| // | 
 | // Copyright 2006 The Android Open Source Project | 
 | // | 
 | // Build resource files from raw assets. | 
 | // | 
 |  | 
 | #define PNG_INTERNAL | 
 |  | 
 | #include "Images.h" | 
 |  | 
 | #include <androidfw/ResourceTypes.h> | 
 | #include <utils/ByteOrder.h> | 
 |  | 
 | #include <png.h> | 
 | #include <zlib.h> | 
 |  | 
 | // Change this to true for noisy debug output. | 
 | static const bool kIsDebug = false; | 
 |  | 
 | static void | 
 | png_write_aapt_file(png_structp png_ptr, png_bytep data, png_size_t length) | 
 | { | 
 |     AaptFile* aaptfile = (AaptFile*) png_get_io_ptr(png_ptr); | 
 |     status_t err = aaptfile->writeData(data, length); | 
 |     if (err != NO_ERROR) { | 
 |         png_error(png_ptr, "Write Error"); | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | png_flush_aapt_file(png_structp /* png_ptr */) | 
 | { | 
 | } | 
 |  | 
 | // This holds an image as 8bpp RGBA. | 
 | struct image_info | 
 | { | 
 |     image_info() : rows(NULL), is9Patch(false), | 
 |         xDivs(NULL), yDivs(NULL), colors(NULL), allocRows(NULL) { } | 
 |  | 
 |     ~image_info() { | 
 |         if (rows && rows != allocRows) { | 
 |             free(rows); | 
 |         } | 
 |         if (allocRows) { | 
 |             for (int i=0; i<(int)allocHeight; i++) { | 
 |                 free(allocRows[i]); | 
 |             } | 
 |             free(allocRows); | 
 |         } | 
 |         free(xDivs); | 
 |         free(yDivs); | 
 |         free(colors); | 
 |     } | 
 |  | 
 |     void* serialize9patch() { | 
 |         void* serialized = Res_png_9patch::serialize(info9Patch, xDivs, yDivs, colors); | 
 |         reinterpret_cast<Res_png_9patch*>(serialized)->deviceToFile(); | 
 |         return serialized; | 
 |     } | 
 |  | 
 |     png_uint_32 width; | 
 |     png_uint_32 height; | 
 |     png_bytepp rows; | 
 |  | 
 |     // 9-patch info. | 
 |     bool is9Patch; | 
 |     Res_png_9patch info9Patch; | 
 |     int32_t* xDivs; | 
 |     int32_t* yDivs; | 
 |     uint32_t* colors; | 
 |  | 
 |     // Layout padding, if relevant | 
 |     bool haveLayoutBounds; | 
 |     int32_t layoutBoundsLeft; | 
 |     int32_t layoutBoundsTop; | 
 |     int32_t layoutBoundsRight; | 
 |     int32_t layoutBoundsBottom; | 
 |  | 
 |     // Round rect outline description | 
 |     int32_t outlineInsetsLeft; | 
 |     int32_t outlineInsetsTop; | 
 |     int32_t outlineInsetsRight; | 
 |     int32_t outlineInsetsBottom; | 
 |     float outlineRadius; | 
 |     uint8_t outlineAlpha; | 
 |  | 
 |     png_uint_32 allocHeight; | 
 |     png_bytepp allocRows; | 
 | }; | 
 |  | 
 | static void log_warning(png_structp png_ptr, png_const_charp warning_message) | 
 | { | 
 |     const char* imageName = (const char*) png_get_error_ptr(png_ptr); | 
 |     fprintf(stderr, "%s: libpng warning: %s\n", imageName, warning_message); | 
 | } | 
 |  | 
 | static void read_png(const char* imageName, | 
 |                      png_structp read_ptr, png_infop read_info, | 
 |                      image_info* outImageInfo) | 
 | { | 
 |     int color_type; | 
 |     int bit_depth, interlace_type, compression_type; | 
 |     int i; | 
 |  | 
 |     png_set_error_fn(read_ptr, const_cast<char*>(imageName), | 
 |             NULL /* use default errorfn */, log_warning); | 
 |     png_read_info(read_ptr, read_info); | 
 |  | 
 |     png_get_IHDR(read_ptr, read_info, &outImageInfo->width, | 
 |        &outImageInfo->height, &bit_depth, &color_type, | 
 |        &interlace_type, &compression_type, NULL); | 
 |  | 
 |     //printf("Image %s:\n", imageName); | 
 |     //printf("color_type=%d, bit_depth=%d, interlace_type=%d, compression_type=%d\n", | 
 |     //       color_type, bit_depth, interlace_type, compression_type); | 
 |  | 
 |     if (color_type == PNG_COLOR_TYPE_PALETTE) | 
 |         png_set_palette_to_rgb(read_ptr); | 
 |  | 
 |     if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8) | 
 |         png_set_expand_gray_1_2_4_to_8(read_ptr); | 
 |  | 
 |     if (png_get_valid(read_ptr, read_info, PNG_INFO_tRNS)) { | 
 |         //printf("Has PNG_INFO_tRNS!\n"); | 
 |         png_set_tRNS_to_alpha(read_ptr); | 
 |     } | 
 |  | 
 |     if (bit_depth == 16) | 
 |         png_set_strip_16(read_ptr); | 
 |  | 
 |     if ((color_type&PNG_COLOR_MASK_ALPHA) == 0) | 
 |         png_set_add_alpha(read_ptr, 0xFF, PNG_FILLER_AFTER); | 
 |  | 
 |     if (color_type == PNG_COLOR_TYPE_GRAY || color_type == PNG_COLOR_TYPE_GRAY_ALPHA) | 
 |         png_set_gray_to_rgb(read_ptr); | 
 |  | 
 |     png_set_interlace_handling(read_ptr); | 
 |  | 
 |     png_read_update_info(read_ptr, read_info); | 
 |  | 
 |     outImageInfo->rows = (png_bytepp)malloc( | 
 |         outImageInfo->height * sizeof(png_bytep)); | 
 |     outImageInfo->allocHeight = outImageInfo->height; | 
 |     outImageInfo->allocRows = outImageInfo->rows; | 
 |  | 
 |     png_set_rows(read_ptr, read_info, outImageInfo->rows); | 
 |  | 
 |     for (i = 0; i < (int)outImageInfo->height; i++) | 
 |     { | 
 |         outImageInfo->rows[i] = (png_bytep) | 
 |             malloc(png_get_rowbytes(read_ptr, read_info)); | 
 |     } | 
 |  | 
 |     png_read_image(read_ptr, outImageInfo->rows); | 
 |  | 
 |     png_read_end(read_ptr, read_info); | 
 |  | 
 |     if (kIsDebug) { | 
 |         printf("Image %s: w=%d, h=%d, d=%d, colors=%d, inter=%d, comp=%d\n", | 
 |                 imageName, | 
 |                 (int)outImageInfo->width, (int)outImageInfo->height, | 
 |                 bit_depth, color_type, | 
 |                 interlace_type, compression_type); | 
 |     } | 
 |  | 
 |     png_get_IHDR(read_ptr, read_info, &outImageInfo->width, | 
 |        &outImageInfo->height, &bit_depth, &color_type, | 
 |        &interlace_type, &compression_type, NULL); | 
 | } | 
 |  | 
 | #define COLOR_TRANSPARENT 0 | 
 | #define COLOR_WHITE 0xFFFFFFFF | 
 | #define COLOR_TICK  0xFF000000 | 
 | #define COLOR_LAYOUT_BOUNDS_TICK 0xFF0000FF | 
 |  | 
 | enum { | 
 |     TICK_TYPE_NONE, | 
 |     TICK_TYPE_TICK, | 
 |     TICK_TYPE_LAYOUT_BOUNDS, | 
 |     TICK_TYPE_BOTH | 
 | }; | 
 |  | 
 | static int tick_type(png_bytep p, bool transparent, const char** outError) | 
 | { | 
 |     png_uint_32 color = p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); | 
 |  | 
 |     if (transparent) { | 
 |         if (p[3] == 0) { | 
 |             return TICK_TYPE_NONE; | 
 |         } | 
 |         if (color == COLOR_LAYOUT_BOUNDS_TICK) { | 
 |             return TICK_TYPE_LAYOUT_BOUNDS; | 
 |         } | 
 |         if (color == COLOR_TICK) { | 
 |             return TICK_TYPE_TICK; | 
 |         } | 
 |  | 
 |         // Error cases | 
 |         if (p[3] != 0xff) { | 
 |             *outError = "Frame pixels must be either solid or transparent (not intermediate alphas)"; | 
 |             return TICK_TYPE_NONE; | 
 |         } | 
 |         if (p[0] != 0 || p[1] != 0 || p[2] != 0) { | 
 |             *outError = "Ticks in transparent frame must be black or red"; | 
 |         } | 
 |         return TICK_TYPE_TICK; | 
 |     } | 
 |  | 
 |     if (p[3] != 0xFF) { | 
 |         *outError = "White frame must be a solid color (no alpha)"; | 
 |     } | 
 |     if (color == COLOR_WHITE) { | 
 |         return TICK_TYPE_NONE; | 
 |     } | 
 |     if (color == COLOR_TICK) { | 
 |         return TICK_TYPE_TICK; | 
 |     } | 
 |     if (color == COLOR_LAYOUT_BOUNDS_TICK) { | 
 |         return TICK_TYPE_LAYOUT_BOUNDS; | 
 |     } | 
 |  | 
 |     if (p[0] != 0 || p[1] != 0 || p[2] != 0) { | 
 |         *outError = "Ticks in white frame must be black or red"; | 
 |         return TICK_TYPE_NONE; | 
 |     } | 
 |     return TICK_TYPE_TICK; | 
 | } | 
 |  | 
 | enum { | 
 |     TICK_START, | 
 |     TICK_INSIDE_1, | 
 |     TICK_OUTSIDE_1 | 
 | }; | 
 |  | 
 | static status_t get_horizontal_ticks( | 
