blob: 4ac25bd6a0e07a1e0aaae471d3b8a47f288d0d68 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "link/ReferenceLinker.h"
#include "android-base/logging.h"
#include "android-base/stringprintf.h"
#include "androidfw/ResourceTypes.h"
#include "Diagnostics.h"
#include "ResourceParser.h"
#include "ResourceTable.h"
#include "ResourceUtils.h"
#include "ResourceValues.h"
#include "ValueVisitor.h"
#include "link/Linkers.h"
#include "process/IResourceTableConsumer.h"
#include "process/SymbolTable.h"
#include "trace/TraceBuffer.h"
#include "util/Util.h"
#include "xml/XmlUtil.h"
using ::aapt::ResourceUtils::StringBuilder;
using ::android::StringPiece;
using ::android::base::StringPrintf;
namespace aapt {
namespace {
struct LoggingResourceName {
LoggingResourceName(const Reference& ref, const CallSite& callsite,
const xml::IPackageDeclStack* decls)
: ref_(ref), callsite_(callsite), decls_(decls) {
}
const Reference& ref_;
const CallSite& callsite_;
const xml::IPackageDeclStack* decls_;
};
inline ::std::ostream& operator<<(::std::ostream& out, const LoggingResourceName& name) {
if (!name.ref_.name) {
out << name.ref_.id.value();
return out;
}
out << name.ref_.name.value();
Reference fully_qualified = name.ref_;
xml::ResolvePackage(name.decls_, &fully_qualified);
ResourceName& full_name = fully_qualified.name.value();
if (full_name.package.empty()) {
full_name.package = name.callsite_.package;
}
if (full_name != name.ref_.name.value()) {
out << " (aka " << full_name << ")";
}
return out;
}
} // namespace
std::unique_ptr<Reference> ReferenceLinkerTransformer::TransformDerived(const Reference* value) {
auto linked_item =
ReferenceLinker::LinkReference(callsite_, *value, context_, symbols_, table_, package_decls_);
if (linked_item) {
auto linked_item_ptr = linked_item.release();
if (auto ref = ValueCast<Reference>(linked_item_ptr)) {
return std::unique_ptr<Reference>(ref);
}
context_->GetDiagnostics()->Error(DiagMessage(value->GetSource())
<< "value of '"
<< LoggingResourceName(*value, callsite_, package_decls_)
<< "' must be a resource reference");
delete linked_item_ptr;
}
error_ = true;
return CloningValueTransformer::TransformDerived(value);
}
std::unique_ptr<Style> ReferenceLinkerTransformer::TransformDerived(const Style* style) {
// We visit the Style specially because during this phase, values of attributes are either
// RawString or Reference values. Now that we are expected to resolve all symbols, we can lookup
// the attributes to find out which types are allowed for the attributes' values.
auto new_style = CloningValueTransformer::TransformDerived(style);
if (new_style->parent) {
new_style->parent = *TransformDerived(&style->parent.value());
}
for (Style::Entry& entry : new_style->entries) {
std::string err_str;
// Transform the attribute reference so that it is using the fully qualified package
// name. This will also mark the reference as being able to see private resources if
// there was a '*' in the reference or if the package came from the private namespace.
Reference transformed_reference = entry.key;
ResolvePackage(package_decls_, &transformed_reference);
// Find the attribute in the symbol table and check if it is visible from this callsite.
const SymbolTable::Symbol* symbol = ReferenceLinker::ResolveAttributeCheckVisibility(
transformed_reference, callsite_, context_, symbols_, &err_str);
if (symbol) {
// Assign our style key the correct ID. The ID may not exist.
entry.key.id = symbol->id;
// Link/resolve the final value if it's a reference.
entry.value = entry.value->Transform(*this);
// Try to convert the value to a more specific, typed value based on the attribute it is
// set to.
entry.value = ParseValueWithAttribute(std::move(entry.value), symbol->attribute.get());
// Now verify that the type of this item is compatible with the
// attribute it is defined for. We pass `nullptr` as the DiagMessage so that this
// check is fast and we avoid creating a DiagMessage when the match is successful.
if (!symbol->attribute->Matches(*entry.value, nullptr)) {
// The actual type of this item is incompatible with the attribute.
