| #!/usr/bin/env python2.6 | 
 | # | 
 | # Copyright (C) 2011 The Android Open Source Project | 
 | # | 
 | # Licensed under the Apache License, Version 2.0 (the "License"); | 
 | # you may not use this file except in compliance with the License. | 
 | # You may obtain a copy of the License at | 
 | # | 
 | #      http://www.apache.org/licenses/LICENSE-2.0 | 
 | # | 
 | # Unless required by applicable law or agreed to in writing, software | 
 | # distributed under the License is distributed on an "AS IS" BASIS, | 
 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | # See the License for the specific language governing permissions and | 
 | # limitations under the License. | 
 | # | 
 |  | 
 | # | 
 | # Plots debug log output from WindowOrientationListener. | 
 | # See README.txt for details. | 
 | # | 
 |  | 
 | import numpy as np | 
 | import matplotlib.pyplot as plot | 
 | import subprocess | 
 | import re | 
 | import fcntl | 
 | import os | 
 | import errno | 
 | import bisect | 
 | from datetime import datetime, timedelta | 
 |  | 
 | # Parameters. | 
 | timespan = 15 # seconds total span shown | 
 | scrolljump = 5 # seconds jump when scrolling | 
 | timeticks = 1 # seconds between each time tick | 
 |  | 
 | # Non-blocking stream wrapper. | 
 | class NonBlockingStream: | 
 |   def __init__(self, stream): | 
 |     fcntl.fcntl(stream, fcntl.F_SETFL, os.O_NONBLOCK) | 
 |     self.stream = stream | 
 |     self.buffer = '' | 
 |     self.pos = 0 | 
 |  | 
 |   def readline(self): | 
 |     while True: | 
 |       index = self.buffer.find('\n', self.pos) | 
 |       if index != -1: | 
 |         result = self.buffer[self.pos:index] | 
 |         self.pos = index + 1 | 
 |         return result | 
 |  | 
 |       self.buffer = self.buffer[self.pos:] | 
 |       self.pos = 0 | 
 |       try: | 
 |         chunk = os.read(self.stream.fileno(), 4096) | 
 |       except OSError, e: | 
 |         if e.errno == errno.EAGAIN: | 
 |           return None | 
 |         raise e | 
 |       if len(chunk) == 0: | 
 |         if len(self.buffer) == 0: | 
 |           raise(EOFError) | 
 |         else: | 
 |           result = self.buffer | 
 |           self.buffer = '' | 
 |           self.pos = 0 | 
 |           return result | 
 |       self.buffer += chunk | 
 |  | 
 | # Plotter | 
 | class Plotter: | 
 |   def __init__(self, adbout): | 
 |     self.adbout = adbout | 
 |  | 
 |     self.fig = plot.figure(1) | 
 |     self.fig.suptitle('Window Orientation Listener', fontsize=12) | 
 |     self.fig.set_dpi(96) | 
 |     self.fig.set_size_inches(16, 12, forward=True) | 
 |  | 
 |     self.raw_acceleration_x = self._make_timeseries() | 
 |     self.raw_acceleration_y = self._make_timeseries() | 
 |     self.raw_acceleration_z = self._make_timeseries() | 
 |     self.raw_acceleration_magnitude = self._make_timeseries() | 
 |     self.raw_acceleration_axes = self._add_timeseries_axes( | 
 |         1, 'Raw Acceleration', 'm/s^2', [-20, 20], | 
 |         yticks=range(-15, 16, 5)) | 
 |     self.raw_acceleration_line_x = self._add_timeseries_line( | 
 |         self.raw_acceleration_axes, 'x', 'red') | 
 |     self.raw_acceleration_line_y = self._add_timeseries_line( | 
 |         self.raw_acceleration_axes, 'y', 'green') | 
 |     self.raw_acceleration_line_z = self._add_timeseries_line( | 
 |         self.raw_acceleration_axes, 'z', 'blue') | 
 |     self.raw_acceleration_line_magnitude = self._add_timeseries_line( | 
 |         self.raw_acceleration_axes, 'magnitude', 'orange', linewidth=2) | 
 |     self._add_timeseries_legend(self.raw_acceleration_axes) | 
 |  | 
 |     shared_axis = self.raw_acceleration_axes | 
