTransform(&windowTransform);
node->getLayer()->setWindowTransform(windowTransform);
}
return transformUpdateNeeded;
}
bool OpenGLPipeline::pinImages(LsaVector<sk_sp<Bitmap>>& images) {
TextureCache& cache = Caches::getInstance().textureCache;
bool prefetchSucceeded = true;
for (auto& bitmapResource : images) {
prefetchSucceeded &= cache.prefetchAndMarkInUse(this, bitmapResource.get());
}
return prefetchSucceeded;
}
void OpenGLPipeline::unpinImages() {
Caches::getInstance().textureCache.resetMarkInUse(this);
}
void OpenGLPipeline::destroyLayer(RenderNode* node) {
if (OffscreenBuffer* layer = node->getLayer()) {
layer->renderState.layerPool().putOrDelete(layer);
node->setLayer(nullptr);
}
}
void OpenGLPipeline::prepareToDraw(const RenderThread& thread, Bitmap* bitmap) {
if (Caches::hasInstance() && thread.eglManager().hasEglContext()) {
ATRACE_NAME("Bitmap#prepareToDraw task");
Caches::getInstance().textureCache.prefetch(bitmap);
}
}
void OpenGLPipeline::invokeFunctor(const RenderThread& thread, Functor* functor) {
DrawGlInfo::Mode mode = DrawGlInfo::kModeProcessNoContext;
if (thread.eglManager().hasEglContext()) {
mode = DrawGlInfo::kModeProcess;
}
thread.renderState().invokeFunctor(functor, mode, nullptr);
}
#define FENCE_TIMEOUT 2000000000
class AutoEglFence {
public:
AutoEglFence(EGLDisplay display)
: mDisplay(display) {
fence = eglCreateSyncKHR(mDisplay, EGL_SYNC_FENCE_KHR, NULL);
}
~AutoEglFence() {
if (fence != EGL_NO_SYNC_KHR) {
eglDestroySyncKHR(mDisplay, fence);
}
}
EGLSyncKHR fence = EGL_NO_SYNC_KHR;
private:
EGLDisplay mDisplay = EGL_NO_DISPLAY;
};
class AutoEglImage {
public:
AutoEglImage(EGLDisplay display, EGLClientBuffer clientBuffer)
: mDisplay(display) {
EGLint imageAttrs[] = { EGL_IMAGE_PRESERVED_KHR, EGL_TRUE, EGL_NONE };
image = eglCreateImageKHR(display, EGL_NO_CONTEXT,
EGL_NATIVE_BUFFER_ANDROID, clientBuffer, imageAttrs);
}
~AutoEglImage() {
if (image != EGL_NO_IMAGE_KHR) {
eglDestroyImageKHR(mDisplay, image);
}
}
EGLImageKHR image = EGL_NO_IMAGE_KHR;
private:
EGLDisplay mDisplay = EGL_NO_DISPLAY;
};
class AutoGlTexture {
public:
AutoGlTexture(uirenderer::Caches& caches)
: mCaches(caches) {
glGenTextures(1, &mTexture);
caches.textureState().bindTexture(mTexture);
}
~AutoGlTexture() {
mCaches.textureState().deleteTexture(mTexture);
}
private:
uirenderer::Caches& mCaches;
GLuint mTexture = 0;
};
static bool uploadBitmapToGraphicBuffer(uirenderer::Caches& caches, SkBitmap& bitmap,
GraphicBuffer& buffer, GLint format, GLint type) {
EGLDisplay display = eglGetCurrentDisplay();
LOG_ALWAYS_FATAL_IF(display == EGL_NO_DISPLAY,
"Failed to get EGL_DEFAULT_DISPLAY! err=%s",
uirenderer::renderthread::EglManager::eglErrorString());
// We use an EGLImage to access the content of the GraphicBuffer
// The EGL image is later bound to a 2D texture
EGLClientBuffer clientBuffer = (EGLClientBuffer) buffer.getNativeBuffer();
AutoEglImage autoImage(display, clientBuffer);
if (autoImage.image == EGL_NO_IMAGE_KHR) {
ALOGW("Could not create EGL image, err =%s",
uirenderer::renderthread::EglManager::eglErrorString());
return false;
}
AutoGlTexture glTexture(caches);
glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, autoImage.image);
GL_CHECKPOINT(MODERATE);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, bitmap.width(), bitmap.height(),
format, type, bitmap.getPixels());
GL_CHECKPOINT(MODERATE);
// The fence is used to wait for the texture upload to finish
// properly. We cannot rely on glFlush() and glFinish() as
// some drivers completely ignore these API calls
AutoEglFence autoFence(display);
if (autoFence.fence == EGL_NO_SYNC_KHR) {
LOG_ALWAYS_FATAL("Could not create sync fence %#x", eglGetError());
return false;
}
// The flag EGL_SYNC_FLUSH_COMMANDS_BIT_KHR will trigger a
// pipeline flush (similar to what a glFlush() would do.)