 |         png_bytep row, int width, bool transparent, bool required, | 
 |         int32_t* outLeft, int32_t* outRight, const char** outError, | 
 |         uint8_t* outDivs, bool multipleAllowed) | 
 | { | 
 |     int i; | 
 |     *outLeft = *outRight = -1; | 
 |     int state = TICK_START; | 
 |     bool found = false; | 
 |  | 
 |     for (i=1; i<width-1; i++) { | 
 |         if (TICK_TYPE_TICK == tick_type(row+i*4, transparent, outError)) { | 
 |             if (state == TICK_START || | 
 |                 (state == TICK_OUTSIDE_1 && multipleAllowed)) { | 
 |                 *outLeft = i-1; | 
 |                 *outRight = width-2; | 
 |                 found = true; | 
 |                 if (outDivs != NULL) { | 
 |                     *outDivs += 2; | 
 |                 } | 
 |                 state = TICK_INSIDE_1; | 
 |             } else if (state == TICK_OUTSIDE_1) { | 
 |                 *outError = "Can't have more than one marked region along edge"; | 
 |                 *outLeft = i; | 
 |                 return UNKNOWN_ERROR; | 
 |             } | 
 |         } else if (*outError == NULL) { | 
 |             if (state == TICK_INSIDE_1) { | 
 |                 // We're done with this div.  Move on to the next. | 
 |                 *outRight = i-1; | 
 |                 outRight += 2; | 
 |                 outLeft += 2; | 
 |                 state = TICK_OUTSIDE_1; | 
 |             } | 
 |         } else { | 
 |             *outLeft = i; | 
 |             return UNKNOWN_ERROR; | 
 |         } | 
 |     } | 
 |  | 
 |     if (required && !found) { | 
 |         *outError = "No marked region found along edge"; | 
 |         *outLeft = -1; | 
 |         return UNKNOWN_ERROR; | 
 |     } | 
 |  | 
 |     return NO_ERROR; | 
 | } | 
 |  | 
 | static status_t get_vertical_ticks( | 
 |         png_bytepp rows, int offset, int height, bool transparent, bool required, | 
 |         int32_t* outTop, int32_t* outBottom, const char** outError, | 
 |         uint8_t* outDivs, bool multipleAllowed) | 
 | { | 
 |     int i; | 
 |     *outTop = *outBottom = -1; | 
 |     int state = TICK_START; | 
 |     bool found = false; | 
 |  | 
 |     for (i=1; i<height-1; i++) { | 
 |         if (TICK_TYPE_TICK == tick_type(rows[i]+offset, transparent, outError)) { | 
 |             if (state == TICK_START || | 
 |                 (state == TICK_OUTSIDE_1 && multipleAllowed)) { | 
 |                 *outTop = i-1; | 
 |                 *outBottom = height-2; | 
 |                 found = true; | 
 |                 if (outDivs != NULL) { | 
 |                     *outDivs += 2; | 
 |                 } | 
 |                 state = TICK_INSIDE_1; | 
 |             } else if (state == TICK_OUTSIDE_1) { | 
 |                 *outError = "Can't have more than one marked region along edge"; | 
 |                 *outTop = i; | 
 |                 return UNKNOWN_ERROR; | 
 |             } | 
 |         } else if (*outError == NULL) { | 
 |             if (state == TICK_INSIDE_1) { | 
 |                 // We're done with this div.  Move on to the next. | 
 |                 *outBottom = i-1; | 
 |                 outTop += 2; | 
 |                 outBottom += 2; | 
 |                 state = TICK_OUTSIDE_1; | 
 |             } | 
 |         } else { | 
 |             *outTop = i; | 
 |             return UNKNOWN_ERROR; | 
 |         } | 
 |     } | 
 |  | 
 |     if (required && !found) { | 
 |         *outError = "No marked region found along edge"; | 
 |         *outTop = -1; | 
 |         return UNKNOWN_ERROR; | 
 |     } | 
 |  | 
 |     return NO_ERROR; | 
 | } | 
 |  | 
 | static status_t get_horizontal_layout_bounds_ticks( | 
 |         png_bytep row, int width, bool transparent, bool /* required */, | 
 |         int32_t* outLeft, int32_t* outRight, const char** outError) | 
 | { | 
 |     int i; | 
 |     *outLeft = *outRight = 0; | 
 |  | 
 |     // Look for left tick | 
 |     if (TICK_TYPE_LAYOUT_BOUNDS == tick_type(row + 4, transparent, outError)) { | 
 |         // Starting with a layout padding tick | 
 |         i = 1; | 
 |         while (i < width - 1) { | 
 |             (*outLeft)++; | 
 |             i++; | 
 |             int tick = tick_type(row + i * 4, transparent, outError); | 
 |             if (tick != TICK_TYPE_LAYOUT_BOUNDS) { | 
 |                 break; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     // Look for right tick | 
 |     if (TICK_TYPE_LAYOUT_BOUNDS == tick_type(row + (width - 2) * 4, transparent, outError)) { | 
 |         // Ending with a layout padding tick | 
 |         i = width - 2; | 
 |         while (i > 1) { | 
 |             (*outRight)++; | 
 |             i--; | 
 |             int tick = tick_type(row+i*4, transparent, outError); | 
 |             if (tick != TICK_TYPE_LAYOUT_BOUNDS) { | 
 |                 break; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     return NO_ERROR; | 
 | } | 
 |  | 
 | static status_t get_vertical_layout_bounds_ticks( | 
 |         png_bytepp rows, int offset, int height, bool transparent, bool /* required */, | 
 |         int32_t* outTop, int32_t* outBottom, const char** outError) | 
 | { | 
 |     int i; | 
 |     *outTop = *outBottom = 0; | 
 |  | 
 |     // Look for top tick | 
 |     if (TICK_TYPE_LAYOUT_BOUNDS == tick_type(rows[1] + offset, transparent, outError)) { | 
 |         // Starting with a layout padding tick | 
 |         i = 1; | 
 |         while (i < height - 1) { | 
 |             (*outTop)++; | 
 |             i++; | 
 |             int tick = tick_type(rows[i] + offset, transparent, outError); | 
 |             if (tick != TICK_TYPE_LAYOUT_BOUNDS) { | 
 |                 break; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     // Look for bottom tick | 
 |     if (TICK_TYPE_LAYOUT_BOUNDS == tick_type(rows[height - 2] + offset, transparent, outError)) { | 
 |         // Ending with a layout padding tick | 
 |         i = height - 2; | 
 |         while (i > 1) { | 
 |             (*outBottom)++; | 
 |             i--; | 
 |             int tick = tick_type(rows[i] + offset, transparent, outError); | 
 |             if (tick != TICK_TYPE_LAYOUT_BOUNDS) { | 
 |                 break; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     return NO_ERROR; | 
 | } | 
 |  | 
 | static void find_max_opacity(png_byte** rows, | 
 |                              int startX, int startY, int endX, int endY, int dX, int dY, | 
 |                              int* out_inset) | 
 | { | 
 |     uint8_t max_opacity = 0; | 
 |     int inset = 0; | 
 |     *out_inset = 0; | 
 |     for (int x = startX, y = startY; x != endX && y != endY; x += dX, y += dY, inset++) { | 
 |         png_byte* color = rows[y] + x * 4; | 
 |         uint8_t opacity = color[3]; | 
 |         if (opacity > max_opacity) { | 
 |             max_opacity = opacity; | 
 |             *out_inset = inset; | 
 |         } | 
 |         if (opacity == 0xff) return; | 
 |     } | 
 | } | 
 |  | 
 | static uint8_t max_alpha_over_row(png_byte* row, int startX, int endX) | 
 | { | 
 |     uint8_t max_alpha = 0; | 
 |     for (int x = startX; x < endX; x++) { | 
 |         uint8_t alpha = (row + x * 4)[3]; | 
 |         if (alpha > max_alpha) max_alpha = alpha; | 
 |     } | 
 |     return max_alpha; | 
 | } | 
 |  | 
 | static uint8_t max_alpha_over_col(png_byte** rows, int offsetX, int startY, int endY) | 
 | { | 
 |     uint8_t max_alpha = 0; | 
 |     for (int y = startY; y < endY; y++) { | 
 |         uint8_t alpha = (rows[y] + offsetX * 4)[3]; | 
 |         if (alpha > max_alpha) max_alpha = alpha; | 
 |     } | 
 |     return max_alpha; | 
 | } | 
 |  | 
 | static void get_outline(image_info* image) | 
 | { | 
 |     int midX = image->width / 2; | 
 |     int midY = image->height / 2; | 
 |     int endX = image->width - 2; | 