 |  | 
 |     self.filtered_acceleration_x = self._make_timeseries() | 
 |     self.filtered_acceleration_y = self._make_timeseries() | 
 |     self.filtered_acceleration_z = self._make_timeseries() | 
 |     self.filtered_acceleration_magnitude = self._make_timeseries() | 
 |     self.filtered_acceleration_axes = self._add_timeseries_axes( | 
 |         2, 'Filtered Acceleration', 'm/s^2', [-20, 20], | 
 |         sharex=shared_axis, | 
 |         yticks=range(-15, 16, 5)) | 
 |     self.filtered_acceleration_line_x = self._add_timeseries_line( | 
 |         self.filtered_acceleration_axes, 'x', 'red') | 
 |     self.filtered_acceleration_line_y = self._add_timeseries_line( | 
 |         self.filtered_acceleration_axes, 'y', 'green') | 
 |     self.filtered_acceleration_line_z = self._add_timeseries_line( | 
 |         self.filtered_acceleration_axes, 'z', 'blue') | 
 |     self.filtered_acceleration_line_magnitude = self._add_timeseries_line( | 
 |         self.filtered_acceleration_axes, 'magnitude', 'orange', linewidth=2) | 
 |     self._add_timeseries_legend(self.filtered_acceleration_axes) | 
 |  | 
 |     self.tilt_angle = self._make_timeseries() | 
 |     self.tilt_angle_axes = self._add_timeseries_axes( | 
 |         3, 'Tilt Angle', 'degrees', [-105, 105], | 
 |         sharex=shared_axis, | 
 |         yticks=range(-90, 91, 30)) | 
 |     self.tilt_angle_line = self._add_timeseries_line( | 
 |         self.tilt_angle_axes, 'tilt', 'black') | 
 |     self._add_timeseries_legend(self.tilt_angle_axes) | 
 |  | 
 |     self.orientation_angle = self._make_timeseries() | 
 |     self.orientation_angle_axes = self._add_timeseries_axes( | 
 |         4, 'Orientation Angle', 'degrees', [-25, 375], | 
 |         sharex=shared_axis, | 
 |         yticks=range(0, 361, 45)) | 
 |     self.orientation_angle_line = self._add_timeseries_line( | 
 |         self.orientation_angle_axes, 'orientation', 'black') | 
 |     self._add_timeseries_legend(self.orientation_angle_axes) | 
 |  | 
 |     self.current_rotation = self._make_timeseries() | 
 |     self.proposed_rotation = self._make_timeseries() | 
 |     self.predicted_rotation = self._make_timeseries() | 
 |     self.orientation_axes = self._add_timeseries_axes( | 
 |         5, 'Current / Proposed Orientation', 'rotation', [-1, 4], | 
 |         sharex=shared_axis, | 
 |         yticks=range(0, 4)) | 
 |     self.current_rotation_line = self._add_timeseries_line( | 
 |         self.orientation_axes, 'current', 'black', linewidth=2) | 
 |     self.predicted_rotation_line = self._add_timeseries_line( | 
 |         self.orientation_axes, 'predicted', 'purple', linewidth=3) | 
 |     self.proposed_rotation_line = self._add_timeseries_line( | 
 |         self.orientation_axes, 'proposed', 'green', linewidth=3) | 
 |     self._add_timeseries_legend(self.orientation_axes) | 
 |  | 
 |     self.time_until_settled = self._make_timeseries() | 
 |     self.time_until_flat_delay_expired = self._make_timeseries() | 
 |     self.time_until_swing_delay_expired = self._make_timeseries() | 
 |     self.time_until_acceleration_delay_expired = self._make_timeseries() | 
 |     self.stability_axes = self._add_timeseries_axes( | 
 |         6, 'Proposal Stability', 'ms', [-10, 600], | 
 |         sharex=shared_axis, | 
 |         yticks=range(0, 600, 100)) | 
 |     self.time_until_settled_line = self._add_timeseries_line( | 
 |         self.stability_axes, 'time until settled', 'black', linewidth=2) | 
 |     self.time_until_flat_delay_expired_line = self._add_timeseries_line( | 
 |         self.stability_axes, 'time until flat delay expired', 'green') | 