DiagMessage msg(entry.key.GetSource());
// Call the matches method again, this time with a DiagMessage so we fill in the actual
// error message.
symbol->attribute->Matches(*entry.value, &msg);
context_->GetDiagnostics()->Error(msg);
error_ = true;
}
} else {
context_->GetDiagnostics()->Error(DiagMessage(entry.key.GetSource())
<< "style attribute '"
<< LoggingResourceName(entry.key, callsite_, package_decls_)
<< "' " << err_str);
error_ = true;
}
}
return new_style;
}
std::unique_ptr<Item> ReferenceLinkerTransformer::TransformItem(const Reference* value) {
auto linked_value =
ReferenceLinker::LinkReference(callsite_, *value, context_, symbols_, table_, package_decls_);
if (linked_value) {
return linked_value;
}
error_ = true;
return CloningValueTransformer::TransformDerived(value);
}
// Transform a RawString value into a more specific, appropriate value, based on the
// Attribute. If a non RawString value is passed in, this is an identity transform.
std::unique_ptr<Item> ReferenceLinkerTransformer::ParseValueWithAttribute(
std::unique_ptr<Item> value, const Attribute* attr) {
if (RawString* raw_string = ValueCast<RawString>(value.get())) {
std::unique_ptr<Item> transformed =
ResourceUtils::TryParseItemForAttribute(*raw_string->value, attr);
// If we could not parse as any specific type, try a basic STRING.
if (!transformed && (attr->type_mask & android::ResTable_map::TYPE_STRING)) {
StringBuilder string_builder;
string_builder.AppendText(*raw_string->value);
if (string_builder) {
transformed = util::make_unique<String>(pool_->MakeRef(string_builder.to_string()));
}
}
if (transformed) {
return transformed;
}
}
return value;
}
namespace {
class EmptyDeclStack : public xml::IPackageDeclStack {
public:
EmptyDeclStack() = default;
Maybe<xml::ExtractedPackage> TransformPackageAlias(const StringPiece& alias) const override {
if (alias.empty()) {
return xml::ExtractedPackage{{}, true /*private*/};
}
return {};
}
private:
DISALLOW_COPY_AND_ASSIGN(EmptyDeclStack);
};
struct MacroDeclStack : public xml::IPackageDeclStack {
explicit MacroDeclStack(std::vector<Macro::Namespace> namespaces)
: alias_namespaces_(std::move(namespaces)) {
}
Maybe<xml::ExtractedPackage> TransformPackageAlias(const StringPiece& alias) const override {
if (alias.empty()) {
return xml::ExtractedPackage{{}, true /*private*/};
}
for (auto it = alias_namespaces_.rbegin(); it != alias_namespaces_.rend(); ++it) {
if (alias == StringPiece(it->alias)) {
return xml::ExtractedPackage{it->package_name, it->is_private};
}
}
return {};
}
private:
std::vector<Macro::Namespace> alias_namespaces_;
};
// The symbol is visible if it is public, or if the reference to it is requesting private access
// or if the callsite comes from the same package.
bool IsSymbolVisible(const SymbolTable::Symbol& symbol, const Reference& ref,
const CallSite& callsite) {
if (symbol.is_public || ref.private_reference) {
return true;
}
if (ref.name) {
const ResourceName& name = ref.name.value();
if (name.package.empty()) {
// If the symbol was found, and the package is empty, that means it was found in the local
// scope, which is always visible (private local).
return true;
}
// The symbol is visible if the reference is local to the same package it is defined in.
return callsite.package == name.package;
}
if (ref.id && symbol.id) {
return ref.id.value().package_id() == symbol.id.value().package_id();
}
return false;
}
} // namespace
const SymbolTable::Symbol* ReferenceLinker::ResolveSymbol(const Reference& reference,
const CallSite& callsite,
IAaptContext* context,
SymbolTable* symbols) {
if (reference.name) {
const ResourceName& name = reference.name.value();
if (name.package.empty()) {
// Use the callsite's package name if no package name was defined.