 |     int endY = image->height - 2; | 
 |  | 
 |     // find left and right extent of nine patch content on center row | 
 |     if (image->width > 4) { | 
 |         find_max_opacity(image->rows, 1, midY, midX, -1, 1, 0, &image->outlineInsetsLeft); | 
 |         find_max_opacity(image->rows, endX, midY, midX, -1, -1, 0, &image->outlineInsetsRight); | 
 |     } else { | 
 |         image->outlineInsetsLeft = 0; | 
 |         image->outlineInsetsRight = 0; | 
 |     } | 
 |  | 
 |     // find top and bottom extent of nine patch content on center column | 
 |     if (image->height > 4) { | 
 |         find_max_opacity(image->rows, midX, 1, -1, midY, 0, 1, &image->outlineInsetsTop); | 
 |         find_max_opacity(image->rows, midX, endY, -1, midY, 0, -1, &image->outlineInsetsBottom); | 
 |     } else { | 
 |         image->outlineInsetsTop = 0; | 
 |         image->outlineInsetsBottom = 0; | 
 |     } | 
 |  | 
 |     int innerStartX = 1 + image->outlineInsetsLeft; | 
 |     int innerStartY = 1 + image->outlineInsetsTop; | 
 |     int innerEndX = endX - image->outlineInsetsRight; | 
 |     int innerEndY = endY - image->outlineInsetsBottom; | 
 |     int innerMidX = (innerEndX + innerStartX) / 2; | 
 |     int innerMidY = (innerEndY + innerStartY) / 2; | 
 |  | 
 |     // assuming the image is a round rect, compute the radius by marching | 
 |     // diagonally from the top left corner towards the center | 
 |     image->outlineAlpha = std::max( | 
 |         max_alpha_over_row(image->rows[innerMidY], innerStartX, innerEndX), | 
 |         max_alpha_over_col(image->rows, innerMidX, innerStartY, innerStartY)); | 
 |  | 
 |     int diagonalInset = 0; | 
 |     find_max_opacity(image->rows, innerStartX, innerStartY, innerMidX, innerMidY, 1, 1, | 
 |             &diagonalInset); | 
 |  | 
 |     /* Determine source radius based upon inset: | 
 |      *     sqrt(r^2 + r^2) = sqrt(i^2 + i^2) + r | 
 |      *     sqrt(2) * r = sqrt(2) * i + r | 
 |      *     (sqrt(2) - 1) * r = sqrt(2) * i | 
 |      *     r = sqrt(2) / (sqrt(2) - 1) * i | 
 |      */ | 
 |     image->outlineRadius = 3.4142f * diagonalInset; | 
 |  | 
 |     if (kIsDebug) { | 
 |         printf("outline insets %d %d %d %d, rad %f, alpha %x\n", | 
 |                 image->outlineInsetsLeft, | 
 |                 image->outlineInsetsTop, | 
 |                 image->outlineInsetsRight, | 
 |                 image->outlineInsetsBottom, | 
 |                 image->outlineRadius, | 
 |                 image->outlineAlpha); | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | static uint32_t get_color( | 
 |     png_bytepp rows, int left, int top, int right, int bottom) | 
 | { | 
 |     png_bytep color = rows[top] + left*4; | 
 |  | 
 |     if (left > right || top > bottom) { | 
 |         return Res_png_9patch::TRANSPARENT_COLOR; | 
 |     } | 
 |  | 
 |     while (top <= bottom) { | 
 |         for (int i = left; i <= right; i++) { | 
 |             png_bytep p = rows[top]+i*4; | 
 |             if (color[3] == 0) { | 
 |                 if (p[3] != 0) { | 
 |                     return Res_png_9patch::NO_COLOR; | 
 |                 } | 
 |             } else if (p[0] != color[0] || p[1] != color[1] | 
 |                        || p[2] != color[2] || p[3] != color[3]) { | 
 |                 return Res_png_9patch::NO_COLOR; | 
 |             } | 
 |         } | 
 |         top++; | 
 |     } | 
 |  | 
 |     if (color[3] == 0) { | 
 |         return Res_png_9patch::TRANSPARENT_COLOR; | 
 |     } | 
 |     return (color[3]<<24) | (color[0]<<16) | (color[1]<<8) | color[2]; | 
 | } | 
 |  | 
 | static status_t do_9patch(const char* imageName, image_info* image) | 
 | { | 
 |     image->is9Patch = true; | 
 |  | 
 |     int W = image->width; | 
 |     int H = image->height; | 
 |     int i, j; | 
 |  | 
 |     int maxSizeXDivs = W * sizeof(int32_t); | 
 |     int maxSizeYDivs = H * sizeof(int32_t); | 
 |     int32_t* xDivs = image->xDivs = (int32_t*) malloc(maxSizeXDivs); | 
 |     int32_t* yDivs = image->yDivs = (int32_t*) malloc(maxSizeYDivs); | 
 |     uint8_t numXDivs = 0; | 
 |     uint8_t numYDivs = 0; | 
 |  | 
 |     int8_t numColors; | 
 |     int numRows; | 
 |     int numCols; | 
 |     int top; | 
 |     int left; | 
 |     int right; | 
 |     int bottom; | 
 |     memset(xDivs, -1, maxSizeXDivs); | 
 |     memset(yDivs, -1, maxSizeYDivs); | 
 |     image->info9Patch.paddingLeft = image->info9Patch.paddingRight = | 
 |         image->info9Patch.paddingTop = image->info9Patch.paddingBottom = -1; | 
 |  | 
 |     image->layoutBoundsLeft = image->layoutBoundsRight = | 
 |         image->layoutBoundsTop = image->layoutBoundsBottom = 0; | 
 |  | 
 |     png_bytep p = image->rows[0]; | 
 |     bool transparent = p[3] == 0; | 
 |     bool hasColor = false; | 
 |  | 
 |     const char* errorMsg = NULL; | 
 |     int errorPixel = -1; | 
 |     const char* errorEdge = NULL; | 
 |  | 
 |     int colorIndex = 0; | 
 |  | 
 |     // Validate size... | 
 |     if (W < 3 || H < 3) { | 
 |         errorMsg = "Image must be at least 3x3 (1x1 without frame) pixels"; | 
 |         goto getout; | 
 |     } | 
 |  | 
 |     // Validate frame... | 
 |     if (!transparent && | 
 |         (p[0] != 0xFF || p[1] != 0xFF || p[2] != 0xFF || p[3] != 0xFF)) { | 
 |         errorMsg = "Must have one-pixel frame that is either transparent or white"; | 
 |         goto getout; | 
 |     } | 
 |  | 
 |     // Find left and right of sizing areas... | 
 |     if (get_horizontal_ticks(p, W, transparent, true, &xDivs[0], | 
 |                              &xDivs[1], &errorMsg, &numXDivs, true) != NO_ERROR) { | 
 |         errorPixel = xDivs[0]; | 
 |         errorEdge = "top"; | 
 |         goto getout; | 
 |     } | 
 |  | 
 |     // Find top and bottom of sizing areas... | 
 |     if (get_vertical_ticks(image->rows, 0, H, transparent, true, &yDivs[0], | 
 |                            &yDivs[1], &errorMsg, &numYDivs, true) != NO_ERROR) { | 
 |         errorPixel = yDivs[0]; | 
 |         errorEdge = "left"; | 
 |         goto getout; | 
 |     } | 
 |  | 
 |     // Copy patch size data into image... | 
 |     image->info9Patch.numXDivs = numXDivs; | 
 |     image->info9Patch.numYDivs = numYDivs; | 
 |  | 
 |     // Find left and right of padding area... | 
 |     if (get_horizontal_ticks(image->rows[H-1], W, transparent, false, &image->info9Patch.paddingLeft, | 
 |                              &image->info9Patch.paddingRight, &errorMsg, NULL, false) != NO_ERROR) { | 
 |         errorPixel = image->info9Patch.paddingLeft; | 
 |         errorEdge = "bottom"; | 
 |         goto getout; | 
 |     } | 
 |  | 
 |     // Find top and bottom of padding area... | 
 |     if (get_vertical_ticks(image->rows, (W-1)*4, H, transparent, false, &image->info9Patch.paddingTop, | 
 |                            &image->info9Patch.paddingBottom, &errorMsg, NULL, false) != NO_ERROR) { | 
 |         errorPixel = image->info9Patch.paddingTop; | 
 |         errorEdge = "right"; | 
 |         goto getout; | 
 |     } | 
 |  | 
 |     // Find left and right of layout padding... | 
 |     get_horizontal_layout_bounds_ticks(image->rows[H-1], W, transparent, false, | 
 |                                         &image->layoutBoundsLeft, | 
 |                                         &image->layoutBoundsRight, &errorMsg); | 
 |  | 
 |     get_vertical_layout_bounds_ticks(image->rows, (W-1)*4, H, transparent, false, | 
 |                                         &image->layoutBoundsTop, | 
 |                                         &image->layoutBoundsBottom, &errorMsg); | 
 |  | 
 |     image->haveLayoutBounds = image->layoutBoundsLeft != 0 | 
 |                                || image->layoutBoundsRight != 0 | 
 |                                || image->layoutBoundsTop != 0 | 
 |                                || image->layoutBoundsBottom != 0; | 