 |     self.time_until_swing_delay_expired_line = self._add_timeseries_line( | 
 |         self.stability_axes, 'time until swing delay expired', 'blue') | 
 |     self.time_until_acceleration_delay_expired_line = self._add_timeseries_line( | 
 |         self.stability_axes, 'time until acceleration delay expired', 'red') | 
 |     self._add_timeseries_legend(self.stability_axes) | 
 |  | 
 |     self.sample_latency = self._make_timeseries() | 
 |     self.sample_latency_axes = self._add_timeseries_axes( | 
 |         7, 'Accelerometer Sampling Latency', 'ms', [-10, 500], | 
 |         sharex=shared_axis, | 
 |         yticks=range(0, 500, 100)) | 
 |     self.sample_latency_line = self._add_timeseries_line( | 
 |         self.sample_latency_axes, 'latency', 'black') | 
 |     self._add_timeseries_legend(self.sample_latency_axes) | 
 |  | 
 |     self.fig.canvas.mpl_connect('button_press_event', self._on_click) | 
 |     self.paused = False | 
 |  | 
 |     self.timer = self.fig.canvas.new_timer(interval=100) | 
 |     self.timer.add_callback(lambda: self.update()) | 
 |     self.timer.start() | 
 |  | 
 |     self.timebase = None | 
 |     self._reset_parse_state() | 
 |  | 
 |   # Handle a click event to pause or restart the timer. | 
 |   def _on_click(self, ev): | 
 |     if not self.paused: | 
 |       self.paused = True | 
 |       self.timer.stop() | 
 |     else: | 
 |       self.paused = False | 
 |       self.timer.start() | 
 |  | 
 |   # Initialize a time series. | 
 |   def _make_timeseries(self): | 
 |     return [[], []] | 
 |  | 
 |   # Add a subplot to the figure for a time series. | 
 |   def _add_timeseries_axes(self, index, title, ylabel, ylim, yticks, sharex=None): | 
 |     num_graphs = 7 | 
 |     height = 0.9 / num_graphs | 
 |     top = 0.95 - height * index | 
 |     axes = self.fig.add_axes([0.1, top, 0.8, height], | 
 |         xscale='linear', | 
 |         xlim=[0, timespan], | 
 |         ylabel=ylabel, | 
 |         yscale='linear', | 
 |         ylim=ylim, | 
 |         sharex=sharex) | 
 |     axes.text(0.02, 0.02, title, transform=axes.transAxes, fontsize=10, fontweight='bold') | 
 |     axes.set_xlabel('time (s)', fontsize=10, fontweight='bold') | 
 |     axes.set_ylabel(ylabel, fontsize=10, fontweight='bold') | 
 |     axes.set_xticks(range(0, timespan + 1, timeticks)) | 
 |     axes.set_yticks(yticks) | 
 |     axes.grid(True) | 
 |  | 
 |     for label in axes.get_xticklabels(): | 
 |       label.set_fontsize(9) | 
 |     for label in axes.get_yticklabels(): | 
 |       label.set_fontsize(9) | 
 |  | 
 |     return axes | 
 |  | 
 |   # Add a line to the axes for a time series. | 
 |   def _add_timeseries_line(self, axes, label, color, linewidth=1): | 
 |     return axes.plot([], label=label, color=color, linewidth=linewidth)[0] | 
 |  | 
 |   # Add a legend to a time series. | 
 |   def _add_timeseries_legend(self, axes): | 
 |     axes.legend( | 
 |         loc='upper left', | 
 |         bbox_to_anchor=(1.01, 1), | 
 |         borderpad=0.1, | 
 |         borderaxespad=0.1, | 
 |         prop={'size': 10}) | 
 |  | 
 |   # Resets the parse state. | 
 |   def _reset_parse_state(self): | 
 |     self.parse_raw_acceleration_x = None | 
 |     self.parse_raw_acceleration_y = None | 
 |     self.parse_raw_acceleration_z = None | 
 |     self.parse_raw_acceleration_magnitude = None | 
 |     self.parse_filtered_acceleration_x = None | 
 |     self.parse_filtered_acceleration_y = None | 
 |     self.parse_filtered_acceleration_z = None | 
 |     self.parse_filtered_acceleration_magnitude = None | 
 |     self.parse_tilt_angle = None | 
 |     self.parse_orientation_angle = None | 