EGLint waitStatus = eglClientWaitSyncKHR(display, autoFence.fence,
EGL_SYNC_FLUSH_COMMANDS_BIT_KHR, FENCE_TIMEOUT);
if (waitStatus != EGL_CONDITION_SATISFIED_KHR) {
LOG_ALWAYS_FATAL("Failed to wait for the fence %#x", eglGetError());
return false;
}
return true;
}
// TODO: handle SRGB sanely
static PixelFormat internalFormatToPixelFormat(GLint internalFormat) {
switch (internalFormat) {
case GL_LUMINANCE:
return PIXEL_FORMAT_RGBA_8888;
case GL_SRGB8_ALPHA8:
return PIXEL_FORMAT_RGBA_8888;
case GL_RGBA:
return PIXEL_FORMAT_RGBA_8888;
case GL_RGB:
return PIXEL_FORMAT_RGB_565;
case GL_RGBA16F:
return PIXEL_FORMAT_RGBA_FP16;
default:
LOG_ALWAYS_FATAL("Unsupported bitmap colorType: %d", internalFormat);
return PIXEL_FORMAT_UNKNOWN;
}
}
sk_sp<Bitmap> OpenGLPipeline::allocateHardwareBitmap(RenderThread& renderThread,
SkBitmap& skBitmap) {
renderThread.eglManager().initialize();
uirenderer::Caches& caches = uirenderer::Caches::getInstance();
const SkImageInfo& info = skBitmap.info();
if (info.colorType() == kUnknown_SkColorType || info.colorType() == kAlpha_8_SkColorType) {
ALOGW("unable to create hardware bitmap of colortype: %d", info.colorType());
return nullptr;
}
bool needSRGB = uirenderer::transferFunctionCloseToSRGB(skBitmap.info().colorSpace());
bool hasLinearBlending = caches.extensions().hasLinearBlending();
GLint format, type, internalFormat;
uirenderer::Texture::colorTypeToGlFormatAndType(caches, skBitmap.colorType(),
needSRGB && hasLinearBlending, &internalFormat, &format, &type);
PixelFormat pixelFormat = internalFormatToPixelFormat(internalFormat);
sp<GraphicBuffer> buffer = new GraphicBuffer(info.width(), info.height(), pixelFormat,
GraphicBuffer::USAGE_HW_TEXTURE |
GraphicBuffer::USAGE_SW_WRITE_NEVER |
GraphicBuffer::USAGE_SW_READ_NEVER,
std::string("Bitmap::allocateHardwareBitmap pid [") + std::to_string(getpid()) + "]");
status_t error = buffer->initCheck();
if (error < 0) {
ALOGW("createGraphicBuffer() failed in GraphicBuffer.create()");
return nullptr;
}
SkBitmap bitmap;
if (CC_UNLIKELY(uirenderer::Texture::hasUnsupportedColorType(skBitmap.info(),
hasLinearBlending))) {
sk_sp<SkColorSpace> sRGB = SkColorSpace::MakeSRGB();
bitmap = uirenderer::Texture::uploadToN32(skBitmap, hasLinearBlending, std::move(sRGB));
} else {
bitmap = skBitmap;
}
if (!uploadBitmapToGraphicBuffer(caches, bitmap, *buffer, format, type)) {
return nullptr;
}
return sk_sp<Bitmap>(new Bitmap(buffer.get(), bitmap.info()));
}
} /* namespace renderthread */
} /* namespace uirenderer */
} /* namespace android */