 |  | 
 |     if (image->haveLayoutBounds) { | 
 |         if (kIsDebug) { | 
 |             printf("layoutBounds=%d %d %d %d\n", image->layoutBoundsLeft, image->layoutBoundsTop, | 
 |                     image->layoutBoundsRight, image->layoutBoundsBottom); | 
 |         } | 
 |     } | 
 |  | 
 |     // use opacity of pixels to estimate the round rect outline | 
 |     get_outline(image); | 
 |  | 
 |     // If padding is not yet specified, take values from size. | 
 |     if (image->info9Patch.paddingLeft < 0) { | 
 |         image->info9Patch.paddingLeft = xDivs[0]; | 
 |         image->info9Patch.paddingRight = W - 2 - xDivs[1]; | 
 |     } else { | 
 |         // Adjust value to be correct! | 
 |         image->info9Patch.paddingRight = W - 2 - image->info9Patch.paddingRight; | 
 |     } | 
 |     if (image->info9Patch.paddingTop < 0) { | 
 |         image->info9Patch.paddingTop = yDivs[0]; | 
 |         image->info9Patch.paddingBottom = H - 2 - yDivs[1]; | 
 |     } else { | 
 |         // Adjust value to be correct! | 
 |         image->info9Patch.paddingBottom = H - 2 - image->info9Patch.paddingBottom; | 
 |     } | 
 |  | 
 |     if (kIsDebug) { | 
 |         printf("Size ticks for %s: x0=%d, x1=%d, y0=%d, y1=%d\n", imageName, | 
 |                 xDivs[0], xDivs[1], | 
 |                 yDivs[0], yDivs[1]); | 
 |         printf("padding ticks for %s: l=%d, r=%d, t=%d, b=%d\n", imageName, | 
 |                 image->info9Patch.paddingLeft, image->info9Patch.paddingRight, | 
 |                 image->info9Patch.paddingTop, image->info9Patch.paddingBottom); | 
 |     } | 
 |  | 
 |     // Remove frame from image. | 
 |     image->rows = (png_bytepp)malloc((H-2) * sizeof(png_bytep)); | 
 |     for (i=0; i<(H-2); i++) { | 
 |         image->rows[i] = image->allocRows[i+1]; | 
 |         memmove(image->rows[i], image->rows[i]+4, (W-2)*4); | 
 |     } | 
 |     image->width -= 2; | 
 |     W = image->width; | 
 |     image->height -= 2; | 
 |     H = image->height; | 
 |  | 
 |     // Figure out the number of rows and columns in the N-patch | 
 |     numCols = numXDivs + 1; | 
 |     if (xDivs[0] == 0) {  // Column 1 is strechable | 
 |         numCols--; | 
 |     } | 
 |     if (xDivs[numXDivs - 1] == W) { | 
 |         numCols--; | 
 |     } | 
 |     numRows = numYDivs + 1; | 
 |     if (yDivs[0] == 0) {  // Row 1 is strechable | 
 |         numRows--; | 
 |     } | 
 |     if (yDivs[numYDivs - 1] == H) { | 
 |         numRows--; | 
 |     } | 
 |  | 
 |     // Make sure the amount of rows and columns will fit in the number of | 
 |     // colors we can use in the 9-patch format. | 
 |     if (numRows * numCols > 0x7F) { | 
 |         errorMsg = "Too many rows and columns in 9-patch perimeter"; | 
 |         goto getout; | 
 |     } | 
 |  | 
 |     numColors = numRows * numCols; | 
 |     image->info9Patch.numColors = numColors; | 
 |     image->colors = (uint32_t*)malloc(numColors * sizeof(uint32_t)); | 
 |  | 
 |     // Fill in color information for each patch. | 
 |  | 
 |     uint32_t c; | 
 |     top = 0; | 
 |  | 
 |     // The first row always starts with the top being at y=0 and the bottom | 
 |     // being either yDivs[1] (if yDivs[0]=0) of yDivs[0].  In the former case | 
 |     // the first row is stretchable along the Y axis, otherwise it is fixed. | 
 |     // The last row always ends with the bottom being bitmap.height and the top | 
 |     // being either yDivs[numYDivs-2] (if yDivs[numYDivs-1]=bitmap.height) or | 
 |     // yDivs[numYDivs-1]. In the former case the last row is stretchable along | 
 |     // the Y axis, otherwise it is fixed. | 
 |     // | 
 |     // The first and last columns are similarly treated with respect to the X | 
 |     // axis. | 
 |     // | 
 |     // The above is to help explain some of the special casing that goes on the | 
 |     // code below. | 
 |  | 
 |     // The initial yDiv and whether the first row is considered stretchable or | 
 |     // not depends on whether yDiv[0] was zero or not. | 
 |     for (j = (yDivs[0] == 0 ? 1 : 0); | 
 |           j <= numYDivs && top < H; | 
 |           j++) { | 
 |         if (j == numYDivs) { | 
 |             bottom = H; | 
 |         } else { | 
 |             bottom = yDivs[j]; | 
 |         } | 
 |         left = 0; | 
 |         // The initial xDiv and whether the first column is considered | 
 |         // stretchable or not depends on whether xDiv[0] was zero or not. | 
 |         for (i = xDivs[0] == 0 ? 1 : 0; | 
 |               i <= numXDivs && left < W; | 
 |               i++) { | 
 |             if (i == numXDivs) { | 
 |                 right = W; | 
 |             } else { | 
 |                 right = xDivs[i]; | 
 |             } | 
 |             c = get_color(image->rows, left, top, right - 1, bottom - 1); | 
 |             image->colors[colorIndex++] = c; | 
 |             if (kIsDebug) { | 
 |                 if (c != Res_png_9patch::NO_COLOR) | 
 |                     hasColor = true; | 
 |             } | 
 |             left = right; | 
 |         } | 
 |         top = bottom; | 
 |     } | 
 |  | 
 |     assert(colorIndex == numColors); | 
 |  | 
 |     for (i=0; i<numColors; i++) { | 
 |         if (hasColor) { | 
 |             if (i == 0) printf("Colors in %s:\n ", imageName); | 
 |             printf(" #%08x", image->colors[i]); | 
 |             if (i == numColors - 1) printf("\n"); | 
 |         } | 
 |     } | 
 | getout: | 
 |     if (errorMsg) { | 
 |         fprintf(stderr, | 
 |             "ERROR: 9-patch image %s malformed.\n" | 
 |             "       %s.\n", imageName, errorMsg); | 
 |         if (errorEdge != NULL) { | 
 |             if (errorPixel >= 0) { | 
 |                 fprintf(stderr, | 
 |                     "       Found at pixel #%d along %s edge.\n", errorPixel, errorEdge); | 
 |             } else { | 
 |                 fprintf(stderr, | 
 |                     "       Found along %s edge.\n", errorEdge); | 
 |             } | 
 |         } | 
 |         return UNKNOWN_ERROR; | 
 |     } | 
 |     return NO_ERROR; | 
 | } | 
 |  | 
 | static void checkNinePatchSerialization(Res_png_9patch* inPatch,  void* data) | 
 | { | 
 |     size_t patchSize = inPatch->serializedSize(); | 
 |     void* newData = malloc(patchSize); | 
 |     memcpy(newData, data, patchSize); | 
 |     Res_png_9patch* outPatch = inPatch->deserialize(newData); | 
 |     // deserialization is done in place, so outPatch == newData | 
 |     assert(outPatch == newData); | 
 |     assert(outPatch->numXDivs == inPatch->numXDivs); | 
 |     assert(outPatch->numYDivs == inPatch->numYDivs); | 
 |     assert(outPatch->paddingLeft == inPatch->paddingLeft); | 
 |     assert(outPatch->paddingRight == inPatch->paddingRight); | 
 |     assert(outPatch->paddingTop == inPatch->paddingTop); | 
 |     assert(outPatch->paddingBottom == inPatch->paddingBottom); | 
 |     for (int i = 0; i < outPatch->numXDivs; i++) { | 
 |         assert(outPatch->getXDivs()[i] == inPatch->getXDivs()[i]); | 
 |     } | 
 |     for (int i = 0; i < outPatch->numYDivs; i++) { | 
 |         assert(outPatch->getYDivs()[i] == inPatch->getYDivs()[i]); | 
 |     } | 
 |     for (int i = 0; i < outPatch->numColors; i++) { | 
 |         assert(outPatch->getColors()[i] == inPatch->getColors()[i]); | 
 |     } | 
 |     free(newData); | 
 | } | 
 |  | 
 | static void dump_image(int w, int h, png_bytepp rows, int color_type) | 
 | { | 
 |     int i, j, rr, gg, bb, aa; | 
 |  | 
 |     int bpp; | 
 |     if (color_type == PNG_COLOR_TYPE_PALETTE || color_type == PNG_COLOR_TYPE_GRAY) { | 
 |         bpp = 1; | 
 |     } else if (color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { | 
 |         bpp = 2; | 
 |     } else if (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_RGB_ALPHA) { | 