 |     self.parse_current_rotation = None | 
 |     self.parse_proposed_rotation = None | 
 |     self.parse_predicted_rotation = None | 
 |     self.parse_time_until_settled = None | 
 |     self.parse_time_until_flat_delay_expired = None | 
 |     self.parse_time_until_swing_delay_expired = None | 
 |     self.parse_time_until_acceleration_delay_expired = None | 
 |     self.parse_sample_latency = None | 
 |  | 
 |   # Update samples. | 
 |   def update(self): | 
 |     timeindex = 0 | 
 |     while True: | 
 |       try: | 
 |         line = self.adbout.readline() | 
 |       except EOFError: | 
 |         plot.close() | 
 |         return | 
 |       if line is None: | 
 |         break | 
 |       print line | 
 |  | 
 |       try: | 
 |         timestamp = self._parse_timestamp(line) | 
 |       except ValueError, e: | 
 |         continue | 
 |       if self.timebase is None: | 
 |         self.timebase = timestamp | 
 |       delta = timestamp - self.timebase | 
 |       timeindex = delta.seconds + delta.microseconds * 0.000001 | 
 |  | 
 |       if line.find('Raw acceleration vector:') != -1: | 
 |         self.parse_raw_acceleration_x = self._get_following_number(line, 'x=') | 
 |         self.parse_raw_acceleration_y = self._get_following_number(line, 'y=') | 
 |         self.parse_raw_acceleration_z = self._get_following_number(line, 'z=') | 
 |         self.parse_raw_acceleration_magnitude = self._get_following_number(line, 'magnitude=') | 
 |  | 
 |       if line.find('Filtered acceleration vector:') != -1: | 
 |         self.parse_filtered_acceleration_x = self._get_following_number(line, 'x=') | 
 |         self.parse_filtered_acceleration_y = self._get_following_number(line, 'y=') | 
 |         self.parse_filtered_acceleration_z = self._get_following_number(line, 'z=') | 
 |         self.parse_filtered_acceleration_magnitude = self._get_following_number(line, 'magnitude=') | 
 |  | 
 |       if line.find('tiltAngle=') != -1: | 
 |         self.parse_tilt_angle = self._get_following_number(line, 'tiltAngle=') | 
 |  | 
 |       if line.find('orientationAngle=') != -1: | 
 |         self.parse_orientation_angle = self._get_following_number(line, 'orientationAngle=') | 
 |  | 
 |       if line.find('Result:') != -1: | 
 |         self.parse_current_rotation = self._get_following_number(line, 'currentRotation=') | 
 |         self.parse_proposed_rotation = self._get_following_number(line, 'proposedRotation=') | 
 |         self.parse_predicted_rotation = self._get_following_number(line, 'predictedRotation=') | 
 |         self.parse_sample_latency = self._get_following_number(line, 'timeDeltaMS=') | 
 |         self.parse_time_until_settled = self._get_following_number(line, 'timeUntilSettledMS=') | 
 |         self.parse_time_until_flat_delay_expired = self._get_following_number(line, 'timeUntilFlatDelayExpiredMS=') | 
 |         self.parse_time_until_swing_delay_expired = self._get_following_number(line, 'timeUntilSwingDelayExpiredMS=') | 
 |         self.parse_time_until_acceleration_delay_expired = self._get_following_number(line, 'timeUntilAccelerationDelayExpiredMS=') | 
 |  | 
 |         self._append(self.raw_acceleration_x, timeindex, self.parse_raw_acceleration_x) | 
 |         self._append(self.raw_acceleration_y, timeindex, self.parse_raw_acceleration_y) | 
 |         self._append(self.raw_acceleration_z, timeindex, self.parse_raw_acceleration_z) | 
 |         self._append(self.raw_acceleration_magnitude, timeindex, self.parse_raw_acceleration_magnitude) | 
 |         self._append(self.filtered_acceleration_x, timeindex, self.parse_filtered_acceleration_x) | 