const SymbolTable::Symbol* symbol = symbols->FindByName(
ResourceName(callsite.package, name.type, name.entry));
if (symbol) {
return symbol;
}
// If the callsite package is the same as the current compilation package,
// check the feature split dependencies as well. Feature split resources
// can be referenced without a namespace, just like the base package.
if (callsite.package == context->GetCompilationPackage()) {
const auto& split_name_dependencies = context->GetSplitNameDependencies();
for (const std::string& split_name : split_name_dependencies) {
std::string split_package =
StringPrintf("%s.%s", callsite.package.c_str(), split_name.c_str());
symbol = symbols->FindByName(ResourceName(split_package, name.type, name.entry));
if (symbol) {
return symbol;
}
}
}
return nullptr;
}
return symbols->FindByName(name);
} else if (reference.id) {
return symbols->FindById(reference.id.value());
} else {
return nullptr;
}
}
const SymbolTable::Symbol* ReferenceLinker::ResolveSymbolCheckVisibility(const Reference& reference,
const CallSite& callsite,
IAaptContext* context,
SymbolTable* symbols,
std::string* out_error) {
const SymbolTable::Symbol* symbol = ResolveSymbol(reference, callsite, context, symbols);
if (!symbol) {
if (out_error) *out_error = "not found";
return nullptr;
}
if (!IsSymbolVisible(*symbol, reference, callsite)) {
if (out_error) *out_error = "is private";
return nullptr;
}
return symbol;
}
const SymbolTable::Symbol* ReferenceLinker::ResolveAttributeCheckVisibility(
const Reference& reference, const CallSite& callsite, IAaptContext* context,
SymbolTable* symbols, std::string* out_error) {
const SymbolTable::Symbol* symbol =
ResolveSymbolCheckVisibility(reference, callsite, context, symbols, out_error);
if (!symbol) {
return nullptr;
}
if (!symbol->attribute) {
if (out_error) *out_error = "is not an attribute";
return nullptr;
}
return symbol;
}
Maybe<xml::AaptAttribute> ReferenceLinker::CompileXmlAttribute(const Reference& reference,
const CallSite& callsite,
IAaptContext* context,
SymbolTable* symbols,
std::string* out_error) {
const SymbolTable::Symbol* symbol =
ResolveAttributeCheckVisibility(reference, callsite, context, symbols, out_error);
if (!symbol) {
return {};
}
if (!symbol->attribute) {
if (out_error) *out_error = "is not an attribute";
return {};
}
return xml::AaptAttribute(*symbol->attribute, symbol->id);
}
void ReferenceLinker::WriteAttributeName(const Reference& ref, const CallSite& callsite,
const xml::IPackageDeclStack* decls,
DiagMessage* out_msg) {
CHECK(out_msg != nullptr);
if (!ref.name) {
*out_msg << ref.id.value();
return;
}
const ResourceName& ref_name = ref.name.value();
CHECK_EQ(ref_name.type, ResourceType::kAttr);
if (!ref_name.package.empty()) {
*out_msg << ref_name.package << ":";
}
*out_msg << ref_name.entry;
Reference fully_qualified = ref;
xml::ResolvePackage(decls, &fully_qualified);
ResourceName& full_name = fully_qualified.name.value();
if (full_name.package.empty()) {
full_name.package = callsite.package;
}
if (full_name != ref.name.value()) {
*out_msg << " (aka " << full_name.package << ":" << full_name.entry << ")";
}
}
std::unique_ptr<Item> ReferenceLinker::LinkReference(const CallSite& callsite,
const Reference& reference,
IAaptContext* context, SymbolTable* symbols,
ResourceTable* table,
const xml::IPackageDeclStack* decls) {
if (!reference.name && !reference.id) {
// This is @null.