 |         // We use a padding byte even when there is no alpha | 
 |         bpp = 4; | 
 |     } else { | 
 |         printf("Unknown color type %d.\n", color_type); | 
 |         return; | 
 |     } | 
 |  | 
 |     for (j = 0; j < h; j++) { | 
 |         png_bytep row = rows[j]; | 
 |         for (i = 0; i < w; i++) { | 
 |             rr = row[0]; | 
 |             gg = row[1]; | 
 |             bb = row[2]; | 
 |             aa = row[3]; | 
 |             row += bpp; | 
 |  | 
 |             if (i == 0) { | 
 |                 printf("Row %d:", j); | 
 |             } | 
 |             switch (bpp) { | 
 |             case 1: | 
 |                 printf(" (%d)", rr); | 
 |                 break; | 
 |             case 2: | 
 |                 printf(" (%d %d", rr, gg); | 
 |                 break; | 
 |             case 3: | 
 |                 printf(" (%d %d %d)", rr, gg, bb); | 
 |                 break; | 
 |             case 4: | 
 |                 printf(" (%d %d %d %d)", rr, gg, bb, aa); | 
 |                 break; | 
 |             } | 
 |             if (i == (w - 1)) { | 
 |                 printf("\n"); | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | #define MAX(a,b) ((a)>(b)?(a):(b)) | 
 | #define ABS(a)   ((a)<0?-(a):(a)) | 
 |  | 
 | static void analyze_image(const char *imageName, image_info &imageInfo, int grayscaleTolerance, | 
 |                           png_colorp rgbPalette, png_bytep alphaPalette, | 
 |                           int *paletteEntries, int *alphaPaletteEntries, bool *hasTransparency, | 
 |                           int *colorType, png_bytepp outRows) | 
 | { | 
 |     int w = imageInfo.width; | 
 |     int h = imageInfo.height; | 
 |     int i, j, rr, gg, bb, aa, idx;; | 
 |     uint32_t opaqueColors[256], alphaColors[256]; | 
 |     uint32_t col; | 
 |     int numOpaqueColors = 0, numAlphaColors = 0; | 
 |     int maxGrayDeviation = 0; | 
 |  | 
 |     bool isOpaque = true; | 
 |     bool isPalette = true; | 
 |     bool isGrayscale = true; | 
 |  | 
 |     // Scan the entire image and determine if: | 
 |     // 1. Every pixel has R == G == B (grayscale) | 
 |     // 2. Every pixel has A == 255 (opaque) | 
 |     // 3. There are no more than 256 distinct RGBA colors | 
 |     //        We will track opaque colors separately from colors with | 
 |     //        alpha.  This allows us to reencode the color table more | 
 |     //        efficiently (color tables entries without a corresponding | 
 |     //        alpha value are assumed to be opaque). | 
 |  | 
 |     if (kIsDebug) { | 
 |         printf("Initial image data:\n"); | 
 |         dump_image(w, h, imageInfo.rows, PNG_COLOR_TYPE_RGB_ALPHA); | 
 |     } | 
 |  | 
 |     for (j = 0; j < h; j++) { | 
 |         png_bytep row = imageInfo.rows[j]; | 
 |         png_bytep out = outRows[j]; | 
 |         for (i = 0; i < w; i++) { | 
 |  | 
 |             // Make sure any zero alpha pixels are fully zeroed.  On average, | 
 |             // each of our PNG assets seem to have about four distinct pixels | 
 |             // with zero alpha. | 
 |             // There are several advantages to setting these to zero: | 
 |             // (1) Images are more likely able to be encodable with a palette. | 
 |             // (2) Image palettes will be smaller. | 
 |             // (3) Premultiplied and unpremultiplied PNG decodes can skip | 
 |             //     writing zeros to memory, often saving significant numbers | 
 |             //     of memory pages. | 
 |             aa = *(row + 3); | 
 |             if (aa == 0) { | 
 |                 rr = 0; | 
 |                 gg = 0; | 
 |                 bb = 0; | 
 |  | 
 |                 // Also set red, green, and blue to zero in "row".  If we later | 
 |                 // decide to encode the PNG as RGB or RGBA, we will use the | 
 |                 // values stored there. | 
 |                 *(row) = 0; | 
 |                 *(row + 1) = 0; | 
 |                 *(row + 2) = 0; | 
 |             } else { | 
 |                 rr = *(row); | 
 |                 gg = *(row + 1); | 
 |                 bb = *(row + 2); | 
 |             } | 
 |             row += 4; | 
 |  | 
 |             int odev = maxGrayDeviation; | 
 |             maxGrayDeviation = MAX(ABS(rr - gg), maxGrayDeviation); | 
 |             maxGrayDeviation = MAX(ABS(gg - bb), maxGrayDeviation); | 
 |             maxGrayDeviation = MAX(ABS(bb - rr), maxGrayDeviation); | 
 |             if (maxGrayDeviation > odev) { | 
 |                 if (kIsDebug) { | 
 |                     printf("New max dev. = %d at pixel (%d, %d) = (%d %d %d %d)\n", | 
 |                             maxGrayDeviation, i, j, rr, gg, bb, aa); | 
 |                 } | 
 |             } | 
 |  | 
 |             // Check if image is really grayscale | 
 |             if (isGrayscale) { | 
 |                 if (rr != gg || rr != bb) { | 
 |                     if (kIsDebug) { | 
 |                         printf("Found a non-gray pixel at %d, %d = (%d %d %d %d)\n", | 
 |                                 i, j, rr, gg, bb, aa); | 
 |                     } | 
 |                     isGrayscale = false; | 
 |                 } | 
 |             } | 
 |  | 
 |             // Check if image is really opaque | 
 |             if (isOpaque) { | 
 |                 if (aa != 0xff) { | 
 |                     if (kIsDebug) { | 
 |                         printf("Found a non-opaque pixel at %d, %d = (%d %d %d %d)\n", | 
 |                                 i, j, rr, gg, bb, aa); | 
 |                     } | 
 |                     isOpaque = false; | 
 |                 } | 
 |             } | 
 |  | 
 |             // Check if image is really <= 256 colors | 
 |             if (isPalette) { | 
 |                 col = (uint32_t) ((rr << 24) | (gg << 16) | (bb << 8) | aa); | 
 |                 bool match = false; | 
 |  | 
 |                 if (aa == 0xff) { | 
 |                     for (idx = 0; idx < numOpaqueColors; idx++) { | 
 |                         if (opaqueColors[idx] == col) { | 
 |                             match = true; | 
 |                             break; | 
 |                         } | 
 |                     } | 
 |  | 
 |                     if (!match) { | 
 |                         if (numOpaqueColors < 256) { | 
 |                             opaqueColors[numOpaqueColors] = col; | 
 |                         } | 
 |                         numOpaqueColors++; | 
 |                     } | 
 |  | 
 |                     // Write the palette index for the pixel to outRows optimistically. | 
 |                     // We might overwrite it later if we decide to encode as gray or | 
 |                     // gray + alpha.  We may also need to overwrite it when we combine | 
 |                     // into a single palette. | 
 |                     *out++ = idx; | 
 |                 } else { | 
 |                     for (idx = 0; idx < numAlphaColors; idx++) { | 
 |                         if (alphaColors[idx] == col) { | 
 |                             match = true; | 
 |                             break; | 
 |                         } | 
 |                     } | 
 |  | 
 |                     if (!match) { | 
 |                         if (numAlphaColors < 256) { | 
 |                             alphaColors[numAlphaColors] = col; | 
 |                         } | 
 |                         numAlphaColors++; | 
 |                     } | 
 |  | 
 |                     // Write the palette index for the pixel to outRows optimistically. | 
 |                     // We might overwrite it later if we decide to encode as gray or | 
 |                     // gray + alpha. | 
 |                     *out++ = idx; | 
 |                 } | 
 |  | 
 |                 if (numOpaqueColors + numAlphaColors > 256) { | 