 |         self._append(self.filtered_acceleration_y, timeindex, self.parse_filtered_acceleration_y) | 
 |         self._append(self.filtered_acceleration_z, timeindex, self.parse_filtered_acceleration_z) | 
 |         self._append(self.filtered_acceleration_magnitude, timeindex, self.parse_filtered_acceleration_magnitude) | 
 |         self._append(self.tilt_angle, timeindex, self.parse_tilt_angle) | 
 |         self._append(self.orientation_angle, timeindex, self.parse_orientation_angle) | 
 |         self._append(self.current_rotation, timeindex, self.parse_current_rotation) | 
 |         if self.parse_proposed_rotation >= 0: | 
 |           self._append(self.proposed_rotation, timeindex, self.parse_proposed_rotation) | 
 |         else: | 
 |           self._append(self.proposed_rotation, timeindex, None) | 
 |         if self.parse_predicted_rotation >= 0: | 
 |           self._append(self.predicted_rotation, timeindex, self.parse_predicted_rotation) | 
 |         else: | 
 |           self._append(self.predicted_rotation, timeindex, None) | 
 |         self._append(self.time_until_settled, timeindex, self.parse_time_until_settled) | 
 |         self._append(self.time_until_flat_delay_expired, timeindex, self.parse_time_until_flat_delay_expired) | 
 |         self._append(self.time_until_swing_delay_expired, timeindex, self.parse_time_until_swing_delay_expired) | 
 |         self._append(self.time_until_acceleration_delay_expired, timeindex, self.parse_time_until_acceleration_delay_expired) | 
 |         self._append(self.sample_latency, timeindex, self.parse_sample_latency) | 
 |         self._reset_parse_state() | 
 |  | 
 |     # Scroll the plots. | 
 |     if timeindex > timespan: | 
 |       bottom = int(timeindex) - timespan + scrolljump | 
 |       self.timebase += timedelta(seconds=bottom) | 
 |       self._scroll(self.raw_acceleration_x, bottom) | 
 |       self._scroll(self.raw_acceleration_y, bottom) | 
 |       self._scroll(self.raw_acceleration_z, bottom) | 
 |       self._scroll(self.raw_acceleration_magnitude, bottom) | 
 |       self._scroll(self.filtered_acceleration_x, bottom) | 
 |       self._scroll(self.filtered_acceleration_y, bottom) | 
 |       self._scroll(self.filtered_acceleration_z, bottom) | 
 |       self._scroll(self.filtered_acceleration_magnitude, bottom) | 
 |       self._scroll(self.tilt_angle, bottom) | 
 |       self._scroll(self.orientation_angle, bottom) | 
 |       self._scroll(self.current_rotation, bottom) | 
 |       self._scroll(self.proposed_rotation, bottom) | 
 |       self._scroll(self.predicted_rotation, bottom) | 
 |       self._scroll(self.time_until_settled, bottom) | 
 |       self._scroll(self.time_until_flat_delay_expired, bottom) | 
 |       self._scroll(self.time_until_swing_delay_expired, bottom) | 
 |       self._scroll(self.time_until_acceleration_delay_expired, bottom) | 
 |       self._scroll(self.sample_latency, bottom) | 
 |  | 
 |     # Redraw the plots. | 
 |     self.raw_acceleration_line_x.set_data(self.raw_acceleration_x) | 
 |     self.raw_acceleration_line_y.set_data(self.raw_acceleration_y) | 
 |     self.raw_acceleration_line_z.set_data(self.raw_acceleration_z) | 
 |     self.raw_acceleration_line_magnitude.set_data(self.raw_acceleration_magnitude) | 
 |     self.filtered_acceleration_line_x.set_data(self.filtered_acceleration_x) | 
 |     self.filtered_acceleration_line_y.set_data(self.filtered_acceleration_y) | 
 |     self.filtered_acceleration_line_z.set_data(self.filtered_acceleration_z) | 
 |     self.filtered_acceleration_line_magnitude.set_data(self.filtered_acceleration_magnitude) | 