return std::make_unique<Reference>(reference);
}
Reference transformed_reference = reference;
xml::ResolvePackage(decls, &transformed_reference);
if (transformed_reference.name.value().type == ResourceType::kMacro) {
if (transformed_reference.name.value().package.empty()) {
transformed_reference.name.value().package = callsite.package;
}
auto result = table->FindResource(transformed_reference.name.value());
if (!result || result.value().entry->values.empty()) {
context->GetDiagnostics()->Error(
DiagMessage(reference.GetSource())
<< "failed to find definition for "
<< LoggingResourceName(transformed_reference, callsite, decls));
return {};
}
auto& macro_values = result.value().entry->values;
CHECK(macro_values.size() == 1) << "Macros can only be defined in the default configuration.";
auto macro = ValueCast<Macro>(macro_values[0]->value.get());
CHECK(macro != nullptr) << "Value of macro resource is not a Macro (actual "
<< *macro_values[0]->value << ")";
// Re-create the state used to parse the macro tag to compile the macro contents as if it was
// defined inline
uint32_t type_flags = 0;
if (reference.type_flags.has_value()) {
type_flags = reference.type_flags.value();
}
MacroDeclStack namespace_stack(macro->alias_namespaces);
FlattenedXmlSubTree sub_tree{.raw_value = macro->raw_value,
.style_string = macro->style_string,
.untranslatable_sections = macro->untranslatable_sections,
.namespace_resolver = &namespace_stack,
.source = macro->GetSource()};
auto new_value = ResourceParser::ParseXml(sub_tree, type_flags, reference.allow_raw, *table,
macro_values[0]->config, *context->GetDiagnostics());
if (new_value == nullptr) {
context->GetDiagnostics()->Error(
DiagMessage(reference.GetSource())
<< "failed to substitute macro "
<< LoggingResourceName(transformed_reference, callsite, decls)
<< ": failed to parse contents as one of type(s) " << Attribute::MaskString(type_flags));
return {};
}
if (auto ref = ValueCast<Reference>(new_value.get())) {
return LinkReference(callsite, *ref, context, symbols, table, decls);
}
return new_value;
}
std::string err_str;
const SymbolTable::Symbol* s =
ResolveSymbolCheckVisibility(transformed_reference, callsite, context, symbols, &err_str);
if (s) {
// The ID may not exist. This is fine because of the possibility of building
// against libraries without assigned IDs.
// Ex: Linking against own resources when building a static library.
auto new_ref = std::make_unique<Reference>(reference);
new_ref->id = s->id;
new_ref->is_dynamic = s->is_dynamic;
return std::move(new_ref);
}
context->GetDiagnostics()->Error(DiagMessage(reference.GetSource())
<< "resource "
<< LoggingResourceName(transformed_reference, callsite, decls)
<< " " << err_str);
return {};
}
bool ReferenceLinker::Consume(IAaptContext* context, ResourceTable* table) {
TRACE_NAME("ReferenceLinker::Consume");
EmptyDeclStack decl_stack;
bool error = false;
for (auto& package : table->packages) {
// Since we're linking, each package must have a name.
CHECK(!package->name.empty()) << "all packages being linked must have a name";
for (auto& type : package->types) {
for (auto& entry : type->entries) {
// First, unmangle the name if necessary.
ResourceName name(package->name, type->type, entry->name);
NameMangler::Unmangle(&name.entry, &name.package);
// Symbol state information may be lost if there is no value for the resource.
if (entry->visibility.level != Visibility::Level::kUndefined && entry->values.empty()) {
context->GetDiagnostics()->Error(DiagMessage(entry->visibility.source)
<< "no definition for declared symbol '" << name
<< "'");
error = true;
}
// Ensure that definitions for values declared as overlayable exist
if (entry->overlayable_item && entry->values.empty()) {
context->GetDiagnostics()->Error(DiagMessage(entry->overlayable_item.value().source)
<< "no definition for overlayable symbol '"
<< name << "'");
error = true;
}
// The context of this resource is the package in which it is defined.
const CallSite callsite{name.package};
ReferenceLinkerTransformer reference_transformer(callsite, context,
context->GetExternalSymbols(),
&table->string_pool, table, &decl_stack);
for (auto& config_value : entry->values) {
config_value->value = config_value->value->Transform(reference_transformer);
}
if (reference_transformer.HasError()) {
error = true;
}
}
}
}
return !error;
}
} // namespace aapt