 |                     if (kIsDebug) { | 
 |                         printf("Found 257th color at %d, %d\n", i, j); | 
 |                     } | 
 |                     isPalette = false; | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     // If we decide to encode the image using a palette, we will reset these counts | 
 |     // to the appropriate values later.  Initializing them here avoids compiler | 
 |     // complaints about uses of possibly uninitialized variables. | 
 |     *paletteEntries = 0; | 
 |     *alphaPaletteEntries = 0; | 
 |  | 
 |     *hasTransparency = !isOpaque; | 
 |     int paletteSize = w * h + 3 * numOpaqueColors + 4 * numAlphaColors; | 
 |  | 
 |     int bpp = isOpaque ? 3 : 4; | 
 |     if (kIsDebug) { | 
 |         printf("isGrayscale = %s\n", isGrayscale ? "true" : "false"); | 
 |         printf("isOpaque = %s\n", isOpaque ? "true" : "false"); | 
 |         printf("isPalette = %s\n", isPalette ? "true" : "false"); | 
 |         printf("Size w/ palette = %d, gray+alpha = %d, rgb(a) = %d\n", | 
 |                 paletteSize, 2 * w * h, bpp * w * h); | 
 |         printf("Max gray deviation = %d, tolerance = %d\n", maxGrayDeviation, grayscaleTolerance); | 
 |     } | 
 |  | 
 |     // Choose the best color type for the image. | 
 |     // 1. Opaque gray - use COLOR_TYPE_GRAY at 1 byte/pixel | 
 |     // 2. Gray + alpha - use COLOR_TYPE_PALETTE if the number of distinct combinations | 
 |     //     is sufficiently small, otherwise use COLOR_TYPE_GRAY_ALPHA | 
 |     // 3. RGB(A) - use COLOR_TYPE_PALETTE if the number of distinct colors is sufficiently | 
 |     //     small, otherwise use COLOR_TYPE_RGB{_ALPHA} | 
 |     if (isGrayscale) { | 
 |         if (isOpaque) { | 
 |             *colorType = PNG_COLOR_TYPE_GRAY; // 1 byte/pixel | 
 |         } else { | 
 |             // Use a simple heuristic to determine whether using a palette will | 
 |             // save space versus using gray + alpha for each pixel. | 
 |             // This doesn't take into account chunk overhead, filtering, LZ | 
 |             // compression, etc. | 
 |             if (isPalette && (paletteSize < 2 * w * h)) { | 
 |                 *colorType = PNG_COLOR_TYPE_PALETTE; // 1 byte/pixel + 4 bytes/color | 
 |             } else { | 
 |                 *colorType = PNG_COLOR_TYPE_GRAY_ALPHA; // 2 bytes per pixel | 
 |             } | 
 |         } | 
 |     } else if (isPalette && (paletteSize < bpp * w * h)) { | 
 |         *colorType = PNG_COLOR_TYPE_PALETTE; | 
 |     } else { | 
 |         if (maxGrayDeviation <= grayscaleTolerance) { | 
 |             printf("%s: forcing image to gray (max deviation = %d)\n", imageName, maxGrayDeviation); | 
 |             *colorType = isOpaque ? PNG_COLOR_TYPE_GRAY : PNG_COLOR_TYPE_GRAY_ALPHA; | 
 |         } else { | 
 |             *colorType = isOpaque ? PNG_COLOR_TYPE_RGB : PNG_COLOR_TYPE_RGB_ALPHA; | 
 |         } | 
 |     } | 
 |  | 
 |     // Perform postprocessing of the image or palette data based on the final | 
 |     // color type chosen | 
 |  | 
 |     if (*colorType == PNG_COLOR_TYPE_PALETTE) { | 
 |         // Combine the alphaColors and the opaqueColors into a single palette. | 
 |         // The alphaColors must be at the start of the palette. | 
 |         uint32_t* colors = alphaColors; | 
 |         memcpy(colors + numAlphaColors, opaqueColors, 4 * numOpaqueColors); | 
 |  | 
 |         // Fix the indices of the opaque colors in the image. | 
 |         for (j = 0; j < h; j++) { | 
 |             png_bytep row = imageInfo.rows[j]; | 
 |             png_bytep out = outRows[j]; | 
 |             for (i = 0; i < w; i++) { | 
 |                 uint32_t pixel = ((uint32_t*) row)[i]; | 
 |                 if (pixel >> 24 == 0xFF) { | 
 |                     out[i] += numAlphaColors; | 
 |                 } | 
 |             } | 
 |         } | 
 |  | 
 |         // Create separate RGB and Alpha palettes and set the number of colors | 
 |         int numColors = numOpaqueColors + numAlphaColors; | 
 |         *paletteEntries = numColors; | 
 |         *alphaPaletteEntries = numAlphaColors; | 
 |  | 
 |         // Create the RGB and alpha palettes | 
 |         for (int idx = 0; idx < numColors; idx++) { | 
 |             col = colors[idx]; | 
 |             rgbPalette[idx].red   = (png_byte) ((col >> 24) & 0xff); | 
 |             rgbPalette[idx].green = (png_byte) ((col >> 16) & 0xff); | 
 |             rgbPalette[idx].blue  = (png_byte) ((col >>  8) & 0xff); | 
 |             if (idx < numAlphaColors) { | 
 |                 alphaPalette[idx] = (png_byte)  (col        & 0xff); | 
 |             } | 
 |         } | 
 |     } else if (*colorType == PNG_COLOR_TYPE_GRAY || *colorType == PNG_COLOR_TYPE_GRAY_ALPHA) { | 
 |         // If the image is gray or gray + alpha, compact the pixels into outRows | 
 |         for (j = 0; j < h; j++) { | 
 |             png_bytep row = imageInfo.rows[j]; | 
 |             png_bytep out = outRows[j]; | 
 |             for (i = 0; i < w; i++) { | 
 |                 rr = *row++; | 
 |                 gg = *row++; | 
 |                 bb = *row++; | 
 |                 aa = *row++; | 
 |                  | 
 |                 if (isGrayscale) { | 
 |                     *out++ = rr; | 
 |                 } else { | 
 |                     *out++ = (png_byte) (rr * 0.2126f + gg * 0.7152f + bb * 0.0722f); | 
 |                 } | 
 |                 if (!isOpaque) { | 
 |                     *out++ = aa; | 
 |                 } | 
 |            } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void write_png(const char* imageName, | 
 |                       png_structp write_ptr, png_infop write_info, | 
 |                       image_info& imageInfo, const Bundle* bundle) | 
 | { | 
 |     png_uint_32 width, height; | 
 |     int color_type; | 
 |     int bit_depth, interlace_type, compression_type; | 
 |     int i; | 
 |  | 
 |     png_unknown_chunk unknowns[3]; | 
 |     unknowns[0].data = NULL; | 
 |     unknowns[1].data = NULL; | 
 |     unknowns[2].data = NULL; | 
 |  | 
 |     png_bytepp outRows = (png_bytepp) malloc((int) imageInfo.height * sizeof(png_bytep)); | 
 |     if (outRows == (png_bytepp) 0) { | 
 |         printf("Can't allocate output buffer!\n"); | 
 |         exit(1); | 
 |     } | 
 |     for (i = 0; i < (int) imageInfo.height; i++) { | 
 |         outRows[i] = (png_bytep) malloc(2 * (int) imageInfo.width); | 
 |         if (outRows[i] == (png_bytep) 0) { | 
 |             printf("Can't allocate output buffer!\n"); | 
 |             exit(1); | 
 |         } | 
 |     } | 
 |  | 
 |     png_set_compression_level(write_ptr, Z_BEST_COMPRESSION); | 
 |  | 
 |     if (kIsDebug) { | 
 |         printf("Writing image %s: w = %d, h = %d\n", imageName, | 
 |                 (int) imageInfo.width, (int) imageInfo.height); | 
 |     } | 
 |  | 
 |     png_color rgbPalette[256]; | 
 |     png_byte alphaPalette[256]; | 
 |     bool hasTransparency; | 
 |     int paletteEntries, alphaPaletteEntries; | 
 |  | 
 |     int grayscaleTolerance = bundle->getGrayscaleTolerance(); | 
 |     analyze_image(imageName, imageInfo, grayscaleTolerance, rgbPalette, alphaPalette, | 
 |                   &paletteEntries, &alphaPaletteEntries, &hasTransparency, &color_type, outRows); | 
 |  | 
 |     // Legacy versions of aapt would always encode 9patch PNGs as RGBA.  This had the unintended | 
 |     // benefit of working around a bug decoding paletted images in Android 4.1. | 
 |     // https://code.google.com/p/android/issues/detail?id=34619 | 
 |     // | 
 |     // If SDK_JELLY_BEAN is supported, we need to avoid a paletted encoding in order to not expose | 
 |     // this bug. | 
 |     if (!bundle->isMinSdkAtLeast(SDK_JELLY_BEAN_MR1)) { | 
 |         if (imageInfo.is9Patch && PNG_COLOR_TYPE_PALETTE == color_type) { | 