 |     self.tilt_angle_line.set_data(self.tilt_angle) | 
 |     self.orientation_angle_line.set_data(self.orientation_angle) | 
 |     self.current_rotation_line.set_data(self.current_rotation) | 
 |     self.proposed_rotation_line.set_data(self.proposed_rotation) | 
 |     self.predicted_rotation_line.set_data(self.predicted_rotation) | 
 |     self.time_until_settled_line.set_data(self.time_until_settled) | 
 |     self.time_until_flat_delay_expired_line.set_data(self.time_until_flat_delay_expired) | 
 |     self.time_until_swing_delay_expired_line.set_data(self.time_until_swing_delay_expired) | 
 |     self.time_until_acceleration_delay_expired_line.set_data(self.time_until_acceleration_delay_expired) | 
 |     self.sample_latency_line.set_data(self.sample_latency) | 
 |  | 
 |     self.fig.canvas.draw_idle() | 
 |  | 
 |   # Scroll a time series. | 
 |   def _scroll(self, timeseries, bottom): | 
 |     bottom_index = bisect.bisect_left(timeseries[0], bottom) | 
 |     del timeseries[0][:bottom_index] | 
 |     del timeseries[1][:bottom_index] | 
 |     for i, timeindex in enumerate(timeseries[0]): | 
 |       timeseries[0][i] = timeindex - bottom | 
 |  | 
 |   # Extract a word following the specified prefix. | 
 |   def _get_following_word(self, line, prefix): | 
 |     prefix_index = line.find(prefix) | 
 |     if prefix_index == -1: | 
 |       return None | 
 |     start_index = prefix_index + len(prefix) | 
 |     delim_index = line.find(',', start_index) | 
 |     if delim_index == -1: | 
 |       return line[start_index:] | 
 |     else: | 
 |       return line[start_index:delim_index] | 
 |  | 
 |   # Extract a number following the specified prefix. | 
 |   def _get_following_number(self, line, prefix): | 
 |     word = self._get_following_word(line, prefix) | 
 |     if word is None: | 
 |       return None | 
 |     return float(word) | 
 |  | 
 |   # Extract an array of numbers following the specified prefix. | 
 |   def _get_following_array_of_numbers(self, line, prefix): | 
 |     prefix_index = line.find(prefix + '[') | 
 |     if prefix_index == -1: | 
 |       return None | 
 |     start_index = prefix_index + len(prefix) + 1 | 
 |     delim_index = line.find(']', start_index) | 
 |     if delim_index == -1: | 
 |       return None | 
 |  | 
 |     result = [] | 
 |     while start_index < delim_index: | 
 |       comma_index = line.find(', ', start_index, delim_index) | 
 |       if comma_index == -1: | 
 |         result.append(float(line[start_index:delim_index])) | 
 |         break; | 
 |       result.append(float(line[start_index:comma_index])) | 
 |       start_index = comma_index + 2 | 
 |     return result | 
 |  | 
 |   # Add a value to a time series. | 
 |   def _append(self, timeseries, timeindex, number): | 
 |     timeseries[0].append(timeindex) | 
 |     timeseries[1].append(number) | 
 |  | 
 |   # Parse the logcat timestamp. | 
 |   # Timestamp has the form '01-21 20:42:42.930' | 
 |   def _parse_timestamp(self, line): | 
 |     return datetime.strptime(line[0:18], '%m-%d %H:%M:%S.%f') | 
 |  | 
 | # Notice | 
 | print "Window Orientation Listener plotting tool" | 
 | print "-----------------------------------------\n" | 
 | print "Please turn on the Window Orientation Listener logging in Development Settings." | 
 |  | 
 | # Start adb. | 
 | print "Starting adb logcat.\n" | 
 |  | 
 | adb = subprocess.Popen(['adb', 'logcat', '-s', '-v', 'time', 'WindowOrientationListener:V'], | 
 |     stdout=subprocess.PIPE) | 
 | adbout = NonBlockingStream(adb.stdout) | 
 |  | 
 | # Prepare plotter. | 
 | plotter = Plotter(adbout) | 
 | plotter.update() | 
 |  | 
 | # Main loop. | 
 | plot.show() |