 |             if (hasTransparency) { | 
 |                 color_type = PNG_COLOR_TYPE_RGB_ALPHA; | 
 |             } else { | 
 |                 color_type = PNG_COLOR_TYPE_RGB; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     if (kIsDebug) { | 
 |         switch (color_type) { | 
 |         case PNG_COLOR_TYPE_PALETTE: | 
 |             printf("Image %s has %d colors%s, using PNG_COLOR_TYPE_PALETTE\n", | 
 |                     imageName, paletteEntries, | 
 |                     hasTransparency ? " (with alpha)" : ""); | 
 |             break; | 
 |         case PNG_COLOR_TYPE_GRAY: | 
 |             printf("Image %s is opaque gray, using PNG_COLOR_TYPE_GRAY\n", imageName); | 
 |             break; | 
 |         case PNG_COLOR_TYPE_GRAY_ALPHA: | 
 |             printf("Image %s is gray + alpha, using PNG_COLOR_TYPE_GRAY_ALPHA\n", imageName); | 
 |             break; | 
 |         case PNG_COLOR_TYPE_RGB: | 
 |             printf("Image %s is opaque RGB, using PNG_COLOR_TYPE_RGB\n", imageName); | 
 |             break; | 
 |         case PNG_COLOR_TYPE_RGB_ALPHA: | 
 |             printf("Image %s is RGB + alpha, using PNG_COLOR_TYPE_RGB_ALPHA\n", imageName); | 
 |             break; | 
 |         } | 
 |     } | 
 |  | 
 |     png_set_IHDR(write_ptr, write_info, imageInfo.width, imageInfo.height, | 
 |                  8, color_type, PNG_INTERLACE_NONE, | 
 |                  PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT); | 
 |  | 
 |     if (color_type == PNG_COLOR_TYPE_PALETTE) { | 
 |         png_set_PLTE(write_ptr, write_info, rgbPalette, paletteEntries); | 
 |         if (hasTransparency) { | 
 |             png_set_tRNS(write_ptr, write_info, alphaPalette, alphaPaletteEntries, | 
 |                     (png_color_16p) 0); | 
 |         } | 
 |        png_set_filter(write_ptr, 0, PNG_NO_FILTERS); | 
 |     } else { | 
 |        png_set_filter(write_ptr, 0, PNG_ALL_FILTERS); | 
 |     } | 
 |  | 
 |     if (imageInfo.is9Patch) { | 
 |         int chunk_count = 2 + (imageInfo.haveLayoutBounds ? 1 : 0); | 
 |         int p_index = imageInfo.haveLayoutBounds ? 2 : 1; | 
 |         int b_index = 1; | 
 |         int o_index = 0; | 
 |  | 
 |         // Chunks ordered thusly because older platforms depend on the base 9 patch data being last | 
 |         png_byte *chunk_names = imageInfo.haveLayoutBounds | 
 |                 ? (png_byte*)"npOl\0npLb\0npTc\0" | 
 |                 : (png_byte*)"npOl\0npTc"; | 
 |  | 
 |         // base 9 patch data | 
 |         if (kIsDebug) { | 
 |             printf("Adding 9-patch info...\n"); | 
 |         } | 
 |         strcpy((char*)unknowns[p_index].name, "npTc"); | 
 |         unknowns[p_index].data = (png_byte*)imageInfo.serialize9patch(); | 
 |         unknowns[p_index].size = imageInfo.info9Patch.serializedSize(); | 
 |         // TODO: remove the check below when everything works | 
 |         checkNinePatchSerialization(&imageInfo.info9Patch, unknowns[p_index].data); | 
 |  | 
 |         // automatically generated 9 patch outline data | 
 |         int chunk_size = sizeof(png_uint_32) * 6; | 
 |         strcpy((char*)unknowns[o_index].name, "npOl"); | 
 |         unknowns[o_index].data = (png_byte*) calloc(chunk_size, 1); | 
 |         png_byte outputData[chunk_size]; | 
 |         memcpy(&outputData, &imageInfo.outlineInsetsLeft, 4 * sizeof(png_uint_32)); | 
 |         ((float*) outputData)[4] = imageInfo.outlineRadius; | 
 |         ((png_uint_32*) outputData)[5] = imageInfo.outlineAlpha; | 
 |         memcpy(unknowns[o_index].data, &outputData, chunk_size); | 
 |         unknowns[o_index].size = chunk_size; | 
 |  | 
 |         // optional optical inset / layout bounds data | 
 |         if (imageInfo.haveLayoutBounds) { | 
 |             int chunk_size = sizeof(png_uint_32) * 4; | 
 |             strcpy((char*)unknowns[b_index].name, "npLb"); | 
 |             unknowns[b_index].data = (png_byte*) calloc(chunk_size, 1); | 
 |             memcpy(unknowns[b_index].data, &imageInfo.layoutBoundsLeft, chunk_size); | 
 |             unknowns[b_index].size = chunk_size; | 
 |         } | 
 |  | 
 |         for (int i = 0; i < chunk_count; i++) { | 
 |             unknowns[i].location = PNG_HAVE_IHDR; | 
 |         } | 
 |         png_set_keep_unknown_chunks(write_ptr, PNG_HANDLE_CHUNK_ALWAYS, | 
 |                                     chunk_names, chunk_count); | 
 |         png_set_unknown_chunks(write_ptr, write_info, unknowns, chunk_count); | 
 |     } | 
 |  | 
 |  | 
 |     png_write_info(write_ptr, write_info); | 
 |  | 
 |     png_bytepp rows; | 
 |     if (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_RGB_ALPHA) { | 
 |         if (color_type == PNG_COLOR_TYPE_RGB) { | 
 |             png_set_filler(write_ptr, 0, PNG_FILLER_AFTER); | 
 |         } | 
 |         rows = imageInfo.rows; | 
 |     } else { | 
 |         rows = outRows; | 
 |     } | 
 |     png_write_image(write_ptr, rows); | 
 |  | 
 |     if (kIsDebug) { | 
 |         printf("Final image data:\n"); | 
 |         dump_image(imageInfo.width, imageInfo.height, rows, color_type); | 
 |     } | 
 |  | 
 |     png_write_end(write_ptr, write_info); | 
 |  | 
 |     for (i = 0; i < (int) imageInfo.height; i++) { | 
 |         free(outRows[i]); | 
 |     } | 
 |     free(outRows); | 
 |     free(unknowns[0].data); | 
 |     free(unknowns[1].data); | 
 |     free(unknowns[2].data); | 
 |  | 
 |     png_get_IHDR(write_ptr, write_info, &width, &height, | 
 |        &bit_depth, &color_type, &interlace_type, | 
 |        &compression_type, NULL); | 
 |  | 
 |     if (kIsDebug) { | 
 |         printf("Image written: w=%d, h=%d, d=%d, colors=%d, inter=%d, comp=%d\n", | 
 |                 (int)width, (int)height, bit_depth, color_type, interlace_type, | 
 |                 compression_type); | 
 |     } | 
 | } | 
 |  | 
 | static bool read_png_protected(png_structp read_ptr, String8& printableName, png_infop read_info, | 
 |                                const sp<AaptFile>& file, FILE* fp, image_info* imageInfo) { | 
 |     if (setjmp(png_jmpbuf(read_ptr))) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     png_init_io(read_ptr, fp); | 
 |  | 
 |     read_png(printableName.string(), read_ptr, read_info, imageInfo); | 
 |  | 
 |     const size_t nameLen = file->getPath().length(); | 
 |     if (nameLen > 6) { | 
 |         const char* name = file->getPath().string(); | 
 |         if (name[nameLen-5] == '9' && name[nameLen-6] == '.') { | 
 |             if (do_9patch(printableName.string(), imageInfo) != NO_ERROR) { | 
 |                 return false; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     return true; | 
 | } | 
 |  | 
 | static bool write_png_protected(png_structp write_ptr, String8& printableName, png_infop write_info, | 
 |                                 image_info* imageInfo, const Bundle* bundle) { | 
 |     if (setjmp(png_jmpbuf(write_ptr))) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     write_png(printableName.string(), write_ptr, write_info, *imageInfo, bundle); | 
 |  | 
 |     return true; | 
 | } | 
 |  | 
 | status_t preProcessImage(const Bundle* bundle, const sp<AaptAssets>& /* assets */, | 
 |                          const sp<AaptFile>& file, String8* /* outNewLeafName */) | 
 | { | 
 |     String8 ext(file->getPath().getPathExtension()); | 
 |  | 
 |     // We currently only process PNG images. | 
 |     if (strcmp(ext.string(), ".png") != 0) { | 
 |         return NO_ERROR; | 
 |     } | 
 |  | 
 |     // Example of renaming a file: | 
 |     //*outNewLeafName = file->getPath().getBasePath().getFileName(); | 
 |     //outNewLeafName->append(".nupng"); | 
 |  | 
 |     String8 printableName(file->getPrintableSource()); | 
 |  | 
 |     if (bundle->getVerbose()) { | 
 |         printf("Processing image: %s\n", printableName.string()); | 
 |     } | 
 |  | 
 |     png_structp read_ptr = NULL; | 
 |     png_infop read_info = NULL; | 
 |     FILE* fp; | 
 |  | 
 |     image_info imageInfo; | 
 |  | 
 |     png_structp write_ptr = NULL; | 
 |     png_infop write_info = NULL; | 
 |  | 
 |     status_t error = UNKNOWN_ERROR; | 
 |  | 
 |     fp = fopen(file->getSourceFile().string(), "rb"); | 
 |     if (fp == NULL) { | 
 |         fprintf(stderr, "%s: ERROR: Unable to open PNG file\n", printableName.string()); | 
 |         goto bail; | 
 |     } | 
 |  | 
 |     read_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, (png_error_ptr)NULL, | 
 |                                         (png_error_ptr)NULL); | 
 |     if (!read_ptr) { | 
 |         goto bail; | 
 |     } | 
 |  | 
 |     read_info = png_create_info_struct(read_ptr); | 
 |     if (!read_info) { | 
 |         goto bail; | 
 |     } | 
 |  | 
 |     if (!read_png_protected(read_ptr, printableName, read_info, file, fp, &imageInfo)) { | 
 |         goto bail; | 
 |     } | 
 |  | 
 |     write_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, 0, (png_error_ptr)NULL, | 
 |                                         (png_error_ptr)NULL); | 
 |     if (!write_ptr) | 
 |     { | 
 |         goto bail; | 
 |     } | 
 |  | 
 |     write_info = png_create_info_struct(write_ptr); | 
 |     if (!write_info) | 
 |     { | 
 |         goto bail; | 
 |     } | 
 |  | 
 |     png_set_write_fn(write_ptr, (void*)file.get(), | 
 |                      png_write_aapt_file, png_flush_aapt_file); | 
 |  | 
 |     if (!write_png_protected(write_ptr, printableName, write_info, &imageInfo, bundle)) { | 
 |         goto bail; | 
 |     } | 
 |  | 
 |     error = NO_ERROR; | 
 |  | 
 |     if (bundle->getVerbose()) { | 
 |         fseek(fp, 0, SEEK_END); | 
 |         size_t oldSize = (size_t)ftell(fp); | 
 |         size_t newSize = file->getSize(); | 
 |         float factor = ((float)newSize)/oldSize; | 
 |         int percent = (int)(factor*100); | 
 |         printf("    (processed image %s: %d%% size of source)\n", printableName.string(), percent); | 
 |     } | 
 |  | 
 | bail: | 
 |     if (read_ptr) { | 
 |         png_destroy_read_struct(&read_ptr, &read_info, (png_infopp)NULL); | 
 |     } | 
 |     if (fp) { | 
 |         fclose(fp); | 
 |     } | 
 |     if (write_ptr) { | 
 |         png_destroy_write_struct(&write_ptr, &write_info); | 
 |     } | 
 |  | 
 |     if (error != NO_ERROR) { | 
 |         fprintf(stderr, "ERROR: Failure processing PNG image %s\n", | 
 |                 file->getPrintableSource().string()); | 
 |     } | 
 |     return error; | 
 | } | 
 |  | 
 | status_t preProcessImageToCache(const Bundle* bundle, const String8& source, const String8& dest) | 
 | { | 
 |     png_structp read_ptr = NULL; | 
 |     png_infop read_info = NULL; | 
 |  | 
 |     FILE* fp; | 
 |  | 
 |     image_info imageInfo; | 
 |  | 
 |     png_structp write_ptr = NULL; | 
 |     png_infop write_info = NULL; | 
 |  | 
 |     status_t error = UNKNOWN_ERROR; | 
 |  | 
 |     if (bundle->getVerbose()) { | 
 |         printf("Processing image to cache: %s => %s\n", source.string(), dest.string()); | 
 |     } | 
 |  | 
 |     // Get a file handler to read from | 
 |     fp = fopen(source.string(),"rb"); | 
 |     if (fp == NULL) { | 
 |         fprintf(stderr, "%s ERROR: Unable to open PNG file\n", source.string()); | 
 |         return error; | 
 |     } | 
 |  | 
 |     // Call libpng to get a struct to read image data into | 
 |     read_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); | 
 |     if (!read_ptr) { | 
 |         fclose(fp); | 
 |         png_destroy_read_struct(&read_ptr, &read_info,NULL); | 
 |         return error; | 
 |     } | 
 |  | 
 |     // Call libpng to get a struct to read image info into | 
 |     read_info = png_create_info_struct(read_ptr); | 
 |     if (!read_info) { | 
 |         fclose(fp); | 
 |         png_destroy_read_struct(&read_ptr, &read_info,NULL); | 
 |         return error; | 
 |     } | 
 |  | 
 |     // Set a jump point for libpng to long jump back to on error | 
 |     if (setjmp(png_jmpbuf(read_ptr))) { | 
 |         fclose(fp); | 
 |         png_destroy_read_struct(&read_ptr, &read_info,NULL); | 
 |         return error; | 
 |     } | 
 |  | 
 |     // Set up libpng to read from our file. | 
 |     png_init_io(read_ptr,fp); | 
 |  | 
 |     // Actually read data from the file | 
 |     read_png(source.string(), read_ptr, read_info, &imageInfo); | 
 |  | 
 |     // We're done reading so we can clean up | 
 |     // Find old file size before releasing handle | 
 |     fseek(fp, 0, SEEK_END); | 
 |     size_t oldSize = (size_t)ftell(fp); | 
 |     fclose(fp); | 
 |     png_destroy_read_struct(&read_ptr, &read_info,NULL); | 
 |  | 
 |     // Check to see if we're dealing with a 9-patch | 
 |     // If we are, process appropriately | 
 |     if (source.getBasePath().getPathExtension() == ".9")  { | 
 |         if (do_9patch(source.string(), &imageInfo) != NO_ERROR) { | 
 |             return error; | 
 |         } | 
 |     } | 
 |  | 
 |     // Call libpng to create a structure to hold the processed image data | 
 |     // that can be written to disk | 
 |     write_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); | 
 |     if (!write_ptr) { | 
 |         png_destroy_write_struct(&write_ptr, &write_info); | 
 |         return error; | 
 |     } | 
 |  | 
 |     // Call libpng to create a structure to hold processed image info that can | 
 |     // be written to disk | 
 |     write_info = png_create_info_struct(write_ptr); | 
 |     if (!write_info) { | 
 |         png_destroy_write_struct(&write_ptr, &write_info); | 
 |         return error; | 
 |     } | 
 |  | 
 |     // Open up our destination file for writing | 
 |     fp = fopen(dest.string(), "wb"); | 
 |     if (!fp) { | 
 |         fprintf(stderr, "%s ERROR: Unable to open PNG file\n", dest.string()); | 
 |         png_destroy_write_struct(&write_ptr, &write_info); | 
 |         return error; | 
 |     } | 
 |  | 
 |     // Set up libpng to write to our file | 
 |     png_init_io(write_ptr, fp); | 
 |  | 
 |     // Set up a jump for libpng to long jump back on on errors | 
 |     if (setjmp(png_jmpbuf(write_ptr))) { | 
 |         fclose(fp); | 
 |         png_destroy_write_struct(&write_ptr, &write_info); | 
 |         return error; | 
 |     } | 
 |  | 
 |     // Actually write out to the new png | 
 |     write_png(dest.string(), write_ptr, write_info, imageInfo, bundle); | 
 |  | 
 |     if (bundle->getVerbose()) { | 
 |         // Find the size of our new file | 
 |         FILE* reader = fopen(dest.string(), "rb"); | 
 |         fseek(reader, 0, SEEK_END); | 
 |         size_t newSize = (size_t)ftell(reader); | 
 |         fclose(reader); | 
 |  | 
 |         float factor = ((float)newSize)/oldSize; | 
 |         int percent = (int)(factor*100); | 
 |         printf("  (processed image to cache entry %s: %d%% size of source)\n", | 
 |                dest.string(), percent); | 
 |     } | 
 |  | 
 |     //Clean up | 
 |     fclose(fp); | 
 |     png_destroy_write_struct(&write_ptr, &write_info); | 
 |  | 
 |     return NO_ERROR; | 
 | } | 
 |  | 
 | status_t postProcessImage(const Bundle* bundle, const sp<AaptAssets>& assets, | 
 |                           ResourceTable* table, const sp<AaptFile>& file) | 
 | { | 
 |     String8 ext(file->getPath().getPathExtension()); | 
 |  | 
 |     // At this point, now that we have all the resource data, all we need to | 
 |     // do is compile XML files. | 
 |     if (strcmp(ext.string(), ".xml") == 0) { | 
 |         String16 resourceName(parseResourceName(file->getSourceFile().getPathLeaf())); | 
 |         return compileXmlFile(bundle, assets, resourceName, file, table); | 
 |     } | 
 |  | 
 |     return NO_ERROR; | 
 | } |